
Georg-August-Universität

Göttingen

Zentrum für Informatik

ISSN 1612-6793

Nummer zfi-msc-2009-09

Master Thesis
im Studiengang "Angewandte Informatik"

Query-Brokering in

Semantic-Web-Umgebungen

Heiko Vollmann

Arbeitsgruppe für

Datenbanken und Informationssysteme

Bachelor- und Masterarbeiten

des Zentrums für Informatik

an der Georg-August-Universität Göttingen

September 29, 2009

Georg-August-Universität Göttingen

Zentrum für Informatik

Goldschmidtstraße 7

37077 Göttingen

Germany

Tel. +49 (5 51) 39-17 20 10

Fax +49 (5 51) 39-14 69 3

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel verwen-

det habe.

Göttingen, den September 29, 2009

Abstract

The Semantic Web will consist of a large number of nodes. In contrast to the present

web, these nodes will be capable of communicating with each other. The nodes will, for

example, be able to send messages to other nodes informing them of updates or changes.

They will also be able to autonomously gather information from other nodes.

To organize all this communication, central nodes are required. One of these central

nodes, developed within the MARS Framework, is the domain broker. It holds information

about the participating nodes and supports the communication between these.

One part of the domain broker is the so called query broker. This part enables local and

remote nodes to post queries to the Semantic Web, which cannot be answered by a single

node, due to the fact that information from multiple domains is required to answer the

query.

In this thesis the internal logic for such a query broker is designed and implemented.

The implementation contains certain changes to the handling of ontologies and registered

domain nodes in the domain broker; as well as the methods of the query broker to handle

incoming queries.

Acknowledgments

First of all, I would like to thank Prof. Dr. Wolfgang May for his excellent supervision of

this thesis and my whole course of studies.

Furthermore I would like to thank Dr. Franz Schenk for his technical and scientific support

and insights and for co-supervising this thesis.

Finally, I would like to thank my sister Prisca Markmann and Jan Gertken for proofreading

and my parents for their continued support and encouragement throughout my studies.

Master Thesis

Query-Brokering in

Semantic-Web-Umgebungen

Heiko Vollmann

September 29, 2009

supervised by Prof. Dr. Wolfgang May

Databases and Information Systems Group

Institute for Computer Science

University of Göttingen

Contents

1 Introduction 6

2 Basics 10

2.1 URI . 10

2.2 Ontology . 11

2.3 RDF and RDF Schema . 11

2.3.1 RDF . 11

2.3.2 RDFS . 13

2.3.3 SPARQL . 13

2.4 OWL . 14

3 Software Tools 15

3.1 The JENA Framework . 15

3.1.1 Jena API . 15

3.2 Reasoner . 16

3.2.1 Pellet Reasoner . 16

3.3 TDB . 17

3.4 LOG4J . 17

4 Design 18

4.1 Example 1 . 18

4.2 Ontology and Domain Nodes . 23

3

Contents

4.2.1 LSR . 23

4.2.2 Loading the Ontology . 23

4.2.3 Registering a Domain Node . 25

4.2.4 The Ontology and Domain Node Administration Structure 27

4.3 Hashes . 29

4.3.1 Details . 29

4.3.2 Special Structures . 30

4.3.3 Export . 31

4.4 Query Execution . 33

4.4.1 Receive Query and Extract Parts . 33

4.4.2 Get all Relevant Concepts . 34

4.4.3 Get the Supporting Nodes . 35

4.4.4 Collect Data from Domain Nodes . 35

4.4.5 Execute Query . 36

4.4.6 Convert Result and Answer Query . 37

4.5 Completeness . 38

4.6 Example 2 . 40

4.7 Example 3 . 43

5 Implementation 46

5.1 General . 46

5.2 Overview . 46

5.3 Domain Broker Servlet . 47

5.4 Domain Broker Class . 48

5.5 The Hash Classes . 49

5.6 Query Broker Class . 50

5.7 The QueryBox . 50

5.8 MARS Frontend . 51

4

Contents

6 Conclusion 58

Bibliography 60

5

1 Introduction

This thesis is written as part of the approach of the ’Databases and Information Systems

Group’ at Göttingen-University and other international research groups, which aim to de-

velop and exemplarily implement a semantic web, as described in [11].

In contrast to the classical web, nodes in the semantic web are capable of communicating

with each other. Through this communication, information can be gained which could

never be gained by a single node in the classic web.

In the semantic web there are different kinds of nodes, providing different services. In

this thesis two kinds of nodes are especially relevant:

• domain nodes: The domain nodes provide data of a certain domain. For example,

a domain node could provide political data about countries. This may include the

population, birth rate or which cities are located in it.

• domain broker: A domain broker is a central node in the semantic web. It holds meta

information about the domain nodes. This includes the knowledge which domains

a domain node supports and about which concepts of the domains the domain node

can provide data.

The domain broker also provides certain services for external nodes. For example it

provides an interface to execute queries. The actual execution of the query is done by

one part of the domain broker called the ’query broker’.

A basic implementation of a domain broker has been done by Tobias Knabke in his the-

sis ’Entwicklung und Implementierung eines Domain Brokers für das Semantic Web’ [1] in

2006.

6

1 Introduction

The focus of [1] was on event and action brokering. The query broker of [1] has the basic

input and output methods but very little internal logic. The generation of answers to the

incoming queries did not include ontology reasoning. The target of this thesis is to change

that.

With the implementation of this thesis, the domain broker should be able to handle mul-

tiple ontologies and provide an interface for domain nodes to register themselves at the

broker. The query broker should obtain the required data to answer an incoming query

from these domain nodes. Due to this construct the domain broker is not required to hold

any real data itself.

Figure 1.1 demonstrates how the different components work together.

The ontologies are loaded during startup of the domain broker and are stored by it for later

use. When the domain broker is running, the Interface is active and the domain nodes can

register themselves.

After the domain nodes are registered the domain broker is ready to execute the queries

coming from the external nodes. In order to answer theses incoming queries the required

data is obtained from the previously registered domain nodes.

A special requirement to the query broker is that the subqueries that are generated and

sent to the domain nodes should be constructed in a manner that allows the domain nodes

to execute these queries without the use of a reasoner. This is required to speed up the

whole process of answering the query, since the use of a reasoner is very time consuming.

A domain node normally provides data for only one domain, or even for only one aspect

of a domain. Therefore the query broker needs to be able to query multiple domain nodes.

7

1 Introduction

Figure 1.1: The Domain Broker Structure (theoretic)

To meet these requirements, the process of executing a query, done by the query broker,

is divided into several steps:

1) Since the subqueries sent to the domain nodes should be executed by those without

the use of a reasoner, these subqueries do not only need to contain the concepts oc-

curring in the main query, but also all sub, equivalent and other relevant concepts

which would normally be evaluated as important by the reasoner. Because of this,

the query broker first needs to evaluate all the classes and properties occurring in the

query and find all the additionally required concepts. All these concepts are stored

in the ’relevant concepts list’.

8

1 Introduction

2) For each concept in this list the query broker checks which domain nodes support

this concept. These correlations are stored.

3) The query broker then generates queries from the concepts and sends them to the

correlating domain nodes. These are simple queries that can be answered by domain

nodes without a reasoner. The results returned by the domain nodes concern just the

ABox (only data about individuals and no meta information). This data is stored by

the query broker for later use.

4) When all the data is collected from the domain nodes, the query broker combines it

into a new ABox. To this ABox the ontology stored in the domain broker is added as

a TBox. On this combination the incoming query is executed. For this final execution

a reasoner is used.

In virtue of this partitioning of the query execution, it is possible to fulfill the requirement

of generating simple subqueries and still take the meta information required to execute a

query into account.

