5. Unit: Web Services

Exercise 5.1 (Web Services: tomcat)

Install tomcat. You can do this on your own computer, and/or in the CIP Pool in your own account.
Starting it makes it available under the URL localhost:8080 from the browser.

Copy the .war file for the XQuery Demo Web Service into tomcat/webapps and adapt the configu-
ration (and restart tomcat again) to check whether it basically works.

Exercise 5.2 (Web Services: Stream Processing)

Write a Web Service that reads a XML from the input and returns a document that has the same
structure, but all element and attribute names are backwards (e.g., for

<country car_code=’D’>
<name>Germany</name><population year="2011">80219695</population>
</country>

the response is

<yrtnuoc edoc_rac=’D’>
<eman>Germany</eman><noitalupop raey="2011">80219695</noitalupop>
</yrtnuoc>

It should do this by streaming — i.e. whenever something is read, the result is immediately added
to the answer. Log every action to the System.out to illustrate the proceeding.

Write a Java program that calls this Web Service, e.g., using mondial.xml (or any other XML
data). It should also log its activity (sending and also receiving the answer) to System.out.

For the writing of the xml to the request, consider the output method of JDOM (which will not
log every step, but should be good for seeing that already during writing, the response is received),
and a SAX/StAX writer.

are there documents where the response is the same as the document?

Exercise 5.3 (Web Service (Basics))

Install the calendar application from the previous exercise as a Web-Service (to be accessible as
localhost:8080/calendarl/).

a) Provide a (simple) Web interface as a form:
e Show the calendar as an HTML page,
e Load a calendar from the Web (a file calendar.xml in the public_html directory in your account

is then accessible ashttp://user.informatik.uni-goettingen.de/~username/calendar.
xml).
e Insert entries. Preferably, the form should ask for date, time, duration, title.

b) Extend the java code with a method that generates for a given time interval (given by a start
and end date) and a given duration (in hours) all collision-free appointments during weekdays
between 8-18h, starting at full hours, ranging between 08:00 and 17:00). The result should be
(i) primarily in form of an XML list of appointments in the same XML form as before.

¢) Extend the Web interface with such that the method from (b) can be called, and the result list
is shown in some useful HTML presentation.



Exercise 5.4 (Web Service (Communication))

For a simple scenario of communication between Web Services, just use a copy of the same code
in the same tomcat server:

Install a second tomcat running under localhost:8081 (adapt tomcat2/conf/server.xml) and do
the same (if you have different calendar variants in your group, you might use these in the same
tomcat).

The idea is now: Userl submits an enquiry as in (2b) “search for a possible slot of 2 hours [with the
owner of Calendar2] in the next week” via the form of “his” Calendarl (8080). Calendarl collects
his own possibilities and “asks” them via HTTP to Calendar2 (8081). Calendar2 reserves the first
possible slot in itself, and returns this information to the Calendarl (in the HTTP answer) that
in turn also makes the reservation (and shows it as answer to Userl).

a) For testing: feed both services with two different calendarl/2.xml.

b) Extend the code with a servlet method that is called via HTTP with a list of “proposals”
as obtained from (2b), compares it with the own calendar, reserves the first possible slot and
returns this information in the HTTP answer.

¢) Extend the method from (2c¢) such that the result is not (only) shown as HTML page, but that
a HTTP call to the other service’s method from (3b) with the list of proposed appointments is
executed, and that the answer is received and the reservation is made.

d) The simplest way is to read the HTTP XML message contents into a small DOM instance to
process it.

e) [Optional] More “Web Service Feeling” can be obtained as follows: Reading the HTTP request

in (3b) via SAX/StAX, checking each proposal immediately, and, if conflict-free, closing the
reader and answering immediately.
When submitting the HTTP message in (3c), sleep one second after writing each proposal (may-
be it is necessary flush the writer), and choose a long interval to get a long list of proposals.
Then, Calendar2 can already answer before Calendarl has finished the generation of proposals
(use logging, most simply by System.out.printin(...) that can then be found in tomcat/logs/ca-
talina.out.



