
4. Unit: XML Processing with Java (II)

Exercise 4.1 (XML Digester) Use the XML Digester in a Java class that creates an internal
data structure about seas, rivers and their tributaries (including lakes) and generates an output
similar to that in Exercise 2.1.
Additionally, this output should show for every river the sum of the length of all rivers flowing into
it (directly or indirectly).

Exercise 4.2 (XML/JAXB/DOM/XSLT) Application: Personal schedule

This exercise will be reused for a Web Service.

Consider an XML structure for representing a personal schedule (“Terminkalender”) with entries
(using xsd:dateTime):

<?xml version="1.0" encoding="UTF-8"?>

<schedule name="John Doe">

<year n="2016">

<month n="12">

<day n="7">

<entry starttime="16:00:00" duration="PT02H">

<name>XML Lab</name>

<description>weekly course meeting</description>

<location>IFI 1.101</location>

</entry>

</day>

<day n="8">

<entry starttime="11:00:00" duration="PT50M">

<name>Discussion MSc Thesis X.Y.</name>

</entry>

</day>

</month>

</year>

</schedule>

• Each schedule contains zero or more year elements.

• Each year element contains zero or more month elements.

• Each month element contains zero or more day elements.

• Each day element contains zero or more entry elements.

• Each entry element, describes a certain date, containing information about starting time, dura-
tion, location and a textual description of the date.

• Appointments do not span over more than one day.

• The month and day elements appear in their correct temporal order inside the document.

The exercise consists of the following steps:

a) Design an XML Schema (use the dateTime datatype from XML Schema), and validate an
example instance.

b) Generate basic classes and interfaces for the schedule application, using the JAXB Schema
binding compiler on your XML schema.

c) Unmarshal your example schedule.xml file into memory using JAXB.

d) Write a method insertEntry(date, time, duration, title) that inserts a new appointment into the
internal schedule. If the appointment is collision-free, it should be inserted, otherwise the method
should return “false”.

e) Marshal the in-memory schedule into an in-memory DOM Tree, again using JAXB.



f) Write an XSLT styhesheet that transforms an XML schedule instance (which can be given as
a file or a DOM instance) into an HTML output presentation of the appointments if the given
month (HTML table or list).

Write a method that applies the stylesheet directly to the DOM tree and outputs the result
into a file (use e.g. the javax.xml.transform classes).

Notes:

• The command: “xjc -help” issued on the command line displays usage and possible options.

• At /afs/informatik.uni-goettingen.de/course/xml-prakt/xml/JAXB-README
you find an explanation for installing, testing and using JAXB.

• The Java WebService Tutorial at http://java.sun.com/webservices/tutorial.html provides some
help for working with JAXB.

Exercise 4.3 (Independence in JAXB)

• Do the independence use case exercise using JAXB.
(mondial.xsd is available on the Web site)

Do as much as possible with JAXB. Where does a problem occur, and why? Solve it with a
reasonable workaround.

• Why is it not a good idea to do it with the Digester?