The thesis is structured as follows. The next chapter will give an overview of the con-

cepts and languages used in this thesis. Chapter 3 will then describe the technologies and

APIs used to develop and implement the thesis. A basic example of how the new query

broker works is given at the beginning of Chapter 4. This example is followed by a de-

tailed description of the design and requirements of the new query broker and the parts

that where changed in the domain broker. In Chapter 5 some details on the implementation

are described, along with some examples of the new web interface designed to help users

and developers. The thesis is concluded with a summary of the important parts designed

and implemented.

9

2 Basics

This thesis is developed and implemented for use in the MARS Framework for Evolution

and Reactivity in the Semantic Web, which is introduced in [11].

This chapter will give a basic introduction to the concepts and languages underlying

the design and implementation of this thesis. In order to give a complete overview of the

concepts some related structures are described that are not used directly in the thesis.

2.1 URI

A Uniform Resource Identifier1 (URI) is a character string which uniquely identifies a re-

source. The resource can be abstract, like a website or located in the real world, like a

person.

URIs can amongst other be classified as Uniform Resource Locators (URL) or Uniform Re-

source Names (URN). A URL identifies a resource through its primary access mechanism

or its location within the network, for example: ’http://...’ directs to a specific webpage.

A URN identifies a resource through its name, for example ’isbn:0-19-853737-9’ refers to a

book, but provides no information where to find or get it.

For more information see [2].

1Also called Universal Resource Identifier.

10

2 Basics

2.2 Ontology

In computer science the term ontology specifies a set of definitions which describe the con-

cepts of a domain. The ontology contains information about the hierarchical structure of

the classes in the domain, the notation used and the semantics which lie behind the nota-

tion. The ontology defines the objects the domain can contain and specifies the relations in

which these objects stand to each other. It determines the exact notation to be used in any

document about the specified domain.

To signal that a set of notations belongs together and to shorten the actual string repre-

senting the notation a namespace can be defined. The namespace defines how a specific

part of the URL describing a concept can be replaced by an abbreviation. The part of the

URL to be replaced always has to start at the beginning of the URL.

For example it can be defined that http://www.semwebtech.de/mondial/10/meta# is the names-

pace for meta data about the Mondial ontology and that the abbreviation mon: can be used

to represent it.

With this namespace definition, instead of http://www.semwebtech.de/mondial/10/meta#hasCity

the shorter string mon:hasCity can be used.

A collection of information is divided into two sections. The statements building the on-

tology are located in the so called TBox. The statements describing individuals are located

in the ABox.

For more information see [13].

2.3 RDF and RDF Schema

2.3.1 RDF

The Resource Description Framework (RDF) is a structure to describe resources and de-

note this description in a machine readable and machine processable way.

RDF uses URIs (see above) to uniquely identify a resource. Because of this, the resource

11

2 Basics

can be located anywhere within the net or the real world. Furthermore, one resource can

be described by many RDF models located in different places within the net. Through the

use of URIs, the distributed information about one resource can be brought together and

the user can tell that the different RDF models refer to the same resource.

The RDF Model is composed of Triplets. The Triplets contain:

• a subject which always is the URI of the resource, this triple gives information about,

• a predicate which names the aspect of the resource to be described in this triple,

• an object which is the value of the description. This can be a literal (string or number)

or another resource.

An RDF Model can be represented for example as a graph, as a list of triples or as a

special XML markup called RDF/XML.

The following is an example which illustrates the basic idea of what an RDF triple could

look like in N-triplets:

<http://www.semwebtech.de/mondial/10/countries/D>

<http://www.semwebtech.de/mondial/10/meta#hasCity>

<http://www.semwebtech.de/mondial/10/cities/Goettingen> .

<http://www.semwebtech.de/mondial/10/countries/D>

<http://www.semwebtech.de/mondial/10/meta#name> "Germany" .

This gives a description about a resource which can be accessed by the URI

http://www.myworld.de/country/D. It contains the information that this resource has a hasCity

relation to another resource identified by http://www.myworld.de/city/Goettingen and a name

property which is the literal ’Germany’.

The same example denoted in N3 looks like this:

@prefix mon: <http://www.semwebtech.de/mondial/10/meta#>.

<http://www.semwebtech.de/mondial/10/countries/D>

12

2 Basics

<mon:hasCity> <http://www.semwebtech.de/mondial/10/cities/Goettingen> ;

<mon:name> "Germany" .

For more information see [4].

2.3.2 RDFS

RDF Schema (RDFS) is a vocabulary description language.

Via an RDF Schema the vocabulary of a specific domain is defined. A Schema provides

meta data to the data contained in the RDF model. The meta data can, for example, con-

tain class declarations and information about the hierarchy of the classes (rdfs:subClassOf).

Furthermore it can contain domain and range information about the properties used in the

RDF model. Simple ontologies can be represented in RDFS.

Syntactically an RDFS document is a valid RDF Model and can be read and processed with

the same mechanisms as RDF.

For more information see [5].

2.3.3 SPARQL

SPARQL is the recursive acronym that stands for SPARQL Protocol And RDF Query Lan-

guage.

SPARQL is a query language used to access RDF graphs. The SPARQL syntax is based on

known SQL commands, but also allows variable bindings and optional parameters.

To make the queries easier to read and write for humans, SPARQL provides methods for

namespace handling: At the beginning of a query the ’PREFIX’ keyword can be given to

define a set of namespaces for the query. The query itself can then use briefer names, called

local names.

In order to understand the basic idea, consider the following short query, which illustrates

what a SPARQL query could look like:

13

2 Basics

PREFIX mon: <http://www.semwebtech.de/mondial/10/meta#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?names

{

?country rdf:type mon:Country.

?country mon:name ?names

}

Explanation: The query will search the RDF graph for all resources which have a property

’rdf:type’ and ’mon:Country’ as a value of this property. For all these resources it selects

the value of the ’mon:name’ property and returns these values in the names field.

For more information see [6].

Since the expressive power of RDFS is not sufficient to express all ontology features needed

in the Semantic Web and since this thesis is developed to be used in the Semantic Web, an-

other language is needed. This is described in the next chapter.

2.4 OWL

The Web Ontology Language (OWL) is a language used to define and instantiate ontolo-

gies. It is technically based on RDF syntax, but extends RDF and RDFS in making it possi-

ble to express semantics related to the data.

OWL is designed to provide a notation for the structure and semantics defined by the the-

oretical construct of an ontology needed for the Semantic Web.

This is a small example of a relation needed for reasoning that cannot be expressed in

RDFS: hasCity is the inverse of cityIn.

In OWL syntax it looks like this: mon:hasCity owl:inverseOf mon:cityIn.

For more information see [3].

14

3 Software Tools

3.1 The JENA Framework

Jena is an open source framework developed to provide structures and methods needed to

build Semantic Web applications. It has developed out of work on the HP Labs Semantic

Web Programme [10]. It provides methods to handle RDF, RDFS, OWL and SPARQL.

3.1.1 Jena API

The Jena API provides methods to handle RDF data.

The main purpose of the Jena API is to store and access an RDF model with Java Classes. It

provides methods to load RDF data from one or more files and builds an RDF model from

the data. This model can then be accessed and altered through numerous API functions.

Simple but limited query and navigation methods are provided for the RDF graph, as well

as export functions (for example saving the graph in an RDF/XML markup).

Since the built-in navigation function is limited to simple queries, the Jena API provides

an engine to process queries written in common query languages, such as SPARQL. This

engine is called ARQ1.

1Since ARQ is not important for this thesis, no further details are given.

