
ISSN 1612-6793

Master’s Thesis
submitted in partial fulfilment of the

requirements for the course “Applied Computer Science”

Nested CONSTRUCTs in SPARQL

Stefan Siemer

Institute of Computer Science

Bachelor’s and Master’s Theses
of the Center for Computational Sciences

at the Georg-August-Universität Göttingen

25. October 2019

Georg-August-Universität Göttingen
Institute of Computer Science

Goldschmidtstraße 7
37077 Göttingen
Germany

T +49 (551) 39-172000
t +49 (551) 39-14403
B office@informatik.uni-goettingen.de
m www.informatik.uni-goettingen.de

First Supervisor: Prof. Dr. Wolfgang May
Second Supervisor: Prof. Dr. Carsten Damm

mailto:office@informatik.uni-goettingen.de
www.informatik.uni-goettingen.de

I hereby declare that I have written this thesis independently without any help from others and
without the use of documents or aids other than those stated. I have mentioned all used sources
and cited them correctly according to established academic citation rules.

Göttingen, 25. October 2019

Abstract
Nested CONSTRUCT queries provide the possibility of generating and shaping RDF data in the FROM
clause of a SPARQL query. This feature can be used to create ground new triples, reuse and optimise
queries or perform distributed evaluation and data integration. In this thesis, a modified version of the
SPARQL language is considered which enables the use of nested CONSTRUCT queries. Furthermore, the
corresponding implementation is presented for the Jena Framework. Afterwards, the Mondial database
is used to show several use cases. In the end, the Win-Move-Game demonstrates the relevance of nested
CONSTRUCT queries when used in combination with reasoning. All in all, it turns out that nested
CONSTRUCT queries are a very useful feature in the SPARQL language.

Contents

1 Introduction 1

2 Basics 5
2.1 Resource Description Framework . 5
2.2 SPARQL . 9

2.2.1 SPARQL Datasets . 9
2.2.2 SPARQL Solution Mappings . 9
2.2.3 SPARQL Algebra Evaluation . 11
2.2.4 SPARQL Nested Queries . 14

2.3 Ontologies & Reasoning . 17
2.3.1 Open World vs. Closed World . 17
2.3.2 OWL and Logic . 17
2.3.3 OWL DL . 18
2.3.4 Pellet . 18

2.4 Apache Jena Framework . 19
2.5 Semwebjar . 19
2.6 JavaCC . 20
2.7 Mondial Database . 20

3 SPARQL Grammar 23
3.1 Grammar Specification . 23
3.2 Grammar Implementation . 25

4 Jena Implementation 31
4.1 Dataflow in Jena . 31
4.2 Modification of Jena Classes . 33

4.2.1 Modification of Query.java . 33
4.2.2 Modification of DatasetDescription.java . 37
4.2.3 Modification of DatasetUtils.java . 38
4.2.4 Modification of QueryEngineBase.java . 41

ix

x CONTENTS

5 Analysis 43
5.1 Analysis of Use Cases . 43

5.1.1 Creation of New Values . 43
5.1.2 Query Writing . 44

5.2 Composability of CONSTRUCT Queries . 52

6 Closing the Open World 55
6.1 Win-Move-Game . 55

7 Conclusion 63
7.1 Future Work . 63

Bibliography 66

xii CONTENTS

List of Figures

2.1 Graph representation of a binary relation. 5
2.2 Graph representation of a RDF triple. 6
2.3 Graph representations of G1 and G2. 7
2.4 Graph representation of the merge Gnew of G1 and G2. 8
2.5 Graph representation of Triple Pattern. 10
2.6 Graph representation of BGP on the left and µ1(BGP) on the right. 12
2.7 Graph representation of the results of Listing 2.9. 15
2.8 Graph representation of the result of Listing 2.10. 16

4.1 Sketch of the new data flow in a SPARQL query execution process. 32

6.1 Graph representation of a Win-Move-Game example [1]. 56
6.2 Graph representation of the Win-Move-Game solution. 60

xiii

List of Listings

1.1 Motivational example in SPARQL [2]. 2

1.2 Motivational example in SQL. 2

2.1 G1 in N3. 7

2.2 G2 in N3. 7

2.3 Simple example of a BGP in SPARQL. 11

2.4 Algebra form of the query in Listing 2.3. 12

2.5 Simple example of a FILTER in SPARQL. 13

2.6 Algebra form of the query in Listing 2.5. 13

2.7 Simple example of an OPTIONAL in SPARQL. 14

2.8 Algebra form of the query in Listing 2.7. 14

2.9 Simple example of a CONSTRUCT query. 15

2.10 Simple example of a DESCRIBE query. 16

2.11 Production rule of Start. 20

2.12 Production rule of N . 20

2.13 Information about Albania in the Mondial database 21

3.1 Modification of DefaultGraphClause in master.jj. 25

3.2 SubFrom in master.jj. 25

3.3 SubFromNoService in master.jj. 26

3.4 SubFromService in master.jj. 26

3.5 Start of a nested query in SPARQLParserBase.java. 27

3.6 End of a nested query in SPARQLParserBase.java. 27

3.7 Introduction of REASONER Token in master.jj. 28

3.8 REASONER Token usage example in a CONSTRUCT query (master.jj). 28

4.1 Lists for nested CONSTRUCT queries in the Query object. 33

4.2 REASONER boolean with setter and getter. 33

4.3 Adding nested CONSTRUCT queries to the Lists. 34

4.4 Adding nested service-CONSTRUCT queries to the Lists. 34

4.5 Adding getter to make nested CONSTRUCTs available from the outside. 35

4.6 Update of hasDatasetDescription. 36

xv

xvi LIST OF LISTINGS

4.7 Update of getDatasetDescription. 36
4.8 Extension of DatasetDescription.java. 37
4.9 Accepting extended DatasetDescription as parameter. 38
4.10 Modification of createDatasetGraph. 38
4.11 Modification of addInGraphs. 38
4.12 Adding the nested CONSTRUCT results to the default graph. 39
4.13 Adding the nested DESCRIBE results to the default graph. 40
4.14 Adding the nested service-CONSTRUCT to the default graph. 40
4.15 Adding the nested service-DESCRIBE to the default graph. 40
4.16 Replacing the standard Model with a Pellet model. 41
5.1 Nested CONSTRUCT of average GDP per person. 44
5.2 DESCRIBE of rich countries. 45
5.3 Reuse of rich countries. 45
5.4 Distributed query for average GDP per person. 47
5.5 Get all triples and FILTER afterwards. 49
5.6 Get only the triples from country nodes. 50
5.7 Get only triples from countries fitting the condition. 51
6.1 RDF representation of the Win-Move-Game instance. 56
6.2 OWL description of WinNodes and LoseNodes. 57
6.3 Constructing a Win-Move-Closure with a CONSTRUCT query. 58
6.4 SPARQL query to close and evaluate the Win-Move-Game in one query. 59

xviii LIST OF LISTINGS

List of Abbreviations

RDF Resource Description Framework . 1
KB Knowledge Base . 1
SPARQL SPARQL Protocol And RDF Query Language . 1
LOD Linked Open Data . 1
SQL Structured Query Language . 1
OWL Web Ontology Language . 2
W3C World Wide Web Consortium . 5
IRI Internationalized Resource Identifier . 5
BN Blank Node . 6
N3 Notation 3 . 6
BGP Basic Graph Pattern . 10
RDFS RDF Schema . 17
OWA Open World Assumption . 17
CWA Closed World Assumption . 17
DL Description Logic . 18
DBIS Databases and Information Systems . 19

xix

Chapter 1

Introduction

The SPARQL Protocol And RDF Query Language (SPARQL) is the standard query language for
graph Knowledge Bases (KBs) based on the Resource Description Framework (RDF) [3]. RDF
KBs are commonly used in Linked Open Data (LOD) [4] to provide publicly accessible data
endpoints [5]. Many theoretical and practical approaches to further improve SPARQL are proposed
in the literature. The paper [2] by Angles and Gutierrez introduces the possibility of several types
of sub-queries. A sub-query is a fully-fledged query that is nested in one part of another query [2].
Similar features have various applications in other query languages, such as “views” in the
Structured Query Language (SQL) [6]. Their advantages are supposed to be manifold. On the one
hand, the handling of queries becomes much easier by introducing new possibilities like views
and the reuse of existing queries. On the other hand, the features introduce new possibilities of
rewriting queries and optimising the evaluation process on the technical level [2].

Roughly speaking, a SPARQL query is built with the three main components SELECT-FROM-
WHERE. First of all, one of the query formats SELECT, DESCRIBE, ASK or CONSTRUCT deter-
mines the shape of the answer respectively as variable bindings, RDF, boolean or RDF [7]. After
that, the input data is defined by FROM clauses. The graph pattern, which will be used in the
evaluation process, is specified in the WHERE clause. Since SPARQL 1.1, nested SELECT queries
are possible in the WHERE clause [7]. The FROM clause does not yet accept nested queries, even
though similar languages like SQL contain this feature [2]. A nested query in the FROM clause
of SPARQL should produce fresh RDF data and add the transformed data to the input. This
functionality can be provided by the CONSTRUCT and the DESCRIBE query type. Those queries
in the FROM clause will be referred to as “nested CONSTRUCTs”.

A possible use case for nested CONSTRUCT queries is the creation of not explicitly known, new
information. This information is then added to the current dataset for further processing. As a
motivational example found in the literature [2], Listing 1.1 shows the construction of the new
relationship “co-author” in a book-author KB. This new relation is afterwards used to gather

1

2 CHAPTER 1. INTRODUCTION

information about all author pairs that have been co-authors in the past [2]. In comparison to that,
Listing 1.2 represents the analogous query in SQL. The nested query sections are coloured green.

1 SELECT ?Mail1 ?Mail2

2 FROM <file:mails.n3>

3 FROM {

4 CONSTRUCT { ?Aut1 co-author ?Aut2}

5 FROM <file:bib.n3>

6 WHERE { ?Art bib:has-author ?Aut1.

7 ?Art bib:has-author ?Aut2.

8 FILTER (!(?Aut1 = ?Aut2))

9 }

10 }

11 WHERE { ?Per1 co-author ?Per2.

12 ?Per1 foaf:mbox ?Mail1.

13 ?Per1 foaf:mbox ?Mail2

14 }

Listing 1.1: Motivational example in SPARQL [2].

1 SELECT mbox1.Mail as Mail1,

2 mbox2.Mail as Mail2

3 FROM mbox mbox1,

4 mbox mbox2,

5 (

6 SELECT ha1.Aut as Aut1,

7 ha2.Aut as Aut2

8 FROM has_author ha1,

9 has_author ha2

10 WHERE ha1.Art=ha2.Art

11 AND ha1.Aut!=ha2.Aut

12) as co_author

13 WHERE mbox1.Per=co_author.Aut1

14 AND mbox2.Per=co_author.Aut2;

Listing 1.2: Motivational example in SQL.

In this thesis, an implementation of the extended SPARQL, supporting nested CONSTRUCTs, is
presented. Firstly, some theoretical foundations of RDF, SPARQL and the Web Ontology Language
(OWL) are described in Chapter 2. Furthermore, all used tools, frameworks and data are sketched
and briefly explained. The following Chapters 3 and 4 are concerned with the new grammar
and the integration of the desired changes in the current tools. Chapter 5 presents the new
possible applications of nested CONSTRUCTs. The freshly added features will be used for query
composition, modularisation, data integration and optimisation [2]. Further, Chapter 6 shows a
comparison between pure RDF and RDF together with constructed RDF when used in combination
with a reasoner. Finally, Chapter 7 summarises and draws a conclusion with possibilities for further
work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Basics

This chapter provides a basic formal description of the theoretical foundations concerning RDF
and SPARQL. Next to the official notation and semantics published by the World Wide Web
Consortium (W3C) there will be accompanying examples. These examples shall give a brief
impression on how the actual querying process works. Furthermore, a rough overview of the
practical testing environment is presented.

