
Georg-August-Universität ISSN 1612-6793
Göttingen Number ZAi-MSC-2016-33
Zentrum für Informatik

Master’s Thesis
submitted in partial fulfilment of the

requirements of the course ”Applied Computer Science"

Extraction of Ontological Metadata and Generation
of an OBDA Mapping from a Relational Schema

Lars Runge

Institute of Computer Science

Bachelor’s and Master’s Theses
of the Center for Computational Sciences

at the Georg-August-Universität Göttingen

30. November 2016

Georg-August-Universität Göttingen
Institute of Computer Science
Goldschmidtstraße 7
37077 Göttingen
Germany
T +49 (551) 39-172000
t +49 (551) 39-14403
B office@informatik.uni-goettingen.de
m www.informatik.uni-goettingen.de

First Supervisor: Prof. Dr. Wolfgang May
Second Supervisor: Dr. Lena Wiese

mailto:office@informatik.uni-goettingen.de
www.informatik.uni-goettingen.de

I hereby declare that I have written this thesis independently without any help from others and
without the use of documents or aids other than those stated. I have mentioned all used sources
and cited them correctly according to established academic citation rules.

Göttingen, 30. November 2016

Abstract

Connecting and querying multiple relational databases can be quite the challenge especially when those
databases have varying schemas and are located in different database management systems. One possible
solution to this problem is the use of a higher level language such as an ontology that describes the data items
in the relational schemas of interest. The ontology can then be used to gain universal Ontology-Based
Data Access (OBDA) over all covered databases. This thesis covers the RELMODELBUILDER tool,
which analyses a relational database and automatically extracts ontological mapping metadata from it to
provide the ontology-based data access. The tool utilises for that a mixture of direct mapping and more
advanced mapping approaches to deal for instance with attributed relationships and to generate broad
class hierarchies. The output is a model-intern representation of the mappings that serves as a common
join-point for our other tools that expand the functionality. For example the generated mappings can be
used by the QUERYCONVERTER tool to translate SPARQL-queries based on the extracted ontological
information to SQL-queries for the used relational database. Furthermore multiple such created mappings
from different relational schemas can be aligned by the SCHEMAMATCHER tool to grant OBDA to all
relational databases from just one common definition of ontological vocabulary.

Contents

1 Introduction 1
1.1 Querying multiple databases . 1
1.2 Related Work . 4
1.3 Contributions . 5
1.4 Tools . 6
1.5 MONDIAL . 7

2 Basics 9
2.1 Data models . 9

2.1.1 Entity-relationship model . 9
2.1.2 Relational database . 14
2.1.3 RDF database . 18
2.1.4 RDF ontology . 20

2.1.4.1 Reified properties . 23
2.2 RelationalModel & connected Tools . 25

2.2.1 RDF2SQL . 25
2.2.2 RelationalModel . 26
2.2.3 SchemaMatcher . 31

3 Connecting RDF model and relational model 33
3.1 Mapping the RDF model to relational tables . 33

3.1.1 Mapping of concrete classes and functional properties 33
3.1.2 Mapping of non-functional properties . 35
3.1.3 Reified properties and their mapping . 35
3.1.4 Mapping of symmetric properties . 36

3.2 Extracting an RDF model from relational tables . 38
3.2.1 Mapping of tables . 38

3.2.1.1 Standard ClassTables . 39
3.2.1.2 Special case ClassTableExtensions 41
3.2.1.3 NMTables . 42
3.2.1.4 Special case CompositeNMTables 44
3.2.1.5 ReifiedTables . 47

3.3 Naming properties . 49
3.4 Class hierarchy . 49

3.4.1 Identifying subclasses of ClassTables . 50

ix

x CONTENTS

3.4.2 Deriving a class hierarchy from previous findings 51
3.5 Finding ranges for columns . 52

4 Implementation 55
4.1 Using the RelModelBuilder class . 55
4.2 Internal structures . 56

4.2.1 RelationalModel . 56
4.2.2 TableSummary . 57

4.3 Conversion steps . 58
4.3.1 Loading table metadata from DBMS . 58
4.3.2 Initialisation of Table objects . 60
4.3.3 Handling of object-valued properties . 60
4.3.4 Identification of NMTables . 61
4.3.5 Identification of ClassTableExtensions . 64
4.3.6 Identification of ReifiedTables . 64
4.3.7 Identification of N:1 tables . 65
4.3.8 Derivation of Subclasses . 66

5 Conclusion 69
5.1 Future works . 70

Bibliography 73

A Definition of abstract/concrete classes: mondial-er.n3 75

B Definition of classes and properties: mondial-meta.n3 79

C Meaning of the boolean positions of the RelModelBuilder settings 91

List of Abbreviations

OBDA Ontology-Based Data Access . 1
RDBMS Relational Database Management System. .1
DBMS Database Management System . 3
RDF Resource Description Framework . 6
W3C World Wide Web Consortium . 5
ER Entity-Relationship . 9
RM Relational Model . 9
OWL Web Ontology Language . 9
SQL Structured Query Language . 14
PK Primary Key . 14
FK Foreign Key . 14
XML Extensible Markup Language . 18
URI Unified Resource Identifier . 18
SPARQL SPARQL Protocol and RDF Query Language . 19
RDFS Resource Description Framework Schema . 20
XSD XML Schema Definition . 21

xi

Chapter 1

Introduction

Accessing and treating relational databases from the view of an ontology can bring many benefits
for the user. This chapter introduces for instance the difficulties of querying multiple databases
and querying in general from an uninformed user perspective with only the tools available from
a Relational Database Management System (RDBMS). The examined problems can be tackled
in various ways, but this thesis will focus on the creation and usage of relational-to-ontology
mappings as one possible solution. Ontology-Based Data Access (OBDA) is not a new concept
for solving such problems, thus related work and our contributions to this topic will be discussed
in Sections 1.2 and 1.3. At the end of this chapter the tools which were used in the process and
the real-world data sets that were used to construct the test cases will be highlighted.

1.1 Querying multiple databases

When considering real-life applications for analysing data the data comes often from different
sources. Therefore data integration from different databases plays a huge part. When it comes to
using SQL queries for this, the user has to know the schema of every database he wants to query.
This is not a problem if all databases use the same schema, but most of the time even databases
storing the same information have only similar schemas with slight differences. For example
we can look at two automobile manufacturers A and B. Both companies probably maintain
databases containing information regarding their employees and the cars they manufacture. If
now company A acquires company B, we can imagine that the databases will be merged for
easier overview thus creating the need to connect both. But those databases will most likely have
discrepancies in their schemas even if they describe the same data items. The most common
types of discrepancies that can occur are as followed:

1. The simplest case are differences in the naming of tables and columns that contain the
same information. Figure 1.1 illustrates that difference. Company A and B maintain each
one table “Employees” containing all the information regarding their employees like the
name and salary. In this instance the tables follow the same structre, but the naming of the
column which contains the second name of the employee is different.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Influence of different column naming on the SQL query

2. The most important aspect are differences in the database schemas. For example this
includes differences in the primary keys, which have to be represented in the query if the
table has to be joined. Additionally information that is located in a single table in one
schema can be split up into multiple tables in another schema. Both is represented in Figure
1.2. Company A retains its original “Employees” table with First name and Family name as
its primary key. Both the employee’s name and his salary can be found in the same table.
On the other hand Company B has another schema that splits the employee details into
two tables. One table “Employees” contains all the basic information about the employee
like the name and address. An additional table named “EmployeeInformation” contains
the job specific information of the employee e.g. the salary. Both tables are connected with
a new primary key EmployeeID which additionally allows for multiple employees with the
same name without overlap. When querying only for the employees names this would
make no difference, but if the user also wants the salary Company B has to join both tables.

Figure 1.2: Influence of different schemas on the SQL query

1.1. QUERYING MULTIPLE DATABASES 3

3. Another factor that is possible are varying query syntaxes depending on the used Database
Management System (DBMS). These emerge most commonly as different names for key
words of the query. Figure 1.3 illustrates for instance that the key word MINUS in ORACLE

systems is named EXCEPT in POSTGRES systems.

Figure 1.3: Influence of different DBMS syntax on the SQL query

A similar problem to the previous one but not as urgent occurs when a user wants to query a
database which structure is not completely known to him. Maybe it is not necessary that the
user has to learn the database schema for an one time use or even is not allowed to know the
detailed structure due to security reasons.

The common solution to these problems is that the database administrator provides hand-written
functions that give access to specified information based on the user requests. But depending on
the number of occurences of such requests writing specified functions for each use-case can be
quite the effort, especially with low cost-value ratios for one-time usage. On the other hand with
our approach if a common higher-level access-point like an ontology is available to the user, it
can be used to state queries to all databases at the same time which are then translated to specific
SQL queries for each database. Taking the example from Case 2 again, Figure 1.4 sketches the
process from the common ontology for the employee databases over a unified SPARQL query to
the specific SQL queries for each database.

4 CHAPTER 1. INTRODUCTION

Figure 1.4: Concept of using a common ontology for unified access to all databases

1.2 Related Work

First of all to achieve OBDA to relational databases a suitable ontology for the database items
and the respective mapping to the relational database has to be created. Doing so manually
can be a time consuming task especially when a fully-fledged ontology with extensive class
hierarchies should be created. However there also already exist some approaches that construct
an appropriate ontology and the respective mappings in a automatic or semi-automatic way.
The difference in these two approaches is that semi-automatic tools unlike fully automatic

1.3. CONTRIBUTIONS 5

ones require user input to guide the conversion process. Some prominent tools that create
such mappings include BOOTOX [JRKZ+15], INCMAP [PBKH13], COMA++ [ADMR05],
MIRROR [dMPC15], ONTOP [BCH+14] and KARMA [KSA+12].

BootOX is based on the World Wide Web Consortium (W3C) relational data to RDF direct
mapping directives [W3Ca] to connect ontological vocabulary to the relational database
items. Also it supports additional functionality like including an imported ontology to the
bootstrapped one by aligning elements of both.

IncMap uses a semi-automatic approach that is able to map a given ontology to the relational
database by using lexical and structural matching steps. It is however not able to construct
a new ontology from the relational database that can be used for the mapping.

COMA++ is a schema and ontology matching tool, which offers a graphical interface to allow
the user for instance to influence the matching process. It implements various different
matching approaches like Fragment-based Matching and Reuse-oriented Matching.

MIRROR generates two groups of R2RML mappings from a relational database. The first group
contains the usual mapping of a direct mapping approach, while the second one contains
additional information M:N relationships and subclasses-of relationships.

ONTOP is a tool primarily for rewriting SQL queries to SPARQL ones available for instance as
a Protégé plugin. However it also allows for limited ontology and mapping bootstrapping.

KARMA is a strict semi-automatic relational-to-ontology mapping generator that is specialised
in integrating several data sources into one target ontology.

These six tools were recently tested by the RODI [PBJR+15] benchmarking tool. The tools
were tasked to generate mappings for provided relational databases and target ontologies.
Additionally for each such scenario a series of SPARQL queries had to be translated to the
corresponding SQL format based on the generated mappings. The results were compared to
the provided sample solutions. The tests were conducted on data sets from three different
application domains such as conferences (CMT, SIGKDD, CONFERENCE), geodata (Mondial)
and oil & gas exploration (NPD FactPages). The difficulty of the tests increased from the easier
queries of the conference data sets asking only for atomic properties to the more difficult queries
of the geodata and oil & gas domains that also select combinations of properties and additional
constraints mimicking more realistic queries. Regardless of the approach of the tools, the general
results of the benchmark were quite disappointing. While the test results for the atomic queries
resulted in nearly acceptable outcomes, they concluded however that “all tested tools perform
poorly on most of the more advanced challenges that come close to actual real-world problems”.
Especially for the MONDIAL and NPD FACTPAGES ontologies this is due to more advanced
mapping challenges for instance “the introduction of a class hierarchies which groups data for
several subclasses in a single table”.

1.3 Contributions

We already created the mapping the other way around from ontology to relational tables in our
previous work [RS13] using inter-model mapping metadata explained in Section 2.2.2. Therefore

6 CHAPTER 1. INTRODUCTION

we were curious if our approach could produce any better results as the previously mentioned
programs. This task is split into two individual tools. On the one hand the RELMODELBUILDER

program presented in this thesis which extracts an ontology from any relational database and
creates suitable mappings. On the other hand the SCHEMAMATCHER [SCH16] which matches
the created mappings from different relational databases to each other to achieve data integration.
These tools utilise the same inter-model metadata from our previous work, which serves as the
pivotal-point between them.

Thus our contributions for this task are the design and implementation of an algorithm to extract
ontological metadata like classes and properties from the relational model. This extraction is
explained in Section 3.2 and is based on the direct mapping approach of the W3C, but extended
to a fine grained differentiation of relational table types. Our goal is not to produce a classic
Resource Description Framework (RDF) ontology but the mapping metadata that is needed for
our other tools. However such a classical ontology could be easily derived from the metadata
entries if needed, because the mappings contain almost all the necessary information anyway.
Furthermore we augment the OBDA mapping by elaborating a suitable class hierarchy as
explained in Section 3.4 and expanding it as much as possible.

All in all we want to derive as much metadata information from the relational database as
possible to produce a good foundation for our other tools like the QUERYCONVERTER or the
SCHEMAMATCHER hightlighted in Section 2.2.3.

1.4 Tools

The implementation for this thesis was done in Java [Oraa] with JDK version 1.8.0_101. For
the DBMS the standard POSTGRESQL [Groc] server in version 9.5 was used, which can be
downloaded from [Grob]. The server automatically comes with the PGADMIN III tool, which
provides a suitable interface to manage multiple databases as can be seen in Figure 1.5.

Figure 1.5: The PGADMIN III tool for managing POSTGRESQL databases

1.5. MONDIAL 7

1.5 MONDIAL

The MONDIAL database is a project to accumulate geographical data from various sources and
was initiated in 1998 as a use case of the F-Logic system FLORID. The data was mainly collected
from the CIA World Factbook [Age], the ’Global Statistics’, a predecessor of GEOHIVE [GEO]
and a few other sources like the TERRA database from the University of Karlsruhe [May99].
The data set contains data about various geographical objects ranging from basic information
about countries like their populations to international organizations and the location of their
headquarters. The data is available for the data models F-Logic, SQL, XML, RDF/OWL and
Datalog.

We use MONDIAL as the main test case for this thesis, because equivalent data sets for the
data models SQL and RDF are necessary to verify the results. Both are accessible from [May].
Additionally slight variations of the schema are already available or can be constructed via other
tools if needed. These different schemas cover a wide variety of connection types between the
information providing even more test cases. We will cover the implementation and differences
of the SQL and RDF version of MONDIAL in Section 2.1.

Chapter 2

Basics

This chapter covers the basic terminology and data structures that are used in this thesis. First of
all the utilised data models will be discussed. In the beginning the conceptual Entity-Relationship
(ER) model will be explained and how a Relational Model (RM) can be derived from it on the basis
of the MONDIAL database example. After that the RDF data model will be discussed and how its
structure can be utilised with Web Ontology Language (OWL) to formulate metadata information
in an ontology. Finally the chapter will illustrate our RelationalModel structure, which contains
a series of metadata tables describing the mappings from the RDF ontology to the relational
database. Moreover it serves as a connection point for the output of the RELMODELBUILDER

and the rest of our tools.

2.1 Data models

This section focuses on the data models that were used for constructing the MONDIAL data
sets for relational or RDF databases. Most important for the to be generated mappings are the
similarities and differences between the RDF ontology and the RM that will be explained based
on the respective MONDIAL databases. These are also the foundation of all further examples.

2.1.1 Entity-relationship model

The ER [Che76] model is an conceptual data model that is able to graphically represent the
relationship of things in a domain of interest. Among other things it is often used as visual
representation for planning and describing a RM of a relational database.

9

10 CHAPTER 2. BASICS

Figure 2.1: Basic building blocks of an
ER model

The model mainly consists of entity types, relationship
types and attributes that are visually represented as
shown in Figure 2.1. Entities are the “things” of the
world the user wants to describe, while attributes are
the properties of an entity which they are described
with. If two of these building blocks relate to each
other, they are connected by a line. Figure 2.2 shows
the Country entity with its basic attributes name, code,
population and area. Each attribute can only have one
value per instance of Country and the code attribute was
defined as an unique identifier for this entity marked by
an underscore. To easily distinguish the instances all

values of code have to be unique to their respective instance.

Figure 2.2: Country entity with attributes

Entities are connected to other entities not directly but by relationships. There are three different
relationship types, which are distinguished by their cardinalities:

1. The first kind of relationship are 1:1 relationships like the capital relationship between the
Country and City entities as shown in Figure 2.3. One country can only have one city as its
capital and one city can only be the capital of one country.

Figure 2.3: 1:1 relationship “capital” between Country and City

2.1. DATA MODELS 11

2. The second type of relationships is the 1:N relationship. Figure 2.4 shows the headq
relationship between the entities City and Organization as an example of such a relationship.
An organization can only have one headquarter located in one city, while a city can host
headquarters for multiple organizations.

Figure 2.4: 1:N relationship “headq” for Organizations having their headquarter in Cities

3. The final type of relationships is the N:M relationship. An instance of this relationship in
the MONDIAL domains is the at relationship between the entities City and Lake illustrated
in Figure 2.5. One the one hand a city can be located at multiple lakes and on the other
hand there can be multiple cities located at one specific lake.

Figure 2.5: N:M relationship “at” describing Cities located at Lakes

Additionally it is important to note that attributes are not restricted to entities, but can be applied
to all types of relationships too. Sometimes it is wise to further describe the relationship with
attributes. For example with the encompasses relationship between Country and Continent. The
percent attribute can be added to it as shown in Figure 2.6 that specifies how much of a country is
encompassed by a specific continent.

12 CHAPTER 2. BASICS

Figure 2.6: Relationship with attribute

Entities which can not be uniquely identified by its attributes alone and need to include the
unique attributes from other entities are called weak entities and are marked with an additional
frame as shown in Figure 2.7 with entity Province. A province name is only unique in the country
it is located in, thus both the province name and the country code have to be combined to
uniquely identify a province.

Figure 2.7: Weak entity Province

Following this approach the ER-diagram of the MONDIAL data set can be constructed from
which the tables of the relational database are then derived later on. A slightly older but still
representative diagram from 2015 is shown in Figure 2.8.