15

3 Software Tools

3.2 Reasoner

By the use of a reasoner, an API can draw conclusions about the RDF graph. The meta

information can be given in RDFS or OWL code terms within the model. All queries posed

or commands given to the RDF model will be processed by the reasoner.

The Jena API also provides methods for loading a reasoner. The reasoner can either be

one of those provided by the API or it can be an external one, as for example the ’Pellet

Reasoner’ (see below).

For the purpose of illustration, consider this example:

Assume that in the RDF model there are Country and City objects. Each City has a mon:cityIn

property which directs to the Country where the City is located. The Country has no infor-

mation about what City lies in it.

Assume further that the OWL meta data in the RDF model contains the following entry:

mon:hasCity owl:inverseOf mon:cityIn. Now consider sending the following SPARQL re-

quest to the model:

SELECT ?city

WHERE {<http://www.myworld.de/countries/D/> mon:hasCity ?city}

Because the reasoner applies the information that mon:hasCity is the inverse of mon:cityIn

to the model, the answer of this query will be all cities that are located in the country

http://www.myworld.de/countries/D/. Without the reasoning the answer would be empty,

since the Country objects do not actually have a property mon:hasCity.

3.2.1 Pellet Reasoner

The Pellet reasoner was originally developed at the University of Maryland’s Mindswap

Lab. It is designed to provide the full expressiveness of OWL-DL for Java applications.

The reasoner can be integrated directly into the Jena model creation process.

For more information see [9].

16

3 Software Tools

3.3 TDB

TDB is a component of the Jena Framework. It provides methods to permanently store

RDF data on a single machine.

All data representing one model is stored in one folder given by the user. The data is

stored in an RDF native format. Therefore no external relational database is necessary.

To store the data in the TDB database a connection between an RDF model and a TDB

storage is created. The model can then be used like any other RDF model in Jena.

The TDB storage can be accessed via a command line utility or via methods provided for

the Jena API. (In this thesis the API is used to access the database.)

For more information see [7].

3.4 LOG4J

Log4j is a framework for logging messages in Java applications. It is part of the ’Apache

Software Foundation’. Its main purpose is to provide a simple-to-use method for logging

during development, debugging and deployment of an application.

Log4j provides six basic logging levels: FATAL, ERROR, WARN, INFO, DEBUG and

TRACE. Theses logging levels are hierarchical. In this case this means that, if the log level

is set to WARN all WARN, ERROR and FATAL messages will be logged.

The configuration for Log4j is given in a separate file2. Therefore it is not necessary to

edit the source code in order to change the log level, the output device (stdout, file, etc.) or

the logging format.

For more information see [8].

2Filename: log4j.properties

17

4 Design

In this Chapter, the design of the new query broker is presented.

The first section provides a basic example. It demonstrates what happens during the do-

main broker startup and how the query broker handles an incoming query.

The following sections describe the procedures in detail.

The last two sections provide examples, which illustrate the use of a special structure.

4.1 Example 1

In order to acquire a better understanding of how the query broker works and what is

required for it to function, an example is given in what follows. In this example only the

procedure is described. The exact details are given later in this chapter.

During the startup the domain broker acquires information about which domains it

should support, obtains the corresponding ontologies and creates its internal ontology

with these. Let us assume that the domain broker supports the Mondial domain and there-

fore loads the Mondial ontology [15].

After the domain broker has been started, two domain nodes register themselves at the

domain broker and inform it that they support the following concepts from the Mondial

ontology:

1. Mondial politics: This domain node provides data about countries, provinces and

cities. Among other things this includes their names, correlation and other political

information.

18

4 Design

2. Mondial organizations: This domain node provides data about organizations. This

includes which organizations exist, their names, members, headquarters, etc.

At this point the domain broker is capable of answering queries about the Mondial domain.

Now let us assume an external node sends a request to the domain broker with a SPARQL

query looking like this:

PREFIX mon:<http://www.semwebtech.org/mondial/10/meta#>

SELECT ?on ?hn

WHERE {

?o a mon:Organization .

?o mon:abbrev ?on .

?o mon:hasHeadq ?h .

?o mon:hasMember ?c .

?c mon:capital ?h .

?h mon:name ?hn

}

The domain broker passes this query on to the query broker to execute it and to generate

an answer.

The query broker first extracts and expands all the concepts within the query, which are

these:

http://www.semwebtech.org/mondial/10/meta#Organization

http://www.semwebtech.org/mondial/10/meta#abbrev

http://www.semwebtech.org/mondial/10/meta#hasHeadq

http://www.semwebtech.org/mondial/10/meta#hasMember

http://www.semwebtech.org/mondial/10/meta#capital

http://www.semwebtech.org/mondial/10/meta#name

http://www.semwebtech.org/mondial/10/meta#isMember

http://www.semwebtech.org/mondial/10/meta#isCapitalOf

Here it can be seen that the mon:isMember and mon:isCapitalOf concepts are added to the list

of concepts occurring in the query. This is due to the fact that they are inverse to concepts

19

4 Design

in the query and therefore relevant to the execution of the query.

The query broker then checks which domain nodes support which concept. In this ex-

ample the following is the case:

http://www.semwebtech.org/nodes/2007/mondialPolitic {

http://www.semwebtech.org/mondial/10/meta#capital

http://www.semwebtech.org/mondial/10/meta#name

http://www.semwebtech.org/mondial/10/meta#isCapitalOf

}

http://www.semwebtech.org/nodes/2007/mondialOrganization {

http://www.semwebtech.org/mondial/10/meta#Organization

http://www.semwebtech.org/mondial/10/meta#abbrev

http://www.semwebtech.org/mondial/10/meta#hasHeadq

http://www.semwebtech.org/mondial/10/meta#hasMember

http://www.semwebtech.org/mondial/10/meta#name

http://www.semwebtech.org/mondial/10/meta#isMember

}

In this notation, the list of domain nodes which support some of the relevant concepts can

be seen. In this case these are the .../mondialPolitic and .../mondialOrganization node. Within

the cambered brackets a list of concepts supported by the node preceding the brackets is

given.

From each correlation between a domain node and a concept one query is created. This

query is then send to the domain node. The answer from the domain node contains all

data that it has according to the concept in question. The answers to all these queries are

combined and stored by the domain broker.

This is a small sample of the answers stored by the query broker:

<http://www.semwebtech.org/mondial/10/countries/L/>

<http://www.semwebtech.org/mondial/10/meta#isMember>

<http://www.semwebtech.org/mondial/10/organizations/NATO/>

<http://www.semwebtech.org/mondial/10/organizations/G-10/>

<http://www.semwebtech.org/mondial/10/meta#abbrev>

20

4 Design

"G-10"

<http://www.semwebtech.org/mondial/10/countries/I/>

<http://www.semwebtech.org/mondial/10/meta#capital>

<http://www.semwebtech.org/mondial/10/countries/I/provinces/Lazio/cities/Rome/>

<http://www.semwebtech.org/mondial/10/countries/I/>

<http://www.semwebtech.org/mondial/10/meta#name>

"Italy"

When all the data is collected from the domain nodes, the query broker uses the data

combined with the ontology stored by the domain broker to execute the main query. The

result is then returned to the domain broker.