2.1 Resource Description Framework

The following definitions and concepts of RDF are mainly derived from the official W3C recom-
mendations on RDF 1.1 [8]. RDF formally describes a directed graph. The edge from one node to
another specifies the binary relation between them [9].

Node1 Node2

Relation

Figure 2.1: Graph representation of a binary relation.

Definition 2.1.1 (Internationalized Resource Identifier (IRI)). Is a string uniquely identifying a re-
source. The set of all IRIs is denoted with I . Two IRIs a, b ∈ I are equal, if and only if they are of the same
size and for every i-th character in a and b holds ai = bi [8].

This property guarantees a flawless identification within the set of all IRIs. In a local data source
different common words would be sufficient to describe resources. In the internet a prefix is
needed to make the resource unique again, because two people could have used the same words
for their resources. These prefixes must be a unique string, like a domain name.

5

6 CHAPTER 2. BASICS

Definition 2.1.2 (Literal). Describes values like strings, numbers and dates. A literal commonly consists of
a lexical value and an optional IRI for the data type. The IRI defines the data type of value, hence describing
how the lexical value is to be interpreted. The set of all Literals is denoted L. Two literals are equal, if and
only if the value and the data type IRI are the same [8].

Usually built-in IRIs exist for the regular data types like integers and strings. There is also a
broad selection of other official data types recommended by the W3C. If everyone uses these
recommendations there will be no problem with correctly interpreting the values of other data
sources.

Definition 2.1.3 (Blank Nodes (BNs)). Are elements of an arbitrarily generated set, that is disjunct to I
and L. The set of all BNs is denoted with B [8].

BNs are usually created only locally as a temporal identifier.

Definition 2.1.4 (RDF Term). Is an element of the set T := I ∪ L ∪B [8].
Definition 2.1.5 (RDF Triple). Is a triple (s, p, o) ∈ (I ∪ B) × I × T expressing the relation of the
Subject s and Object o with the Predicate p [8].

s o

p

Figure 2.2: Graph representation of a RDF triple.

Definition 2.1.6 (RDF Graph). G denotes a finite set of RDF triples. The nodes of G are the set of subjects
and objects occurring in the triples. The predicates are the edges of G. Predicates can also occur as a node to
allow statements about the predicate itself [8].

The following sections consider the fictional RDF graphs G1 and G2 about integer properties as
small examples. They both share the prefix db that gets expanded to < intdb :] >. The exemplary
resource db : 1 has the properties name “One” and the value 1.

G1 := {(db : 1, db : name, ”One”), (db : 1, db : val, 1),

(db : 2, db : name, ”Two”), (db : 2, db : val, 2),

(db : 3, db : name, ”Three”), (db : 3, db : val, 3), . . .}

G2 := {(db : 2, db : has− property, db : isprime),

(db : 3, db : has− property, db : isprime), . . .}

The Notation 3 (N3) [10] is a common form of representing RDF graphs. This format uses white-
spaces to delimit the single triple items and points for separating triples. Commas are used for

2.1. RESOURCE DESCRIPTION FRAMEWORK 7

shortening the same subject and predicate with different objects. Finally, semicolons are used to
shortcut different predicates for the same subject. The Listings 2.1 and 2.2 show the graphs G1 and
G2 in N3 respectively.

1 @prefix db: <intdb:#> .

2 db:1 db:name "One"; db:val 1.

3 db:2 db:name "Two"; db:val 2.

4 db:3 db:name "Three"; db:val 3.

5 db:4 db:name "Four"; db:val 4.

6 db:5 db:name "Five"; db:val 5.

Listing 2.1: G1 in N3.

1 @prefix db: <intdb:#> .

2 db:2 db:has-property db:isprime.

3 db:3 db:has-property db:isprime.

4 db:5 db:has-property db:isprime.

Listing 2.2: G2 in N3.

Definition 2.1.7 (RDF Graph Merge). For two RDF graphs G1 and G2 the merge is defined as Gnew :=

G1 ∪G2 [8].

The graphs G1 and G2 are sketched in Figure 2.3. Their merged graph is represented in Figure 2.4.

db : 1

One

1

db : 2

Two

2

db : 3

Three

3

. . .

db : name

db : va
l

db : name

db : va
l

db : name

db : va
l

db : 2

db : isprime

db : 3

db : isprime

db : has− p
ropert

y

db : has− p
ropert

y

Figure 2.3: Graph representations of G1 and G2.

8 CHAPTER 2. BASICS

db : 1

One

1

db : 2

Two

2

db : isprime

db : 3

Three

3

db : isprime

. . .

db : name

db : va
l

db : name

db : va
l

db : name

db : va
l

db : has− property

db : has− property

Figure 2.4: Graph representation of the merge Gnew of G1 and G2.

Definition 2.1.8 (RDF Graph Isomorphism). The two RDF graphs G and Ĝ are isomorphic [8] , if there
is a bijective function Φ : V (G)→ V (Ĝ), s.t. :

1. Φ maps BNs to BNs.

2. Φ(l) = l , with l ∈ L ∩ V (G)

3. Φ(i) = i , with i ∈ I ∩ V (G)

4. (s, p, o) ∈ G⇐⇒ (Φ(s), p,Φ(o)) ∈ Ĝ

This definition states that all graphs, being isomorphic by exchanging BNs, represent the same
information [8].

2.2. SPARQL 9

2.2 SPARQL

Having the previous definitions for RDF graphs at hand, this section proceeds with the introduction
of the corresponding query language SPARQL. The goal is to give an intuition on the actual
evaluation process of SPARQL; starting from the initial string, which is representing the query,
pursuing with the SPARQL algebra operators and their evaluation.

Definition 2.2.1 (SPARQL Query). A SPARQL abstract query is a tuple Q := (E,D,QF) where [7]:

• E is a SPARQL algebra expression.

• D is a RDF-Dataset.

• QF is the query form.

Commonly, E is also known as the WHERE segment of the query, D as the FROM and QF as the
SELECT/CONSTRUCT/ASK/DESCRIBE segment.

2.2.1 SPARQL Datasets

The definition of a RDF dataset extends the notation for multiple RDF graphs. This notation will
be used to introduce upcoming operations.

Definition 2.2.2 (RDF Dataset). A RDF dataset is a set:

D := {G, (〈u1〉, G1), (〈u2〉, G2), . . . , (〈un〉, Gn)}

where G and Gi are RDF graphs, and each 〈ui〉 is a different IRI representing the respective graph’s name.
G is called the default graph. [7]

Two datasets can be merged by performing a RDF graph merge on all corresponding graphs with
the same name.

2.2.2 SPARQL Solution Mappings

With the definition of the underlying data, more evaluation-specific definitions are given in the
following subsection.

Definition 2.2.3 (Query Variable). A query variable is an element of the set V , where V is infinite and
disjoint from the RDF terms T [7].

The introduction of the query variables V allows for the extension of RDF triples to triple patterns.

10 CHAPTER 2. BASICS

Definition 2.2.4 (Triple Pattern). A triple pattern is an element of the set [7]:

(I ∪B ∪ V)× (I ∪ V)× (T ∪ V)

Examples for triple pattern are:

(db : 1, db : name, ?X) (db : 1, ?Y, ”One”) (?Z, db : name, ”One”)

db : 1 ?X

db : name

db : 1 One

?Y

?Z One

db : name

Figure 2.5: Graph representation of Triple Pattern.

Definition 2.2.5 (Basic Graph Pattern (BGP)). A BGP is a set of triple patterns. This effectively forms a
graph with the possibility of variables replacing subjects, predicates and objects. [7]

Definition 2.2.6 (Solution Mapping). A solution mapping µ is a partial function:

µ : Vpattern → T

The domain of µ, dom(µ) is the subset Vpattern of V where µ is defined [7]. The solution mapping is only a
partial function, because variables can be declared as optional.

The solution mapping gives possible bindings for variables in a pattern according to the criteria,
presented in the next section about evaluation. If only certain variables are required, they can be
individually selected by a specification in the SELECT clause, else the * operator can be used to
request the complete solution mapping. Further, a solution mapping can be interpreted as a list
instead of a set. This new list is called solution sequence and can be modified in order to shape the
solutions [7].

Definition 2.2.7 (Solution Sequence Modifiers). The most common solution sequence modifiers for
shaping the results are [7]:

• ORDER BY: puts the solutions in a specific order.

• Projection: chooses only certain variables with SELECT.

• DISTINCT: ensures unique solutions in the sequence by omitting duplicates.

• OFFSET: specifies a position from which solutions are to be considered (only useful with ORDER BY).

• LIMIT: restricts the number of solutions.

2.2. SPARQL 11

2.2.3 SPARQL Algebra Evaluation

In order to give an intuition on the evaluation of algebra expressions, the BGP, FILTER and
OPTIONAL operator are introduced in detail below. Therefore, the RDF examples from the Figures
2.1 and 2.2 are used.

BGP Evaluation

The basic operator of the SPARQL algebra is the BGP. Most of the other operators are based on
the results of BGP evaluations. The results of the evaluation of algebra expressions are solution
mappings with different properties.

Definition 2.2.8 (BGP Semantics). With µ(BGP) a solution mapping function that replaces all variables
in BGP by suitable RDF terms:

JBGP KD := {µ : VBGP → T | µ(BGP) ⊆ D}

This means all possibilities of replacing variables in the BGP with RDF terms, such that the result is a
subgraph of the dataset. [3].

A small example of a BGP in a SPARQL query is given in Listing 2.3. The corresponding algebra
operator in abstract form, shown in Listing 2.4, evaluates to the solution mappings in Table 2.1.

1 PREFIX : <intdb:#>

2

3 SELECT *

4 FROM <numbers.n3>

5 WHERE

6 { ?A :val ?B }

Listing 2.3: Simple example of a BGP in SPARQL.

12 CHAPTER 2. BASICS

1 (prefix ((: <intdb:#>))

2 (bgp (triple ?A :val ?B)))

Listing 2.4: Algebra form of the query in Listing 2.3.

?A ?B

µ1 intdb:#2 2

µ2 intdb:#4 4

µ3 intdb:#1 1

µ4 intdb:#3 3

µ5 intdb:#5 5

Table 2.1: Solution Mappings to the query in Listing 2.3.

?A ?B

intdb : #val

intdb : #2 2

intdb : #val

Figure 2.6: Graph representation of BGP on the left and µ1(BGP) on the right.

FILTER Evaluation

The FILTER operator is one of the core operators of the SPARQL algebra [1, 3]. It is used to restrict
the set of possible solution mappings according to some parameters.

Definition 2.2.9 (FILTER Semantics).

JBGP FILTER RKD := {µ | µ ∈ JBGP KD, JRKµ = true}

This basically means all mappings from the BGP evaluation with restrictions R on the values of µ [3].

A small example of a FILTER in a SPARQL query is given in Listing 2.5. The corresponding algebra
operator in abstract form, shown in Listing 2.6, evaluates to the solution mappings in Table 2.2.