2.1. DATA MODELS 13

Figure 2.8: ER-diagram of the MONDIAL database

The ER is notably compound of:

• Entities: “Country”, “City”, “Province”, “Organization”, “Lake”, “Sea”, “River”, “Island”,
“Mountain”, “Desert”, “Source”, “Estuary”, “Language”, “Ethnic Group”, “Religion”,
“Continent”

• Relationships with attributes: “encompasses”, “borders”, “is_member”, “believe”, “be-
long”, “speak”

• N:M relationships:

– 3x “at” from “City” to “Lake”, “Sea” and “River”

– “on” from “City” to “Island”

– 8x “in” from “Province” to “Lake”, “Sea”, “River”, “Island”, “Mountain”, “Desert”,
“Source” and “Estuary”

– “merges” from “Sea” to “Sea”

– 3x “island_in” from “Island” to “Lake”, “Sea” and “River”

14 CHAPTER 2. BASICS

2.1.2 Relational database

RDBMS are the most common DBMS in todays business and research applications. They are
called relational due to the fact that they are based on a so-called relational model defined by E.
F. Codd [Cod70]. The relational model utilises tuples to represent data and relations to group
such data tuples. For example a relation could be named “Country” and consists of the attributes
“name”,”carcode”, “population” and “capital”. The attributes are paired with a data type to
define which type of data an attribute can hold. In this case “name”, “carcode” and “capital”
would be of type string, while “population” is of type integer. Some tuples for the relation
“Country” could for example stated like this:

Country = {(′Greece′,′ GR′, 10816286,′ Athina′), (′France′,′ F ′, 64933400,′ Paris′)}

The relational model is a fully structured data model implying that all tuple that are grouped in
the same relation have the exact same structure of attributes. Because of that, these relations can
be represented as tables in a relational database. The table representing a relation like “Country”
can adopt its attributes in form of columns and every tuple is entered as a row of the table. The
table of the example relation and its tuples can be seen in Figure 2.9.

Figure 2.9: Simple table of relation “Country” and its tuples

In a RDBMS such a table can then be queried by using the Structured Query Language (SQL)
[CB74]. The structure and use of SQL is not further covered in this section, because it does not lie
in the focus of this thesis. Nevertheless a tutorial for the usage of SQL can be found on [Orab]. It
is however important that a Primary Key (PK) is defined on the table to better reference a tuple
in a relation for searching purposes and to avoid duplicate tuples in a relation. The columns
belonging to the PK are defined to uniquely identify each tuple in the table and thus can not
have a duplicate. For our example table this would be the “carcode” column. Additional to this
functionality PKs open up the possibility to reference the tuples from other tables with so called
Foreign Key (FK)s. Considering an additional relation “City” with the attributes “name” and
“population” which stores all available cities with their respective populations. Among these
cities are also the capitals of the countries. The PK of the “City” table is the column “name” and
thus the “capital” column of the “Country” table can be considered a reference to those city
entries. Such a reference is called a FK and is illustrated in Figure 2.10. To focus on the FK the
depicted “City” table is only a simplified version of the actual MONDIAL relational database
table for which the names of the cities are assumed to be globally unique.

2.1. DATA MODELS 15

Figure 2.10: Tables “Country” and “City” with Primary Keys and Foreign Key

When constructing a relational database based on an already defined ER model, the entities,
attributes and relationships can be converted to their relational database counterpart based on
the following mappings. All mappings will be done with the examples defined in Section 2.1.1:

1. Entities are mapped to tables and their attributes to the columns of this table as shown in
Figure 2.11 with the “Country” entity. The columns representing the uniquely indentifying
attributes of the entity are defined as the PK of the table. If the entity is a weak entity, then
the involved attributes of other entities for unique identification are added as FKs to the
table. For instance the “City” entity which is a weak entity dependent on the “Province”
entity, which in return is also dependent on the “Country” entity. In the end the PK of the
“City” table has to be expanded to the columns “name”,”province” and “country”.

Figure 2.11: Mapping of Entities and attributes to the relational database

2. 1:1-relationships between two entities are represented as FKs from one side’s entity table to
the other. To which side’s table the FK is added is left to the mapper and is often decided
on the context of the relationship. Figure 2.12 shows the “capital” relationship again, which
in this case is added to the “Country” table as a “capital” column. The other way around
for instance it could have also be added to the “City” table as an “isCapitalOf” column.
Every tuple from each table is only connected to one respective tuple of the other table.

16 CHAPTER 2. BASICS

Figure 2.12: Mapping of 1:1-relationships to the relational database

3. For 1:N-relationships the mapping is quite similar to 1:1-relationships with the restriction
that the FK has to be stored to the functional side (meaning the “1”-side) of the relationship.
Thus in the example shown in Figure 2.13 the “headq”-relationship has to be stored in the
“Organization” table. Each organization entry stores the unique location of its headquarters
in a single column. If the relationship had been stored in the “City” table, then it would
have had to be mapped to a series of columns each storing a potential organization that has
its headquarters in an individual city. Due to the fact that there could be a huge amount of
headquarters in a single city, this approach is not feasible.

Figure 2.13: Mapping of 1:N-relationships to the relational database

4. Following this argumentation N:M-relationships can not be stored in either table of the
relationship’s sides. Thus it has to be represented with an indivindual auxiliary table in a
relational database. The auxiliary table only consists of columns representing the FKs to
each side’s entity table. This allows entries of either side to be related to multiple different
entries of the other side. Figure 2.14 illustrates this mapping for the “at” relationship

2.1. DATA MODELS 17

between cities and lakes. However, the name “at” for a table would be quite improper and
thus a name like “locatedAtLake” should be chosen.

Figure 2.14: Mapping of N:M-relationships to the relational database

An exception of the previous mappings of relationships are attributed relationships. One the one
hand, for N:M-relationships the additional attributes will just be added to the auxiliary table. On
the other hand, for 1:1-relationships and 1:N-relationships the attributes could also be added
to the functional side of the relationship where the FK will be stored. However to preserve
the grouping of the relationship with its attributes it is recommended to separate the mapped
columns to an individual auxiliary table similar to the mapping of N:M-relationships. When
representing attributed relationships in relational databases with this approach, they are treated
like entities in and of itself. This process is called reification with the attributed relationship being
reified to an entity.

Overall the mentioned entities and relationships of the MONDIAL ER model shown in Figure 2.8
are represented as relational tables as mentioned above with the following exceptions:

1. Due to the lack of additional attributes beyond the PK of entities “Language”, “Ethnic
Group” and “Religion”, they are not represented as individual tables with just one column.
Instead the relationships with attributes “believe”, “belong” and “speak” are combined
with their respective entity and are each represented as one table named after the original
entity.
For example the relationship “speak” becomes the table “Language” consisting of the
columns “name”, “country” and “percentage”. The columns “name” and “country” are its
PK with “country” being a FK to the “Country” table.

2. The eight tables representing the “in” relationships from “Province” are each named “geo_”
and then the target entity. For example “geo_desert” and “geo_estuary”.

3. The three “at” relationships from “City” are combined in one table “located” with the
columns “city”, “province”, ”country”, “river”, “sea” and “lake”.

4. The three “island_in” relationships from “Island” are combined in one table “islandin”
with the columns “island”, “sea”, “lake” and “river”.

18 CHAPTER 2. BASICS

5. The “on” relationship from “City” was renamed into “locatedOn”.

6. The “on” relationship from “Mountain” was renamed into “mountainOnIsland”.

2.1.3 RDF database

The Resource Description Framework (RDF) [Groa] is a framework original intended for describ-
ing metadata information for web resources, but is now also used as a data model for databases.
It has become a recommended standard by the W3C in 1999, which proceeds to update the
standard whenever necessary. The most recent description from the 25th February 2014 of the
RDF 1.1 specifications can be found on their website [W3Ce]. In Web sources the language
Extensible Markup Language (XML) [W3Ci] is used to actually write data in RDF. To make it
more human readable the N3 notation [W3Cb] will be used throughout the thesis. This section
focuses on the implementation of the RDF model to construct a database. Further explanation on
how to use the data model to describe metadata information can be found in Section 2.1.4.

Unlike the relational model, the RDF model is not a fully structured data model, but a semi-
structured one. This is because the modelling of data in RDF is always done through so-called
Triples. A triple is a tuple with three elements and consists of a subject, a predicate (also called
property) and an object in this order. General speaking the predicate is like a connection from the
subject to the object. This is equivalent to an directed edge in a graph, thus RDF is a graph-based
data model. The subject is usually a “real world” object about which the user wants to store data,
which is also called a resource. Lets take the country Greece as an example for such a subject. The
predicate is similar to an attribute in the relational model and thus the population predicate for the
subject Greece can be defined. Now as stated before the predicates point from the subject to the
object in the triple, which therefore means that the population predicate points to the population
number of Greece. In this case this would be the integer 10816286, which is the object of the triple.
As is shown, unlike the subject, the object of a triple can be an object or a literal value. All in all
the following triples can be stated:

(Greece, population, 10816286)

Due to the fact that the RDF model was originally designed to describe web resources it is
recommended to give things that are described as subjects of a triple a Unified Resource Identifier
(URI). These URIs are unique names for easier differentiation in the web and thus are often in
the style of an URL. It was imagined that the URLs in most of the URIs would lead to actual web
pages describing the the real world object or person the URIs stands for, but that is mostly not
the case. Keeping this style, the resource Greece of our MONDIAL database would get an URI like:

< http : //www.semwebtech.org/mondial/10/countries/GR/ >

The international vehicle registration code “GR” in the end of the URI is taken instead of the full
name “Greece” to uniquely define the URI. Furthermore predicates are also described through
an URI to differentiate them from equally named predicates from other sources. As such the
population predicate can be named:

< http : //semwebtech.org/mondial/10/meta#population >

2.1. DATA MODELS 19

To avoid the tedious work of writing out the whole URL part of the URI over and over again it is
possible to define prefixes for consistently used URLs in the beginning of the document. This
functionality is illustrated in Figure 2.15, which also contains the triple of the remaining basic
information about Greece from previous examples.

Figure 2.15: Basic description of the Greece object in the RDF model

As the figure shows the prefix < http : //semwebtech.org/mondial/10/meta# > is condensed
in the simple character “:”. When using the prefix for example with “:population” the name of
the predicate is automatically inserted behind the “#” in the prefix. A triple statement usually
ends with “.”, but due to the fact that URIs for subjects and objects can not be condensed with
prefixes it is recommended to use the character “;” instead to automatically reuse the previous
subject. Thus we can write:

< http : //www.semwebtech.org/mondial/10/countries/GR/ > : name ′Greece′;

: carCode ′GR′.

The URIs of our user space will remain constant in the rest of the thesis, but will be shortened
due to their length. A database in the RDF model then consists of a whole lot of those triples, but
there are different strategies to store and manage them. The first option is to store all triples in
one or multiple XML files, but this method becomes more inefficient the greater the amount of
triples. Therefore there exist especially developed DBMS called triplestores that natively store
and manage even huge amounts of triples. Similar to SQL for relational databases there also
exists a query language for triples called SPARQL Protocol and RDF Query Language (SPARQL).
SPARQL became the W3C recommendation for querying RDF data in January 2008 [W3Ch]. It
is a highly flexible language that uses the triple format with user defined variables for subjects
and objects to bind data items to. As before with SQL this section will not go into further details
about SPARQL.

However if the user wants to use the highly optimized and standardized relational database to
store these RDF triples, they have to be transformed to a suitable format. There are many ways
to tackle this problem and the most naive approach would be to construct a single table with
four columns as shown in Figure 2.16.

20 CHAPTER 2. BASICS

Figure 2.16: Naive storing of triples in a relational database

The first two columns of the table are of type VarChar and store the subject and predicate respec-
tively. The third column stores the object of the triple but due to the variance of datatypes that
are used for objects the generic blob datatype has to be chosen in a relational table. Alternatively
all values from the object could be converted to the string datatype in stored in a VarChar column.
Regardless this is the reason a forth column has to be added to store the original datatype of
the object from each triple. However this setup comes with a whole lot of problems. First of
all is it not possible to search for entries in columns with datatype blob, which makes searching
entries with specific object data difficult. But even with similar approaches that do not utilise the
blob datatype searching and comparing data items is inefficient, if for instance characteristics of
the original datatype can not be utilised or the table contains a huge amount of entries. Overall
relational databases are just not optimized for the usage of a single big table. To better use
the possibilites of the relational storage it is recommended to try to build a relational schema
based on the metadata about the triples and then add the information to the tables. To express
the metadata a RDF ontology is quite useful as explained in Section 2.1.4. Based on such an
ontology the respective tables in a relational database can be automatically constructed using
the RDF2SQL [RS14] program from our previous work. The basic approach of RDF2SQL and the
produced tables will be explained in Section 2.2.1.

2.1.4 RDF ontology

An ontology for databases is general speaking a set of clauses that are used to describe which
types of data items can exist in the specified environment. Ontologies can be used in every data
model and thus are not specific to RDF. The ER diagram explained in the previous section can
also be considered an ontology, but for the remaining thesis the focus lies on RDF when talking
about ontologies.

An ontology for RDF can be constructed with the use of the Resource Description Framework
Schema (RDFS) [W3Cf] and the OWL [W3Cc]. RDFS became the W3C recommendation for
describing RDF vocabulary in February 2004 [W3Cg]. It provides a set of terms using the RDF
model to describe basic elements of a RDF ontology. Most notably this includes the definition of
Classes and Properties that will be explained later on. Unfortunately the modelling possibilities
with only RDFS are quite limited and thus a new recommendation was developed by the
W3C OWL WORKING GROUP named OWL that widely expands the terms from RDFS. The
first version of OWL was also published in 2004 [W3Cd], but is since then considered closed.
The newer version OWL 2 was published in 2009 and lastly updated in 2012. Because of the

2.1. DATA MODELS 21

huge extent of OWL 2 this section will only cover the functionality that is necessary for this thesis.

There are multiple ways to express an ontology, but the N3 notation will be continued
to be used. This also opens up the use of XML Schema Definition (XSD), which is a recommenda-
tion of the W3C for the description of XML elements, to utilise its definition of basic datatypes.
To utilise the pre-defined terms of RDFS, OWL and XSD it is beneficial to first define the prefixes
of their respective language. These prefixes are shown in Figure 2.17 and are used for the rest of
the thesis. The first three prefixes are to better differentiate the objects in the user space.

Figure 2.17: Prefixes of the user space, RDF, RDFS, OWL and XSD

As said before one of the most important aspect of the ontology is the definition of classes that
give a general structure to the data implementing the ontology. A class is defined via the object
term owl:Class and can be assigned to a subject with the predicate rdf:type which is commonly
abbreviated with the character a. For example a Country class can be defined and then the URI of
the Greece subject assigned to be an instance of this class.

: Country a owl : Class.

< .../country/GR/ > a : Country.

Defining various classes is not only helpful to differentiate different types of data items, but also
gives context to the human reader. Furthermore properties of a class can be defined that describe
which predicates an instance of the class must have. OWL gives us access to a wide variaty of
property types. The most commonly used types are:

• owl:DatatypeProperty: Defining that the datatype of the value used with the predicate has to
be a generic datatype.

• owl:ObjectProperty: Defining that the value used with the predicate is an instance of a class.

• owl:FunctionalProperty: Defining that the predicate is functional, i.e. there can be atmost
one value for each instance.

A property can only be either a DatatypeProperty or an ObjectProperty, while the FunctionalProperty
feature can be added optionally. Thus a name property can be defined as such:

: name a owl : DatatypeProperty;

a owl : FunctionalProperty;

rdfs : domain : Country

rdfs : range xsd : string

22 CHAPTER 2. BASICS

The domain describes of which class the subject has to be to use the property and the range
describes what values the property can hold if used. We mainly differentiate properties in this
thesis on which type of range they are defined. On the one hand, a DatatypeProperty ranges over
a literal datatype e.g. string, number, date, etc. On the other hand, a ObjectProperty that ranges
over a custom class is also called object-valued. Such a property of our Country class could be the
capital property that links a Country resource to the appropiate resource of class City that is the
capital of the country.

: capital a owl : ObjectProperty;

a owl : FunctionalProperty;

rdfs : domain : Country

rdfs : range : City

Data triples of both properties could look like this:

: Country rdf : type owl : Class.

: City rdf : type owl : Class.

< .../country/GR/ > a : Country.

< .../city/Athina/ > a : City.

< .../country/GR/ > : name ”Greece”;

: capital < .../city/Athina/ > .

Properties are directed links from the subject to the object. This means that for properties of type
ObjectProperty the reverse direction is also possible. The new property describing the reverse
direction is called the inverse of the original property. Most inverses in the MONDIAL ontology are
named like the original property with “_Inv” attached to the end, but the inverse of the capital
property could also be called isCapitalOf. Inverses are defined by the owl:inverseOf property:

: isCapitalOf a owl : ObjectProperty

: capital owl : inverseOf : isCapitalOf

For inverses the domain and range are switched, which also includes that DatatypeProperties
can not have an inverse, because the domain is not allowed to be a literal datatype. Another
important aspect of an ontology is the definition of a class hierarchy via subclasses. Subclasses
help to categorise classes in shared superclasses. But these superclasses are often not used
explicitly in MONDIAL and are thus called abstract classes. On the other hand all classes that
do have instances are called concrete classes. This can be simulated by defining the two classes
Abstract and Concrete:

er : Abstract rdf : type owl : Class.

er : Concrete rdf : type owl : Class.

2.1. DATA MODELS 23

And then use the standarized rdfs:subClassOf property to define sub- and superclasses. A good
example for this are the three classes Lake, Sea and River that can be combined into the abstract
superclass Water:

: Water a er : Abstract.

: Sea a er : Concrete.

: Lake a er : Concrete.

: River a er : Concrete.

: Sea rdfs : subClassOf : Water.

: Lake rdfs : subClassOf : Water.

: River rdfs : subClassOf : Water.

The whole MONDIAL ontology is then constructed with the use of this terminology, but is far too
extensive to illustrate everything in this thesis.

2.1.4.1 Reified properties

An interesting special case of non-functional properties are reified properties, which are additionally
linked with further properties similar to attributed relationships in the ER model. To better
illustrate this concept the property encompassed from the MONDIAL RDF/OWL ontology is
taken as an example. The definition of the encompassed and its inverse property encompasses is
shown in Figure 2.18. The domain of the property is the abstract superclass EncompassedArea,
whose definition is also highlighted in the Figure and is a combination of the concrete classes
Country and Province. The range of encompassed is the concrete class Continent, which makes it an
owl:ObjectProperty.

Figure 2.18: Definition of properties encompasses and encompassed

All in all the function of the property is to relate all Country and Province resources to the Continent
resources that they are encompassed by. The other way round, the inverse of the encompassed
property named encompasses describes for each continent resource which countries and provinces
it encompasses and is also non-functional. The property could then be used for the country
Russia in the MONDIAL RDF database as follows:

24 CHAPTER 2. BASICS

< .../country/R/ > : encompassed < .../continent/Europe > .

< .../country/R/ > : encompassed < .../continent/Asia > .

But what if we additionally want to describe how many percent of a country are located in each
continent? A single property can only relate two values together, thus to link together and easily
access both the encompassed property and the percent property, the encompassed property has to be
reified. The RDF model allows the definition of such reification, however there is currently no
official standard to support this feature in an OWL ontology. To circumvent this restriction, we
manually defined a ReifiedRelationship class and a reifies property to define such relationships for
our internal processes.