The domain broker converts this result into a MARS conform structure, which looks like

this:

<?xml version="1.0" encoding="UTF-8"?>

<logic:variable-bindings xmlns:logic="http://www.semwebtech.org/lang/2006/logic"

xmlns:xs="http://www.w3.org/2001/XMLSchema#" xmlns:rdf="http://www.w3.org

/1999/02/22-rdf-syntax-ns#" xmlns:sr="http://www.w3.org/2005/sparql-results#">

<logic:tuple>

<logic:variable name="on">

<literal xmlns="http://www.w3.org/2005/sparql-results#">Inmarsat</literal>

</logic:variable>

<logic:variable name="hn">

<literal xmlns="http://www.w3.org/2005/sparql-results#">London</literal>

</logic:variable>

</logic:tuple>

<logic:tuple>

<logic:variable name="on">

<literal xmlns="http://www.w3.org/2005/sparql-results#">NIB</literal>

</logic:variable>

<logic:variable name="hn">

<literal xmlns="http://www.w3.org/2005/sparql-results#">Helsinki</literal>

</logic:variable>

21

4 Design

</logic:tuple>

[...]

<logic:tuple>

<logic:variable name="on">

<literal xmlns="http://www.w3.org/2005/sparql-results#">Benelux</literal>

</logic:variable>

<logic:variable name="hn">

<literal xmlns="http://www.w3.org/2005/sparql-results#">Brussels</literal>

</logic:variable>

</logic:tuple>

</logic:variable-bindings>

The formatted result is then sent back to the requesting external node.

22

4 Design

4.2 Ontology and Domain Nodes

During startup and initialization of the application the domain broker needs to obtain the

ontologies of all domains it provides services for. To load the ontologies, the domain broker

requires the LSR (Languages and Services Registry). The LSR provides all the necessary

information about all the nodes in the Semantic Web. This includes the domains the do-

main broker should support and information about how to acquire the ontologies to these

domains. Furthermore the LSR provides information about the domain nodes. This infor-

mation is required later on during the domain registration.

4.2.1 LSR

The present development state of the MARS Framework does not provide a web service

for the LSR. Therefore the LSR is represented by a large XML file. This file contains all

information the LSR will provide later on.

In this thesis the LSR file is read and parsed into a jdom.Document. The document is then

queried to get the necessary information required by the domain broker. (for details see

[14])

4.2.2 Loading the Ontology

The LSR contains information about the configuration of the domain broker. The domain

broker obtains this information and configures itself with it. How exactly this takes place

is described in this section.

The configuration information is represented by an XML document, which could look like

this:

<mars:DomainBroker

rdf:about="http://localhost:8080/services/2007/domain-broker"

xml:base="http://www.semwebtech.org/services/2007/domain-broker/">

<mars:name>All Domains Broker</mars:name>

23

4 Design

<has-task-description>

<TaskDescription>

<describes-task rdf:resource="&mars;/domain-broker#register-for-event"/>

<provided-at rdf:resource="register-for-event"/>

<Reply-To>body</Reply-To>

<Subject>n.a.</Subject>

<input>element register</input>

<variables>no</variables>

</TaskDescription>

</has-task-description>

[...]

<mars:supports-domain rdf:resource="http://www.semwebtech.org/domains/2006/

travel#"/>

<mars:supports-domain rdf:resource="http://www.semwebtech.org/domains/2006/

mondial#"/>

</mars:DomainBroker>

Within the <mars:supports-domain> elements the URIs of the supported domains are

provided.

At this point the domain broker ’knows’ which domains it supports.

To obtain the URIs of the ontologies corresponding to theses domains, the domain broker

then requests the domain information from the LSR. As an answer to this request the LSR

provides the domain broker with an XML document, containing the domain information.

This is an example how this document may look like:

<mars:Domain rdf:about="http://www.semwebtech.org/domains/2006/mondial#">

<mars:name>Mondial Database</mars:name>

<mars:shortname>mondial</mars:shortname>

<mars:hasOntology rdf:resource="http://www.someServer.de/mondial-meta.rdf"/>

</mars:Domain>

24

4 Design

The <mars:hasOntology> element provides information about where to find the ontol-

ogy corresponding to the described domain.

The domain broker then creates one TDB instance per domain. The ontology file is

loaded from the previously obtained URL and stored in the TDB. The location of the TDB

instance is stored in the ’ontology and domain node administration structure’ (see below

for description).

After all the ontologies have been stored in the TDB instances, the domain broker collects

all the ontologies and combines them into one ontology. This combined ontology is then

stored within the Ontology object in the domain broker. This Ontology object is used during

the query execution to obtain the necessary meta information required to handle the query.

4.2.3 Registering a Domain Node

The domain broker provides an interface for domain nodes to register themselves at the do-

main broker. A domain node can use the http://URL of DomainBroker.de/register-domainNode

URL to register at the domain broker. It needs to provide its own URL to identify itself.

As mentioned before, the LSR provides information about all known domain nodes within

the MARS network. To register the domain node the domain broker first obtains this infor-

mation from the LSR. The LSR provides the information in the form of an XML document.

This is an example of how this XML document may look like:

<mars:DomainService rdf:about="http://www.semwebtech.org/nodes/2007/monPolitic">

<mars:name>Mondial Datenbank ueber Politik</mars:name>

<mars:uses-domain rdf:resource="http://www.semwebtech.org/domains/2006/mondial"/>

<mars:supports rdf:resource="http://www.semwebtech.org/mondial/10/meta#Country"/>

<mars:supports rdf:resource="http://www.semwebtech.org/mondial/10/meta#City"/>

<mars:supports rdf:resource="http://www.semwebtech.org/mondial/10/meta#hasCity"/>

<mars:supports rdf:resource="http://www.semwebtech.org/mondial/10/meta#area"/>

</mars:DomainService>

25

4 Design

The domain broker requires information about the concepts the domain node supports.

These are found within the <mars:supports> elements of the XML document.

For each domain node being registered, the domain broker creates one TDB instance. To

be able to access it later on, an entry in the ’ontology and domain node administration

structure’ is created for the TDB instance, similar to the ones created for the ontologies.

To store the information about the supported concepts in the TDB, the domain broker first

determines if the concept represents a Class or a Property. To do so, the previously created

ontology is used. A triplet is then created for each concept and stored in the TDB instance.

The triples are created from the following parts:

• Subject: The URL of the domain node that supports this concept, which is given by

the domain node itself as mentioned above.

• Property: If the concept represents a Class, this Property is <mars:supportsClass>.

Otherwise the concept represents a Property and this Property is <mars:supportsProperty>.

• Object: The concept in question.

The following is an example of how a domain registration TDB could look like:

26

4 Design

4.2.4 The Ontology and Domain Node Administration Structure

The domain broker needs to be able to change the information about its ontologies and

registered domain nodes during runtime. To be able to do so, the domain broker stores the

information about these in separate TDB’s as mentioned in the Sections above. To access

and change the stored information an administration structure is required, which handles

the information where the TDB’s are stored.

The administration structure itself is stored in a TDB, too. Therefore the required informa-

tion can be accessed easily through SPAQL requests.

This is an example of how the RDF graph of the administration structure could look like:

The <mars:tdbInfo> node represents the master node.

The <mars:nextOntology> property connects the <mars:tdbInfo> to an integer value. This

value represents the number under which the domain broker should save the next incom-

ing ontology.

The <mars:nextDomainNode> works the same way for domain nodes as <mars:nextOntology>

does for ontologies.

27

4 Design

A <mars:ontologyX> node represents an ontology saved by the domain broker. The ’X’

stands for the sequential number under which the ontology is saved. The <mars:ontologyX>

node provides some information about the saved ontology. This information is connected

to the node through the following properties.

• <mars:ontologyDomain> provides the URI of the domain, which acts as the identifier

for the domain.

• <mars:ontologyURL> provides the URL of the ontology file. This is where the ontol-

ogy to the domain can be found.

• <mars:inDirectory> provides the location of the TDB where the ontology is saved.

The literal does not provide the complete URI but only the name of the directory

within the basic ontology directory.

A <mars:domainNode> node represents a domain node registered by the domain broker.