2.2. SPARQL 13

1 PREFIX : <intdb:#>

2

3 SELECT *

4 FROM <numbers.n3>

5 WHERE

6 { ?A :val ?B

7 FILTER (?B < 3)

8 }

Listing 2.5: Simple example of a FILTER in SPARQL.

1 (prefix ((: <intdb:#>))

2 (filter (< ?B 3)

3 (bgp (triple ?A :val ?B))))

Listing 2.6: Algebra form of the query in Listing 2.5.

?A ?B

intdb:#2 2

intdb:#1 1

Table 2.2: Solution Mappings to the query in Listing 2.5.

OPTIONAL Evaluation

The OPTIONAL operator is also one of the core operators of the SPARQL algebra [1, 3]. It can be
used to make parts of a BGP optional. This means that variables in these pattern are only matched
if possible and omitted otherwise, thus making the set of solution mappings partial functions. The
evaluation of the OPTIONAL operator is split into two parts. First, the BGP is evaluated once with
the optional part and then without the optional part for all solution mappings not occurring in the
previous case. Afterwards, both sets of solution mappings are combined with a set union operator.
This procedure is commonly known as a left join in the database context.

A small example of an OPTIONAL in a SPARQL query is given in Listing 2.7. The corresponding

14 CHAPTER 2. BASICS

algebra operator in abstract form, shown in Listing 2.8, evaluates to the solution mappings in
Table 2.3.

PREFIX : <intdb:#>

SELECT *

FROM <numbers.n3>

WHERE

{ ?A :val ?B

OPTIONAL

{ ?A :has-property ?C }

}

Listing 2.7: Simple example of an OPTIONAL in SPARQL.

(prefix ((: <intdb:#>))

(leftjoin

(bgp (triple ?A :val ?B))

(bgp (triple ?A :has-property ?C))))

Listing 2.8: Algebra form of the query in Listing 2.7.

?A ?B ?C

intdb:#2 2 intdb:#isprime

intdb:#4 4

intdb:#1 1

intdb:#3 3 intdb:#isprime

intdb:#5 5 intdb:#isprime

Table 2.3: Solution Mappings to the OPTIONAL query in Listing 2.7.

2.2.4 SPARQL Nested Queries

The following subsection gives an introduction of nested queries and particularly nested CON-
STRUCTs.

2.2. SPARQL 15

Definition 2.2.10 (Nested Query). Let Q = (E,D,QF) be a query. A query Q̂ is nested in Q, if and
only if Q̂ occurs in Q as part of one of the expressions E, D or QF . Q is then referred to as the outer query
and Q̂ as the inner query. [2]

Definition 2.2.11 (CONSTRUCT Query). Is a query Q = (E,D,CONSTRUCT). Instead of selecting
variables, a CONSTRUCT query defines triple templates for the creation of new RDF triples. These templates
may contain variables from the solution mappings of the WHERE evaluation.

As an example, Listing 2.9 shows the creation of a new relation isDoubleOf between suitable
numbers. The results of this query are shown in Figure 2.7.

1 PREFIX : <intdb:#>

2

3 CONSTRUCT {?B :isDoubleOf ?A}

4 FROM <file:numbers.n3>

5 WHERE {

6 ?A :val ?Aval.

7 ?B :val ?Bval.

8 FILTER(?Aval * 2 = ?Bval)}

Listing 2.9: Simple example of a CONSTRUCT query.

intdb : #4 intdb : #2

intdb : #isDoubleOf

intdb : #2 intdb : #1

intdb : #isDoubleOf

Figure 2.7: Graph representation of the results of Listing 2.9.

Definition 2.2.12 (DESCRIBE Query). Is a query Q = (E,D,DESCRIBE). It returns a RDF graph
as information about a resource. This RDF graph may contain triples to a certain depth depending on its
implementation with the original resource as root node.

As an example, Listing 2.10 gives the information about the <intdb:#2> resource shown in
Figure 2.8.

16 CHAPTER 2. BASICS

1 PREFIX : <intdb:#>

2

3 DESCRIBE ?A

4 FROM <file:numbers.n3>

5 WHERE { ?A :val 2}

Listing 2.10: Simple example of a DESCRIBE query.

intdb : #2

2

intdb : #isprime

Two

intdb : #val

intdb : #has− property

int
db

: #n
am
e

Figure 2.8: Graph representation of the result of Listing 2.10.

A nested CONSTRUCT is defined as a special case of nested queries.

Definition 2.2.13 (Nested CONSTRUCT Query). A nested query Q̂ is a nested CONSTRUCT query,
if it produces RDF data within the the D segment of an outer query Q. Possible query types for nested
CONSTRUCT queries are CONSTRUCT and DESCRIBE. The outer query merges the data from all nested
CONSTRUCTs and RDF files to obtain its D [2].

The possibility of correlated queries is omitted in this thesis, but can be considered in future work.

Definition 2.2.14 (Query Correlation). The queries Q and Q̂ are correlated, if and only if Q̂ is nested in
Q and variables occur in both graph pattern of Q and Q̂. These variables are called correlated variables. [2]

2.3. ONTOLOGIES & REASONING 17

2.3 Ontologies & Reasoning

An ontology defines the vocabulary for concepts and categories in a specific context. In the context
of data, it is mostly used to describe classes and relationships as well as relations between these
classes and properties. The most common ontology languages for RDF KBs are OWL and RDF
Schema (RDFS). These languages have reserved prefixes and are officially recommended by the
W3C. RDFS is mainly concerned with the schema of classes, e.g. their hierarchy, domains and
ranges of properties. OWL is used for modelling more complex knowledge like relationships
between classes or class properties and their restrictions. With these tools at hand it is possible to
model higher level knowledge like:

• All members of the class “Child” have exactly two parents (Cardinality restriction).

• All member of the class “Parent” must have at least on child. (Cardinality/Existential
restriction)

• The class “Parent” is a subclass of “Ancestor” (Hierarchy).

• The classes “Mother” and “Father” have disjoint sets of individuals (Class relationship).

This formalisation is very important when it comes to reasoning. In general, reasoning describes
the process of deriving implicit knowledge. Sticking to the examples above, that means that
an individual of the class “Child” must have two corresponding parents, even if there are no
individuals in the current state of the KB [9]. This logical assumption allows this knowledge to be
modelled only implicitly.

2.3.1 Open World vs. Closed World

OWL is essential for reasoning over KBs, because a LOD KB is subject to the Open World Assump-
tion (OWA). The OWA describes the assumption, that the information in a KB may always be
incomplete. Contrary to this assumption, the Closed World Assumption (CWA) KBs are always
assumed to be complete. As an example, a KB of family members is considered. In order to deduce
the number of children of one individual under CWA, it is required to simply count the suitable
relations. Under OWA the simple count of relations would be a lower bound, because it is possible
that there are several children unknown to the KB. That is why additional information is required
in order to deduce such knowledge, e.g. about the cardinality of this property [1, 9].

2.3.2 OWL and Logic

Modelling complex knowledge is often based on a formal logic. Using a highly expressive
language to represent the knowledge, enables logical reasoning on the KB. Usually a highly

18 CHAPTER 2. BASICS

expressive language yields high computational complexity on the reasoning process or even
undecidability. Tackling this problem, different restrictions in the underlying logic can be used
to balance expressivity and efficient reasoning. The OWL is based on first-order logic and can be
divided into three main categories. OWL Full is the most expressive of these, but undecidable. As
a subset of OWL Full there is OWL Description Logic (DL) which is decidable and has a worst
case computational complexity of NExpTime. A further subset of OWL DL is OWL Lite which is
decidable and has a worst case computational complexity of ExpTime. The most used fragment in
the literature and also used in this thesis is OWL DL [9].

The syntax of OWL is based on RDF and can therefore be represented as a directed graph. In order
to distinguish this terminological knowledge from the assertional information about individuals,
the literature splits the KB into the TBox and ABox respectively [1, 9].

2.3.3 OWL DL

OWL DL is a subcategory of OWL Full and is based on description logics. Description Logics
are decidable fragments of first-order predicate logic. A logic is decidable, if for every inference
problem in this language exists a terminating algorithm for deciding it. Different variations of
DL are concerned with a favourable trade off between expressivity and scalability. In order to
provide decidability, some language constructs of OWL Full must be forbidden. For example,
the combined use of inverse and transitive properties is not allowed. Further restrictions can be
found in the literature [9]. The most efficient OWL DL reasoning engines are based on tableaux
algorithms. Tableaux algorithms solve very complex worst case complexity problems, but are
often combined with heuristics in order to improve to a good average case performance [9].

2.3.4 Pellet

Pellet is as a OWL DL reasoner, written in Java. It is available in both a commercial and an
open source version. The Semwebjar tool, presented in Section 2.5, uses the open sourcer version
openllet. Its underlying description logic is commonly found as SHOIQ and since OWL 2 DL
SROIQ [9].

Pellet supports conjunctive queries using SPARQL. Conjunctive queries extend the underlying
data model to a point, where it supports OWL DL. These models provide different views on the
combined ABox and TBox. One of the most basic difference to a normal model is the assertion of
TBox data to every suitable instance of the ABox [9].

2.4. APACHE JENA FRAMEWORK 19

2.4 Apache Jena Framework

“A free and open source Java framework for building Semantic Web and Linked
Data applications.” [11]

The Apache Jena Framework provides the possibility to create and read RDF data. Furthermore, it
can expose them as an endpoint, enables the work with different models like OWL and reasoning
about data [11]. While all of these features are important in the LOD and Semantic Web develop-
ment, the main component of Jena is ARQ. ARQ is the query engine that evaluates the SPARQL
query language against RDF data and will be altered in this thesis [12]. Jena is an open source
project from the Apache Foundation and provides full access to the source code on GitHub [13].
The documentation for using ARQ in applications can be found on the official website [14].

2.5 Semwebjar

The Semwebjar tool is developed and run by the Databases and Information Systems (DBIS)
group [15] in Göttingen. It is a wrapping tool for the core ARQ engine of the Jena framework. This
wrapper provides different possibilities for adding different reasoners, command line arguments
and the deployment on an Apache Tomcat web server [16]. The handling and setup of the
tool and the web server is described on the DBIS page as well as in the practical report [17, 18].
Implementations of nested CONSTRUCTs will mainly be tested with the Semwebjar tool.

20 CHAPTER 2. BASICS

2.6 JavaCC

“Java Compiler Compiler is the most popular parser generator for use with java.”
[19]

This tool reads in grammar specifications, written in a Java-like language, and writes out Java
source code. From this source code a Java parser can be compiled, which parses matching
expressions according to the specified grammar. Java classes and functions can be imported and
used during the parsing process, e.g. to fill own containers and objects with respective information.
A small example of the JavaCC language is given by the toy example from the official JavaCC
documentation in Listing 2.11 and Listing 2.12 [19]. These code snippets represent the grammar
with the two production rules:

Start→ aNc

N → b | bc

Therefore, the grammar accepts the words “abc” and “abcc”.

1 void Start() :

2 {}

3 {

4 "a" N() "c"

5 }

Listing 2.11: Production rule of Start.

1 void N() :

2 {}

3 {

4 "b" ["c"]

5 }

Listing 2.12: Production rule of N .

2.7 Mondial Database

Mondial [20] is a database especially designed for academic case studies and teaching purposes. It
is used by the DBIS group [15] in various lectures like Semantic Web [1] or Database Foundations [6].
Mondial is nowadays available in XML, Datalog, F-Logic, RDF and in various relational formats.
This thesis uses the RDF version. The database contains geographical entities and their properties,
such as countries, cities, rivers, mountains and so on. As an excerpt, Listing 2.13 shows some
information in the Mondial database about Albania in the N3 format.