Figure 2.19: Definition of reified property Encompassed and its properties

Figure 2.19 illustrates the usage of these terms in the MONDIAL ontology to define the reified
Encompassed class and its properties. Encompassed is defined to be an instance of the new
ReifiedRelationship class so that it can be treated as a class of its own for the rest of the OWL
definitions. The reifies property is there to store which original property is reified by the this
class. Then two new properties for Encompassed are defined that each point towards one of both
sides of the original relation. On the one side the property encompassedArea ranges over the
EncompassedArea class, which was previously the domain-side of the encompassed property. On the
other side the property encompassedBy has the Continent class as its range, which was the range-
side of the encompassed property. Both new properties are functional properties, because each
combination of (EncompassedArea, Continent) is now treated as a resource of the Encompassed
class with a unique URI. Finally the percent functional property can also be linked to it, which is
a literal-valued property with range xsd:decimal.

A data item then uses the Encompassed class to express the connection between continent and
country as shown in Figure 2.20. The Encompassed class instances in the MONDIAL RDF database

2.2. RELATIONALMODEL & CONNECTED TOOLS 25

are just blank nodes, meaning they have no explicit URIs and only an internal unique identifier.
This is done because the URIs of Encompassed resources should not be queried directly but rather
be used for the new properties encompassedArea, encompassedBy and percent.

Figure 2.20: Example data item using the Encompassed class

2.2 RelationalModel & connected Tools

This section will discuss the RELATIONALMODEL, which is our internal model for storing
the OBDA mappings and is the common foundation for our developed tools including the
RELMODELBUILDER. It will start off with the RDF2SQL tool, which sparked the construction of
the RELATIONALMODEL and then explain the components of the RELATIONALMODEL. After
that an outlook to the SCHEMAMATCHER tool will be given that is currently in development and
will also be based on the RELATIONALMODEL.

2.2.1 RDF2SQL

As mentioned in Section 2.1.3 it is quite difficult to manage the triple data from RDF data sets in
a relational database. This is why we previously developed a tool named RDF2SQL consisting of
two parts, the DATABASECONVERTER [RS13] and the QUERYCONVERTER [RS14].

The DATABASECONVERTER automatically constructs a relational database based on a given RDF
ontology through the steps detailed in [HM12]. The general process on how RDF classes and
properties are mapped to a relational database are illustrated in Section 3.1. In this sequence
the converter also creates various metadata tables summarised in Section 2.2.2 that store the
details of the mapping for further use. As mentioned before these metadata tables serve as
a common pivotal point for the remainder of our tools. For example the QUERYCONVERTER

of RDF2SQL uses those metadata tables to map SPARQL-queries directed to the original RDF
ontology to SQL-queries for the converted relational database. Thus with this tool it is possible
to combine the highly variable query language SPARQL with the efficient data storage of a
relational database.

26 CHAPTER 2. BASICS

2.2.2 RelationalModel

The RELATIONALMODEL is a Java class that stores for an RDF ontology all relevant information
to map the ontology to a relational schema, thus providing OBDA to the relational database.
This does not include detailed information of the ontology itself, but a structure of Table objects
representing the mapped relational tables and a series of metadata tables that store the mappings
from the RDF classes to the tables. The entirety of the metadata tables is referred to as the
RelationalModel, because the Java object functions more like an internal representation that can be
used to set up the mapping and then store the tables to the database. All other tools accessing
the metadata will predominantly do so by querying the metadata tables in the database to keep
tools creating the RelationalModel independent from those using it. To avoid further confusion
between the RelationalModel metadata tables and the actual RM, we will refer to the metadata
tables as the “inter-model mapping metadata” for the rest of the thesis.

Following are the description of all metadata tables:

MappingDictionary

The MappingDictionary is the most important table of the metadata tables. It stores the mapping
of class & property pairs to the relational tables:

(Class, Property) 7→ (Table, Column)

Additionally the table stores the (abstract) range of the property and if it is stored inversely or a
view property. Overall the table is implemented as pictured in Figure 2.21.

Figure 2.21: MappingDictionary metadata table

• Class: The class to which the property belongs

• Property: The property that is mapped to a relational table

• Range: The abstract range of the property inside of the database, e.g. the literal-valued
property range “string” is transformed into “VarChar(199)”

• Tablename: The name of the table the property is mapped to

• Lookupattr: The column name where the data of the property is stored in the table

• Inv: True or False depending on if the property is stored inversely

2.2. RELATIONALMODEL & CONNECTED TOOLS 27

• IsView: True or False depending on if the property is used as a view over ReifiedTables.
This will be futher explained in Sections 3.1.3 and 3.2.1.5.

Using previous examples the property capital from class country is mapped to the column capital
in table Country, described by the following entries:

class property range tablename lookupattr inv isview

country capital VARCHAR Country capital false false
city isCapitalOf VARCHAR Country capital true false

AllCl

The AllCl table stores all (SubClass, SuperClass) relations that are defined in the RDF ontology
in a two column table as shown in Figure 2.22.

Figure 2.22: AllCl metadata table

This table includes all classes even if they are abstract classes as mentioned in Section 2.1.4. For
example the data entries (River,Water) as well as (Mountain, P lace) and (Place, Location).

SubCl

Like the AllCl table, the SubCl table also stores (SubClass, SuperClass) relations. But the data
entries are limited to tuples where both subclass and superclass are considered a concrete class.
This table especially helps with distinguishing concrete and abstract classes. because both are
used in different ways in the internal algorithms.

Hometables

This optional metadata table stores (Class, Table) tuples, where class entries are concrete classes
and table entries their corresponding classtable. Due to the mapping algorithm that is used in
RDF2SQL all properties of a concrete classes are generally mapped to the same table, which acts
as the so called hometable of the class. This helps with keeping the functional properties grouped
to their respective class instead of creating one table per property, which would also be possible.
Multivalued properties cannot be stored in the hometable, thus are stored in N:M tables. Most of
the time the hometable of a class is named after the class, which would make the table redundant.
The table is relevant for example when renaming classes caused by the schema mapping of the
SCHEMAMATCHER.

28 CHAPTER 2. BASICS

Inv

The Inv table stores for every object-valued property the respective inverse property. If the
ontology does not define an inverse for a given object-valued property, the inter-model mapping
metadata creation tools will automatically define one instead. The automatically created inverses
are named like the original property with suffix “_Inv”. So for example the inverse of property
“hasHeadq” will be named “hasHeadq_Inv”. The entries in the Inv table are added symmetrically
for easier lookup, thus creating the entries (city, city_Inv) as well as (city_Inv, city).

PropTableMap

The PropTableMap table stores in (property, tablename) pairs which properties are mapped to
each hometable. This simple auxilary table helps with accessing basic information about tables
and check for equally named properties.

NMTables

As mentioned in Section 2.1.1 there are different types of tables in a relational database. The
ClassTables store the functional properties belonging to a specific class, while the NMTables store
properties describing N:M relationships between ClassTables, which can not be included in the
ClassTables. To differentiate both types of tables after the mapping, the NMTables metadata table
stores the names of alle NMTables. This includes ReifiedTables, which are further explained in
Section 3.1.

NMJ

The N:M Joins (NMJ) table stores detailed information about NMTables. An NMTable relates
two sides with each side consisting of one or more classes, which are mapped to ClassTables.
The NMTable connects to each ClassTable through a FK. When looking up the property that
is mapped to the NMTable for one class, the connected other FK has to be returned. This
information is especially important for generating join-conditions in the QUERYCONVERTER

tool.

The NMJ table stores for each class on one side their own FK and the FK of the respective other
side. Thus the table contains four columns (class, tablename, lookupattr, fkjoinattr) as shown
in Figure 2.23.

Figure 2.23: NMJ metadata table

2.2. RELATIONALMODEL & CONNECTED TOOLS 29

• Class: The name of the class of one side

• Tablename: The name of the NMTable

• Lookupattr: The column belonging to the other sides FK

• FkJoinAttr: The column belonging to this class’ FK, which have to be joined with the PK of
the respective ClassTable

One example of such a property from the RDF ontology is the “locatedAt” property that relates
Cities to all Water subclasses. Water is an abstract class combining the classes Sea, River and Lake.
Thus one side is the City class and the other side is compound of Sea, River and Sea. Assuming
the PKs of all three Water tables are URI columns, it is possible to combine them into one FK
column in the “locatedAt” table, resulting in the columns (City,Water). This results in the four
NMJ entries:

class tablename lookupattr fkjoinattr

City locatedAt Water City
Sea locatedAt City Water

Lake locatedAt City Water
River locatedAt City Water

AbstractSubclCols

The AbstractSubclCols table stores subclasses that were identified inside of ClassTables. The
method to identify those subclasses is explained in Section 3.4.1. Generally the subclasses are
identified by one specific value in a property/column that makes up a big portion in that column.
The table consists of five columns as illustrated in Figure 2.24.

Figure 2.24: AbstractSubclCols metadata table

• Classname: The name of the new subclass that was identified

• Property: The property that is used to define the subclass

• LocalClassname: The class which is mapped to the ClassTable where the subclass was
identified

• Columnname: The column in the ClassTable that is used to identify the subclass

30 CHAPTER 2. BASICS

• IsClassValue: The value in the the column that identifies the subclass

The mountain class for example has a property type which specialises the mountain entries into
different types. Some mountains with a detailed type are “volcano”s, which offers itself as a
good subclass of mountain. The AbstractSubclCols entry looks like this:

classname property localclassname columnname isclassvalue

volcano type mountain type volcano

Keys

The Keys table illustrated in Figure 2.25 is the newest addition to the metadata tables and is
especially important when working with relational databases that are not based on URIs. As
the name suggests it stores all PK and FK information that can be gathered from the tables. So
unlike with URIs when PKs can consist of multipe columns, it is important to distinguish which
column of a FK references which column in the respective PK. Additionally due to the fact that
classes and properties can be named differently from their mapped counterparts, they have to be
stored separately resulting in a total of seven columns:

Figure 2.25: Keys metadata table

• Classname: The class to which the property belongs to

• Property: The property or keyword that belongs to the column

• Tablename: The table from which the key is

• Columnname: The column that is constrained by the key

• RefClassname: If the entry is for a FK: the class, which is represented by the referenced PK
table; Otherwise: NULL

• RefTablename: If the entry is for a FK: the table that the referenced PK belongs to; Other-
wise: NULL

• RefColumnname: If the entry is for a FK: the column in the PK that is referenced by this
specific column of the FK; Otherwise: NULL

The table entries are structured based on their specialcase and are further explained in Section
3.2. For example the last three columns are only filled if the table entry is about a FK like the
“country” column in the “city” table that references the “code” column in the “country” table:

2.2. RELATIONALMODEL & CONNECTED TOOLS 31

classname propertyname tablename columnname refclassname reftablename refcolumnname

city country city country country country code

If the FK consists of multiple column, each column would have an individual entry.

2.2.3 SchemaMatcher

The SCHEMAMATCHER [Sch16] tool is a work-in-progress project that will advance the pos-
sibilities of our OBDA mappings to be used for converging similar relational databases. The
functionality of the SCHEMAMATCHER is highlighted in Figure 2.26 with the green dots for rela-
tional databases representing tables and attributes and the red dots for ontological vocabularies
representing classes and properties. First of all the RELMODELBUILDER will be used to extract
individual ontological metadata and the respective mappings from each relational database. The
SCHEMAMATCHER is then utilised to measure the similarity of the different extracted ontological
vocabularies and the structures of the relational databases. After that the similarity score is used
to align the ontological vocabularies and create mappings of classes and properties from one
database to the other.

These mappings will serve multiple purposes:

1. They can be used to guide translation-steps to try to adapt one database to the other with
the help of atomic schema operators

2. The mappings can be used by the QUERYCONVERTER tool to construct SQL queries for
both databases from SPARQL queries based on the shared ontological vocabulary

Figure 2.26: Interaction of the RELMODELBUILDER with the SCHEMAMATCHER

Chapter 3

Connecting RDF model and relational
model

This chapter discusses the theoretical foundation of the thesis. For example the mapping of tables
to classes, restrictions of the relational model compared to the RDF, and identifying different
types of tables and their connections to each other. First of all, the basic principles about the
foundation given from the previous work will be reviewed, which maps an RDF model to
relational tables. After that the differences and special cases that emerge when constructing the
backwards mapping are discussed. Examples are given from the previously discussed MONDIAL

database introduced in Section 1.5.

3.1 Mapping the RDF model to relational tables

This section explains how data according to the RDF/OWL ontology is mapped to the relational
model. At first the general rules for mapping concrete classes and their functional properties
are stated. Then the differences for non-functional properties and the special case of reified
properties will be discussed. More detailed information on how to map an OWL ontology to
relational tables can be found in [HM12]. All examples given for RDF/OWL ontology definitions
are excerpts of the MONDIAL ontology with possibly slight deviation for easier explanation. The
full definitions can be found in the Appendix A and B.

3.1.1 Mapping of concrete classes and functional properties

In the RDF/OWL model the user can define classes to distinguish resources and assign properties
to such classes, which can be used in triples to assign property specific values to each resource as
explained in Section 2.1.3. This makes it easy for querying to address only a group of data items.
In a relational database a similar classification exists in the form of relations. A relation defines a
group of data items that have the same attributes. Therefore for a forward mapping from RDF
to the relational model it can be assumed in general that concrete OWL classes are mapped to

33

34 CHAPTER 3. CONNECTING RDF MODEL AND RELATIONAL MODEL

relational model relations and their respective functional properties to attributes. These relations are
then saved as tables in a relational DBMS and attributes make up the columns of the table.

Figure 3.1: Mapping of classes and functional properties to tables

Figure 3.1 shows for instance the mapping of class Province and some of its functional properties
to the relational database. Province is defined as a concrete class and has among others the
functional properties (name, capital, population). First of all a “uri” column has to be added that
functions as the PK of the table and stores the URIs of each instance of the Province class. The
functional properties are then also directly mapped to columns of the table “Province”. The
datatype of the columns is dependent on the range and type of the properties. For instance
in an ORACLE DBMS the column “name” for the DatatypeProperty name with range xsd:string
gets the datatype VarChar, while the population property with range xsd:nonNegativeInteger gets
the datatype DECIMAL. The “uri” column gets the datatype Varchar, because the URIs of RDF
resources are defined to be strings. Thus, object-valued properties like capital also always get the
datatype VarChar, because they reference to the “uri” column of another table. This reference to
the concrete City class can also be further specified by adding a FK constraint to the column. In

3.1. MAPPING THE RDF MODEL TO RELATIONAL TABLES 35

the end every instance of the Province class is then represented as one data entry in the table.

In the actual ontology these properties would not have only the Province class as their domain,
but an abstract superclass that describes all suitable users of the property. For instance the
population property should be usable by every subclass of the Area abstract superclass which
includes for example the City and Country classes, too. Abstract classes however are not mapped
to tables in the relational database.

3.1.2 Mapping of non-functional properties

Such a mapping is not as straightforward for non-functional properties, because one instance of a
class can have a varying amount of these properties making them difficult to implement in the
mapped table of the class. Thus those properties are mapped to an additional table with an N:M
connection to the table of the source class (also called home table).

Figure 3.2: Mapping of non-functional properties to N:M tables

Figure 3.2 shows for instance such a mapping for the property locatedIn. The locatedIn property is
of type ObjectProperty with domain GeographicalThing and range Area. Both GeographicalThing
and Area are abstract classes that each cover various concrete subclasses. For instance the
classes Mountain and River are concrete subclasses of GeographicalThing, while the Area superclass
contains amongst others the concrete classes Province and Country as mentioned in Section
3.1.1. Thus, this property is mapped to an equally named table “locatedIn” with column
“GeographicalThing” and “Area”, which stores for example (Mountain,Country) tuples relating
mountains and the respective country (or countries) they are located in. Being object-valued
both columns get the datatype VarChar, but due to the fact that each column references multiple
different tables no FK constraint can be defined for either of them.

3.1.3 Reified properties and their mapping

As already mentioned in Section 2.1.4.1, there is no official standard for defining reified properties
in an OWL ontology. However when simulating reified properties in RDF/OWL ontologies
with our annotations, they can be mapped to the relational database, too. Figure 3.3 shows
again the encompassed property example that is reified to the concrete class Encompassed with

36 CHAPTER 3. CONNECTING RDF MODEL AND RELATIONAL MODEL

the functional properties encompassedArea, encompassedBy and percent. As such the mapping of
the reified property Encompassed and its functional properties can follow the mapping schema
introduced in Section 3.1.1. The original property encompassed is not mapped to the relational
database.

Figure 3.3: Mapping of reified properties to individual tables

Encompassed is mapped to a table in the relational database with a “uri” column even though the
Encompassed resources in the MONDIAL RDF database are always used with blank nodes. The
values in this column are then the internal unique identifiers used in the SPARQL query-engine
that is used to access the data to transfer the data from theRDF database to the relational database.
The three functional properties are then added as columns with their respective datatype.

3.1.4 Mapping of symmetric properties

Symmetric properties are a special case of recursive properties. For a recursive property the
domain and the range has to be the same, while additionally for a symmetric property must
hold:

symmproperty(A,B) ⇐⇒ symmproperty(B,A)

An example of a symmetric property is the mergesWith property that relates two seas that merge
together. Obviously if sea A merges with sea B, the same applies the other way around. The
definition and mapping of the mergesWith property is shown in Figure 3.4. As a non-functional
property it has to be mapped to an N:M table with the name “mergesWith”. However both the
domain-side and the range-side are the same resulting in the issue that both columns should
normally be named “Sea”. This is not possible in a relational database, thus the columns have
to be distinguished by naming them “Sea1” and “Sea2”. Regardless of the naming the OBDA
mapping stays intact, because our inter-model mapping metadata supports the renaming of
columns.

3.1. MAPPING THE RDF MODEL TO RELATIONAL TABLES 37

Figure 3.4: Mapping of a symmetric property to the relatiotional database

On the other hand. the mapping of functional properties is not affected by the symmetry. It is
however also possible that a symmetric property is reified to a class, which we will further call
symmetric reified (or short: symmreified) properties.

Figure 3.5: Definition of the neighbor property

The neighbor property with domain and range
of the Country class is an example for such a
symmetric property that is reified in the MON-
DIAL OWL ontology. The definition of the
neighbor property is illustrated in Figure 3.5.
As in the previous case with the encompassed
property explained in Section 2.1.4.1, reifica-
tion is only necessary if additional properties
should be linked to the neighbor property. In this case a length property is added that describes
the length of the connecting border. Thus, a new Border class is defined in the MONDIAL OWL
ontology that reifies the neighbor property. The definition of the Border class and its bordering
property with the resulting mapping to a relational table is shown in Figure 3.6.