It works the same way as a <mars:ontologyX>.

The properties provided by the node are:

• <mars:nodeURL> provides the URL to the domain node. This is the address which

the query execution sends the generated subqueries to.

• <mars:inDirectory> provides the location of the TDB where the domain node infor-

mation is saved.

28

4 Design

4.3 Hashes

During startup and initialization of the application two hashes are created. One for classes

and one for properties. They are generated by a Factory Class, which provides the neces-

sary methods to build the hashes. The Factory Class uses the previously loaded ontology

and the information about the domain nodes, which are both stored in the TDB databases

at this point.

During the query execution all relevant concepts within the query in question are ex-

tracted. (See Section 4.4 for details.) Based on these concepts the subqueries are created.

To create the subqueries, which are sent to the domain nodes, two important pieces of

information have to be provided for each concept:

1. What other concepts are relevant to evaluate the concept in question without a rea-

soner?

2. Which domain node supports which concept?

The hashes provide a quick and comfortable way to access this information about a con-

cept.

4.3.1 Details

The HashFactory Class creates two hashes. One hash holds all the necessary information

about all classes described in the ontology. The other hash does the same for all properties.

Both hashes have the same basic structure, which is as follows:

All classes, properties and domain node URLs are stored as a Jena.Resource. Since a

Jena.Resource contains both the namespace and the given name of a class or property it is

not necessary to handle them explicitly.

The hashes use the concepts from the ontology as keys and associate them with three lists:

• usedClasses

The usedClasses list contains all classes required to expand the concept in question.

29

4 Design

This list may appear in both hashes, since a conclusion can be drawn from a property

to class through a <owl:Restriction>.

• usesProperty

The usesProperty list contains all properties required to expand the concept in ques-

tion. This list appears in both hashes. Because of the structure of an <owl:Restriction>,

a class may require a property for its evaluation. (see below)

• supportedBy

The supportedBy list contains the URIs of all domain nodes that support the concept

in question.

The query broker can request each list directly during its evaluation of a concept. The

whole list containing the Jena.Resources is returned to such a request.

4.3.2 Special Structures

The OWL language contains some special structures to define an owl:Class. Two of these

require a special handling within the hashes:

• owl:intersectionOf

An owl:intersectionOf defines the construction of a new class as the intersection of two

or more existing classes.

The new class is an owl:subClassOf of the existing classes. Therefore, after the inser-

tion of the owl:subClassOf and the owl:intersectionOf structures into the hash, an us-

esClass loop exists. The new Class uses the existing classes via the owl:intersectionOf

and the existing classes use the new class via the owl:subClassOf. To solve this loop,

the new class is removed from the usesClass list of all existing classes. This results in

the correct behavior, since the new class is not needed to evaluate one of the existing

classes.

30

4 Design

• owl:Restriction

An owl:Restriction defines the construction of a new class through a property and one

or more existing classes as objects to the given property. Since it is not necessary for

the property and the existing classes to be supported by the same domain node, they

are stored separately. The bond between the property and the classes is dissolved, so

that the query broker can send both of them to different domain nodes. (for details

see 4.4)

4.3.3 Export

The hashes provide a method to export themselves as a string representing an XML Docu-

ment.

The root element of the XML Document states what this document is about (propertyHash

or classHash) and provides all necessary namespaces.

The child elements of the root element represent the concepts about which information is

provided. The name of the element declares what kind of concept is described. (about-

Property or aboutClass) The URI of the property or class is provided within the rdf:resource

attribute.

The ’about a concept’ elements can have three kinds of children:

• usesProperty

• usesClass

• supportedBy

All three provide the URI’s of the concept or domain node in an rdf:resource attribute.

Example:

<ClassHash xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<aboutClass rdf:resource="http://www.semwebtech.org/mondial/10/meta#unionCC">

<usesClass rdf:resource="http://www.semwebtech.org/mondial/10/meta#City" />

<usesClass rdf:resource="http://www.semwebtech.org/mondial/10/meta#Country" />

31

4 Design

</aboutClass>

<aboutClass rdf:resource="http://www.semwebtech.org/mondial/10/meta#Country">

<supportedBy rdf:resource="http://www.semwebtech.org/nodes/2007/mondialPolitic"/

>

</aboutClass>

</ClassHash>

32

4 Design

4.4 Query Execution

In order to process an incoming query and generate an answer to that query several steps

are required:

1. Receive the query and extract the important parts from it.

2. Get all the relevant concepts necessary to execute the query.

3. Get the supporting domain nodes to these relevant concepts.

4. Query the domain nodes for the concepts and collect the data they can provide about

these concepts.

5. Execute the query on the collected data to get the final result.

6. Convert the result into a MARS conform form and send it to the querying web ser-

vice.

Steps two to five are handled by the query broker. Step one and six are handled by the

domain broker itself.

4.4.1 Receive Query and Extract Parts

The domain broker provides an interface to execute a query. This interface can be accessed

by sending a string representing an XML document to the URI http://www.domain_broker.de/

execute-query. The XML document contains specific elements, which will now be ex-

plained.

This is an example of what such an XML document could look like:

<query>

<opaque language="http://www.w3.org/2005/01/sparql-protocol#">

PREFIX travel:<http://www.semwebtech.org/domains/2006/travel#>

PREFIX mon:<http://www.semwebtech.org/mondial/10/meta#>

33

4 Design

SELECT ?a ?b

WHERE {

?a travel:from ?b.

?b mon:name ’Bremen’.

}

</opaque>

<reply-to>http://www.external_node.de/receive-query-answer</reply-to>

</query>

The <opaque> element has a language property describing what language the query is writ-

ten in. (In this thesis the SPARQL query broker is the only one implemented.)

The content of the <opaque> element is the query that should be executed.

The <reply-to> element contains the URL where the answer to the query should be sent to

by the domain broker.

To execute the query the domain broker first deduces what language the query is written

in and therefore which query broker is required to handle it. (This is not necessary here,

since there is only one supported language.) It then creates and starts a new thread to

handle the query. Within the thread the previously determined query broker is provided

with the query and instructed to generate a result.

4.4.2 Get all Relevant Concepts

The query broker generates a list where all the relevant concepts are collected. To start the

list, all concepts from the query are added. After this, all concepts newly added to the list

are recursively processed. In each recursion the domain broker gets all required concepts

from the class hash and the property hash (see Section 4.3). In addition to this, the rules

given by the MARS framework are evaluated and the concepts provided by these rules

are added to the list. (The rule evaluation is part of the previously existing query broker

described in [1] and not part of this thesis.)

34

4 Design

4.4.3 Get the Supporting Nodes

After the list of relevant concepts is created, the query broker needs to find out which do-

main node can provide data to which relevant concept in order to generate the subqueries.

This information is provided by the class hash and the property hash (see Section 4.3).

To store the information about correlations between domain nodes and relevant concepts

the query broker creates a hash. The keys of this hash represent the URLs of the domain

nodes that can provide data. Assigned to each URL is a list of the concepts that are sup-

ported by the domain node.

The following is a visualization of the ’supporting domain nodes hash’ to get a better

understanding of it:

http://www.semwebtech.org/nodes/2007/mondialPolitic {

http://www.semwebtech.org/mondial/10/meta#name

http://www.semwebtech.org/mondial/10/meta#City

}

http://www.semwebtech.org/nodes/2007/travel-bahn {

http://www.semwebtech.org/domains/2006/travel#from

}

4.4.4 Collect Data from Domain Nodes

For each concept in the supporting domain nodes hash a query is generated and sent to

the domain nodes which supports the concept.