2.7. MONDIAL DATABASE 21

1 @prefix : <http://www.semwebtech.org/mondial/10/meta#>.

2 @base <http://www.semwebtech.org/mondial/10/>.

3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

5 <countries/AL/> rdf:type :Country ;

6 :name "Albania" ;

7 :carCode ’AL’ ;

8 :area 28750 ;

9 :capital <countries/AL/cities/Tirana/> ;

10 :population 2821977 ;

11 :hadPopulation [a :PopulationCount; :year 1950; :value 1214489] , [a :

PopulationCount; :year 1960; :value 1618829] , [a :PopulationCount; :year

1970; :value 2138966] , [a :PopulationCount; :year 1980; :value 2734776] , [a

:PopulationCount; :year 1990; :value 3446882] , [a :PopulationCount; :year

1997; :value 3249136] , [a :PopulationCount; :year 2000; :value 3304948] , [a

:PopulationCount; :year 2001; :value 3069275] , [a :PopulationCount; :year

2011; :value 2821977] ;

12 :populationGrowth 0.3 ;

13 :infantMortality 13.19 ;

14 :gdpTotal 12800 ;

15 :gdpInd 12 ;

16 :gdpServ 68.5 ;

17 :gdpAgri 19.5 ;

18 :inflation 1.7 ;

19 :unemployment 16.9 ;

20 :government "parliamentary democracy" ;

21 :independenceDate ’1912-11-28’^^xsd:date ;

22 :wasDependentOf

23 <politicalbodies/Ottoman+Empire/> .

24 <politicalbodies/Ottoman+Empire/> rdf:type :PoliticalBody .

25 ...

26 ...

Listing 2.13: Information about Albania in the Mondial database

Chapter 3

SPARQL Grammar

In order to introduce an extended version of SPARQL, the specifications and implementation have
to be adjusted accordingly. This chapter is concerned with the changes in the grammar as well as
the corresponding elements of Jena.

3.1 Grammar Specification

This section describes all necessary changes in the grammar of SPARQL as it is described in the
official W3C recommendation [7]. Since the full grammar is very large only the relevant snippets
will be examined.

The excerpt below shows the production rules 13 to 16 of the original grammar beginning with
the DatasetClause [7]. Additionaly, ConstructQuery serves as a query type example. Every
data providing statement, initialised by the FROM keyword, is parsed in this part of the grammar.
When the keyword FROM is read, it is followed by either a default graph description or a named
graph description. The respective branch is determined by the first following token. If there is the
NAMED keyword, the next IRI token not only determines the graphs source, but also its name. In
the other case, the IRI only describes a source of RDF data, which has to be stored in the default
graph.

23

24 CHAPTER 3. SPARQL GRAMMAR

P := {

. . .

ConstructQuery ::= “CONSTRUCT“ . . .

DatasetClause ::= “FROM“ (DefaultGraphClause | NamedGraphClause)

DefaultGraphClause ::= SourceSelector

NamedGraphClause ::= “NAMED“ SourceSelector

SourceSelector ::= iri

. . .

}

An altered version of the previously introduced grammar production rules is proposed in the
specification below.

P := {

. . .

ConstructQuery ::= “CONSTRUCT“ (“REASONER“)? . . .

DatasetClause ::= “FROM“ (DefaultGraphClause | NamedGraphClause)

DefaultGraphClause ::= (SourceSelector | SubFrom)

NamedGraphClause ::= “NAMED“ SourceSelector

SubFrom ::= “{“ (SubFromNoService | SubFromService) “}“

SubFromNoService ::= (ConstructQuery | DescribeQuery)

SubFromService ::= “SERV ICE“ iri (ConstructQuery | DescribeQuery)

SourceSelector ::= iri

. . .

}

The grammar now accepts nested CONSTRUCT and DESCRIBE queries initialised by a curly
brace after the FROM clause. Furthermore, a remote CONSTRUCT/DESCRIBE query to SPARQL
endpoints is inserted. This enables the addition of remote data to the local dataset. Therefore,
the SERVICE keyword with an additional IRI, followed by the query, shall return the respective
RDF graph. Additionally, the optional keyword REASONER is introduced after each query form
indicating the support of the Pellet reasoner in the respective query. With this modified language

3.2. GRAMMAR IMPLEMENTATION 25

specification, an appropriate parser can be build automatically. This new parser is allowed to parse
the altered grammar and handle the events according to the definitions of the new features.

3.2 Grammar Implementation

A practical implementation of the specifications from the previous section requires the adjustment
of master.jj and SPARQLParserBase.java. These files are placed in the Grammar and src

folder of the ARQ-root respectively. While master.jj contains the specifications of the grammar
in the javacc format, SPARQLParserBase.java provides necessary functions and data structures
needed to handle the parsed statements. All the information of the query string will be stored in
an internal query object, which is an instance of the class Query.java. Since the query object is
not relevant for the parser in order to accept nested CONSTRUCTs, its alteration will be presented
later in Chapter 4.

Beginning with the master.jj file, Listing 3.1 adds a choice option for the parser in the
DefaultGraphClause branch. With SubFrom a new alternative branch is given, instead of
reading an IRI for a RDF graph location.

1 void DefaultGraphClause() : { String iri ; }

2 {

3 (iri = SourceSelector() { getQuery().addGraphURI(iri);} | SubFrom())

4 }

Listing 3.1: Modification of DefaultGraphClause in master.jj.

SubFrom is chosen, if the token after the FROM is an opening curly brace “{”, here <LBRACE>.
When this constellation occurs, either a <SERVICE> token is read for the SubFromService branch
or the SubFromNoService branch is chosen. Finally a closing curly brace “}”, here <RBRACE>,
must be read to close the nested CONSTRUCT. This is presented in Listing 3.2 below.

1 void SubFrom() : {}

2 {

3 <LBRACE>

4 (SubFromNoService() | SubFromService())

5 <RBRACE>

6 }

Listing 3.2: SubFrom in master.jj.

26 CHAPTER 3. SPARQL GRAMMAR

If the parser selects the SubFromNoService branch (Listing 3.3), the nested CONSTRUCT has
to be initiated with startSubFromNoService function from SPARQLParserBase.java. This
function, described in Listing 3.5, makes sure the inner query will be stored in a separate query
object. Then the nested query is parsed as a normal CONSTRUCT or DESCRIBE query. In
the end, the endSubFROMNoService function returns the inner query, which is stored via the
addSubFromNoServiceQuery function as a nested query of the outer query object.

1 void SubFromNoService() : {Token t ;}

2 {

3 { startSubFromNoService(); }

4 (ConstructQuery() | DescribeQuery())

5 {Query q = endSubFromNoService(); getQuery().addSubFromNoServiceQuery(q);}

6 }

Listing 3.3: SubFromNoService in master.jj.

When the SubFromService branch (Listing 3.4) is chosen, the processing of the inner query is
very similar to the SubFromNoService. Additionally to the regular parsing process of the inner
query, the IRI of the SERVICE endpoint is parsed and stored together with the nested query.

1 void SubFromService() : {String n ;}

2 {

3 <SERVICE>

4 n = IRIREF()

5 { startSubFromService(); }

6 (ConstructQuery() | DescribeQuery())

7 {Query q = endSubFromService(); getQuery().addSubFromServiceQuery(q,n);}

8 }

Listing 3.4: SubFromService in master.jj.

The parser is able to create a tree-like nesting of the queries within the query object by operating
on a stack. An outer query is pushed to the stack, when the beginning of a nested query is parsed.
Then a new query object with the same prologue ,i.e. prefixes and context, is created and used for
further parsing. After finishing the parsing of the inner query, the inner query object is returned
and the outer query is reattached by the pop operation of the stack. These functions are defined
in SPARQLParserBase.java as shown in Listings 3.5 and 3.6. There is no functional difference
in startSubFromService and startSubFromNoService. They have been split into separate
functions for debugging purposes.

3.2. GRAMMAR IMPLEMENTATION 27

1 protected void startSubFromService()

2 {

3 pushQuery();

4 query = newSubQuery(getPrologue()) ;

5 }

6

7 protected void startSubFromNoService()

8 {

9 pushQuery();

10 query = newSubQuery(getPrologue()) ;

11 }

Listing 3.5: Start of a nested query in SPARQLParserBase.java.

1 protected Query endSubFromService()

2 {

3 Query subQuery = query;

4 popQuery();

5 return subQuery;

6 }

7

8 protected Query endSubFromNoService()

9 {

10 Query subQuery = query;

11 popQuery();

12 return subQuery;

13 }

Listing 3.6: End of a nested query in SPARQLParserBase.java.

28 CHAPTER 3. SPARQL GRAMMAR

In order to use the optional keyword REASONER as an indicator for an underlying Pellet model
the new token is introduced in Listing 3.7. Afterwards, this token can be used to trigger the
setReasoner function. This is exemplary shown in Listing 3.8 with a CONSTRUCT query.

1 TOKEN:

2 {

3 ...

4 | < REASONER: "REASONER" >

5 ...

6 }

Listing 3.7: Introduction of REASONER Token in master.jj.

1 //Also add the reasoner to the SELECT, ASK, DESCRIBE queries

2 void ConstructQuery() : { Template t ;

3 QuadAcc acc = new QuadAcc() ; }

4 {

5 <CONSTRUCT>

6 { getQuery().setQueryConstructType() ; }

7 (<REASONER> { getQuery().setReasoner(true);})?

8 ...

Listing 3.8: REASONER Token usage example in a CONSTRUCT query (master.jj).

These changes are not covered by the default build script. Therefore, the new parser needs to be
built manually with the grammar bash script next to the master.jj file in the Grammar folder.
The target path for the resulting Java files needs to be checked before the execution.

30 CHAPTER 3. SPARQL GRAMMAR

Chapter 4

Jena Implementation

While the previous Chapter introduced the new grammar, this chapter presents the changes
inside the Jena ARQ source code. Therefore, the approximate evaluation process of Jena with the
idea of implementing nested CONSTRUCTs is sketched. Afterwards, the individual changes are
documented in order to reproduce the implementation results of this thesis.

4.1 Dataflow in Jena

The Figure 4.1 illustrates the path of a query from parsing to execution. Orange containers
represent the variable input files which determine the outcome of a query. Foo.sparql contains
the string representation of a query. Depending on the parser specification in master.jj, there are
different possibilities of parsing this query string, e.g. accepting or rejecting nested CONSTRUCTs.
With references to dataset sources, for example a Bar.rdf file, a query object can be build by
the QueryFactory. The DatasetFactory takes these dataset sources and creates a model.
This model is used together with an algebra plan, derived from the query object, to create a
QueryExecution object in the QueryExecutionFactory. As a new feature, the query object
shall contain references to nested CONSTRUCT queries. These inner queries go through the
same execution process as the outer query recursively and merge their resulting RDF graphs with
the outer query’s model as described in Definition 2.1.7. The new features are marked with red
rectangles in the sketch of Figure 4.1.

31

32 CHAPTER 4. JENA IMPLEMENTATION

master.jj

ParserSPARQL.java

QueryFactory.java

Query.java

QueryExecutionFactory.java

QueryExecution.java

Execute Query

Foo.sparql

Bar.rdf

DatasetFactory.java

Model.java – Dataset

Nested CONSTRUCTs

Execute recursively

javacc

creates

creates

re
fe

re
nc

es

creates

re
fe

re
nc

es

m
er

ge

Figure 4.1: Sketch of the new data flow in a SPARQL query execution process.