Figure 3.6: Mapping of symmreified properties to individual tables

The Border class is defined as an instance of the SymmetricReifiedRelationship class, which is a
subclass of the previously used ReifiedRelationship class. For normal reified properties two new
properties would be defined now, one for the original property’s domain-side and one for the

38 CHAPTER 3. CONNECTING RDF MODEL AND RELATIONAL MODEL

range-side. However due to the symmetry of the neighbor property, no roles are defined for either
side and thus only one new property named bordering is enough that is used two times. This
characteristic is defined by the owl:Restriction restraining the bordering property to a cardinality of
“2”, which means that the bordering property has to be used exactly two times for each instance
of Border.

As with normal symmetric properties, when mapping Border to a table in the relational model
with the approach described in Section 3.1.3, it would be necessary to add two columns with the
same name “bordering”, which is not possible in the relational model. Therefore the naming
of the columns is oriented to the naming approach of mapping normal symmetric properties.
Thus, the range Country of the bordering property is taken as the base and then distinguished by
adding the enumeration. Finally the length property is treated like the percent property for the
Encompassed class.

3.2 Extracting an RDF model from relational tables

After reviewing the basics of the forward mapping from a RDF model to relational tables, this
section covers the backwards mapping of extracting classes and properties from a given relational
schema. The objective of this process is not only to define the raw classes, but also to fill the
metadata tables described in Section 2.2.2. Therefore the first section is split into parts, each
examining the mapping of a different kind of table and what metadata table entries are created
with the gained information. Then we will talk about why we chose the used naming conventions
and why only a limited class hierarchy can be derived from the information. In the end, an
outlook will be given on how to identify ranges of properties if not all foreign keys are given.

3.2.1 Mapping of tables

Unfortunately the backwards mapping from relational tables to RDF classes is not as clear as
the forward mapping. The main reason for this is that the tables are not as clearly distinguished
as the diverse kinds of classes and properties in the RDF model. Therefore it is essential to first
classify the given tables and then map them according to the identified type. To better discuss
the different types of tables, they are named according to the conceptual terms of the RDF model
they are representing:

• ClassTables: Represent classes of the OWL model or entity types of the ERM! (ERM!)

• NMTables: Represent non-functional properties of the RDF/ER-model describing N:M
relationships between classes.

• ReifiedTables: Represent reified non-functional properties of the RDF/ER-model. They are
a sub-type of ClassTables.

Due to lack of metadata information about the tables the classification takes primarily the primary
and foreign keys of a table into account. Thus, for the presented mapping it is presumed that all
primary and foreign keys of the relational model are given.

3.2. EXTRACTING AN RDF MODEL FROM RELATIONAL TABLES 39

3.2.1.1 Standard ClassTables

As described in the forward mapping not every table represents a class. But due to the fact that
ReifiedTables are more akin to ClassTables than to NMTables, and infact are ClassTables representing
the reified relationships, it is highly likely that every table except pure N:M tables are ClassTables
to begin with. They can then be specialized later on.

Figure 3.7: Create table statement of the “coun-
try” table of the relational version of the MON-
DIAL database

To explain the mapping of standard ClassTa-
bles a closer look at the “country” table will
be taken. The definition of the table taken
from the relational version of the MONDIAL

database in POSTGRESQL is shown in Figure
3.7 and an excerpt of the data in the table can
be found in Figure 3.8. As the create table
statement shows the “country” table has sev-
eral attributes and constraints. For the classi-
fication of the table only the primary key and
foreign key constraints are of importance, but
the remaining constraints could be used if a
more comprehensive ontology should be con-
structed. The primary key of the table is the
column “code” and there exists a foreign key
to the capital of the country in the “city” table.
A city is uniquely identified by its name and
the names of the country and province it is
located in.

Figure 3.8: Excerpt of the data in the “Country” table

Being a ClassTable it can be defined that the table “country” maps to an equally named class
Country. Additionally, the class has the functional properties name, code, capital, province, area
and population. As such it is known that these functional properties can be found in the table
“country” thus the following entries are added to our MappingDictionary:

40 CHAPTER 3. CONNECTING RDF MODEL AND RELATIONAL MODEL

MD
class property range tablename lookupattr inv isview

country name VARCHAR(199) country name false false
country code VARCHAR(199) country code false false
country capital VARCHAR(199) country capital false false
country province VARCHAR(199) country province false false
country area DECIMAL country area false false
country population DECIMAL country population false false

From the constraints of the table it can be identified that the columns “capital”, “code” and
“province” form together a FK to the “city” table. This concludes that the three columns represent
a single object-valued property with domain country and range city. The discrepancy that three
columns are mapped to a single property arises, because in the RDF model the instances of a
class are always uniquely addressable through their URIs, but in the relational model the PK
can contain multiple columns. Thus, an auxiliary property has to be created named after the
columns in the FK capital_code_province that represents this relationship. Being object-valued also
means that there theoretically exists an inverse property for it named capital_code_province_Inv,
therefore these entries are added in the Inv table:

Inv
property inverse

capital_code_province capital_code_province_Inv
capital_code_province_Inv capital_code_province

Both new properties also need to be added to the MD so they can be used in SPARQL queries for
the QUERYCONVERTER tool:

MD

class property range tablename lookupattr inv isview

country capital_code_province VARCHAR(199) country capital_code_province false false

city capital_code_province_Inv VARCHAR(199) country capital_code_province true false

The inverse property points from the opposite direction thus the “class” needs to be switched to
city and the “inv” attribute set to true.

Finally the PK and FK can be added to the Keys table. For the PKs we decided to resuse the
keyword “uri” as the property name taken from the ontology-to-relational mappings. The actual
property name for PKs does not matter in the Keys table and the usage of such a keywords
simplifies the filtering process for the other tools that access this table. If PK consists of multiple
columns, each gets its own entry. Similar to this are the entries for the multi-column FKs, where
one table entry for each column involved in the FK is necessary, because each column targets
one specific column in the referenced table. The FK columns are grouped together through the
same propertyname that describes this FK. All in all the following entries are created:

3.2. EXTRACTING AN RDF MODEL FROM RELATIONAL TABLES 41

Keys

classname propertyname tablename columnname refclassname reftablename refcolumnname

country uri country code

country capital_code_province country capital city city name

country capital_code_province country province city city province

country capital_code_province country code city city country

city uri city name

city uri city province

city uri city country

3.2.1.2 Special case ClassTableExtensions

Unlike the mapping from the RDF model to relational tables there is a special case regarding
ClassTables for the mapping in the opposite direction. Often in practice when creating relational
databases the user splits a otherwise singular table into several by vertical partitioning. This can
be done due to several reasons. For example the creator wants to avoid a single table with many
columns for efficiency reasons or just wants to group the data for an entity depending on the
topic to make the data more human readable.

Figure 3.9: Create table statement of the “econ-
omy” table of the relational version of the MON-
DIAL database

The “country” table can be taken as an ex-
ample whose columns were already covered
previously. However the MONDIAL database
covers not only those basic information about
countries, but for instance also information
regarding the economy of the country. This
information is not directly stored in the “coun-
try” table to avoid bloating it, but was out-
sourced to the “economy” table, which is
linked to the “country” table through a FK.
The definition of the “economy” table is il-
lustrated in Figure 3.9. The constraints show
that the “country” column is both the PK of
the “economy” table and the FK to the “coun-
try” table. This implies an 1:1-relationship
between “country” and “economy” and thus
the columns of “economy” could have been
stored in the “country” table. Such a table
would not have been created, when using the
RDF2SQL tool to map an RDF ontology to rela-
tional tables, it would have created a single, broad table instead.

Therefore for the relational schema to RDF ontology mapping, we define a table to be a so called
ClassTableExtension when:

1. The PK of the table is the FK to a ClassTable and

2. There is no other table with a FK that references this table

42 CHAPTER 3. CONNECTING RDF MODEL AND RELATIONAL MODEL

The main ClassTable will be referenced at least from the ClassTableExtension, so it is important
that there exists no symmetric reference. This will get problematic, when not all FKs are given
and the RELMODELBUILDER has to identify them on its own as described in Section 3.5.

A ClassTableExtension and its columns will not be mapped to an individual class, but to the
class that is represented by the ClassTable it is the extension of. In our example this would be the
class country. Thus the following MappingDictionary entries are added:

MD
class property range tablename lookupattr inv isview

country gdp DECIMAL economy gdp false false
country agriculture DECIMAL economy agriculture false false
country service DECIMAL economy service false false
country industry DECIMAL economy industry false false
country inflation DECIMAL economy inflation false false
country unemployment DECIMAL economy unemployment false false

The “country” column of the table does not need to be mapped to a property, because it is just
used as a connection means by the relational database. This also means that no inverse of the
otherwise object-valued property has to be created. However an entry for the FK has to be added
to the Keys table, so that the QUERYCONVERTER tool is able to join the “country” and “economy”
table if necessary. Because no property is created for this column, the keyword “extension” is
used for easier identification:

Keys

classname propertyname tablename columnname refclassname reftablename refcolumnname

country extension economy country country country code

The entry for the PK is also omitted, because the hometable of the country class is the “country”
table.

Some other tables may at first glance seem to be ClassTableExtensions too, for example the
“countrypops” table. This table contains the columns (country, year, population) with column
“country” being a FK to the respective “country” table. However, the PK of the table is the
tuple (country, year) indicating that this table does not have a 1:1 relationship to the “country”
table but an N:1 relationship. The table contains multiple population entries for each country
depending on the year and thus is no simple extension of the original ClassTable. The table has
to be mapped to the distinct reification countrypops.

3.2.1.3 NMTables

As mentioned before, we distinguish two sides for each NMTable, where one side is called the
domain side and the other the range side. Because there is no meta information about abstract
superclasses in the relational tables most sides will only have one class/table. The FKs of both
sides have to involve all columns of the table together and thus, there are no additional columns.
A PK is optional, but if present it contains all columns in the table. Additionally because of that,
NMTables should not be referenced to.

3.2. EXTRACTING AN RDF MODEL FROM RELATIONAL TABLES 43

Figure 3.10: Create table statement of the “loacte-
don” table of the relational version of the MON-
DIAL database

An example for such a pure NMTable is the
“locatedon” table, which stores which cities
are located on which islands. The definition
of the table is shown in Figure 3.10. The
table has a PK that covers all four columns
and two FKs that also cover all columns to-
gether, but have distinct differences. On the
domain side, the FK consisting of the columns
(city, country, province) references the “city”
table and on the range side the “island” col-
umn references the “island” table. Both refer-
enced tables are ClassTables and the “locate-
don” table is not referenced from another ta-
ble.

Now that the “locatedon” table is identified as
an NMTable to start creating the metadata table entries, its name is added to the list of NMTables:

NMTables
tablename

locatedon

Then the connection entries in the NMJ table are added:

NMJ
class tablename lookupattr fkjoinattr

city locatedon island city_country_province
island locatedon city_country_province island

The first entry means that the “locatedon” table is joined with the hometable of the city class
from the first side with the columns “city”,”country” and “province”, while the FK to the other
sides hometable is the “island” column. The column-names have to be grouped again for the
multi-column FK, because multiple entries would hint to a CompositeNMTable, which are a special
case of NMTables and will be explained in Section 3.2.1.4. Tools that use these entries have
to parse the results if necessary. Additionally the property to address this relationship in a
SPARQL-query has to be named more detailed as to just the tablename locatedon, because the
program cannot automatically decide which of the two sides is the domain-side of the property.
Thus, the column names as used in the “lookupattr” of the opposite side is simply added to the
property for each class to give it directional context. This results in the property locatedon_island
for the class city and the property locatedon_city_country_province for the class island. It is not
necessary to add these suffixes if the NMTable represents a symmetric property, because then
the direction is irrelevant. Regardless of the naming the properties are inverse to each other and
thus have to be added to the Inv table:

Inv
property inverse

locatedon_island locatedon_city_country_province
locatedon_city_country_province locatedon_island

44 CHAPTER 3. CONNECTING RDF MODEL AND RELATIONAL MODEL

After defining the attribute and the property names, the respective MD entries are added:

MD

class property range tablename lookupattr inv isview

city locatedon_island VARCHAR(199) locatedon island false false

island locatedon_city_country_province VARCHAR(199) locatedon city_country_province false false

On the other hand, the entries for NMTables in the Keys table are not as straightforward. No
entries for the PK have to be added, because an NMTable is not mapped to an individual class.
Furthermore because of that the entries for the FKs do not have a class or property associated
with them. The previously defined properties always point towards the FK of the opposite
side for the N:M relationship, not to the FK pointing to its own hometable. This results in the
following entries:

Keys

classname propertyname tablename columnname refclassname reftablename refcolumnname

locatedon city city city name

locatedon country city city country

locatedon province city city province

locatedon island island island name

3.2.1.4 Special case CompositeNMTables

Like with ClassTables we found a special case for NMTables, when mapping in the relational
table to ontology direction. The point of interest is the “located” table, which stores for every city
at which river, sea or lake it is located. As mentioned in Section 2.2.2 the classes river, sea and lake
are grouped in the abstract superclass Water in the RDF ontology. This superclass could be used
in the ontology-to-relational-model-mapping to define a “locatedAt” NMTable, which consists
of only two columns “city” and “water”. The column “water” then contained the entries for all
three concrete subclasses.

This setup is not possible starting from the relational database, because one column can not
have three FK constraints at the same time. If FK constraints should be used in the database, the
“water” column has to be split into three seperate columns “sea”, “lake” and “river”. Furthermore
unchanged from previous examples if no URIs are used the FK referencing to the “city” table
has to have three columns, too. The table definition and an illustration of the table structure is
shown in Figure 3.11.

3.2. EXTRACTING AN RDF MODEL FROM RELATIONAL TABLES 45

Figure 3.11: Structure of the “located” table from the relational MONDIAL database

The goal for these tables is to identify a dominant side that has a relationship with each of the
remaining FKs. This can be done through analysing the data entries of the table, especially the
occurence of NULL-values and is further explained in Section 4.3.4. In this case the dominant
side of the table is the FK to the “City” table consisting of the columns (city, province, country)
marked in red. Thus the dominant side stands in a relationship with the remaining FKs (river),
(sea) and (lake). Therefore using the previous approach for NMTables, for each such relationsip
two entries are needed in the NMJ table, one for each direction of the relationship:

NMJ
class tablename lookupattr fkjoinattr

city located river city_country_province
city located sea city_country_province
city located lake city_country_province
sea located city_country_province sea
lake located city_country_province lake
river located city_country_province river

Following the ontology functionality that river, sea and lake are grouped, the city class needs one
property to access all three of them together. For this the three separate FKs are treated as if they
are combined. Thus the property will be named located_lake_river_sea and the inverse from the
direction of the opposite side located_city_country_province. These properties can then be used in
the MD entries for each class in their respective side:

Inv
property inverse

located_lake_river_sea located_city_country_province
located_city_country_province located_lake_river_sea

46 CHAPTER 3. CONNECTING RDF MODEL AND RELATIONAL MODEL

MD

class property range tablename lookupattr inv isview

city located_lake_river_sea VARCHAR(199) located lake_river_sea false false

river located_city_country_province VARCHAR(199) located city_country_province false false

lake located_city_country_province VARCHAR(199) located city_country_province false false

sea located_city_country_province VARCHAR(199) located city_country_province false false

The entries up until now are constructed as if the table were a normal NMTable with city being the
domain-side and (river,lake,sea) grouped as the range-side of the non functional property. These
entries are for accessing all three of the relationships at the same time without specifying if river,
lake or sea is needed. Now the property entries have to be added for the specific relationships
(city, river), (city, lake) and (city, sea). These properties make it possible in a SPARQL-query to
specifically get all cities located at a river and not the other two water types. For better readability,
the constructed properties are named in such a way that they reflect the direction inside of the
relationsip. For example the property of city to river is named located_city_to_river and the inverse
located_river_to_city. All in all the following six properties are added to the Inv table:

Inv
property inverse

located_city_to_lake located_lake_to_city
located_lake_to_city located_city_to_lake
located_city_to_river located_river_to_city
located_river_to_city located_city_to_river
located_city_to_sea located_sea_to_city
located_sea_to_city located_city_to_sea

These properties can then again be used for the MD entries:

MD

class property range tablename lookupattr inv isview

city located_city_to_lake VARCHAR(199) located lake false false

city located_city_to_river VARCHAR(199) located river false false

city located_city_to_sea VARCHAR(199) located sea false false

river located_river_to_city VARCHAR(199) located city_country_province false false

lake located_lake_to_city VARCHAR(199) located city_country_province false false

sea located_sea_to_city VARCHAR(199) located city_country_province false false

Finally the entries for the Keys table follow the same schema as a common NMTable, only the
amount of FKs is different:

Keys

classname propertyname tablename columnname refclassname reftablename refcolumnname

located lake lake lake name

located sea sea sea name

located river river river name

located city city city name

located country city city country

located province city city province

3.2. EXTRACTING AN RDF MODEL FROM RELATIONAL TABLES 47

3.2.1.5 ReifiedTables

As explained in Section 3.1.3, ReifiedTables are tables, which connect two ClassTables similar to
NMTables, but store additionally information. In the relational model such tables are created for
N:M relationships with attributes. The simple relationship is reified to an entity and thus needs
to be mapped to an individual class.

To identify ReifiedTables without the meta information from the underlying relational model,
each ClassTable has to be checked if the columns involved in the PK make up an N:M relationship.
If the table contains additional columns besides the ones in the PK, it is not transformed into a
simple NMTable, but is marked as a ReifiedTable. One such ReifiedTable is the “encompasses”
table, which contains the columns (country, continent, percentage) with PK (country, continent)

and two FKs (country) → country and(continent) → continent. The columns of both FKs in the
PK are disjoint and form their respective side of the N:M relationship.

The mapping of a ReifiedTable is similar to the one of a normal ClassTable with the exception
that the information of the N:M relationship needs to be mapped too. It starts by defining the
Encompasses class and adding the structural information of the table to the Keys table:

Keys

classname propertyname tablename columnname refclassname reftablename refcolumnname

encompasses uri encompasses country

encompasses uri encompasses continent

encompasses country encompasses country country country code

encompasses continent encompasses continent continent continent name

After that the entries for the ClassTable aspect of the table are created. The columns “country”
and “continent” being object-valued in a ClassTable means that also inverses for their properties
have to be created following the usual procedure:

Inv
property inverse

continent continent_Inv
continent_Inv continent

country country_Inv
country_Inv country

For the MD just one entry for each column is added as usual and the inverses are used with their
respective classes instead of encompasses:

MD
class property range tablename lookupattr inv isview

encompasses country VARCHAR(199) encompasses country false false
encompasses continent VARCHAR(199) encompasses continent false false
encompasses percentage DECIMAL encompasses percentage false false

continent continent_Inv VARCHAR(199) encompasses continent false false
country country_Inv VARCHAR(199) encompasses country false false

48 CHAPTER 3. CONNECTING RDF MODEL AND RELATIONAL MODEL

In the end the entries for the N:M relationship portion of the table are added. Even though the
table is generally considered a ClassTable, the table name has to be added to the list of NMTables
and as well as the lookup information to the NMJ just like a normal NMTable:

NMTables
tablename

encompasses

NMJ
class tablename lookupattr fkjoinattr

country encompasses continent country
continent encompasses country continent

Additionally a reified property and its inverse have to be created for the table usually named
after the table. However following the naming schema from above, column names have to
be added as suffixes to it to avoid overlapping in case of special cases. After all, the property
encompasses_country is defined for the class continent and for the class country the property
encompasses_continent.