Up to this point, all concepts are handled regardless of which type they really are. Since

the generated subquery depends upon whether the concept is a class or a property, the

query broker needs to find out of what type the concept is. This is done by a query to the

ontology of the domain broker. If the concept represents a class X, the following query is

generated and send to the domain node.

SELECT ?a ?b

35

4 Design

WHERE {

{ ?a ?b <X> }

}

If the concept represents a property Y, the query sent to the domain node looks like this:

SELECT ?a ?b

WHERE {

?a <Y> ?b

}

For each result returned by the domain node a triple is then created. The triple is build

from the relevant parts of the ABox returned by the domain node. In the case of a class if

looks like this: ?a ?b <X>. If the concept represents a property it looks like this: ?a <Y> ?b.

The query broker creates a TDB for the main query. The directory of the TDB is given a

name based on the number of the query.

All the triples generated from the results to the subqueries are then inserted into this

TDB.

Since it may take a while to receive the answers from the domain nodes, this whole

procedure may take some time. This is the main reason why the whole query execution

is running within a thread, so that the query broker is capable of doing other things while

waiting for the answers from the domain nodes.

4.4.5 Execute Query

As soon as all the subqueries are executed and all the results are saved into the TDB, the

query broker can process the main query, since at this point all necessary data is available

(see Section 4.5 for illustration).

To execute the query the query broker builds a model from the TDB and adds to this model

the ontology from the domain broker. The query is then executed on this model using a

reasoner. The answer to this query is the final result which should be send to the reply-to

36

4 Design

address.

4.4.6 Convert Result and Answer Query

The final result is returned by the query broker to the domain broker.

The domain broker converts the result into a MARS conform markup. The methods for

this conversion have been created in [1] and have not been changed in this thesis. The

correctly formatted result is then sent back to the web server which sent the request.

This is an example of what the final result in the correct markup could look like:

<?xml version="1.0"?>

<sparql xmlns="http://www.w3.org/2005/sparql-results#">

<head>

<variable name="a"/>

<variable name="b"/>

</head>

<results>

<result>

<binding name="a">

<uri>http://www.semwebtech.org/domains/2006/travel#Bremen_Hbf-Oldenburg_Hbf

</uri>

</binding>

<binding name="b">

<uri>http://www.semwebtech.org/mondial/10/countries/D/provinces/Bremen/

cities/Bremen/</uri>

</binding>

</result>

</results>

</sparql>

37

4 Design

4.5 Completeness

In this Section a short explanation is given of why the design of the query execution pro-

duces correct and complete answers.

To execute a query and generate a correct answer to that query a model is required

that contains all the information necessary to execute that query. Depending on the query

the requirements on the model variate. If the query can be executed correctly without a

reasoner only an ABox is required. This ABox needs to hold all the information required

for that particular query. If, on the other hand, reasoning is required to execute the query

correctly, a TBox is required in addition to the ABox. This TBox needs to contain all the

meta information required to execute the query.

The following will demonstrate that the design given above provides a model contain-

ing all the information required to execute the query. To be more precise, the query broker

provides a model containing all the information it can provide to execute the query. This

may not be enough to really execute the query correctly. For example, if the query contains

concepts from domains unknown to the domain broker, it is not capable of answering this

query correctly.

ABox completeness

The ABox of the model on which the incoming query is executed is created from all the

answers to the subqueries. Two things are required for the ABox to be complete.

The first is that all domain nodes that may provide relevant data to the query execution

should be queried. This requirement is fulfilled through the use of the ’supporting domain

nodes hash’ which contains all the information the query broker has about which domain

nodes provide data to the concepts in the query.

The second requirement is that the queried domain nodes should provide all the data

known to them about the concepts in question. This requirement is fulfilled because of the

method according to which the subqueries are created. The subqueries are very simple and

contain only one concept. Due to this design the only possible answer the domain nodes

38

4 Design

can give is the part of their ABox, containing individuals to that concept.

Since these two requirements are met and the final ABox is constructed from the ABoxes

got from the domain nodes, the ABox contains all the information that is required to exe-

cute the query, or at least all the information the query broker can possibly provide.

TBox completeness

The TBox of the model on which the incoming query is executed is created from the ontol-

ogy stored within the domain broker. This ontology is a combination of all the ontologies

from all the domains supported by the domain broker. Therefore it holds all meta infor-

mation from all the domains the query broker is capable of answering queries to.

Since the ABox and TBox are complete, or as complete as the query broker can build

them given the information it has, the final query execution generates the best possible

answer.

Normally the domain broker only receives queries about domains it supports and it knows

enough domain nodes to get data from. In this case (the usual case) the answers generated

by the query broker are correct.

39

4 Design

4.6 Example 2

In this chapter some examples are given to further illustrate how to use the new domain

broker and to demonstrate its capabilities.

The following example is given to show that the new query broker is capable of handling

the OPTIONAL and FILTER constructs of SPARQL. In addition, it shows that sometimes

more than only the required data is collected.

Let’s assume for the sake of the example that like in Example 1 the Mondial ontology

has been loaded by the domain broker and that the two domain nodes given in Example 1

registered themselves at the domain broker. In addition to this, the following third domain

node registered itself:

3) Mondial geo: This domain node provides data about geographical structures like

rivers, islands, mountains, etc. It provides their names, coordinates and locations.

To this setup an external node sends the following query:

<query>

<opaque language="http://www.w3.org/2005/01/sparql-protocol#">

PREFIX mon:<http://www.semwebtech.org/mondial/10/meta#>

SELECT ?c

WHERE {

?c a mon:Country .

optional { ?b a mon:Mountain. ?b mon:locatedIn ?c. }

FILTER (!bound(?b))

}

</opaque>

<reply-to>http://www.external_node.de/receive-query-answer</reply-to>

</query>

As a result to this request a list is expected, containing all the countries which do not

contain a mountain. The query broker gets this query from the domain broker and first

40

4 Design

extracts and expands all concepts. It then checks which of the registered domain nodes

support any of these concepts and generates the ’supporting domain nodes hash’ which in

this case looks like this:

http://www.semwebtech.org/nodes/2007/mondialPolitic {

http://www.semwebtech.org/mondial/10/meta#Country

}

http://www.semwebtech.org/nodes/2007/mondialGeo {

http://www.semwebtech.org/mondial/10/meta#Mountain

http://www.semwebtech.org/mondial/10/meta#locatedIn

}

The query broker will then collect all the relevant data from the domain nodes.

Note that in this case it will collect more than only the required data. A human looking

at and understanding the query and the structure of the domain nodes can see that it is

enough to get the data from the ’mondial geo’ domain node, since this domain node will

return all the countries, mountains and locations. The ’mondial politics’ domain node will

not contribute any significant data. But since the query broker has no means to determine

this information prior to executing the main query, it has to collect all the data that might

contribute information to the final query execution.

The query broker collects data to all concepts. The fact that there are special structures

within the query (in this case both OPTIONAL and FILTER) is not taken into account at

this point. Therefore all necessary data is collected by the query broker.

After collecting all the data, the query broker executes the main query. Since it is the

original query, sent by the external node, which is being executed at this point, the special

structures are taken into account and the correct answer is returned. This answer looks like

this:

<?xml version="1.0" encoding="UTF-8"?>

<logic:variable-bindings xmlns:logic="http://www.semwebtech.org/lang/2006/logic"

xmlns:xs="http://www.w3.org/2001/XMLSchema#" xmlns:rdf="http://www.w3.org

41

4 Design

/1999/02/22-rdf-syntax-ns#" xmlns:sr="http://www.w3.org/2005/sparql-results#">

<logic:tuple>

<logic:variable name="c">

<uri xmlns="http://www.w3.org/2005/sparql-results#">http://www.semwebtech.org

/mondial/10/countries/LT/</uri>

</logic:variable>

</logic:tuple>

<logic:tuple>

<logic:variable name="c">

<uri xmlns="http://www.w3.org/2005/sparql-results#">http://www.semwebtech.org

/mondial/10/countries/MC/</uri>

</logic:variable>

</logic:tuple>

[...]

