2. Unit: Transforming XML with XSLT

Exercise 2.1 (XML to HTML) Write an XSLT routine performing the following task:
Map the following country data for each country to an HTML table:

e country name

e car code

e capital’s name

e number of inhabitants

e the names of all listed cities, inside a nested html table.

Exercise 2.2 (Mondial - Deutschland-View)

Create a ”Germany-View”:
Use the web-resources

http://www.geohive.com/cd/de.xml
and
http://www.geohive.com/cy/c.de.xml

to create a view over Germany that satisfies the following DTD:

<!ELEMENT country (name,population,provinces,cities)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT population (#PCDATA)>

<!ELEMENT provinces (province*)>

<!ELEMENT cities (city*)>

<!ELEMENT province (name,area,population)>

<!ELEMENT area (#PCDATA)>

<!ELEMENT city (name,population)>

<!ATTLIST country capital IDREF #IMPLIED>
<!'ATTLIST province capital IDREF #IMPLIED>
<!'ATTLIST city id ID #IMPLIED>

Hence, an instance of the view looks like this:

<?xml version="1.0" encoding="UTF-8"7>
<country capital="...">
<name>...</name>
<population>...</population>
<provinces>
<province capital="...">
<name>...</name>
<area>...</area>
<pop>...</pop>
</province>

</provinces>
<cities>
<city id="...">
<name>...</name>

<population>...</population>
</city>

</cities>
</country>

Each city-Element should get a unique ID with the country and province elements’ IDREF-
attributes referring to the adequate IDs of the addressed city.

Exercise 2.3 (Mondial - Transform Germany)

e Write an XSLT stylesheet performing the following task:

write the ”Germany” data from Mondial into a document that conforms to the DTD from
Exercise 2.2.

e Invoke the stylesheet.

e Check if the resulting document is valid wrt. the DTD by using a validating XML parser, e.g.
xmllint.

Exercise 2.4 (Stylesheet for Schedules)

Write an XSL stylesheet for transforming schedule data given in the following form into an html
calendar table:

<?xml version="1.0" encoding="UTF-8"7>
<schedule name='"Meine Termine'>
<month n="1">
<day n="3">
<date starttime="15:00">
<name>Institutsbesprechung</name>
</date>
</day>
</month>
<month n="2">
<day n="2">
<date starttime="18:00">
<name>Telefonat</name>
</date>
</day>
</month>
</year>
</schedule>

The resulting schedule should have about the following layout:

jan feb mar | apr | may | jun | jul | aug | sep | oct | nov | dec
1 1 1 1 1 1 1 1 1 1 1 1
2 2 18:00 - Telefonat 2 2 2 2 2 2 2 2 2 2
3 15:00 - Institutsbesprechung | 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4

Exercise 2.5 (Arithmetic Terms)

Arithmetic terms over integer values and operators +, —, * and div (integer division) can be rep-
resented by their syntax trees, with the syntax trees given in XML. A possible XML notation for
syntax trees is given in the following example for the term

44 ((7T-2) div 2)

<term>
<plus>
<val>4</val>
<div>
<minus>
<val>7</val>
<val>2</val>
</minus>
<val>2</val>
</div>
</plus>
</term>

a) Write down the syntax tree for the term ((91 div (19 — (3 % 8))) + 3), using the XML notation
from the above example.

b) Write a DTD for the given notation. Each term should be considered a single XML document
instance.

¢) Write three XSLT stylesheets that take a syntax tree in the notation depicted above as input,
and produce as output
e the term as text in inorder notation (outcome should be (4+((7-2) div 2)) for the exam-
ple),
e the term as text in preorder notation (outcome should be + 4 div - 7 2 2), and
e the term as text in postorder notation (outcome should be 4 7 2 - 2 div +).
Test the stylesheets using the term ((91 div (19 — (3 % 8))) + 3) as input.
d) Write an XSLT stylesheet that evaluates a syntax tree in the notation depicted above.

Exercise 2.6 (Recursion in Data)

(a) Write an XSLT stylesheet which maps the structures of the seas and rivers from Mondial in
the following way: Every sea element must contain the name of the sea and a river element
for each river flowing into that sea. Each river element, again, must recursively contain a river
element for each river flowing into it, and so on:
<waters>

<sea>
<name>North Sea</name>
<river>
<name>Rhein</name>
<length>...</length>
<river>
<name>Main</name>
<length>...</length>
<river>

<name>Tauber</name>
<length>...</length>
</river>

</river>

<river>
<name>Neckar</name>
<length>...</length>
<river>

</river>

</river>
</sea>
</waters>

(b) Write another stylesheet (that uses the output of the above one as input) which computes for
each river that flows into a sea the total sum of the length of all rivers flowing (directly or
transitively) into it, and output the results into a table.

(c) Write another stylesheet (that uses the original mondial.xml!) as input) which computes for
each river that flows into a sea the total sum of the length of all rivers flowing (directly or
transitively) into it, and output the results into a table.

Exercise 2.7 (XSLT and Recursive Data Structures: Binary Search Trees)

a) Create a sample instance for XML Markup of Binary Search Trees (probably use the Abstract
Datatype definition from the CS I lecture). Note: also an empty BST is a BST.

b) give a DTD-style description (note that since a BST can either be empty or not, the expres-
siveness of DTDs is not adequate). Optionally: give an XML Schema description.

¢) write XSL stylesheets for (i) inserting elements into the tree, (ii) outputting the tree contents
in inorder, (iii) outputting the tree in a graphical way (e.g., nested tables) in HTML, (iv)
searching, and (iii) deleting elements in the tree.
(e.g., invoked by saxonXSL -o mybsb.xml mybsb.xml bsb-insert.xsl insert=6)