Inv
property inverse

encompasses_country encompasses_continent
encompasses_continent encompasses_country

Concluding the MD entry for each side can be added with the exception that both entries are
marked as “isview”:

MD
class property range tablename lookupattr inv isview

continent encompasses_country VARCHAR(199) encompasses country false true
country encompasses_continent VARCHAR(199) encompasses continent false true

Normally in a SPARQL query if one sides class has to be related to the opposite sides class, it has
to be first related to the encompasses class, which in return has to be related to the opposites sides
class.

?e a : encompasses;

: country ?c;

: continent ?con.

?c a : country;

?con a ?continent.

By using their respective sides view property the classes of each side can also use the “encom-
passes” table as a view to directly access the opposite side without first using the encompasses
class. Note that this is only useful if the percentage property does not have to be accessed.

?c a : country;

encompasses− continent ?con.

?com a : continent

3.3. NAMING PROPERTIES 49

3.3 Naming properties

When constructing the columns from the properties of the ontology the RDF2SQL tool keeps the
names the same. The properties are comprehensible named in the context they are used in. Opti-
mally we would want to do the same when defining properties for the columns. Unfortunately
this is not feasible, because in practice the columns in relational databases are often named more
simplistic than the respective property would have been. This is especially true for columns used
in FKs. For example the column used as the FK to the “country” table is more often than not
just named “country” regardless of the table it is used in. On the other hand for example the
property of the Encompassed class which ranges over the Country class is named encompassedArea
giving it more context. This discrepancy becomes especially apparent when defining inverses.
The relational database has no concept of an inverse FK and thus without further information
the automated process is forced to define (captial, captial_Inv) pairs instead of (capital, isCaptialOf).

The other discrepancies come from the special cases of the relational database detailed above.
First of all it is possible that the PK of a ClassTable consists of multiple columns, while a instance
of a class in the RDF ontology is always uniquely identified by its URI. Thus a class is related to
another by a single property. To simulate this for multi-column FKs a property has to be defined
that includes all columns of the FK by concatenating them in alphabethical order. For example
the property capital_code_province is constructed for the FK of the “country” table to the “city”
table.

Furthermore NMTables in relational databases are generally named quite good to describe the
relationship of their sides. But the description is often strongly influenced by a direction from
one side to another. For example a city is locatedOn a island with “locatedOn” being the name of
the NMTable and “city” and “island” its respective sides. On the contrary a island is locatedOn a
city would not make much sense. Unfortunately an automated system can not identify which
direction of the two is meant by the creator of the table. Therefore to avoid assigning the wrong
direction to a side a directional affix has to be added to the table name for defining the property.
The directional affix is for each side the column name(s) of their respective opposite side. Thus
the property locatedOn_island is created for side “city” and locatedOn_city for the side “island”.

This restriction applies only to NMTables where the two sides are different. If the NMTable
stores a symmetric N:M relationship that is both sides target the same ClassTable, no affix has to
be added to the properties because the direction is irrelevant. This holds true for example for the
“mergesWith” table, which stores pairs of seas that are connected to each other. Both sides of the
table target the “sea” table, which enables the usage of the simple mergesWith property for one
side and the mergesWith_Inv inverse property for the other. This also applies to the N:M portion
of symmetric ReifiedTables.

3.4 Class hierarchy

A class hierarchy describes which classes are sub- or superclasses of other classes. This in-
formation is stored in the AllCl and SubCl table as explained in Section 2.2.2. While the
RDF/OWl! (OWl!) ontology supports subclasses and the ENHANCED ENTITY-RELATIONSHIP

50 CHAPTER 3. CONNECTING RDF MODEL AND RELATIONAL MODEL

MODEL adds the functionality of subclasses and superclasses to the original ER, there exists no
equivalent concept (e.g. “subtables”) in a relational database to directly identify such relation-
ships between tables. Therefore this section starts with identifying subclasses contained inside
of ClassTables and then look at possible relationships between tables. But first of all, generic
superclasses for all already identified classes have to be added, which includes all ClassTables
and ReifiedTables. The generic superclass for all entries in the AllCl in the SubCl table is named
rdf2sqlTop. These entries are made just to construct the bare minimum of a class hierarchy. The
entries for the country class are as demonstrated:

AllCl
subclass superclass

country rdf2sqlTop

SubCl
subclass superclass

country rdf2sqlTop

3.4.1 Identifying subclasses of ClassTables

Identifying subclasses inside of ClassTables cannot be done based on the definition of the table
alone. The table entries have to be analysed and clusters of entries have to be searched that share
a common feature and are large enough to warrant the definition of a subclass.

For the RDF2SQL tool the class hierarchy is defined in the OWL ontology and subclasses of
concrete classes such as volcano rdfs : subClassOf mountain are mapped to the same
table as their superclass. The ClassTable of the superclass gets an additional column named
“rdfType”, which stores the name of the subclass if the data entry is an instance of that subclass.
However starting from the relational table these clusters can depend on multiple columns instead
of just one, but to hold the computing time low we decided to limit the search to clusters defined
by a single column. To be significant, such type columns should not contain more than five
different values including the NULL value, because the actual class of the table is often set as
the default value and will be left as a NULL entry. Additionally we will filter out boolean and
date type columns, because they are not adequate for subclass identification. Potentially boolean
type columns are quite good to store subclasses in tables, for example an “isVolcano” column in
the “mountain” table. But including boolean type columns in the identification process would
introduce a subclass for almost all of them.

Furthermore to reduce the amount of unnecessary subclasses we define a percentaged threshold
that each individual value in the examined column has to exceed to count as a subclass. For this
threshold only non-NULL valued entries of the column are taken into account, because there
will most likely be a huge amount of NULL values representing the default class of the table. We
found that a threshold of 50% is enough to cut out most of the unnecessary potential subclasses.

One of the remaining columns that hold a subclass information is the “type” column of the
“mountain” table. The unique values and their number of occurence in the column are as
followed:

3.4. CLASS HIERARCHY 51

value # of occurence

monolith 2
volcanic 36
volcano 65
NULL 148

Total without NULL 103

This means that “volcano” accounts for ~63,1% of all entries without NULL values and thus is
eligible to be used as a subclass of mountain. To distinguish this subclass from other potential
volcano classes, it is named mountain_volcano. This result is stored in the AbstractSubClCols
metadata table:

AbstractSubClCols
classname property localclassname columnname isclassvalue

mountain_volcano type mountain type volcano

The class mountain_volcano class has no hometable of its own and is thus regarded as an abstract
class. This is why the (subclass, superclass) pair is only added to the AllCl table:

AllCl
subclass superclass

mountain_volcano mountain

An unexpected result was the “percentage” column of the “encompasses” table. The value
“100” has a near 96% coverage of all table entries, which makes it a prime example for a
subclass. Being a numeric value it would not bring much context if the subclass is simple named
“encompasses_100”. Therefore the column name is included in the subclass name resulting in
encompasses_percentage100.

3.4.2 Deriving a class hierarchy from previous findings

As mentioned beforehand, deriving a class hierarchy just from the relational tables can be quite
tricky. Comparing the RDF2SQL version of the relational MONDIAL database with the original
relational database some assumptions can be stated.

First of all we can look at the difference in ranges of the ontology properties and the relational
table columns. On the one hand the RDF ontology allows the user to define object-valued
properties that range over multiple classes. On the other hand, the relational schema also allows
the use of multiple FKs on the same column or combination of columns, but instead of achieving
the union of all FKs reference targets, the intersection is applied as the constraint. This also
applies if examining a single column that is part of multiple FKs but each FK has a different
combination of columns. The “country” table is again taken as an example. The columns
(capital, code, province) form a FK to the “city” table and an additional FK with the columns
(capital, province) to the “province” table could be possible, too. This means that all values of the
overlapping columns (capital, province) have to be found in the “city” table and the “province”
table. To achieve ranges like in the RDF/OWL ontology, a column with values from multiple

52 CHAPTER 3. CONNECTING RDF MODEL AND RELATIONAL MODEL

tables that do not overlap can not have a FK at all. The ranges have to be identified through the
column entries as explained in Section 3.5.

If the analysis identifies such a column with entries referencing only a specific set of tables, we
can assume that the column was deliberately constructed in such a way and named appropiately
to describe its content. One example would be a “Water” column as it is used in the “locatedAt”
table from the RDF2SQL version database. All column entries are references to either one of the
tables “sea”, “lake” or “river”. It can be concluded from that that the classes sea, lake and river are
subclasses of a class Water. Water has to be an abstract class, because no ClassTable is named
like that, but for the SubCl table it is only important if the subclass is a concrete class. Thus the
entries can be added in both tables:

AllCl
subclass superclass

river Water
sea Water
lake Water

SubCl
subclass superclass

river Water
sea Water
lake Water

Furthermore it would be benefical to find groups of classes like GeographicalThings (e.g. Mountain,
Desert) or PoliticalThings (e.g. Organization, Country), but the tables in these groups do not have
much distinctively in common to warrant a safe superclass definition. Even if the PK of one
table is used in the PK of another table, we can not be sure if the class of one of those tables is
the subclass of the other one. For example the “city” table which PK consists of the columns
(name, country, province) and contains two FKs (country) to “country” and (country, province)

to “province”. With only this evidence we can not assume that the three classes can be grouped
together or that the class city is a sub- or superclass of country and province. On the other hand
one grouping that could be possibly exploited is the special case of the CompositeNMTable.
These NMTables are like multiple normal NMTables stacked together and have more than one
FK on at least one side. We can conclude from that that the tables grouped on the same side have
the same relationship with the table on the opposite side. The “located” table is again taken as
an example with city on the first side and river, lake and sea on the second side. This would be
another way to conclude that the classes river, sea and lake share a common superclass, but the
“Water” name could not be concluded for it.

However going on from all the previous findings to derive a more complex class hierarchy is
not possible. For example if two classes share the same subclasses and superclasses, we could
not safely derive that these classes must be equivalent. This leaves us with a rather simple class
hierarchy where the subclass relationships between most classes are not known.

3.5 Finding ranges for columns

For the previous steps, we assumed that all necessary FKs are given. As explained, the target of
the FK is used as the range of the property that the columns in the FK are mapped to. Unlike
properties defined in an ontology, these mapped properties are restricted to range over a single
class, because multiple FKs on the same combination of columns in a relational database would
only constraint them even further. However it is still possible that a column is filled in such a

3.5. FINDING RANGES FOR COLUMNS 53

way that it only contains entries referencing a specific set of multiple tables if no FK is defined.

To identify such ranges, every combination of columns in a table has to be examined including
individual columns. The search can be limited by excluding every combination that already has
a FK constraint or uses more columns than the biggest PK in the database. For each remaining
combination, ClassTables with a PK that fits both in number of columns and datatype of columns
are searched. Then, for each such table it is counted how many entries from the examined column
combination and the PK overlap. If the examined column combination contains more than one
column, each matching permutation with the PK columns has to be checked. For example if
the examined column combination contains three VARCHAR type columns, six permutations
have to be checked. In most cases only one permutation should yield overlapping data entries
if at all, but to be sure the permutation with the most overlaps will be stored. After checking
every permutation for all tables the number of overlapping entries is summed up and checked
if all entries of the column combination were covered. This check can be screwed if multiple
tables contain some identical PK entries. To minimize this problem no overlapping entries in
ClassTableExtension tables will be searched. In the end if the overlap reaches 100% with a single
target table, we can safely assume that the FK constraint was forgotten and add it. If multiple
tables had overlaps they can at least be added as ranges to the column combination.

Therefore this mechanism can be used too if not all FK constraints are given beforehand so that
the analysis can proceed as if they were. However if multiple tables have identical PK entries it is
very likely that one table is the ClassTableExtension of the other one, but the RELMODELBUILDER

can not solve which table is the correct one. This will result in both tables being defined as a
ClassTable and mapped to an individual class. More importantly if only some PK entries overlap,
no distinct FK can be defined to them from any other table. This is for example true for the
“island” and “country” table, which share some PK entries like “Svalbard” or “Isle of Man”. This
means that for any other table that should have a FK to either of them, the FK cannot be defined
which interferes with almost all of the previous explained steps and leads to the creation of a lot
of false metadata entries.

When using the RELMODELBUILDER the “FindRanges” step can be disabled beforehand and
should not be executed if not all FKs are given and overlapping PK entries exist.

Chapter 4

Implementation

In this chapter, the implementation of the RELMODELBUILDER tool is discussed. The program
is written in JAVA using the JRE version 1.8 and does not utilise any other program besides the
JDBC drivers and APACHE DBCP for accessing the databases. The first section covers how to
use the RELMODELBUILDER class to create the inter-model mapping metadata for a specific
database, while the remaining sections explain the individual conversion steps.

4.1 Using the RelModelBuilder class

The RELMODELBUILDER tool is a stand-alone program, which just uses a relational database
as an input. The relational database is commited through the standard JDBC database URL and
a (User, Password) pair that at least gives read access to the specified database. For databases
with multiple schemas the schema name has to be defined, too. Furthermore the name of the
table owner is used to specify the set of tables that should be mapped to the ontology. So a
simple constructor for the “mondial_rel” schema in a local “thedb” POSTGRES database can be
called for example as such:

RelModelBuilder builder = new RelModelBuilder("jdbc:postgresql://localhost/thedb","
scott","tiger","mondial_rel","postgres");

The RELMODELBUILDER supports relational databases in the ORACLE and POSTGRES DBMSs.
Additionally there exist constructors to optionally transfer a boolean array as a parameter to
define which of the conversion steps should be executed and which output is returned. These
settings are coded by their position in the array. Positions 0 to 10 cover the output of the tool
while positions 11 to 16 en- or disable optional conversion steps (see Appendix C). As default,
all outputs and steps are enabled and should stay as such, but in case problems arise the user
can tweak the conversion through these settings. One such case is the previously mentioned

55

56 CHAPTER 4. IMPLEMENTATION

problematic of missing FKs and overlapping PK entries. In this specific case it is recommended
to disable the “FindFKs” step through setting position 16 in the boolean array as false.

After constructing an instance of the RELMODELBUILDER class the user can start the conversion
process by calling the convert() function, which returns the RelationalModel object for the program
interal inter-model mapping metadata representation:

RelationalModel rM = builder.convert();

If the conversion was successful the metadata tables with entries can be stored to the same or
another database/schema by the “saveToDB” function:

builder.saveToDB("jdbc:postgresql://localhost/thedb","scott","tiger","metadata");

In this case, the metadata tables are not stored in the same schema, but to another “metadata”
schema to keep them separate. This schema is automatically created if not already available.
Thus the given user must have write access in the database and must be able to create schemas if
this option is chosen.

4.2 Internal structures

This section explains all used classes for storing and managing the information necessary for the
mapping.

4.2.1 RelationalModel

The RelationalModel from the DATABASECONVERTER tool is the main class for storing the meta-
data information of the mappings. It consists of objects storing the table entries for each metadata
table discussed in Section 2.2.2 e.g. a MappingDict object to store the table entries of the Mapping-
Dictionary. Additionally it contains lists of Table objects that represent the relational tables and
provide functions specific to the type of table represented. This thesis only utilises the ClassTable
and NMTable subclasses to differentiate the tables. Each table has at least a name and a list of
Column objects that in turn store information regarding each column of the table like its name
and ranges.

ClassTable The ClassTable is the standard class to represent the relational tables. It covers
ClassTables and ClassTableExtensions as well as ReifiedTables and SymmReifiedTables. A
ClassTableExtension is identified by the HashSet<String> extensionFor, which stores the

4.2. INTERNAL STRUCTURES 57

names of the ClassTables it extends. If the table is a type of ReifiedTable, the sides the N:M
relationship are stored in the Column lists reifiedSide1 and reifiedSide2. It does not matter
which side is assigned the first or second side.

NMTable The NMTable class stores information regarding NMTables and CompositeNMTables.
Similar to ReifiedTables in a ClassTable object, the NMTable has to store the N:M relationship
sides expressed by the table. However due to the special case of CompositeNMTables each
side must be able to store multiple Column lists each representing one part of the NMSide.

4.2.2 TableSummary

The TableSummary object is a custom HashMap storing for each table name a list of TableSumma-
ryEntries. Each TableSummaryEntry in turn stores all information that is available about a column
in the corresponding table. The TableSummary is constructed despite the Table classes storing
mostly the same information, because these classes were designed with the Ontology to rela-
tional Table mapping direction in mind and are missing crucial information for the conversion
steps. However the Table classes are better representations for constructing the table entries of
the inter-model mapping metadata after the analysis is done when the additional information
is no longer needed. Thus the TableSummary focuses more on aiding the conversion process
with easy access to almost all the information necessary for the following analysis steps and
methods for recurring calculations. Most of these methods involve managing and analysing
the structure of FKs in a table, because storing each column individually makes dealing with
potential multi-column FKs more difficult . The most important methods are briefly explained in
Table 4.1.

Method Feature
findBothSidesOfNM This function tries to find a two-way separation of the input

columns of the given table, such that each side could be a side of
a N:M relationship.

findReifiedSidesOfNM This function tries to find a two-way separation of the functional
columns in the table, so that they make up both sides of a N:M

relationship.
separateFKs Splits the FKs in the specified table and groups them based on the

referenced table.

Table 4.1: Important methods of the TableSummary class

The method findBothSidesOfNM is used to identify NMTables while findReifiedSidesOfNM is used
to identify ReifiedTables. Both methods make sure that the columns used for either side of the
N:M-relationship have differences. Optimally we would want a clean two-way separation of the
columns to the two sides of the relationship. So that columns (a, b, c) are the domain-side and
columns (d, e) represent the range-side. However due to the fact that the same column can be
used in a different FK, it can happen for multi-column FKs that columns overlap for both sides.
Thus, it has to checked if the different FKs have at least one column not in common. Additionally
for NMTables all columns of the table have to be involved in either of the sides. The separateFKs
method is often used to get a well-structured overview over all FKs of a table. If a column is part

58 CHAPTER 4. IMPLEMENTATION

of multiple FKs it is represented with each of them. This method is especially helpful if the table
has multiple FKs referencing the same table like recursive NMTables.

TableSummaryEntry A TableSummaryEntry is a comprehensive summary of every basic infor-
mation available for a column in a table. Unlike the Column class a TableSummaryEntry
most notably additionally stores the referenced (Table, Column) pairs if involved in one
or more FKs through a list of TableCoumnPair auxiliary objects. Furthermore it stores the
abstract subclasses explained in Section 3.4.1 identified through this column.