From Figure 4.1 it can be concluded, that the relevant classes are located in between Query.java

and the output of DatasetFactory.java. The next section specifies the necessary altering of
these corresponding Java files.

4.2. MODIFICATION OF JENA CLASSES 33

4.2 Modification of Jena Classes

Scanning through the Java classes in between Query.java and DatasetFactory.java yields
four classes to be modified. Firstly, Query.java is required to implement containers for the
different nested CONSTRUCT variations and a flag to enable reasoner support. Afterwards,
DatasetUtils.java uses a DatasetDescription.java object to create a dataset graph. This
object is returned by a getter function of the query object. In the end, QueryEngineBase.java
needs to be changed. In order to enable reasoning, an alternative underlying model needs to be
accessible. Hence, these four classes are sufficient to be altered; therefore providing minimal code
changes by using as much of the given structures and functions as possible. The most important
changes are outlined in the following.

4.2.1 Modification of Query.java

A query object needs to be able to store all kinds of occurring nested CONSTRUCTs, i.e. CON-
STRUCT and DESCRIBE queries as well as these two as a remote service query. The former two
options are stored in lists serving as containers for the parsed nested queries. The latter have to be
stored together with their corresponding service address. In the example presented in Listing 4.1
this is implemented with a HashMap.

1 private List<Query> nestedConstructQueries = new ArrayList<>();

2 private List<Query> nestedDescribeQueries = new ArrayList<>();

3 private List<HashMap<String,Object>> nestedServiceConstructQueries = new ArrayList<>();

4 private List<HashMap<String,Object>> nestedServiceDescribeQueries = new ArrayList<>();

Listing 4.1: Lists for nested CONSTRUCT queries in the Query object.

In order to access the information of possible reasoner support, a simple boolean with getter and
setter functions is added to the query object. This can be seen in Listing 4.2.

1 protected boolean reasoner = false;

2 public void setReasoner(boolean b) { reasoner = b ; }

3 public boolean isReasoner() { return reasoner ; }

Listing 4.2: REASONER boolean with setter and getter.

34 CHAPTER 4. JENA IMPLEMENTATION

Inserting the nested queries into the intended lists is done by the functions
addSubFromNoServiceQuery in Listing 4.3 and addSubFromServiceQuery in List-
ing 4.4. The first one shall be called by the parser in absence of the SERVICE keyword. It checks
the queries for their respective query type and uses add operations for list insertion. The second
function is called by the parser in presence of the SERVICE keyword in combination with an IRI.
It inserts the IRI with the key “First” and the query with the key “Second” into a HashMap, which
is then added into the respective list.

1 public void addSubFromNoServiceQuery(Query q)

2 {

3 if(q.isConstructType()) {

4 if(nestedConstructQueries == null)

5 nestedConstructQueries = new ArrayList<>();

6 nestedConstructQueries.add(q);

7 } else if (q.isDescribeType()) {

8 if(nestedDescribeQueries == null)

9 nestedDescribeQueries = new ArrayList<>();

10 nestedDescribeQueries.add(q);

11 } else

12 throw new QueryException("Nested CONSTRUCT was not added:\n" + q.serialize()) ;

13 }

Listing 4.3: Adding nested CONSTRUCT queries to the Lists.

1 public void addSubFromServiceQuery(Query q, String n)

2 {

3 if(q.isConstructType()) {

4 if(nestedServiceConstructQueries == null)

5 nestedServiceConstructQueries = new ArrayList<>();

6 HashMap<String,Object> tmpmap = new HashMap<>();

7 tmpmap.put("First", q);

8 tmpmap.put("Second", n);

9 nestedServiceConstructQueries.add(tmpmap);

10 } else if (q.isDescribeType()) {

11 if(nestedServiceDescribeQueries == null)

12 nestedServiceDescribeQueries = new ArrayList<>();

13 HashMap<String,Object> tmpmap = new HashMap<>();

14 tmpmap.put("First", q);

15 tmpmap.put("Second", n);

16 nestedServiceDescribeQueries.add(tmpmap);

17 } else

18 throw new QueryException("Nested service-CONSTRUCT was not added:\n" + q.

↪→ serialize()) ;

19 }

Listing 4.4: Adding nested service-CONSTRUCT queries to the Lists.

4.2. MODIFICATION OF JENA CLASSES 35

Listing 4.5 shows the getter functions needed for further processing later on.

1 public List<Query> getNestedConstructQueries(){

2 return nestedConstructQueries;}

3 public boolean usesNestedConstructQuery(Query q){

4 return nestedConstructQueries.contains(q);}

5 public List<Query> getNestedDescribeQueries(){

6 return nestedDescribeQueries;}

7 public boolean usesNestedDescribeQuery(Query q){

8 return nestedDescribeQueries.contains(q);}

9 public List<HashMap<String,Object>> getNestedServiceConstructQueries(){

10 return nestedServiceConstructQueries;}

11 public List<HashMap<String,Object>> getNestedServiceDescribeQueries(){

12 return nestedServiceDescribeQueries;}

Listing 4.5: Adding getter to make nested CONSTRUCTs available from the outside.

All information about the dataset, which is described within a query string, is compactly repre-
sented in a DatasetDescription object. This will be adjusted accordingly in Subsection 4.2.2.
The query object is able to provide the information about the presence of such a dataset and
creates a DatasetDescription object from its internal state. These two tasks are performed by
the functions hasDatasetDescription and getDatasetDescription. While the first one
checks for non-emptiness of all possible data sources, the second one adds all of them together
and returns this as a DatasetDescription. The extended version of these two functions are
presented in Listing 4.6 and Listing 4.7.

36 CHAPTER 4. JENA IMPLEMENTATION

1 public boolean hasDatasetDescription()

2 {

3 if (getGraphURIs() != null && getGraphURIs().size() > 0)

4 return true ;

5 if (getNamedGraphURIs() != null && getNamedGraphURIs().size() > 0)

6 return true ;

7 if (getNestedConstructQueries() != null && getNestedConstructQueries().size() > 0)

8 return true;

9 if (getNestedDescribeQueries() != null && getNestedDescribeQueries().size() > 0)

10 return true;

11 if (getNestedServiceConstructQueries() != null && getNestedServiceConstructQueries

↪→ ().size() > 0)

12 return true;

13 if (getNestedServiceDescribeQueries() != null && getNestedServiceDescribeQueries().

↪→ size() > 0)

14 return true;

15 return false ;

16 }

Listing 4.6: Update of hasDatasetDescription.

1 public DatasetDescription getDatasetDescription()

2 {

3 if (! hasDatasetDescription())

4 return null;

5

6 DatasetDescription description = new DatasetDescription() ;

7

8 description.addAllDefaultGraphURIs(getGraphURIs()) ;

9 description.addAllNamedGraphURIs(getNamedGraphURIs()) ;

10 description.addAllDefaultConstructQuerys(getNestedConstructQueries());

11 description.addAllDefaultDescribeQuerys(getNestedDescribeQueries());

12 description.addAllDefaultServiceConstructQuerys(getNestedServiceConstructQueries());

13 description.addAllDefaultServiceDescribeQuerys(getNestedServiceDescribeQueries());

14 return description ;

15 }

Listing 4.7: Update of getDatasetDescription.

4.2. MODIFICATION OF JENA CLASSES 37

4.2.2 Modification of DatasetDescription.java

All the changes from Subsection 4.2.1, that lead to an altered DatasetDescription object, need
to be accepted by this very object. Listing 4.8 shows all changes in this class. The new functions
are built analogously to the already existing containers, hence providing the same accessibility in
further procedures.

1 public void addDefaultConstructQuery(Query q){ nestedConstructQueries.add(q) ;}

2 public void addAllDefaultConstructQuerys(Collection<Query> qs) { nestedConstructQueries.

↪→ addAll(qs);}

3 public List<Query> getDefaultConstructQuerys() {return nestedConstructQueries ;}

4 public Iterator<Query> eachDefaultConstructQuery() {return nestedConstructQueries.

↪→ iterator();}

5

6 public void addDefaultDescribeQuery(Query q){ nestedDescribeQueries.add(q) ;}

7 public void addAllDefaultDescribeQuerys(Collection<Query> qs) { nestedDescribeQueries.

↪→ addAll(qs);}

8 public List<Query> getDefaultDescribeQuerys() {return nestedDescribeQueries ;}

9 public Iterator<Query> eachDefaultDescribeQuery() {return nestedDescribeQueries.iterator

↪→ ();}

10

11 public void addDefaultServiceConstructQuery(HashMap<String,Object> q){

↪→ nestedServiceConstructQueries.add(q) ;}

12 public void addAllDefaultServiceConstructQuerys(Collection<HashMap<String,Object>> qs) {

↪→ nestedServiceConstructQueries.addAll(qs);}

13 public List<HashMap<String,Object>> getDefaultServiceConstructQuerys() {return

↪→ nestedServiceConstructQueries ;}

14 public Iterator<HashMap<String,Object>> eachDefaultServiceConstructQuery() {return

↪→ nestedServiceConstructQueries.iterator();}

15

16 public void addDefaultServiceDescribeQuery(HashMap<String,Object> q){

↪→ nestedServiceDescribeQueries.add(q) ;}

17 public void addAllDefaultServiceDescribeQuerys(Collection<HashMap<String,Object>> qs) {

↪→ nestedServiceDescribeQueries.addAll(qs);}

18 public List<HashMap<String,Object>> getDefaultServiceDescribeQuerys() {return

↪→ nestedServiceDescribeQueries ;}

19 public Iterator<HashMap<String,Object>> eachDefaultServiceDescribeQuery() {return

↪→ nestedServiceDescribeQueries.iterator();}

Listing 4.8: Extension of DatasetDescription.java.

38 CHAPTER 4. JENA IMPLEMENTATION

4.2.3 Modification of DatasetUtils.java

In order to transform the information from the DatasetDescription into an actual internal
DatasetGraph, the DatasetUtils class provides the relevant functions.

The createDatasetGraph function in Listing 4.9 is available with various signatures. They
all unwrap their arguments in order to call the same function in the end. Having a
DatasetDescription at hand, the appropriate function needs to also unwrap all the new
information. Afterwards, the proximate functions have to be adjusted to the new parameters until
the evaluating function addInGraphsWorker.

1 public static DatasetGraph createDatasetGraph(DatasetDescription datasetDesc, String

↪→ baseURI) {

2 return createDatasetGraph(datasetDesc.getDefaultConstructQuerys(),datasetDesc.

↪→ getDefaultDescribeQuerys(),datasetDesc.getDefaultServiceConstructQuerys(),

↪→ datasetDesc.getDefaultServiceDescribeQuerys(), datasetDesc.

↪→ getDefaultGraphURIs(), datasetDesc.getNamedGraphURIs(), baseURI) ;

3 }

Listing 4.9: Accepting extended DatasetDescription as parameter.

A new createDatasetGraph function with altered signature is required to pass the information
to the addInGraphs function.

1 public static DatasetGraph createDatasetGraph(List<Query> constQuerys, List<Query>

↪→ descQuerys, List<HashMap<String,Object>> servConstQuerys, List<HashMap<String,

↪→ Object>> servDescQuerys, List<String> uriList, List<String> namedSourceList,

↪→ String baseURI) {

2 DatasetGraph dsg = DatasetGraphFactory.createGeneral();

3 addInGraphs(dsg, constQuerys, descQuerys, servConstQuerys, servDescQuerys, uriList,

↪→ namedSourceList, baseURI);

4 return dsg ;

5 }

Listing 4.10: Modification of createDatasetGraph.