</logic:variable-bindings>

42

4 Design

4.7 Example 3

In this example the handling of a restriction is demonstrated.

As in Examples 1 and 2 the Mondial ontology is used in this example too. The domain

node 1) is the only one necessary for this example.

Since there are no restrictions in the original Mondial ontology, there is one added for

this example. The following additions have been made to the Mondial ontology:

<rdf:Description rdf:about="http://www.semwebtech.org/mondial/10/meta#myNeighbors"

>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="http://www.semwebtech.org/mondial/10/meta#

neighbor" />

<owl:someValuesFrom rdf:resource="http://www.semwebtech.org/mondial/10/

meta#myCountry" />

</owl:Restriction>

</owl:equivalentClass>

</rdf:Description>

<rdf:Description rdf:about="http://www.semwebtech.org/mondial/10/meta#myCountry">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

</rdf:Description>

Furthermore in the data base of domain node 1) the object representing the country ’Ger-

many’ was changed to be of the type <mon:myCountry>.

<rdf:Description rdf:about="http://www.semwebtech.org/mondial/10/countries/D/">

<rdf:type rdf:resource="http://www.semwebtech.org/mondial/10/meta#myCountry"/>

<name>Germany</name>

[...]

</rdf:Description>

43

4 Design

After these changes, the domain broker is started and the domain node is registered. Now

the following query is sent to the domain broker:

<query>

<opaque language="http://www.w3.org/2005/01/sparql-protocol#">

PREFIX mon:<http://www.semwebtech.org/mondial/10/meta#>

SELECT ?neighbors

WHERE {

?neighbors a mon:myNeighbors

}

</opaque>

<reply-to>http://www.external_node.de/receive-query-answer</reply-to>

</query>

As always, the domain broker passes the query on to the query broker, which first extracts

and expands the concepts. The expanded concept list looks like this:

http://www.semwebtech.org/mondial/10/meta#myNeighbors

http://www.semwebtech.org/mondial/10/meta#myCountry

http://www.semwebtech.org/mondial/10/meta#neighbor

It can be seen here that the domain broker added the class <mon:myCountry> and the

property <mon:neighbor>. These are required to resolve the restriction <mon:myNeighbors>.

Now the query broker builds the ’supporting domain nodes hash’, which in this case looks

like this:

http://www.semwebtech.org/nodes/2007/mondialPolitic {

http://www.semwebtech.org/mondial/10/meta#myCountry

http://www.semwebtech.org/mondial/10/meta#neighbor

}

Note that the concept <mon:myNeighbors> is not listed in the hash. This is due to the fact

that no domain node supports this concept. It only exists as a meta class defined within

the ontology.

44

4 Design

The query broker now collects all the data from the domain node.

In this case this is the information about ’Germany’ from the <mon:myCountry> concept:

<http://www.semwebtech.org/mondial/10/countries/D/> <http://www.w3.org/1999/02/22-

rdf-syntax-ns#type> <http://www.semwebtech.org/mondial/10/meta#myCountry>

These are some of the neighbor relations from the <mon:neighbor> concept:

<http://www.semwebtech.org/mondial/10/countries/D/> <http://www.semwebtech.org/

mondial/10/meta#neighbor> <http://www.semwebtech.org/mondial/10/countries/DK/>

<http://www.semwebtech.org/mondial/10/countries/D/> <http://www.semwebtech.org/

mondial/10/meta#neighbor> <http://www.semwebtech.org/mondial/10/countries/PL/>

<http://www.semwebtech.org/mondial/10/countries/N/> <http://www.semwebtech.org/

mondial/10/meta#neighbor> <http://www.semwebtech.org/mondial/10/countries/SF/>

<http://www.semwebtech.org/mondial/10/countries/R/> <http://www.semwebtech.org/

mondial/10/meta#neighbor> <http://www.semwebtech.org/mondial/10/countries/BY/>

<http://www.semwebtech.org/mondial/10/countries/LT/> <http://www.semwebtech.org/

mondial/10/meta#neighbor> <http://www.semwebtech.org/mondial/10/countries/LV/>

The main query is now executed on the combination of this data and the Mondial ontology.

Since a reasoner is used for this query execution, the correct answer is returned, containing

all the neighbors of ’Germany,’ the only <mon:myCountry> (in this case given as a list,

since the full list in the correct markup is to long to display here):

<http://www.semwebtech.org/mondial/10/countries/CH/>

<http://www.semwebtech.org/mondial/10/countries/F/>

<http://www.semwebtech.org/mondial/10/countries/L/>

<http://www.semwebtech.org/mondial/10/countries/PL/>

<http://www.semwebtech.org/mondial/10/countries/CZ/>

<http://www.semwebtech.org/mondial/10/countries/DK/>

<http://www.semwebtech.org/mondial/10/countries/A/>

<http://www.semwebtech.org/mondial/10/countries/B/>

<http://www.semwebtech.org/mondial/10/countries/NL/>

45

5 Implementation

In this chapter the changes to the code of the domain broker and query broker are de-

scribed, along with the newly implemented interfaces.

5.1 General

The implementation of this thesis has been done in Java. To handle the RDF models and

resources the Jena framework has been used to be compatible with the previously existing

parts of the MARS framework.

The web pages were written in HTML and JavaScript.

5.2 Overview

Figure 5.1 shows the different components of the domain broker.

The Domain Broker Servlet is the interface which handles all request from external nodes.

The actual processing is done by the Domain Broker Class or the Query Broker Class.

The MARS Frontend is a set of web pages from which the functions of the domain broker

can be accessed and in which information about the internal status of the domain broker

can be displayed.

Furthermore, it can be seen that the query broker holds so called QueryBoxes to handle the

data of the queries it processes.

The following sections will provide further details concerning the components.

46

5 Implementation

Figure 5.1: The Domain Broker Structure (implementation)

5.3 Domain Broker Servlet

The domain broker servlet provides means to handle the incoming ’GET’ and ’POST’ re-

quest by external nodes. Which method has to be executed is determined by the last part

of the URL called by the external node.

The following methods have been added to ’GET’ requests:

/query-ids

Returns a list of all stored executed queries to be shown in the MARS Frontend.

47

5 Implementation

/query-parts

Returns a part of a stored query to be displayed in the MARS Frontend. The part returned

depends on the ’query-id’ and ’query-part’ parameter given by the request.

The following methods have been added to ’POST’ requests:

/register-domainNode

Registers the domain node of the given URL by calling the corresponding method of the

domain broker.

/deregister-domainNode

Deregisters the domain node of the given URL by calling the corresponding method of the

domain broker.

/get-hash

Returns the class hash or the property hash, depending on the message given by the re-

quest.

The /register-ontology method has been removed, since the ontologies are now loaded

during the startup of the domain broker.

5.4 Domain Broker Class

Some methods have been added to the domain broker class for the purpose of this thesis.

A short overview of the new methods will be given in what follows. All previously exist-

ing methods are unchanged.

void loadOntologiesFromLsrToTDB()

This method is called during startup of the domain broker. It acquires the ontology files

of the supported domains according to the URL of the domain broker as stated in the LSR.

The ontologies are stored in newly created TDB’s.