4.3 Conversion steps

The conversion steps explained in the following are the main operations of the RELMODEL-
BUILDER tool. They are executed in the order of explanation.

4.3.1 Loading table metadata from DBMS

As mentioned before, the RELMODELBUILDER tool supports ORACLE as well as POSTGRES

DBMSs, but this section will only cover the access to a Postgres database. The process for
ORACLE DBMS is identical with the exception that ORACLE uses a different structure to store
meta information about the user tables, which results in slightly different queries.

At the end of the process all the necessary meta information about the tables is collected in a
TableSummary object. Only operations on the table entries have to be done by connecting to the
database, reducing the amount of time intensive connection initialisations.

The first step to gather this information is to access the DBMS internal tables storing the meta
information about the user tables. This is split into three separate queries, each accessing different
kinds of information and then combining those results into the creation of the TableSummary.
Additional information is then added to it throughout the analysis steps.

The first query accesses all column names, their corresponding table name and their simple
datatype. These datatypes include names of user defined complex datatypes like “geocoord”,
but will not be split into their components, e.g. “latitude” and “longitude” both with datatype
numeric.

SELECT c.relname as table_name, a.attname as column_name, t.typname as data_type
FROM pg_class c, pg_attribute a, pg_namespace ns, pg_type t, pg_authid auth
WHERE c.relkind = ’r’ AND c.relname !~ ’^(pg_|sql_)’
AND c.relnamespace = ns.oid AND ns.nspname = ’" + accessInfo.getSchemaname() + "’
AND c.oid = a.attrelid AND t.oid = a.atttypid
AND c.relowner = auth.oid
AND auth.rolname = ’" + owner + "’

ORDER BY 1, 2;

4.3. CONVERSION STEPS 59

The important tables in this query are:

pg_class Covers the basic information regarding everything that is similar to a table and acts as
the primary conjunction table for all other metadata tables

pq_attribute Stores all information regarding a column (attribute) of a table

pg_type Stores detailed information about the datatype of a column

All entries in these tables are identified by their internal object ID (oid), which are used to join
the tables. To filter out everything else besides actual relational tables the “pq_class.relkind”
attribute has to be set to ’r’, which stands for “relation”. However this still includes a whole lot
of system internal tables, which have to be further filtered by excluding everything starting with
the name “pg_” or “sql_”. Furthermore the query sets the table owner through the “pg_authid”
table filtering out the rest of the internal tables. If the database contains multiple schemata the
schema name can be set through the “pg_namespace” table.

The second query retrieves all PK columns for each table.

SELECT c.relname as table_name, a.attname as column_name
FROM pg_class c, pg_attribute a, pg_index i, pg_namespace ns
WHERE c.relkind = ’r’ AND c.relname !~ ’^(pg_|sql_)’

AND c.relnamespace = ns.oid AND ns.nspname = ’" + accessInfo.getSchemaname() + "’
AND c.oid = a.attrelid AND a.attrelid = i.indrelid
AND a.attnum = ANY(i.indkey) AND i.indisprimary IS TRUE

ORDER BY 1, 2;

The query utilises again the tables “pg_class”, “pg_attribute” and “pg_namespace” to target all
(table, column) pairs in a specified schema. In addition to that the “pg_index” is used to select
only columns involved in a PK. This table stores all indices defined over all columns in the
tables. Fortunately defining a PK constraint over columns also automatically creates an index
over those columns for faster lookup operations. These special PK indices are marked in the
“pg_index” table by the “indisprimary” attribute which is set to true. The columns in the index
are not stored by their name, but by their position in the table, which means that the column
number “pg_attribute.attnum” has to be any of the numbers in the “pg_index.indkey” array.

In the end the third query retrieves all FK columns of each table and their respectiv column
target in the referenced table.

SELECT cl2.relname AS ForeignTable, att2.attname AS ForeignColumn, cl.relname AS
PrimaryTable, att.attname AS PrimaryColumn

FROM (SELECT unnest(con1.conkey) AS parent, unnest(con1.confkey) AS child, con1.
confrelid, con1.conrelid

FROM pg_class cl
JOIN pg_namespace ns ON cl.relnamespace = ns.oid
JOIN pg_constraint con1 ON con1.conrelid = cl.oid

WHERE ns.nspname = ’" + accessInfo.getSchemaname() + "’
AND con1.contype = ’f’) con

60 CHAPTER 4. IMPLEMENTATION

JOIN pg_attribute att ON att.attrelid = con.confrelid AND att.attnum = con.child
JOIN pg_class cl ON cl.oid = con.confrelid
JOIN pg_attribute att2 ON att2.attrelid = con.conrelid AND att2.attnum = con.parent
JOIN pg_class cl2 ON att2.attrelid = cl2.oid;

The main part of this query is the nested SELECT-query labeled “con”. It utilises the “pg_con-
straint” table, which stores information about all defined constraints. Theoretically the PK
constraints could have been accessed in this table too, but using the “pg_index” table is more
straightforward. The table where the constraint is defined on is identified with the “conrelid”
attribute and the affected column with the “conkey” attribute. On the other side of the con-
straint the referenced table and column are identified by the “confrelid” and “confkey” attributes
respectively.

4.3.2 Initialisation of Table objects

As explained in Section 4.2, constructing a ClassTable or an NMTable object for each relational
table and filling them with the correct information is the objective of the conversion steps
before converting them into the metadata table entries as the final goal. After loading the
basic information about the relational tables from the database we decided it would be the
best approach to first construct initial objects for each table which will be further fleshed if
new information becomes available during the following steps. This procedure is supported
among other things by the fact that most of the tables in the relational database will end up
being ClassTables, because only tables representing a pure N:M relationship without the need of
reification are stored as NMTables. Thus for the initial differentiation every table will be stored as
a standard ClassTable except those that are identified as pure N:M tables by consisting of two
distinct FKs, which are disjoint but together make up the whole table. Additionally, if a PK is
present it must cover all columns.

This means that there will be errors in this initial guess which have to be resolved during the
conversion steps. These include for example identifying and marking all the special cases of
ClassTables, for instance ReifiedTables. Furthermore with the advanced possibilities of ranges
compared to only FKs it is possible that some N:M tables are identified later on and the ClassTable
object has to be converted to a NMTable, which will be discussed in Section 4.3.4.

4.3.3 Handling of object-valued properties

When mapping columns to properties, some of these properties can be object-valued. The
handleObjectValued() function covers all sub-functions that identify the ranges for these object-
valued properties.

First of all, all properties mapped from the columns involved in a FK are guaranteed to range
over the target table of the FK. To do this, the RELMODELBUILDER iterates over all TableSumma-
ryEntries and adds the table name of the FKTarget to the column ranges. Of course a property
ranges over a class and not a relational table, but if the FK constraints are correctly used as

4.3. CONVERSION STEPS 61

assumed, they should reference only to ClassTables which are directly mapped to classes having
the same name.

To identify further object-valued properties from columns that are not involved in FKs, it is
necessary to check each combination of columns in a table whether their entries reference to other
ClassTable PKs. To check each combination, the generateSubsets(int minimum, int maximum,
LinkedList<TableSummaryEntry> input) method is used to generate a list of column subsets from
the input whose sizes range from the specified minimum to maximum number of entries. The
maximum number of entries is set to match the longest PK available in the database. The call
generateSubset(1, 3, name, country, province) for example would then return the subsets:

generateSubset(1, 3, name, country, province) =
{name} {country} {province}

{name, country} {name, province} {country, province}
{name, country, province}

The position of the items in each subset does not matter, because the datatypes of the columns
are also important. The next step tries to find potential ranges for each column combination by
joining them to the PK columns of matching ClassTables. However it is for example not possible
to join a numeric column with a Varchar column. Thus the findRanges method has to first off check
for ClassTables with equal amount of columns for each datatype in the PK as in the examined
column combination. After that it has to construct all possible column matchings that the
datatypes allow. For instance a column combination with two Varchar columns and one numeric
column would have two possible matchings with a suitable ClassTable, because the numeric
columns have to be matched and the two Varchar columns allow for two variations. Therefore
with increasing amounts of columns especially if they have the same datatype the number of
column combinations and column matchings that have to be checked increase exponentially.
Fortunately using more than three or four columns for a table’s PK is not common.

The next step is to use the column matchings and to query the database for overlapping column
entries. In most cases only one of the column matchings will return overlapping entries if
any at all. If there are multiple possible matchings for a single table, the matching with the
highest overlap percentage is choosen and the column matching with the percentage stored in a
RangeInformation object for easier recap of the analysis results. In the end one RangeInformation
object will be available for each suitable table and evaluated together. If only one table returned
a column entry overlap and the overlap was 100%, it is basically a missing FK and will be
marked as such by adding the column matchings to the foreign key targets of the respective
TableSummaryEntrys. On the other hand, if multiple tables returned matching column entries,
these tables will be added to the ranges.

4.3.4 Identification of NMTables

The initial NMTables were only constructed for pure N:M tables with the clear pattern of two
disjoint FKs and no additional columns. After identifying the ranges of columns and missing
FKs however it is possible to identify further NMTables that were previously missed. Essential
for this is the findBothSidesOfNM method of the TableSummary. It analyses the column data and
tries to find a two-way separation of the columns such that:

62 CHAPTER 4. IMPLEMENTATION

• Each side represents a range or FK

• The columns in one side are disjunct to the columns in the other side

• The columns of both sides form together the whole table

• Optional: The column entries for each side stand in a N:M relationship to the other sides
entries

The easiest case for this is if only two columns are present in the table where each column has to
have an individual FK or range. This is the case for standard NMTables like “mountainOnIsland”
as shown in Figure 4.1 and databases that follow the URI pattern of an RDF ontology. After all
the purpose of this step is not only to identify new NMTables, but also to add the NM-sides to
all new and old NMTable objects.

Figure 4.1: NM-sides of the “mountainOnIsland” table from the relational MONDIAL database

On the other hand if the table has more than two columns there has to be at least one multi-
column FK. For these cases, all the FKs of the table are first split by the separateFKs method
and then each combination of two FKs is tested if they fulfill the mentioned requirements. This
applies for example for the “locatedOn” table as shown in Figure 4.2.

Figure 4.2: NM-sides of the “locatedOn” table from the relational MONDIAL database

Even if no such combination could be found it could still be possible that the table is an NMTable.
This is the case if one side is neither a FK nor has a range, thus is a literal-valued column. In this
setup the remaining columns have to be calculated for each FK and then the combination has to
be checked.

4.3. CONVERSION STEPS 63

For tables with only two distinct FKs that were already stored as an NMTable object, it is pretty
much garantueed that they represent an N:M relationship and thus it is not necessary to further
check the table entries. This helps to soften the requirements, because not all NMTables actually
have N:M column entries for both directions. However when checking previously declared
ClassTables if they actually are NMTables, it is best to be more careful by adding this constraint
and thus avoiding false identifications just because a combination of FKs or ranges fit the pattern.

If a ClassTable is found to be actually an NMTable, the previous ClassTable object has to be
exchanged for a new NMTable object and all necessary information about the columns has
to be copied. This means that if multiple ranges or FKs exist, only those are kept that are
used to define the two NM-sides. The sole purpose of an NMTable is the representation
of the N:M relationship between the two sides, so additional references to other tables are
not wanted. This happens for example for the multi-column FK on the first side of the
“locatedOn” table shown in Figure 4.2. All three columns together are part of the FK to
the table “city”, however after identifying additional references in Section 4.3.3 there will
be two new FKs in the table. One FK with columns (province, country) references to the
“province” table and the other FK consisting just of the (country) column references the
“country” table. Those FKs could have been helpful for the analysis, but have to be deleted
now after they were deemed redundant. Furthermore all references to the new NMTable
from other ClassTables have to be deleted, but in the standard case there should not have
been one to begin with. To finish the transformation, the tablename has to be deleted from all
previously found class hierarchy entries, because it will no longer be mapped to an ontology class.

After checking the standard NMTable pattern for a table and no distinct NM-sides could be
found, it could still be possible that the table is a CompositeNMTable like the “located” table
shown in Figure 4.3.

Figure 4.3: NM-sides of the “located” table from the relational MONDIAL database

Because this kind of table is like a fusion of multiple individual tablies, it is possible to identify
them by first identifying all subparts. In this case this would be the three N:M relationships
(city, river), (city, sea) and (city, lake). The process starts with separating the FKs and range
columns again, but then generating all possible subsets of size 2 from them similar to the
procedure in Section 4.3.3. Each combination is then tested individually on the requirements
of a NMTable. It should be noted that CompositeNMTables tend to have a dominant side that
forms the connection point between the individual NMTable subparts, which is in this case the

64 CHAPTER 4. IMPLEMENTATION

“city” side. Because of that and the fact that not all entries on the dominant side have an entry
for each of their counterparts it is highly likely that the weaker side has lots of NULL values
in their columns. In the highlighted example almost all of the cities are located on just one of
the three water types and in rare cases on two, but never on all three. This means that the false
combinations (river, sea), (river, lake) and (sea, lake) can be easily excluded by checking if there
exist any (NULL,NULL) entries, which should never be the case in an NMTable. In a standard
NMTable (Entry,NULL) entries would also be incorrect, but those have to be tolerated for a
CompositeNMTable. All other combinations that pass the N:M relationship requirements are
added to a list and in the end it is checked if all columns of the table were used. If this is the case,
the ClassTable object is again transformed into an NMTable object, all unnecessary references are
deleted and the NM-sides for each NMTable subpart are added. The overall dominant NM-side
can later on be determined again with the findDominantMultiNMSide method if necessary.

4.3.5 Identification of ClassTableExtensions

After identifying all NMTables, only the special cases of ClassTables are left starting with the
ClassTableExtensions. We defined ClassTableExtensions in Section 3.2.1.2 to be ClassTables
with a 1:1 connection to another ClassTable and there exist no references from other tables to
it. For this definition to work, all necessary FKs in the database had to be specified before the
handle object-valued properties step, because newly detected references would range over both the
ClassTableExtension and the extended ClassTable instead of just the main extended ClassTable.
This would also mean in practice that ClassTableExtensions and their extended ClassTables
would reference each other making the destinction between the two impossible.

However if the references between tables are correct, the identification of ClassTableExtensions
is quite simple. First off check for each remaining ClassTable if there exists a reference from
any other table to it. If this is not the case then verify if the PK columns of the examined table
reference only one table. This is done by looking up the previously stored FK constraints of
the columns, because these guarantee a 100% overlap of the column entries in the potential
ClassTableExtension to the extended ClassTable. The examined table is only a ClassTableExten-
sion if there are no additional column entries besides the references to the extended table, thus
ranges are not allowed. The extended ClassTable is stored in the extensionFor variable of the
ClassTableExtension, which automatically serves as an indicator, too.

4.3.6 Identification of ReifiedTables

The last special case of ClassTables that have to be identified are ReifiedTables. As explained
in Section 3.1.3, ReifiedTables are similar to NMTables with the exception that they store addi-
tional columns that are not part of either of the two NM-sides. Thus identifying them is also
quite similar to the process highlighted in Section 4.3.4. The method findReifiedSidesOfNM of
the TableSummary class provides the same functionality as the findBothSidesOfNM method for
identifying NMTables, but tailored to the special requirements of ReifiedTables. Instead of using
all columns in the table the function takes only the columns in the PK if available or all columns
with ranges or part of FKs if not. The rest of the process is analogous to the two-way separation
of identifying NMTables.

4.3. CONVERSION STEPS 65

However there are some differences after the identification of the NM-sides of the ReifiedTable.
Although the ClassTable is not transformed into an NMTable object, the identified NM-sides
still has to be stored in the reifiedSide1 and reifiedSide2 lists. The order of the NM-sides does
not matter. Multiple parts of an NM-side as with CompositeNMTables are not allowed for
ReifiedTables. But the surplus references still has to be pruned though only for the columns
involved in the NM-sides. The remaining columns and their information stay untouched.
Furthermore unlike standard NMTables it is more important if the ReifiedTable represents a
symmetric relationship or not. A SymmReifiedTable like the “borders” table shown in Figure
4.4 can be easily distinguished if both NM-sides reference to the same target table and the table
entries for both sides are symmetric.

Figure 4.4: NM-sides of the “borders” table from the relational MONDIAL database

The isSymmReified variable is set to true to mark such a table. However finding the name of the
property that the relationship will be mapped to is not as clear. Due to the fact that the property
is symmetric and thus is the inverse of itself only one name is necessary for both NM-sides.
We assume that the columns for the NM-sides are named quite similar as is the case with the
“country1” and “country2” columns in the “borders” exmaple. The common property name is
then the longest possible prefix that matches the columns on both sides. For instance this would
be “country” for these columns. This name is then stored in the symmReifiedColName variable for
later use.

4.3.7 Identification of N:1 tables

The last table type that needs to be identified are so called N1Tables. In the relational database
only the “cityothername”,”countryothername” and “provinceothername” tables are instances of
such tables. The “cityothername” table is illustrated in Figure 4.5.

66 CHAPTER 4. IMPLEMENTATION

Figure 4.5: NM-sides of the “cityothername” table from the relational MONDIAL database

Their origin is the othername property from the RDF ontology of MONDIAL. In the forward map-
ping from ontology to relational tables this property is represented as an NMTable “othername”,
which stores for URIs of several different classes their real world name. This means that only one
NM-side is a reference while the other one is just a literal. In the relational MONDIAL database
this information is split into the three previously mentioned tables because there is no direct
superclass of city, country and province. Those tables do not fullfil all requirements of a true
NMTable most notably that they only represent an N:1 relationship. Such information would
normally be stored in the home table representing the functional or unique side of the (1:N) -
relationship. For example the hasHeadquarter property of the organization class. The headquarter
of an organization can only be located in one city, but a city can host headquarters of multiple
organizations. Hence this information is stored on the organization side. However the functional
side of the othername case is just a literal value and thus there exists no table that could store this
information from the functional side. Therefore, a new table is required storing the information
from the non-functional side.

The occurences of these circumstances are so rare that they do not warrant the definition of a new
kind of table, but luckily they can be treated as normal NMTables with just one NM-side. This is
also the reason why they are covered as the last special case, because the previous table types are
more significant. The identification process is then similar to standard NMTables. Iterate over all
ClassTables that were not identified as one of the previously explained special cases and check all
columns of the PK again with the findBothSidesOfNM method. The method is able to identify a
literal valued column as one of the NM-sides and will return the sides accordingly. If the sides
are returned successfully the function then checks if any references targeting this table exist as
with standard NMTables. After that it calculates the references of each side where one side has
to target at least one table while the other side has to target none indicating the literal-valued
column. If this is the case then an N1Table was identified and the ClassTable object is transformed
into an NMTable object including the reference pruning if necessary.