Analogously to the previous existing functions a modified version of the addInGraphs function
is added to call addInGraphsWorker.

4.2. MODIFICATION OF JENA CLASSES 39

1 public static void addInGraphs(DatasetGraph dsg, List<Query> constQuerys, List<Query>

↪→ descQuerys, List<HashMap<String,Object>> servConstQuerys, List<HashMap<String,

↪→ Object>> servDescQuerys, List<String> uriList, List<String> namedSourceList,

↪→ String baseURI) {

2 if (! dsg.supportsTransactions())

3 addInGraphsWorker(dsg, constQuerys, descQuerys, servConstQuerys, servDescQuerys,

↪→ uriList, namedSourceList, baseURI) ;

4

5 if (dsg.isInTransaction())

6 addInGraphsWorker(dsg, constQuerys, descQuerys, servConstQuerys, servDescQuerys,

↪→ uriList, namedSourceList, baseURI);

7

8 Txn.executeWrite(dsg, ()->addInGraphsWorker(dsg, constQuerys, descQuerys,

↪→ servConstQuerys, servDescQuerys, uriList, namedSourceList, baseURI)) ;

9 }

Listing 4.11: Modification of addInGraphs.

Finally, the function addInGraphsWorker processes all nested queries and merges their results
together with the conventional data sources into the default graph of the query. For this purpose an
appropriate QueryExecution object is constructed and executed. In the case of a remote query
the QueryEngineHTTP is to be used. In the Listings 4.12 and 4.13 the local nested CONSTRUCTs
and DESCRIBEs are processed. Listings 4.14 and 4.15 show the processing of remote nested
CONSTRUCTs and DESCRIBEs.

1 if (constQuerys != null && !constQuerys.isEmpty()) {

2 for (Query q : constQuerys)

3 {

4 QueryExecution qexec = QueryExecutionFactory.create(q);

5 Dataset constds = qexec.execConstructDataset();

6 DatasetGraph cdsg = constds.asDatasetGraph();

7 GraphUtil.addInto(dsg.getDefaultGraph(), cdsg.getDefaultGraph());

8 }

9 }

Listing 4.12: Adding the nested CONSTRUCT results to the default graph.

40 CHAPTER 4. JENA IMPLEMENTATION

1 if (descQuerys != null && !descQuerys.isEmpty()) {

2 for (Query q : descQuerys)

3 {

4 QueryExecution qexec = QueryExecutionFactory.create(q);

5 Model descmod = qexec.execDescribe();

6 Dataset descds = DatasetFactory.create(descmod);

7 DatasetGraph descg = descds.asDatasetGraph();

8 GraphUtil.addInto(dsg.getDefaultGraph(), descg.getDefaultGraph());

9 }

10 }

Listing 4.13: Adding the nested DESCRIBE results to the default graph.

1 if (servConstQuerys != null && !servConstQuerys.isEmpty()) {

2 for (HashMap<String,Object> q : servConstQuerys)

3 {

4 QueryEngineHTTP remoteQE = (QueryEngineHTTP) QueryExecutionFactory.sparqlService

↪→ ((String)q.get("Second"), (Query) q.get("First"));

5 Dataset descds = remoteQE.execConstructDataset();

6 DatasetGraph descg = descds.asDatasetGraph();

7 GraphUtil.addInto(dsg.getDefaultGraph(), descg.getDefaultGraph());

8 }

9 }

Listing 4.14: Adding the nested service-CONSTRUCT to the default graph.

1 if (servDescQuerys != null && !servDescQuerys.isEmpty()) {

2 for (HashMap<String,Object> q : servDescQuerys)

3 {

4 QueryEngineHTTP remoteQE = (QueryEngineHTTP) QueryExecutionFactory.sparqlService

↪→ ((String)q.get("Second"), (Query) q.get("First"));

5 Model descmod = remoteQE.execDescribe();

6 Dataset descds = DatasetFactory.create(descmod);

7 DatasetGraph descg = descds.asDatasetGraph();

8 GraphUtil.addInto(dsg.getDefaultGraph(), descg.getDefaultGraph());

9 }

10 }

Listing 4.15: Adding the nested service-DESCRIBE to the default graph.

4.2. MODIFICATION OF JENA CLASSES 41

4.2.4 Modification of QueryEngineBase.java

Listing 4.16 shows the alteration of the QueryEngineBase. If the boolean setReasoner is
true, the underlying model needs to be replaced with a Pellet ontology model. This is done by
unwrapping the DatasetGraph to a model, replacing it by a PelletReasoner model and then
rewrapping it to a DatasetGraph. In order to use the Pellet model the openllet needs to be
imported.

1 import openllet.jena.*;

2

3 protected QueryEngineBase(Query query, DatasetGraph dsg, Binding input, Context cxt) {

4 this(dsg, input, cxt) ;

5 this.query = query ;

6 query.setResultVars() ;

7 // Unoptimized so far.

8 setOp(createOp(query)) ;

9

10 DatasetGraph dsgtmp = prepareDataset(dsg, query);

11 if(query.isReasoner()){

12 OntModel om = ModelFactory.createOntologyModel(PelletReasonerFactory.THE_SPEC,

↪→ DatasetFactory.wrap(dsgtmp).getDefaultModel());

13 Dataset tmpds = DatasetFactory.wrap(om);

14 dataset = tmpds.asDatasetGraph();

15 } else{

16 dataset = dsgtmp;

17 }

18 }

Listing 4.16: Replacing the standard Model with a Pellet model.

Chapter 5

Analysis

After the implementation of nested CONSTRUCTs in the previous chapter 4, this chapter deals
with their application. Section 5.1 will present some of the possible new features. A common
theoretical concern about nested CONSTRUCTs will be examined in Section 5.2.

5.1 Analysis of Use Cases

Nested CONSTRUCTs can be used to create new values, write queries in a different way, integrate
data from different sources and reduce the dataset down to a necessary minimum. The following
subsections deal with these options in detail.

5.1.1 Creation of New Values

The first fundamental feature of nested CONSTRUCT queries is the creation of values that are not
present in the KB. These new facts are crucial in some applications, as it will be shown in Chapter
6. In other situations they provide a different, more convenient way to handle the data similar to
views in SQL [2]. An example for this is constructed with the Mondial KB (Chapter 2) in Listing
5.1. In order to process the average GDP per person of every country, an inner query calculates the
values and adds them to the dataset. Using the results, the outer query can simply address this
data like all other data in the KB.

43

44 CHAPTER 5. ANALYSIS

1 ...

2 FROM {

3 CONSTRUCT {?C :gdpAverage ?GDPavg}

4 FROM <file:mondial.rdf>

5 WHERE {

6 ?C a :Country.

7 ?C :gdpTotal ?GDPtot.

8 ?C :population ?Pop.

9 BIND((?GDPtot*1000000) / ?Pop AS ?GDPavg).

10 }

11 }

12 WHERE { ...

Listing 5.1: Nested CONSTRUCT of average GDP per person.

5.1.2 Query Writing

Writing a query is an application-dependent task. One might use an explorative approach of
examining the data and therefore reuse the results of the previous query in following queries. Fur-
thermore, optimisation or a distributed evaluation of queries can be a driving factor in composing
a query. Nested CONSTRUCTs enable the possibility to push information from the WHERE to the
FROM clause. This can lead to an optimisation, e.g. by pushing down FILTER expressions as far as
possible. [2]

Reuse of Queries

The reuse of existing CONSTRUCT/DESCRIBE queries have several benefits. For example, the
workflow within data exploration becomes much easier. An already existing and verified query
can simply be executed to generate relevant subgraphs for further exploration. Contrary to simply
saving the subgraph and starting a new query on this new file, a nested CONSTRUCT can be used
to calculate that subgraph just in time. Even though this approach recalculates the new graph
every time, it also guarantees the actuality of the data and prevents endless copies. In combination
with a remote access point the actuality of the data is especially crucial, because one does not have
control over the data. As an example, the DESCRIBE query of rich countries in Listing 5.2 is reused
in Listing 5.3.

The query below defines a country as rich if their average GDP per person is above 50000. It

5.1. ANALYSIS OF USE CASES 45

then returns a RDF graph consisting of all subgraphs spanned by each individual country, hence
describing each country by all found information.

1 DESCRIBE ?C

2 WHERE {?C a :Country.

3 ?C :gdpTotal ?GDPtot.

4 ?C :population ?Pop.

5 BIND((?GDPtot*1000000) / ?Pop AS ?GDPavg).

6 FILTER (?GDPavg > 50000)}

7 }

Listing 5.2: DESCRIBE of rich countries.

To further explore this freshly generated graph of rich countries, it can be queried for other
information. An example query could ask for respective names of these countries and, if available,
the economic sector distribution. This is done in the query Listing 5.3 below. The green area is the
reused query.

1 PREFIX : <http://www.semwebtech.org/mondial/10/meta#>

2 BASE <http://www.semwebtech.org/mondial/10/>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

5

6 SELECT ?Country ?Agri ?Ind ?Serv

7 FROM {

8 SERVICE <http://www.semwebtech.org/mondial/10/sparql>

9 DESCRIBE ?C

10 WHERE {?C a :Country.

11 ?C :gdpTotal ?GDPtot.

12 ?C :population ?Pop.

13 BIND((?GDPtot*1000000) / ?Pop AS ?GDPavg).

14 FILTER (?GDPavg > 50000)}

15

16 }

17

18 WHERE { ?C a :Country.

46 CHAPTER 5. ANALYSIS

19 ?C :name ?Country.

20 OPTIONAL {?C :gdpInd ?Ind}.

21 OPTIONAL {?C :gdpAgri ?Agri}.

22 OPTIONAL {?C :gdpServ ?Serv}}

Listing 5.3: Reuse of rich countries.

The results of this query are presented in Table 5.1. The “Falkland Islands” do not have available
data for the industrial and service sector, hence only appearing in the results because of the
OPTIONAL keyword. All numbers represent the corresponding share of this sector in the overall
GDP. This example shows the easy intuition of nested CONSTRUCTs for data exploration.

?Country ?Agri ?Ind ?Serv
"Falkland Islands" 95 NA NA

"Qatar" 0.1 72.2 27.7

"San Marino" 0.1 39.2 60.7

"Liechtenstein" 8 37 55

"Switzerland" 0.7 26.8 72.5

"Canada" 1.7 28.4 69.9

"Monaco" 0 10 90

"Australia" 3.8 27.4 68.7

"Norway" 1.2 42.3 56.5

"Denmark" 1.5 21.7 76.8

"Andorra" 14 79 6

"Sweden" 2 31.3 66.8

"Bermuda" 0.7 5.7 93.5

"United States" 1.1 19.5 79.4

"Singapore" 0 29.4 70.6

"Jersey" 2 2 96

"Kuwait" 0.3 50.6 49.1

"Luxembourg" 0.3 13.3 86.4

"Macao" 0 6.5 93.5

Table 5.1: Solutions to query 5.3.

5.1. ANALYSIS OF USE CASES 47

Distributed evaluation

With nested CONSTRUCT queries, it is easy to merge query results from two different endpoints
for efficient data integration. It is possible to let the endpoints evaluate the queries and only do
further processing on the smaller resulting graphs. Additionally, these resulting graphs can be
shaped into the own conventional graph patterns. This might be a big advantage if an application
has a pre-existing outer query and is supposed to add in another data source. Case examples for
this are online portals gathering information from multiple webpages. The scenario in Listing 5.4
assumes that two partial versions of the Mondial database exist. One provides the population of
countries, the other one provides the total GDP. In order to calculate the average GDP for each
country, one needs to retrieve triples for population as well as the total GDP from the respective
database. Afterwards, all the required data is in the active graph of the outer query and can be
used for returning the average GDP per person.