48

5 Implementation

void generateOntologyFromTDB()

After all the ontologies have been stored in the TDBs, this method is called. It builds an N3

string from all the ontologies and sends this to the setOntology() method of the internal

ontology class. This is done so that the previously existing ontology class [1] does not have

to be changed.

void generateHashes()

This method is called whenever a new ontology is loaded or a domain node is registered. It

combines the internal ontology with the support statements of all registered domain nodes

and calls the hash factory class to (re-)create both the class hash and property hash.

void registerDomain(String message) and void deregisterDomain(String message)

These methods are called whenever a domain node wants to register or dereigister itself.

They update the ’ontology and domain node administration structure’ (see Section 4.2.4)

and handle the TDB’s containing the supports statements. After they are done they call the

generateHashes() method.

5.5 The Hash Classes

Five new classes were created to handle the hashes.

HashFactory

The hash factory contains methods to create and acquire the hashes. All the methods are

static, therefore it is not necessary to create an instance of the HashFactory.

ClassHash and ProperyHash

These two classes each contain one hash assigning a HashElement (see below) to a concept.

They provide methods to add and remove concepts and get information about them.

ClassHashElement and ProperyHashElement

These classes contain the usesClass, usesPrpoerty and supportedBy lists as described in Sec-

tion 4.3. They provide methods to add, remove and access these lists.

49

5 Implementation

5.6 Query Broker Class

The query broker class handles all parts of the query execution.

During the implementation of this thesis the query execution has been rewritten com-

pletely. The previously existing query handling has not been deleted, so that it can be

inspected and parts of it may be reused later on.

After receiving a query, the query broker generates a unique number for that query. With

this number and the query string, a QueryBox object is created. The content of this object

is continuously updated while the query runs through the steps of the query execution as

described in Section 4.4.

Each of the mentioned steps is handled in its own method. These methods are straight-

forward and do exactly what is described in the design section.

The only noteworthy part is the temporally implemented domain node querying: The

method ResultSet queryDomain(String domainNode, String query) sends the given query

to the given domain node and returns the result. Since so far there are not enough real do-

main nodes for testing, this method fakes domain nodes and actually sends the query to

locally stored TDB’s. This, of course, needs to be changed as soon as enough real domain

nodes are implemented.

5.7 The QueryBox

The QueryBox class was created for the purpose of this thesis. Its purpose is to hold all the

relevant data for one query. This includes the following:

• the query,

• the query number ,

• the relevant concepts list,

50

5 Implementation

• the ’supporting domain nodes hash’, and

• the final result.

For each query one instance of the QueryBox is created. Due to the fact that the data

required to execute a query is stored in an external object, the query broker is capable

of executing multiple queries simultaneously with only one instance of the query broker

class. If the data were stored in local variables within the query broker this would not be

the case.

5.8 MARS Frontend

The MARS frontend is an HTML-based set of web pages to access and test the components

of the MARS framework.

The whole communication with the domain broker is done by AJAX and XMLHttpRequest

[16] object calls.

For the purpose of this thesis, a section has been added to the frontend to access the new

functions of the domain and query broker. The following pages were added:

51

5 Implementation

Register Domain Node

This page provides an interface to register domain nodes. To do so, the URL of the do-

main node needs to be entered in the text field. If the ’register’ button is pressed, the URL

will be sent to the domain broker, which will add the node to its registered domain nodes

list as described in Section 4.2.3.

A domain node can be deregistered in the same way by pressing the ’deregister’ button.

52

5 Implementation

View Hashes

The view hashes page displays the class and property hashes built by the domain broker.

The user can check, whether all the concepts in the ontologies were added to the hashes

correctly and if the domain nodes were registered with the correct concepts.

53

5 Implementation

Send Query

From this page a query can be sent to the domain broker.

The query can be entered in the text area. The ’send’ button sends the query to the domain

broker.

The answer to the query can be inspected either on the ’View Queries’ page (see below) or

in the domain broker log file.

54

5 Implementation

View Queries

This page provides an overview of the last four queries sent to the domain broker. Only

four queries are stored because the resource consumption for storing the queries is quite

huge. Therefore storing too many queries will considerably slow down the domain broker.

The query to be shown can be selected in the first selection box.

The part of the query that should be displayed can be selected in the second selection box.

The following parts of the query execution can be displayed:

• query: The query string sent to the domain broker.

55

5 Implementation

• relevant concepts: The list of relevant concepts, as determined by the query broker.

• domain node -> concepts hash: The ’supporting domain nodes hash’, created by the

query broker.

• TDB content: The content of the TDB where the query broker has stored the answers

of the subqueries.

• final result: The result of the execution of the query send to the domain broker.

56

6 Conclusion

The design and implementation of the internal logic of a query broker was the main target

of this thesis. To accomplish this target the domain and query broker previously designed

in [1] were revised and extended.

The handling of ontologies were changed so that their loading procedure now depends

on the LSR. Domain nodes within the Semantic Web can now register themselves at the do-

main broker and therefore enable the domain and query broker to provide a better service

to other web nodes.

The query broker can now handle queries to all domains made known to it. The execu-

tion of an incoming query is therefore much quicker, due to the use of a hash to expand the

concepts within the query and the fact that the subqueries, sent to the data holding domain

nodes are created such that they can be executed without the use of a reasoner.

A set of HTML based web pages were created to access the new domain and query bro-

ker functionality through HTTP-GET and HTTP-POST requests.

The query broker still needs to query all domain nodes that may contribute data to the

execution of the incoming query. This is due to the fact that the query broker has so far no

means for determining which domain node may contribute relevant data and which may

not. Further work on the query broker may come up with more internal intelligence, so

that the query broker does not need to collect these irrelevant data anymore.

The query broker implemented in this thesis supports only the query language SPARQL.

This applies to incoming queries as well as to the subqueries sent to the domain nodes.

58

6 Conclusion

Further work on the query broker may provide means to support other query languages

(for example, querying SQL databases in addition to querying domain nodes).

59

Bibliography

[1] T. Knabke: Entwicklung und Implementierung eines Domain Brokers für das Se-

mantic Web, Masters Thesis, Göttingen Unversity, 2006

http://www.informatik.uni-goettingen.de/studies/courses/theses.htm?&show=single&thesis_key=117

[2] Naming and Addressing: URIs, URLs, ... : http://www.w3.org/Addressing/

[3] Web Ontology Language (OWL):

[4] Resource Description Framework (RDF): http://www.w3.org/RDF/

http://www.w3.org/TR/owl-features/

[5] RDF Schema (RDFS): http://www.w3.org/TR/rdf-schema/

[6] SPARQL Query Language for RDF: http://www.w3.org/TR/rdf-sparql-query/

[7] TDB: http://jena.hpl.hp.com/wiki/TDB

[8] Apache log4j: http://logging.apache.org/log4j/

[9] Pellet: http://pellet.owldl.com/

[10] HP Labs Semantic Web Research: http://www.hpl.hp.com/semweb/

[11] Wolfgang May, José Júlio Alferes, Ricardo Amador. An Ontology- and Resources-

Based Approach to the Evolution and Reactivity in the Semantic Web. In Ontologies,

Databases and Semantics (ODBASE), number 3761, pages 1553-1570. Springer, 2005

[12] Reasoning on the Web with Rules and Semantics (REWERSE): http://rewerse.net/

60

Bibliography

[13] Thomas R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowl-

edge Acquisition, 5(2):199-220, 1993.

[14] The MARS LSR fil: http://www.semwebtech.org/mars/2006/lsr.rdf

[15] The Mondial ontology: http://www.dbis.informatik.uni-goettingen.de/Mondial/Mondial-

RDF/mondial-meta.rdf

[16] The XMLHttpRequest object: http://www.w3.org/TR/2009/WD-XMLHttpRequest-

20090820/

61