4.3.8 Derivation of Subclasses

The subclass and superclass relationships are stored in two separate ClassHierarchy objects in the
RelationalModel object. One instance called completeclasshierarchy (later on the allcl table) stores
all available information while another instance concreteclasshierarchy (later on the subcl table)

4.3. CONVERSION STEPS 67

stores only entries where the subclass is a concrete class. As mentioned in Section 3.4 those
class hierarchies have to have at least one entry for each concrete class namely all remaining
ClassTables. Thus the two lists are initialised with one entry per ClassTable as the subclass and
the “rdf2sqlTop” placeholder token as the superclass.

Before the initialisation, the handle object-valued properties step from Section 4.3.3 could have
already added some entries depending on the findings. If ranges were identified for a column or
column combination, the ranges form a group of subclasses with the column as the superclass.
The name of such columns is usually a fitting description for the superclass of the classes
grouped in its ranges. This means for instance for a column “Water” with ranges sea, lake and
river that the class hierarchy entries (sea,Water), (lake,Water) and (river,Water) are produced.
Because Water is not the name of a ClassTable it is defined as an abstract class, but the entries
are nevertheless added in both completeclasshierarchy and concreteclasshierarchy because only the
subclasses have to be concrete. To prevent frequent entries like (country, country) all entries are
filtered out where the subclass equals the superclass.

The next step is to identify abstract subclasses inside of ClassTables as explained in Section 3.4.1.
For this the RelModelBuilder has to iterate over all literal-valued columns of ClassTables and
examine each one independently. Object-valued columns were already covered in the previous
step and are thus excluded just as are columns with datatype boolean or Date. For each remaining
column a HashMap is created that stores all unique values with their number of occurences
and the number of total entries without NULL values is calculated. As explained in Section
3.4.1 the coverage of a unique value has to exceed a lower boundary to be deemed a good
representative of an abstract subclass. We found a boundary of 50% to be a good balance between
too many and no subclasses. This boundary also means that there can be only a maximum of two
subclasses per column if the entries are perfectly split. Setting the boundary any lower opens up
the possibility of a lot more subclasses which is not necessarily a bad thing if more differentiation
is wanted, but setting it higher emphasises the meaningfulness of the newly defined subclasses.
The name of the new subclass is derived from the value in the column that is used to define it.
The values of VarChar type columns can be used directly, but numeric values are not suitable
as a classname. For such cases the column name is added to the value. Furthermore regardless
of type the table name is added as an affix to the classname to underline the affiliation of the
abstract subclass to the class of the table. If the examined table is a ClassTableExtension the name
of the extended table is of course taken instead. These class hierarchy entries are only added to
the completeclasshierarchy, because the subclass is always regarded as an abstract class.

The final step would be to analyse the completeclasshierarchy and concreteclasshierarchy entries and
derive relationships that are implied by them. However as explained in Section 3.4.2 we have
sadly found no way to derive certain facts from this limited information.

Chapter 5

Conclusion

Making storing and querying relational and RDF data interchangeable is a good step for using
the favorable characteristics of both at the same time. The RelModelBuilder fills the gap of
automatically creating an RDF ontology from any relational database including the mappings
stored in the inter-model mapping metadata tables. This functionality will for instance aid the
use of our previous tools like the QueryConverter to state SPARQL queries based on the created
ontology to the relational database. Furthermore new tools will be able to build on this possibility
like the mentioned SchemaMatcher that can be used to create mappings between inter-model
mapping metadata of multiple relational databases with similar schemas to access them all at
once. This interchangeability can only be achieved because of separation of the mappings from
the tools and storing it independently in the metadata tables.

The RelModelBuilder tries to extract the most accurate ontology from the relational database,
however there are still some flaws in the resulting ontology. First of all some of these short-
comings are unavoidable due to the automatic nature of the approach. For example unlike
semi-automatic approaches which are partly guided by the user, the program has to choose
property names for itself. Taking the column names for their representative property turned out
to be a suitable choice in most cases, but for instance property names for multi-column FKs are
not comprehensive for the user. Such properties should be renamed before extensive usage. We
plan to improve the automatic naming schema and develop a user interface that provides an easy
access point for renaming properties in all inter-model mapping metadata tables. Furthermore it
would be beneficial to have access to a more extensive class hierarchy and more differentiation
in abstract superclasses. However such information is just not available from a plain relational
database. Even if the database was constructed on the basis of an ER model with such features,
they are not clearly represented in the database alone.

Overall the RelModelBuilder procudes a good basis to access and work with the database on
an ontology level. Unfortunatly, we cannot simply compare our results with those produced
from the tested tools in the RODI benchmark, because their internal datastructures for the
OBDA mapping are not known to us. The quality of the OBDA mappings in the benchmark
were only measured indirectly through the results of ontology alignment and query conversion.
However the goal for this work was to generate the OBDA mappings in our internal model
for the SCHEMAMATCHER tool. We can then combine the OBDA mapping generation of the
RelModelBuilder, the ontology alignment of the SchemaMatcher and the SPARQL-to-SQL query

69

70 CHAPTER 5. CONCLUSION

transformation of the QueryConverter to test our tools under the same conditions as in the RODI
benchmark.

5.1 Future works

The OBDA mapping the RelModelBuilder generates for a relational database can potentially be
utilised for more then just the SPARQL-to-SQL query rewriting of the QueryConverter. They can
also be used to change the database structure with so-called atomic schema operators. These
include for example changing functional properties into non-functional ones and automatically
converting the associated table structures and metadata table entries. After defining such
operators, it would be possible to use the ontology alignment from two similar databases
produces by the SchemaMatcher as a step by step guide to converge the database schemas.

Bibliography

[ADMR05] D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm. Schema and Ontology Match-
ing with COMA++. In Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’05, pp. 906–908, New York, NY, USA, 2005. ACM.
1.2

[Age] C. I. Agency. The World Factbook. Website. Available online at https://www.
cia.gov/library/publications/the-world-factbook/; visited on Octo-
ber 11th 2016. 1.5

[BCH+14] T. Bagosi, D. Calvanese, J. Hardi, S. Komla-Ebri, D. Lanti, M. Rezk, M. Rodríguez-
Muro, M. Slusnys, and G. Xiao. The Ontop Framework for Ontology Based Data Access,
pp. 67–77. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. 1.2

[CB74] D. D. Chamberlin and R. F. Boyce. SEQUEL: A Structured English Query Language.
In Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD) Workshop on Data Description,
Access and Control, SIGFIDET ’74, pp. 249–264, New York, NY, USA, 1974. ACM. 2.1.2

[Che76] P. P.-S. Chen. The Entity-relationship Model&Mdash;Toward a Unified View of Data.
ACM Trans. Database Syst., 1(1):9–36, March 1976. 2.1.1

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun. ACM,
13(6):377–387, June 1970. 2.1.2

[dMPC15] L. F. de Medeiros, F. Priyatna, and O. Corcho. MIRROR: Automatic R2RML Mapping
Generation from Relational Databases, pp. 326–343. Springer International Publishing,
Cham, 2015. 1.2

[GEO] GeoHive. Website. Available online at http://www.geohive.com/; visited on
October 11th 2016. 1.5

[Groa] R. W. Group. RDF Homepage. Website. Available online at http://www.w3.org/
RDF; visited on October 15th 2016. 2.1.3

[Grob] T. P. G. D. Group. PostgreSQL Download. Website. Available online at https:
//www.postgresql.org/download/; visited on October 11st 2016. 1.4

[Groc] T. P. G. D. Group. PostgreSQL Homepage. Website. Available online at https:
//www.postgresql.org/; visited on October 11st 2016. 1.4

71

https://www.cia.gov/library/publications/the-world-factbook/
https://www.cia.gov/library/publications/the-world-factbook/
http://www.geohive.com/
http://www.w3.org/RDF
http://www.w3.org/RDF
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/
https://www.postgresql.org/

72 BIBLIOGRAPHY

[HM12] T. Hornung and W. May. Efficient, Schema-Aware Storage of RDF. Technical re-
port, Universität Freiburg, Institut für Informatik, Universität Göttingen, Institut für
Informatik, 2012. 2.2.1, 3.1

[JRKZ+15] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks, C. Pinkel, M. G.
Skjæveland, E. Thorstensen, and J. Mora. BootOX: Practical Mapping of RDBs to OWL
2, pp. 113–132. Springer International Publishing, Cham, 2015. 1.2

[KSA+12] C. A. Knoblock, P. Szekely, J. L. Ambite, A. Goel, S. Gupta, K. Lerman, M. Muslea,
M. Taheriyan, and P. Mallick. Semi-automatically Mapping Structured Sources into the
Semantic Web, pp. 375–390. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. 1.2

[May] W. May. The Mondial Database. Website. Available online at https://www.dbis.
informatik.uni-goettingen.de/Mondial/; visited on October 11th 2016. 1.5

[May99] W. May. Information Extraction and Integration with FLORID: The MONDIAL Case
Study. Technical Report 131, Universität Freiburg, Institut für Informatik, 1999. Avail-
able from http://dbis.informatik.uni-goettingen.de/Mondial. 1.5

[Oraa] Oracle. Java Homepage. Website. Available online at http://www.oracle.com/
technetwork/java/index.html; visited on October 11st 2016. 1.4

[Orab] Oracle. SQL Developer Homepage. Website. Available online at http:
//www.oracle.com/technetwork/developer-tools/sql-developer/
overview/index.html; visited on February 1st 2014. 2.1.2

[PBJR+15] C. Pinkel, C. Binnig, E. Jiménez-Ruiz, W. May, D. Ritze, M. G. Skjæveland, A. Soli-
mando, and E. Kharlamov. RODI: A Benchmark for Automatic Mapping Generation in
Relational-to-Ontology Data Integration, pp. 21–37. Springer International Publishing,
Cham, 2015. 1.2

[PBKH13] C. Pinkel, C. Binnig, E. Kharlamov, and P. Haase. IncMap: Pay As You Go Matching
of Relational Schemata to OWL Ontologies. In Proceedings of the 8th International
Conference on Ontology Matching - Volume 1111, OM’13, pp. 37–48, Aachen, Germany,
Germany, 2013. CEUR-WS.org. 1.2

[RS13] L. Runge and S. Schrage. Forschungspraktikumsbericht RDF-to-SQL-Konverter.
Technical report, Universität Göttingen, Institut für Informatik, 2013. 1.3, 2.2.1

[RS14] L. Runge and S. Schrage. Auswertung von SPARQL-Anfragen mit rela-
tionaler Speicherung. Technical report, Georg-August-Universität Göttin-
gen, Zentrum für Informatik, 2014. Available from https://webhelper.
informatik.uni-goettingen.de/editor/media/theses/2014/
ZAI-BSC-2014-09-runge.pdf; visited on October 13th 2016. 2.1.3, 2.2.1

[Sch16] S. Schrage. Transformation-based Ontology Mapping. Technical report, Georg-
August-Universität Göttingen, Zentrum für Informatik, 2016. Work in Progress.
Submission date November 30th, 2016. 1.3, 2.2.3

[W3Ca] W3C. A Direct Mapping of Relational Data to RDF W3C Recommendation. Website.
Available online at https://www.w3.org/TR/rdb-direct-mapping/; visited
on November 14th 2016. 1.2

https://www.dbis.informatik.uni-goettingen.de/Mondial/
https://www.dbis.informatik.uni-goettingen.de/Mondial/
http://dbis.informatik.uni-goettingen.de/Mondial
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html
https://webhelper.informatik.uni-goettingen.de/editor/media/theses/2014/ZAI-BSC-2014-09-runge.pdf
https://webhelper.informatik.uni-goettingen.de/editor/media/theses/2014/ZAI-BSC-2014-09-runge.pdf
https://webhelper.informatik.uni-goettingen.de/editor/media/theses/2014/ZAI-BSC-2014-09-runge.pdf
https://www.w3.org/TR/rdb-direct-mapping/

BIBLIOGRAPHY 73

[W3Cb] W3C. W3C Notation3. Website. Available online at https://www.w3.org/
TeamSubmission/n3/; visited on October 12th 2016. 2.1.3

[W3Cc] W3C. W3C OWL 2 Web Ontology Language Recommandation. Website. Available on-
line at https://www.w3.org/TR/2009/REC-owl2-syntax-20091027/; vis-
ited on October 15th 2016. 2.1.4

[W3Cd] W3C. W3C OWL Web Ontology Language Current Status. Website. Available online
at https://www.w3.org/standards/techs/owl; visited on October 15th 2016.
2.1.4

[W3Ce] W3C. W3C RDF 1.1 Recommendation. Website. Available online at
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
#section-Introduction; visited on October 12th 2016. 2.1.3

[W3Cf] W3C. W3C RDF Schema 1.1 Recommendation. Website. Available online
at https://www.w3.org/TR/2014/REC-rdf-schema-20140225/; visited on
October 12th 2016. 2.1.4

[W3Cg] W3C. W3C RDFS Publication History. Website. Available online at https://www.
w3.org/standards/history/rdf-schema; visited on October 15th 2016. 2.1.4

[W3Ch] W3C. W3C Recommendation. Website. Available online at http://www.w3.org/
TR/rdf-sparql-query; visited on October 13nd 2016. 2.1.3

[W3Ci] W3C. W3C XML. Website. Available online at https://www.w3.org/XML/;
visited on October 12th 2016. 2.1.3

https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
https://www.w3.org/standards/techs/owl
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#section-Introduction
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#section-Introduction
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/standards/history/rdf-schema
https://www.w3.org/standards/history/rdf-schema
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/rdf-sparql-query
https://www.w3.org/XML/

Appendix A

Definition of abstract/concrete classes:
mondial-er.n3

#@prefix : <http://www.semwebtech.org/mondial/10/meta#>.
@prefix : <f://m#>.
@prefix er: <f://er#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

er:Entity er:isa er:Abstract.
:MondialThing er:isa :Abstract; rdfs:subClassOf er:Entity.

geometric aspects: Place (long,lat,elev.),
Area (area, bordering), Line (length,between)
note: small areas like city, lake, island, desert are also
Places and Areas
:Geometrical rdfs:subClassOf er:Entity.
:Location er:isa er:Interface.
:Area er:isa er:Interface.
:Place er:isa er:Interface.
:LargeArea er:isa er:Interface.
:Line er:isa er:Interface.

####### Abstract Classes

choose to have each of them Concrete or Abstract:
#:MondialThing er:isa er:Concrete.
#:ReifiedThing er:isa er:Concrete.
#:Area er:isa er:Concrete.
#:Location er:isa er:Concrete.
#:Line er:isa er:Concrete.

75

76 APPENDIX A. DEFINITION OF ABSTRACT/CONCRETE CLASSES: MONDIAL-ER.N3

#:Place er:isa er:Concrete.
#:PoliticalThing er:isa er:Concrete.
#:GeographicalThing er:isa er:Concrete.
#:AdministrativeArea er:isa er:Concrete.
#:PoliticalBody er:isa er:Concrete.
#:GeographicalNonPoliticalThing er:isa er:Concrete.
#:AnthropoGeographicalThing er:isa er:Concrete.
#:AnthropoGeographicalRelationship er:isa er:Concrete.
:MondialThing er:isa er:Abstract.
:ReifiedThing er:isa er:Abstract.
:Area er:isa er:Abstract.
:Location er:isa er:Abstract.
:Line er:isa er:Abstract.
:Place er:isa er:Abstract.
:PoliticalThing er:isa er:Abstract.
:GeographicalThing er:isa er:Abstract.
:AdministrativeArea er:isa er:Abstract.
:PoliticalBody er:isa er:Abstract.
:GeographicalNonPoliticalThing er:isa er:Abstract.
:AnthropoGeographicalThing er:isa er:Abstract.
:AnthropoGeographicalRelationship er:isa er:Abstract.

####### Concrete Classes

:Country er:isa er:Concrete.
:Province er:isa er:Concrete.
:City er:isa er:Concrete.
:Organization er:isa er:Concrete.

:Continent er:isa er:Concrete.

#:Lake er:isa er:Abstract. ## <<<<<<<<<<<<<<<<<<<
#:Sea er:isa er:Abstract.
#:River er:isa er:Abstract.
#:Water er:isa er:Concrete. ## <<<<<<<<<<<<<<<<<<<
:Lake er:isa er:Concrete.
:Sea er:isa er:Concrete.
:River er:isa er:Concrete.
:Water er:isa er:Abstract. ## <<<<<<<<<<<<<<<<<<<
:Source er:isa er:Concrete.
:Estuary er:isa er:Concrete.
:Mountain er:isa er:Concrete.
:Desert er:isa er:Concrete.
:Island er:isa er:Concrete.
:Language er:isa er:Concrete.
:Religion er:isa er:Concrete.
:EthnicGroup er:isa er:Concrete.

77

:Islands er:isa er:Concrete.
:Mountains er:isa er:Concrete.

er:SymmetricReifiedRelationship rdfs:subClassOf er:ReifiedRelationship.
:Border er:isa er:SymmetricReifiedRelationship;

er:reifies :neighbor.

:Volcano er:isa er:Abstract.

:Encompassed er:isa er:ReifiedRelationship;
er:reifies :encompassed.

:Membership er:isa er:ReifiedRelationship;
er:reifies :isMember.

:SpokenBy er:isa er:ReifiedRelationship;
er:reifies :speakLanguage.

:BelievedBy er:isa er:ReifiedRelationship;
er:reifies :believeInReligion.

:EthnicProportion er:isa er:ReifiedRelationship;
er:reifies :belongToEthnicGroup.

Appendix B

Definition of classes and properties:
mondial-meta.n3

#@prefix : <http://www.semwebtech.org/mondial/10/meta#>.
@prefix : <f://m#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
Design:
class hierarchy described by disjointUnionOf as far as possible.
some declarations are intensionally redundant

... and now to the Mondial ontology

:MondialThing a owl:Class;
owl:disjointUnionOf (:PoliticalOrGeographicalThing

:AnthropoGeographicalThing
:ReifiedThing).

:PoliticalOrGeographicalThing a owl:Class;
owl:unionOf (:PoliticalThing :GeographicalThing).
note: Cities are both PoliticalThings and GeographicalThings.

:ReifiedThing a owl:Class;
owl:disjointUnionOf (:Membership

:Encompassed
:SpokenBy
:BelievedBy
:EthnicProportion);

owl:disjointWith :Geometrical.

the following is not allowed in OWL.

79

80 APPENDIX B. DEFINITION OF CLASSES AND PROPERTIES: MONDIAL-META.N3

#:reifies a owl:AnnotationProperty; rdfs:domain :ReifiedRelationship;
rdfs:range rdf:Property;
owl:inverseOf :reifiedBy.

:name a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain [a owl:Class;

owl:intersectionOf (:MondialThing
[owl:complementOf :ReifiedThing]
[owl:complementOf :Border]
[owl:complementOf :Source]
[owl:complementOf :Estuary])];

rdfs:range xsd:string.