1 PREFIX mon: <http://www.semwebtech.org/mondial/10/meta#>

2 BASE <http://www.semwebtech.org/mondial/10/>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

5

6 SELECT ?Country ?GDPavg

7 FROM {

8 SERVICE <http://www.semwebtech.org/mondial/10/sparql>

9 CONSTRUCT {?C mon:name ?Name. ?C mon:gdpTotal ?GDPtot}

10 WHERE {

11 ?C a mon:Country.

12 ?C mon:gdpTotal ?GDPtot.

13 ?C mon:name ?Name

14 }

15 }

16 FROM {

17 SERVICE <http://localhost:8080/mondial-lod/sparql>

18 CONSTRUCT {?C mon:name ?Name. ?C mon:population ?Pop}

19 WHERE {

20 ?C a mon:Country.

21 ?C mon:population ?Pop.

22 ?C mon:name ?Name

23 }

24 }

48 CHAPTER 5. ANALYSIS

25 WHERE {

26 ?C mon:name ?Country.

27 ?C mon:population ?Pop.

28 ?C mon:gdpTotal ?GDPtot

29 BIND((?GDPtot*1000000) / ?Pop AS ?GDPavg).

30 }

Listing 5.4: Distributed query for average GDP per person.

Optimisation Considerations

Usually there are different measures to be considered for describing the optimisation of a query.
First of all, there is the usual computational complexity of queries described in “Complexity of
SPARQL” [21]. Since there is nothing changed in this area, the focus will be set on the exchange of
information and needed storage space. Therefore, the amount of triples sent between two or more
parties is considered in order to solve a given problem.

The execution time of remote queries is omitted, because it is not a very reliable measurement.
This is due to the extreme dependency on external changing variables, e.g. the internet connection
or the number of concurrent queries on the server. Additionally to these influences, there is no
defined standard for the answer format of SPARQL endpoints. Some of them refuse to answer
complex queries due to a fixed maximum calculation time [5] or do not handle special queries,
like DESCRIBE, at all. Nonetheless, nested CONSTRUCTs enable the rewriting of a query and
therefore allow theoretical optimisation possibilities. Simple changes in the inner and outer query
have significant influences on the evaluation process. This can be used to adapt queries to specific
needs without changing the results and hence optimising it.

The following example queries show the impact of simply pushing parts of the graph pattern
from the outer to the inner query. Therefore, a constructed scenario shall examine the type of
government in countries with an average GDP per person above 50000. The relevant part of this
query is the FILTER on countries with a GDP per person of more than 50000. Governmental data
will only serve as a representative of all other information in the graph that is directly connected to
the country. The nested CONSTRUCT query is always marked with a green area.

5.1. ANALYSIS OF USE CASES 49

The first query simply requests the whole graph from the remote endpoint and does all the
evaluation on the local machine.

1 PREFIX mon: <http://www.semwebtech.org/mondial/10/meta#>

2 BASE <http://www.semwebtech.org/mondial/10/>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

5

6 SELECT ?Country ?GDPavg ?Gov

7 FROM {

8 SERVICE <http://www.semwebtech.org/mondial/10/sparql>

9 CONSTRUCT {?C ?P ?O}

10 WHERE {

11 ?C ?P ?O

12 }

13 }

14 WHERE {

15 ?C a mon:Country.

16 ?C mon:name ?Country.

17 ?C mon:gdpTotal ?GDPtot.

18 ?C mon:population ?Pop.

19 BIND((?GDPtot*1000000) / ?Pop AS ?GDPavg).

20 FILTER (?GDPavg > 50000).

21 ?C mon:government ?Gov

22 }

Listing 5.5: Get all triples and FILTER afterwards.

The nested CONSTRUCT is resulting in 194551 triples to be sent from the endpoint to the user. As
a small shift towards more filtering in the inner query, only country data shall be retrieved from
the endpoint. This limits the data to be sent and lowers the calculation to be done on the local
machine.

50 CHAPTER 5. ANALYSIS

1 PREFIX mon: <http://www.semwebtech.org/mondial/10/meta#>

2 BASE <http://www.semwebtech.org/mondial/10/>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

5

6 SELECT ?Country ?GDPavg ?Gov

7 FROM {

8 SERVICE <http://www.semwebtech.org/mondial/10/sparql>

9 CONSTRUCT {?C ?P ?O}

10 WHERE {

11 ?C a mon:Country.

12 ?C ?P ?O

13 }

14 }

15 WHERE {

16 ?C mon:name ?Country.

17 ?C mon:gdpTotal ?GDPtot.

18 ?C mon:population ?Pop.

19 BIND((?GDPtot*1000000) / ?Pop AS ?GDPavg).

20 FILTER (?GDPavg > 50000).

21 ?C mon:government ?Gov

22 }

Listing 5.6: Get only the triples from country nodes.

For this request, the nested query was only returning 22016 triples to the user. Finally, only the
required data from suitable countries, fitting the conditions, are requested from the endpoint. This
further lowers the amount of sent triples to a minimum for this task. In order to query the relevant
properties, they are simply added as a template to the nested CONSTRUCT query and accessed in
the outer query. Therefore, the inner query in Listing 5.7 sends only 57 triples to the user.

5.1. ANALYSIS OF USE CASES 51

1 PREFIX mon: <http://www.semwebtech.org/mondial/10/meta#>

2 BASE <http://www.semwebtech.org/mondial/10/>

3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

5

6 SELECT ?Country ?GDPP ?Gov

7 FROM {

8 SERVICE <http://www.semwebtech.org/mondial/10/sparql>

9 CONSTRUCT {?C mon:name ?Name. ?C mon:government ?Gov .

10 ?C mon:gdpAverage ?GDPavg}

11 WHERE {

12 ?C a mon:Country.

13 ?C mon:gdpTotal ?GDPtot.

14 ?C mon:population ?Pop.

15 ?C mon:name ?Name.

16 ?C mon:government ?Gov.

17 BIND((?GDPtot*1000000) / ?Pop AS ?GDPavg).

18 FILTER (?GDPavg > 50000).

19 }

20 }

21 WHERE {

22 ?C mon:name ?Country.

23 ?C mon:gdpAverage ?GDPP.

24 ?C mon:government ?Gov

25 }

Listing 5.7: Get only triples from countries fitting the condition.

52 CHAPTER 5. ANALYSIS

5.2 Composability of CONSTRUCT Queries

One objective of query languages, like SPARQL, is to be as simple as possible. This means that
features that can be expressed by other features of the language, shall not be included in the
language [2]. Nested CONSTRUCTs have not already been added to the language, because an
unproven conjecture states, that they are expressible by SELECT subqueries [3]. In particular, this
means that for an outer query Q1 and an inner nested CONSTRUCT query Q2 with the dataset D,
there exists a query Q in the language, such that:

JQ2KJQ1KD = JQKD

In the paper [3] a rewriting method for this problem is proposed. Even though a rewriting
method exists, it is non-intuitive, technical, and has an exponential blowup in the depth of nestings.
Furthermore, the possibility of reasoning in the nested CONSTRUCT is not considered in this paper.
It is shown in Chapter 6 that nested CONSTRUCTs can be a very useful feature in combination
with reasoning. All in all, the authors call out nested CONSTRUCTs as a “desired feature” [3].

54 CHAPTER 5. ANALYSIS

Chapter 6

Closing the Open World

The previous chapter has shown the possibilities of nested CONSTRUCTs in altering the ABox
of a KB. Since a TBox is also a RDF graph, nested CONSTRUCTs can also be used to alter the
terminological and schema knowledge of the KB. This extended or manipulated knowledge can
then be used for upcoming reasoning tasks. Furthermore, the possibility of using a Pellet model in
a nested CONSTRUCT enables freshly derived data in the ABox as well as the TBox for further
processing. Hence, this feature provides the opportunity of querying data, that can not be derived
by a single round of reasoning or is dependent on reasoned knowledge beforehand. Since this
process is locally tackling the properties of the OWA, it will be referred to as “Closing the Open
World”.

6.1 Win-Move-Game

Mondial is too big for the reasoner and thus for the “Closing the Open World” scenario. That is
why the Win-Move-Game is considered below. This game is commonly used in CWA settings for
its complex logical semantics. The lecture slides [1] introduce this game as a classical problem
case in the open world setting, because it requires an appropriate closure. While former solution
approaches needed to wrap multiple queries with Java, this thesis will present the use of nested
CONSTRUCTs in order to provide a solution in pure SPARQL.

The rules of the two player game are very simple. Considering a graph with directed edges; a
move is a transition from one node to another via a chosen edge. The game ends if one player can
not make any further moves and therefore loses. In the Figure 6.1, a graph representation of an
instance of this game is given [1]. Listing 6.1 gives the corresponding graph description in RDF.

55

56 CHAPTER 6. CLOSING THE OPEN WORLD

a b

c

d

ef g

h i

j

k

l

mn

Figure 6.1: Graph representation of a Win-Move-Game example [1].

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla#>.

:Node a owl:Class; owl:equivalentClass

[a owl:Class; owl:oneOf (:a :b :c :d :e :f :g :h :i :j :k :l :m :n)

↪→].

:edge a owl:ObjectProperty; rdfs:domain :Node; rdfs:range :Node.

:a a :Node; :edge :b, :f.

:b a :Node; :edge :c, :g, :k.

:c a :Node; :edge :d, :l.

:d a :Node; :edge :e.

:e a :Node; :edge :a.

:f a :Node.

:g a :Node; :edge :i, :h.

:h a :Node; :edge :m.

:i a :Node; :edge :j.

:j a :Node.

:k a :Node.

:l a :Node; :edge :d.

:m a :Node; :edge :h.

:n a :Node.

Listing 6.1: RDF representation of the Win-Move-Game instance.

6.1. WIN-MOVE-GAME 57

By simply looking at the graph it becomes obvious that certain nodes are always losing and others
are always winning. Standing on the node “j” will always yield a loss, since there is no further
edge to be chosen. The node “i” on the other hand will always guarantee a win, because you
can only choose one edge which will put the enemy player on a losing node. Furthermore, a
constellation of the nodes “m” and “h” clearly forces an endless loop and is therefore a drawn
state. In fact, there are two general rules for determining if a node is in a winning or a losing state.
All remaining nodes are drawing nodes by logical exclusion. Winning nodes can be described as
the possibility to put the enemy on a losing node. Assuming perfect players, this simply correlates
with the existence of an edge to a losing node. A losing node has only edges that lead to a winning
state for the enemy. In other words, for all outgoing transitions the next node will be a winning
node. These rules can be described with OWL DL and are presented in Listing 6.2.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla#>.

:WinNode a owl:Class; owl:intersectionOf (:Node

[a owl:Restriction; owl:onProperty :edge; owl:someValuesFrom :

↪→ LoseNode]).

:LoseNode a owl:Class; owl:intersectionOf (:Node

[a owl:Restriction; owl:onProperty :edge; owl:allValuesFrom :WinNode

↪→]).

Listing 6.2: OWL description of WinNodes and LoseNodes.