:othername a owl:DatatypeProperty;
rdfs:domain [a owl:Class;

owl:intersectionOf (:MondialThing
[owl:complementOf :ReifiedThing]
[owl:complementOf :Border]
[owl:complementOf :Source]
[owl:complementOf :Estuary])];

rdfs:range xsd:string.

:type a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain [a owl:Class;

owl:intersectionOf ([owl:unionOf (:GeographicalThing
:Membership)]

[owl:complementOf :Continent]
[owl:complementOf :River]
[owl:complementOf :Source]
[owl:complementOf :Estuary]
[owl:complementOf :City])];

rdfs:range xsd:string.

geometric aspects: Place (long,lat,elev.), Area (area, bordering),
Line (length,between)
note: small areas like city, lake, island, desert are also Places and Areas
:Geometrical a owl:Class; owl:unionOf (:Place :Area :Line).
:Location a owl:Class; owl:disjointUnionOf (:Place :SmallArea).
:Area a owl:Class; owl:disjointUnionOf (:SmallArea :LargeArea).
:Place a owl:Class; owl:disjointWith :Area.
:LargeArea a owl:Class; rdfs:subClassOf :Area.
:Line a owl:Class; owl:disjointWith :Area, :Place.

:borders a owl:ObjectProperty;
rdfs:domain :LargeArea;
rdfs:range :LargeArea.

81

meta things: measurements
:Measurement a owl:Class.
:TimeSeriesElement rdfs:subClassOf :Measurement.
:year a owl:DatatypeProperty;

rdfs:domain :TimeSeriesElement;
rdfs:range xsd:nonNegativeInteger.

:value a owl:DatatypeProperty;
rdfs:domain :Measurement.

:PopulationCount rdfs:subClassOf :TimeSeriesElement.

####### Political Things
:PoliticalThing a owl:Class;

owl:disjointUnionOf (:NonGeographicalPoliticalThing :City).
:NonGeographicalPoliticalThing a owl:Class;

owl:disjointUnionOf (:Country :Province :Organization :Border).
:AdministrativeArea rdfs:subClassOf :Area, :PoliticalThing;

owl:disjointUnionOf (:Country :Province).
:AdministrativeSubdivision a owl:Class;

owl:disjointUnionOf (:Province :City).
:PoliticalBody rdfs:subClassOf :PoliticalThing;

owl:disjointUnionOf (:Country :Organization);
owl:disjointWith :AdministrativeSubdivision.

:Country rdfs:subClassOf :LargeArea.
:Province rdfs:subClassOf :LargeArea.
:City rdfs:subClassOf :GeographicalThing, :SmallArea.
:Organization a owl:Class; owl:disjointWith :Geometrical.

:carCode a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Country;
rdfs:range xsd:string.

a border is a line between two areas (e.g. country/country,
sea/sea, country/sea)
:Border rdfs:subClassOf :Line.
:bordering a owl:ObjectProperty;

rdfs:domain :Border;
rdfs:range :Country;
owl:inverseOf :hasBorder.

:hasBorder a owl:ObjectProperty.
:Border rdfs:subClassOf [a owl:Restriction;

owl:onProperty :bordering;
owl:cardinality 2].

:neighbor a owl:ObjectProperty; a owl:SymmetricProperty;

82 APPENDIX B. DEFINITION OF CLASSES AND PROPERTIES: MONDIAL-META.N3

rdfs:subPropertyOf :borders;
rdfs:domain :Country;
rdfs:range :Country.

:hasProvince a owl:ObjectProperty; a owl:InverseFunctionalProperty;
rdfs:domain :Country;
rdfs:range :Province.

:hasProvince a owl:ObjectProperty;
owl:inverseOf :isProvinceOf.

:isProvinceOf a owl:ObjectProperty;
rdfs:subPropertyOf :belongsTo.

:hasCity a owl:ObjectProperty;
rdfs:domain :AdministrativeArea;
rdfs:range :City.

:hasCity owl:inverseOf :cityIn.
:cityIn a owl:ObjectProperty.

:City rdfs:subClassOf [a owl:Restriction;
owl:onProperty :cityIn;
owl:onClass :Country;
owl:qualifiedCardinality 1].

:City rdfs:subClassOf [a owl:Restriction;
owl:onProperty :cityIn;
owl:onClass :Province;
owl:maxQualifiedCardinality 1].

:City rdfs:subClassOf :AdministrativeSubdivision.
:AdministrativeSubdivision rdfs:subClassOf [a owl:Restriction;

note: only belongsTo; because locatedIn ist restricted to GeoThings
owl:onProperty :belongsTo;
owl:onClass :Country;
owl:qualifiedCardinality 1].

:City rdfs:subClassOf [a owl:Restriction;
owl:onProperty :locatedIn;
owl:onClass :Province;
owl:maxQualifiedCardinality 1].

:City rdfs:subClassOf [a owl:Restriction;
owl:onProperty :locatedIn;
owl:onClass :Country;
owl:qualifiedCardinality 1].

:population a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain [owl:intersectionOf (:Area

[owl:complementOf :Continent]
[owl:complementOf :Desert]
[owl:complementOf :Water]

83

[owl:complementOf :Mountains])];
rdfs:range xsd:nonNegativeInteger.

:populationcount a owl:ObjectProperty;
rdfs:range :PopulationCount.

:capital a owl:ObjectProperty; a owl:FunctionalProperty;
rdfs:domain :AdministrativeArea;
rdfs:range :City;
wl:inverseOf :isCapitalOf.

:isCapitalOf a owl:ObjectProperty.
:City rdfs:subClassOf [a owl:Restriction;

owl:onProperty :isCapitalOf;
owl:onClass :Country;
owl:maxQualifiedCardinality 1].

:populationGrowth a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Country;
rdfs:range xsd:decimal.

:infantMortality a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Country;
rdfs:range xsd:decimal.

:gdpTotal a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Country;
rdfs:range xsd:decimal.

:gdpAgri a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Country;
rdfs:range xsd:decimal.

:gdpInd a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Country;
rdfs:range xsd:decimal.

:gdpServ a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Country;
rdfs:range xsd:decimal.

:inflation a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Country;
rdfs:range xsd:decimal.

:unemployment a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Country;
rdfs:range xsd:decimal.

:government a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Country;
rdfs:range xsd:string.

:independenceDate a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Country;
rdfs:range xsd:date.

:dependentOf a owl:ObjectProperty; a owl:FunctionalProperty;
rdfs:domain :Country;

84 APPENDIX B. DEFINITION OF CLASSES AND PROPERTIES: MONDIAL-META.N3

rdfs:range :Country.
:wasDependentOf a owl:ObjectProperty; a owl:FunctionalProperty;

rdfs:domain :Country;
rdfs:range :PoliticalBody.

:abbrev a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Organization;
rdfs:range xsd:string.

:established a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Organization;
rdfs:range xsd:date.

:hasHeadq a owl:ObjectProperty; a owl:FunctionalProperty;
rdfs:domain :Organization;
rdfs:range :City.

####### Geographical Things

:GeographicalThing a owl:Class;
owl:disjointUnionOf (:City :GeographicalNonPoliticalThing).

:GeographicalNonPoliticalThing a owl:Class;
owl:disjointWith :PoliticalThing;
owl:disjointUnionOf (:Continent :Water :Source :Estuary :Desert

:Island :Mountain :Islands :Mountains).

:Continent rdfs:subClassOf :LargeArea.
:City rdfs:subClassOf :GeographicalThing. # comment, redundant

:Water a owl:Class; owl:disjointUnionOf (:River :Lake :Sea).
:River rdfs:subClassOf :Line.
:Lake rdfs:subClassOf :SmallArea.
:Sea rdfs:subClassOf :LargeArea.

:Source rdfs:subClassOf :Place;
owl:disjointWith :Area.

:Estuary rdfs:subClassOf :Place;
owl:disjointWith :Area.

:Desert rdfs:subClassOf :SmallArea.
:Island rdfs:subClassOf :SmallArea.
:Mountain rdfs:subClassOf :Place.
:Mountains rdfs:subClassOf :SmallArea.
:Islands rdfs:subClassOf :SmallArea.

:area a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain [owl:unionOf (:Area :River)];
rdfs:range xsd:decimal.

:City rdfs:subClassOf [a owl:Restriction;
owl:onProperty :area;

85

owl:cardinality 0].

:length a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Line;
rdfs:range xsd:decimal.

:elevation a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain [owl:intersectionOf (:Location

[owl:complementOf :Desert])],
muss sein, sonst findet pellet kein range der inversen:

:Location;
rdfs:range xsd:decimal.

:depth a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain [owl:unionOf (:Sea :Lake)];
rdfs:range xsd:decimal.

:longitude a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Location;
rdfs:range xsd:decimal.

:latitude a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain :Location;
rdfs:range xsd:decimal.

:mergesWith a owl:ObjectProperty; a owl:SymmetricProperty;
rdfs:subPropertyOf :borders;
rdfs:domain :Sea;
rdfs:range :Sea.

:locatedIn a owl:ObjectProperty;
rdfs:domain :GeographicalThing,

muss sein, sonst findet pellet kein range der inversen ...
[owl:intersectionOf (:GeographicalThing

[owl:complementOf :Continent])];
rdfs:range :Area.

[owl:intersectionOf (:GeographicalThing
[owl:complementOf :Continent])]

rdfs:subClassOf [a owl:Restriction;
owl:onProperty :locatedIn;
owl:onClass :Country;
owl:minQualifiedCardinality 1].

:Sea rdfs:subClassOf [a owl:Restriction;
owl:onProperty :locatedIn;
owl:allValuesFrom [owl:unionOf (:Province

:Country
:Continent)]].

86 APPENDIX B. DEFINITION OF CLASSES AND PROPERTIES: MONDIAL-META.N3

:Continent rdfs:subClassOf [a owl:Restriction;
owl:onProperty :locatedIn;
owl:allValuesFrom owl:Nothing].

:River rdfs:subClassOf [a owl:Restriction;
owl:onProperty :locatedIn;
owl:allValuesFrom [owl:complementOf :City]].

:Mountains rdfs:subClassOf [a owl:Restriction;
owl:onProperty :locatedIn;
owl:allValuesFrom [owl:complementOf :City]].

:Desert rdfs:subClassOf [a owl:Restriction;
owl:onProperty :locatedIn;
owl:allValuesFrom [owl:complementOf :City]].

:Lake rdfs:subClassOf [a owl:Restriction;
owl:onProperty :locatedIn;
owl:allValuesFrom [owl:complementOf :Lake]].

Relationships

:EncompassedArea a owl:Class;
owl:equivalentClass [owl:intersectionOf (:LargeArea

[owl:complementOf :Continent]
[owl:complementOf :Sea])].

:Encompassed rdfs:subClassOf :ReifiedThing.
:encompassedArea a owl:ObjectProperty; a owl:FunctionalProperty;

rdfs:domain :Encompassed;
rdfs:range :EncompassedArea;
owl:inverseOf :encompassedByInfo.

:encompassedBy a owl:ObjectProperty; a owl:FunctionalProperty;
owl:inverseOf :encompassesInfo;
rdfs:domain :Encompassed;
rdfs:range :Continent.

:encompassed a owl:ObjectProperty;
rdfs:domain :EncompassedArea;
rdfs:range :Continent;
owl:inverseOf :encompasses.

:encompasses a owl:ObjectProperty.
:Continent owl:disjointWith :Province.
:Sea owl:disjointWith :Province.

:Membership rdfs:subClassOf :ReifiedThing.

:ofMember a owl:ObjectProperty; a owl:FunctionalProperty;
rdfs:domain :Membership;
owl:inverseOf :isInMembership;
rdfs:range :Country.

:inOrganization a owl:ObjectProperty; a owl:FunctionalProperty;

87

rdfs:domain :Membership;
owl:inverseOf :hasMembership;
rdfs:range :Organization.

:isMember a owl:ObjectProperty;
rdfs:domain :Country;
rdfs:range :Organization;
owl:inverseOf :hasMember.

:hasMember a owl:ObjectProperty.

:flowsInto a owl:ObjectProperty;
rdfs:domain [owl:unionOf (:River :Lake)];
rdfs:range :Water.

:Water rdfs:subClassOf [a owl:Restriction;
owl:onProperty :flowsInto;
owl:maxCardinality 1].

:flowsThrough a owl:ObjectProperty; a owl:InverseFunctionalProperty;
owl:inverseOf :flowsThrough-; ## das soll nicht explizit benannt sein.

rdfs:domain :River;
rdfs:range :Lake.

:hasSource a owl:ObjectProperty; a owl:FunctionalProperty;
a owl:InverseFunctionalProperty;
rdfs:domain :River;
rdfs:range :Source;
owl:inverseOf :hasSource-.

:hasSource- a owl:ObjectProperty.
:hasEstuary a owl:ObjectProperty; a owl:FunctionalProperty;

a owl:InverseFunctionalProperty;
rdfs:domain :River;
rdfs:range :Estuary;
owl:inverseOf :hasEstuary-.

:hasEstuary- a owl:ObjectProperty.
:River rdfs:subClassOf [a owl:Restriction;

owl:onProperty :hasSource;
owl:cardinality 1],

[a owl:Restriction;
owl:onProperty :hasEstuary;
owl:cardinality 1].

:Source rdfs:subClassOf [a owl:Restriction;
owl:onProperty :hasSource-;
owl:cardinality 1].

:Estuary rdfs:subClassOf [a owl:Restriction;
owl:onProperty :hasEstuary-;
owl:cardinality 1].

:locatedAt a owl:ObjectProperty;
rdfs:domain :City;

88 APPENDIX B. DEFINITION OF CLASSES AND PROPERTIES: MONDIAL-META.N3

rdfs:range :Water.
:locatedOnIsland a owl:ObjectProperty;

rdfs:subPropertyOf :locatedIn;
rdfs:domain [owl:unionOf (:City :Mountain)];
rdfs:range :Island.

:locatedInWater a owl:ObjectProperty;
keine rdfs:subPropertyOf :locatedIn, weil river keine area ist
rdfs:domain :Island;
rdfs:range :Water.

:belongsToIslands a owl:ObjectProperty; a owl:FunctionalProperty;
rdfs:domain :Island;
rdfs:range :Islands.

:Mountain rdfs:subClassOf [a owl:Restriction;
owl:onProperty :locatedOnIsland;
owl:maxCardinality 1].

:inMountains a owl:ObjectProperty; a owl:FunctionalProperty;
rdfs:domain [owl:unionOf (:Mountain :Source)];
rdfs:range :Mountains.

:Volcano rdfs:subClassOf :Mountain.
:lastEruption a owl:DatatypeProperty; a owl:FunctionalProperty;

rdfs:domain :Volcano;
rdfs:range xsd:date.

Anthropogeographical Things

:AnthropoGeographicalThing a owl:Class;
owl:disjointUnionOf (:Language :Religion :EthnicGroup);
owl:disjointWith :Geometrical.

:Language rdfs:subClassOf :AnthropoGeographicalThing.
:Religion rdfs:subClassOf :AnthropoGeographicalThing.
:EthnicGroup rdfs:subClassOf :AnthropoGeographicalThing.

:AnthropoGeographicalRelationship a owl:Class;
owl:disjointUnionOf (:SpokenBy :BelievedBy :EthnicProportion).

:SpokenBy rdfs:subClassOf :AnthropoGeographicalRelationship.
:BelievedBy rdfs:subClassOf :AnthropoGeographicalRelationship.
:EthnicProportion rdfs:subClassOf :AnthropoGeographicalRelationship.

#:ofCountry a owl:FunctionalProperty;
rdfs:domain :AnthropoGeographicalRelationship; rdfs:range :Country.
:ethnicInfo a owl:ObjectProperty; a owl:InverseFunctionalProperty;

rdfs:domain :Country;

89

rdfs:range :EthnicProportion;
owl:inverseOf :ethnicInfo-.

#:ethnicInfo- a owl:ObjectProperty; rdfs:subPropertyOf :ofCountry.
:languageInfo a owl:ObjectProperty; a owl:InverseFunctionalProperty;

rdfs:domain :Country;
rdfs:range :SpokenBy;
owl:inverseOf :languageInfo-.

#:languageInfo- a owl:ObjectProperty; rdfs:subPropertyOf :ofCountry.
:religionInfo a owl:ObjectProperty; a owl:InverseFunctionalProperty;

rdfs:domain :Country;
rdfs:range :BelievedBy;
owl:inverseOf :religionInfo-.

#:religionInfo- a owl:ObjectProperty; rdfs:subPropertyOf :ofCountry.
:onLanguage a owl:ObjectProperty; a owl:FunctionalProperty;

owl:inverseOf :spokenInInfo;
rdfs:domain :SpokenBy;
rdfs:range :Language.

:onReligion a owl:ObjectProperty; a owl:FunctionalProperty;
owl:inverseOf :followedInInfo;
rdfs:domain :BelievedBy;
rdfs:range :Religion.

:onEthnicGroup a owl:ObjectProperty; a owl:FunctionalProperty;
owl:inverseOf :liveInInfo;
rdfs:domain :EthnicProportion;
rdfs:range :EthnicGroup.

:speakLanguage a owl:ObjectProperty;
rdfs:domain :Country;
rdfs:range :Language;
owl:inverseOf :spokenInCountry.

:belongToEthnicGroup a owl:ObjectProperty;
rdfs:domain :Country;
rdfs:range :EthnicGroup;
owl:inverseOf :liveInCountry.

:believeInReligion a owl:ObjectProperty;
rdfs:domain :Country;
rdfs:range :Religion;
owl:inverseOf :believedInCountry.

:percent a owl:DatatypeProperty; a owl:FunctionalProperty;
rdfs:domain [owl:unionOf (:SpokenBy :BelievedBy

:EthnicProportion :Encompassed)];
rdfs:range xsd:decimal.

Appendix C

Meaning of the boolean positions of the
RelModelBuilder settings

Position 0 En- or disables the storage of the Inv table to the relational database

Position 1 En- or disables the storage of the MD table to the relational database

Position 2 En- or disables the storage of the NMJ table to the relational database

Position 3 En- or disables the storage of the NMTables table to the relational database

Position 4 En- or disables the storage of the PropTableMap table to the relational database

Position 5 En- or disables the storage of the RC table to the relational database

Position 6 En- or disables the storage of the AllCl table to the relational database

Position 7 En- or disables the storage of the SubCl table to the relational database

Position 8 En- or disables the storage of the Keys table to the relational database

Position 9 En- or disables the storage of the Hometables table to the relational database

Position 10 En- or disables the storage of the AbstractSubclCols table to the relational database

Position 11 En- or disables the FindNMTables step

Position 12 En- or disables the IdentifyClassTableExtensions step

Position 13 En- or disables the IdentifyReifiedTables step

Position 14 En- or disables the IdentifyN1Connections step

Position 15 En- or disables the DeriveSubclasses step

Position 16 En- or disables the FindFKs step

91