With this description two problems are arising. On the one hand, drawing nodes can only be
deduced by knowing all winning and losing nodes. On the other hand and far more important, the
OWA makes the reasoning over these rules problematic. There might be further edges that are not
present in the current KB. As an example, node “j” could have a non-prominent edge, which leads
to an unknown node; hence, making the losing node a winning node. To tackle this problem, the
set of edges in the KB is assumed to be complete, effectively making this property closed. In order
to extend the ABox and TBox appropriately, the current number of outgoing edges is to be counted
for each node. For expressing this in OWL, subclasses of the class node need to be added to the
KB which have this number as a restriction on the cardinality of their edge property. In the end,
each node needs to be assigned to its corresponding subclass. For example, the node “j” belongs to
the class of 0edgeNode and node “a” belongs to 2edgeNode. Listing 6.3 shows a corresponding
CONSTRUCT query that builds this closure.

58 CHAPTER 6. CLOSING THE OPEN WORLD

CONSTRUCT { ?newclass a owl:Class; rdfs:subClassOf <foo://bla#Node>;

↪→ owl:equivalentClass [a owl:Restriction ; owl:onProperty <foo://

↪→ bla#edge>; owl:cardinality ?num] . ?O a ?newclass }

FROM <file:winmove-axioms.n3>

FROM <file:winmove-ex-graph.n3>

WHERE {

{

SELECT ?O (count(distinct ?X) AS ?num)

WHERE { ?O a <foo://bla#Node> .

OPTIONAL { ?O <foo://bla#edge> ?X}}

GROUP BY ?O ?N

} .

BIND (URI(concat(’foo://bla#’, str(?num), ’edgeNode’)) AS ?

↪→ newclass) }

Listing 6.3: Constructing a Win-Move-Closure with a CONSTRUCT query.

Having this CONSTRUCT query at hand, it can be used to extend the current KB, such that a
reasoner can determine winning, losing and drawn nodes. For this purpose, a new query with
REASONER support is set up. This query uses the above query as a nested CONSTRUCT and
extends the KB further by adding a draw node property to every node that cannot be classified as
either a winning or losing node. Afterwards, the KB contains all information to classify each node
as either a winning, losing or drawn node. In order to query this information, another wrapping
SELECT query is used with REASONER support, because it has to deduce the winning and losing
nodes again. The full query can be seen in Listing 6.4.

6.1. WIN-MOVE-GAME 59

PREFIX : <foo://bla#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT REASONER ?N ?NT

FROM {

CONSTRUCT REASONER { ?N a :DrawNode . ?S a ?NT }

FROM {

CONSTRUCT { ?newclass a owl:Class; rdfs:subClassOf <foo

↪→ ://bla#Node>; owl:equivalentClass [a owl:

↪→ Restriction ; owl:onProperty <foo://bla#edge>;

↪→ owl:cardinality ?num] . ?O a ?newclass . ?Sub ?

↪→ Pre ?Obj }

FROM <file:winmove-axioms.n3>

FROM <file:winmove-ex-graph.n3>

WHERE { { ?Sub ?Pre ?Obj }

UNION

{

SELECT ?O (count(distinct ?X) AS ?num)

WHERE { ?O a <foo://bla#Node> .

OPTIONAL { ?O <foo://bla#edge>

↪→ ?X}}

GROUP BY ?O ?N

} .

BIND (URI(concat(’foo://bla#’, str(?num), ’

↪→ edgeNode’)) AS ?newclass) }

}

WHERE { {?N a :Node .

FILTER NOT EXISTS { ?N a :WinNode } .

FILTER NOT EXISTS { ?N a :LoseNode } .}

UNION

{ ?S a ?NT} }

}

WHERE { ?N a :Node ; a ?NT }

ORDER BY ?N

Listing 6.4: SPARQL query to close and evaluate the Win-Move-Game in one query.

60 CHAPTER 6. CLOSING THE OPEN WORLD

The solution of this query is intuitively represented by the coloured graph in Figure 6.2. Red nodes
stand for losing nodes, green nodes are winning nodes and yellow ones represent drawn nodes.

a b

c

d

ef g

h i

j

k

l

mn

Figure 6.2: Graph representation of the Win-Move-Game solution.

62 CHAPTER 6. CLOSING THE OPEN WORLD

Chapter 7

Conclusion

This thesis was mainly concerned with a functioning implementation of the nested CONSTRUCT
feature in SPARQL. The new feature is functional and did not show any shortcomings in the tested
scenarios and yields a nice practical addition to the language. Nested CONSTRUCTs are especially
suitable for data integration purposes, because they provide non materialised views and simplify
the reshaping of remote data. Furthermore, they enable the usage of the latest data and distribute
the main parts of the calculation to the remote endpoints. They are able to construct a closure in
case of insufficient information. Therefore, nested CONSTRUCTs are a necessity for reasoning
under the CWA with SPARQL.

On the downside, these features are only implemented in the testing environment of the Semwebjar
tool. Therefore, the practical use, outside of teaching and experimenting, is limited to endpoints
providing the necessary infrastructure. This infrastructure includes the possibility of handling and
returning the inevitable query types CONSTRUCT and DESCRIBE.

All in all, the thesis is a nice starting point for further experiments with nested CONSTRUCT
queries. In addition, the work process can be used as a guideline to add possible new features in a
similar fashion.

7.1 Future Work

Potential follow up work comprises mainly some theoretical extra considerations. One topic could
be the analysis of correlated variables, namely the sharing of a variable between inner and outer
query. Furthermore, the grammar could be extended to load nested CONSTRUCTs from a file;
hence keeping the complete query structured and as minimal as possible. Moreover, the paper [3]
proposes the possibility of updating KBs with nested CONSTRUCTs, in case of their availability.

63

Bibliography

[1] W. May, “Semantic Web Lecture”. https://www.dbis.informatik.uni-goettingen.
de/Teaching/SemWeb-WS1819/, 2018/2019. [Online; accessed 21.10.2019].

[2] R. Angles and C. Gutierrez, “Subqueries in SPARQL”, CEUR Workshop Proceedings, vol. 749,
01 2011.

[3] A. Polleres, J. Reutter, and E. V. Kostylev, “Nested constructs vs. sub-selects in SPARQL”,
Alberto Mendelzon International Workshop on Foundations of Data Management, vol. 10, 2016.

[4] T. Berners-Lee, “Linked Data”. https://www.w3.org/DesignIssues/LinkedData.
html, 2006. [Online; accessed 21.10.2019].

[5] M. Heinemann, “Linked Open Data and its Evaluation”. https://www.dbis.

informatik.uni-goettingen.de/Teaching/Theses/theses-list.html, 2019.
[Masterthesis].

[6] W. May, “Introduction to Databases”. https://www.dbis.informatik.

uni-goettingen.de/Teaching/DB-WS1819/, 2018/2019. [Online; accessed 21.10.2019].

[7] S. Harris and A. Seaborne, “SPARQL 1.1 query language”, W3C recommendation, W3C, Mar.
2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/.

[8] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 concepts and abstract syn-
tax”, W3C recommendation, W3C, Feb. 2014. http://www.w3.org/TR/2014/

REC-rdf11-concepts-20140225/.

[9] P. Hitzler, M. Krötzsch, and S. Rudolph, Foundations of Semantic Web Technologies. Chapman &
Hall/CRC, 1st ed., 2009.

[10] T. Berners-Lee and D. Connolly, “Notation3 (N3): A readable RDF syntax”. https://
www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/, 2011. [Online; accessed
21.10.2019].

[11] The Apache Software Foundation, “Apache Jena”. https://jena.apache.org/index.
html, 2019. [Online; accessed 21.10.2019].

65

https://www.dbis.informatik.uni-goettingen.de/Teaching/SemWeb-WS1819/
https://www.dbis.informatik.uni-goettingen.de/Teaching/SemWeb-WS1819/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.dbis.informatik.uni-goettingen.de/Teaching/Theses/theses-list.html
https://www.dbis.informatik.uni-goettingen.de/Teaching/Theses/theses-list.html
https://www.dbis.informatik.uni-goettingen.de/Teaching/DB-WS1819/
https://www.dbis.informatik.uni-goettingen.de/Teaching/DB-WS1819/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
https://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
https://jena.apache.org/index.html
https://jena.apache.org/index.html

66 BIBLIOGRAPHY

[12] The Apache Software Foundation, “ARQ”. https://jena.apache.org/

documentation/query/index.html, 2019. [Online; accessed 21.10.2019].

[13] The Apache Software Foundation, “Apache Jena Releases”. https://jena.apache.org/
download/index.cgi, 2019. [Online; accessed 21.10.2019].

[14] The Apache Software Foundation, “ARQ - Application API”. https://jena.apache.org/
documentation/query/app_api.html, 2019. [Online; accessed 21.10.2019].

[15] W. May, “Databases and Information Systems”. https://www.dbis.informatik.

uni-goettingen.de/, 2019. [Online; accessed 21.10.2019].

[16] The Apache Software Foundation, “Apache Tomcat”. https://tomcat.apache.org/,
2019. [Online; accessed 21.10.2019].

[17] W. May, “Playground page for the XML Course”. http://www.stud.informatik.
uni-goettingen.de/xml-lecture/#tomcat, 2019. [Online; accessed 21.10.2019].

[18] S. Siemer, “Exploring the Apache Jena Framework”, 2019. Practical preliminary work of this
thesis.

[19] J. Team, “JavaCC - The Java Parser Generator”. https://javacc.org/, 2019. [Online;
accessed 21.10.2019].

[20] W. May, “Information extraction and integration with FLORID: The MONDIAL case study”,
Tech. Rep. 131, Universität Freiburg, Institut für Informatik, 1999. Available from http:

//dbis.informatik.uni-goettingen.de/Mondial.

[21] J. Perez, M. Arenas, and C. Gutierrez, “Semantics and complexity of SPARQL”, 2006.

https://jena.apache.org/documentation/query/index.html
https://jena.apache.org/documentation/query/index.html
https://jena.apache.org/download/index.cgi
https://jena.apache.org/download/index.cgi
https://jena.apache.org/documentation/query/app_api.html
https://jena.apache.org/documentation/query/app_api.html
https://www.dbis.informatik.uni-goettingen.de/
https://www.dbis.informatik.uni-goettingen.de/
https://tomcat.apache.org/
http://www.stud.informatik.uni-goettingen.de/xml-lecture/#tomcat
http://www.stud.informatik.uni-goettingen.de/xml-lecture/#tomcat
https://javacc.org/
http://dbis.informatik.uni-goettingen.de/Mondial
http://dbis.informatik.uni-goettingen.de/Mondial

68 BIBLIOGRAPHY

	Abstract
	Contents
	Introduction
	Basics
	Resource Description Framework
	SPARQL
	SPARQL Datasets
	SPARQL Solution Mappings
	SPARQL Algebra Evaluation
	SPARQL Nested Queries

	Ontologies & Reasoning
	Open World vs. Closed World
	OWL and Logic
	OWL DL
	Pellet

	Apache Jena Framework
	Semwebjar
	JavaCC
	Mondial Database

	SPARQL Grammar
	Grammar Specification
	Grammar Implementation

	Jena Implementation
	Dataflow in Jena
	Modification of Jena Classes
	Modification of Query.java
	Modification of DatasetDescription.java
	Modification of DatasetUtils.java
	Modification of QueryEngineBase.java

	Analysis
	Analysis of Use Cases
	Creation of New Values
	Query Writing

	Composability of CONSTRUCT Queries

	Closing the Open World
	Win-Move-Game

	Conclusion
	Future Work

	Bibliography

