
Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZFI-BM-2006-35

Masterarbeit
im Studiengang "Angewandte Informatik"

Entwicklung und Implementierung
eines Domain Brokers
für das Semantic Web

Tobias Knabke

in der Arbeitsgruppe für

Datenbanken & Informationssysteme

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen

1. November 2006

Georg-August-Universität Göttingen
Zentrum für Informatik

Lotzestraße 16-18
37083 Göttingen
Germany

Tel. +49 (5 51) 39-1 44 14

Fax +49 (5 51) 39-1 44 15

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den 1. November 2006

Master Thesis

Development and Implementation

of a Domain Broker

for the Semantic Web

Tobias Knabke

November 1, 2006

Supervised by Prof. Dr. Wolfgang May

Databases and Information Systems Group

Georg-August-Universität Göttingen

Abstract

Autonomously evolving information systems are the basis of the Semantic Web. In contrast to
the World Wide Web of today, the nodes in this Semantic Web reach beyond the pure viewing of
web pages. As known from Web Services, they are able to answer on requests. But moreover,
the reaction on events, such as database updates generated on remote nodes in the web, is
possible.

This reactive behavior was implemented in the Framework for Evolution and Reactivity in
the Semantic Web via Event-Condition-Action (ECA) rules. The designated action will be
executed if a specific event occurs and an optional condition is fulfilled as well.

To also allow for automated reasoning, the above mentioned framework follows an ontology-
based approach. An ontology, which is usually distributed over several nodes in the decentral-
ized Semantic Web, defines a meaningful, computer-processable relation between concepts of a
domain as a knowledge base. With these ontologies, a domain-dependent reaction on events is
possible.

In this thesis, a Domain Brokering Service for the distribution of events with an Event Broker
and the execution of actions with the help of an Action Broker is developed. Additionally,
information retrieval in form of SPARQL requests is realized by a Query Broker. To support the
facile integration of the Domain Broker and its components into existing information services,
standard web technologies are used.

Acknowledgments

First of all, I would like to thank Prof. Dr. Wolfgang May for offering me this interesting topic
as a master thesis and for the excellent personal and scientific supervision, not only of this
thesis but also during my course of studies.

Likewise, I wish to thank Prof. Dr. José Júlio Alves Alferes for co-supervising this thesis.

Furthermore, I appreciate Erik Behrends, Oliver Fritzen, Franz Schenk and especially Daniel
Schubert for their technological and scientific support.

I am grateful to Kristin Stamm and Franz-Josef Rolfes for their constructive comments and
motivation.

Special thanks go to my parents, my sister and particularly to my girlfriend Nadine for their
support and their patience at any time.

Göttingen, in the fall of 2006 Tobias Knabke

Contents

List of Figures iii

1 Introduction 1

1.1 Motivation . 1
1.2 Structure of the Thesis . 2

2 Basics 3

2.1 Semantic Web . 3
2.2 Ontology . 3
2.3 XML and Related Recommendations . 4
2.4 URI . 6
2.5 RDF and RDF Schema . 6
2.6 OWL . 8

3 Rules 9

3.1 Rules and Ontologies . 9
3.2 Types . 10

3.2.1 Deductive Rules . 10
3.2.2 ECA Rules . 12

4 A General Framework for Evolution and Reactivity in the Semantic Web 13

4.1 General Architecture . 13
4.2 Modeling of Domain Ontologies . 16
4.3 Rules in Ontologies . 18
4.4 ECA Rules . 19

4.4.1 ECE Rules . 20
4.4.2 ACA Rules . 21

4.5 Rule Markup . 22
4.5.1 Logical Derivation Rules . 22
4.5.2 ECA Rules . 22

4.6 Communication Markup . 25
4.7 Opaque Expressions . 27
4.8 Language and Service Registries . 27
4.9 Domain Service Registries . 27

i

Contents

5 Jena Semantic Web Framework 29

5.1 Jena RDF API . 29
5.2 Reasoning and Inference . 30
5.3 ARQ and SPARQL . 31

5.3.1 ARQ . 31
5.3.2 SPARQL . 32

6 Domain Brokering 39

6.1 Event Brokering . 39
6.2 Action Brokering . 43
6.3 Query Brokering . 47

6.3.1 Request Format . 49
6.3.2 Query Decomposition . 50
6.3.3 Required Nodes Selection . 51
6.3.4 Data Integration . 52
6.3.5 Query Answering . 53

6.4 Miscellaneous . 54

7 Implementation 55

7.1 Employed Technologies . 55
7.2 General Architecture . 56
7.3 Common Classes . 56

7.3.1 Utility classes . 56
7.3.2 Ontology . 56

7.4 Domain Broker . 58
7.4.1 Communication Interface of the Domain Broker 58
7.4.2 Architecture of the Domain Broker . 61
7.4.3 Architecture of the Event Broker . 61
7.4.4 Architecture of the Action Broker . 63
7.4.5 Architecture of the Query Broker . 63

7.5 Domain Broker Client . 65

8 Conclusion 69

Bibliography 71

ii

List of Figures

4.1 General Framework Architecture . 14
4.2 Kinds and Components of Ontologies . 17
4.3 Derivation and Mapping Rules for Events, Literals and Actions 19

6.1 Architecture: Communication with Event Brokers 40
6.2 RDF Graph of a Travel Route offered by DB 49
6.3 United Ontology . 52

7.1 Class Diagram for Utility Classes . 57
7.2 Class Diagram for Ontology . 58
7.3 Communication Interface of the Domain Broker 59
7.4 Class Diagram for the Domain Broker . 62
7.5 Class Diagram for the Event Broker . 62
7.6 Class Diagram for the Action Broker . 63
7.7 Class Diagram for the Query Broker . 64
7.8 Managing Registrations with the Domain Broker Client 65
7.9 Sending SPARQL Queries with the Domain Broker Client 66
7.10 Viewing the Framework Log with the Domain Broker Client 67

iii

List of Figures

iv

1 Introduction

1.1 Motivation

The World Wide Web of today is undergoing an extensive change. The former static web

evolves more and more from a medium mainly dealing with documents for people into another

kind of web. In this Semantic Web that is not a new one but an extension of the current

web, information is given a well-defined meaning . This enables machines to “understand” and

process the data stored in the Semantic Web and thus to provide behavior in form of portals

or Web Services.

Hence, the nodes inside the Semantic Web can not only be considered as static sources

for the storage of web pages anymore. They are rather autonomously evolving heterogeneous

information systems. For these data systems it is not sufficient to just act on their local

databases. The propagation of information requested from other information systems instead

is one central aspect of the Semantic Web.

As the Semantic Web is decentralized, the languages used by the (distributed) nodes are

heterogeneous. Since each node usually has its own local data sources, mostly portals are used

in the web of today to integrate the information that is isolated in different nodes. A traveler,

for example, could use a flight portal, where information about flights (companies, dates, prices,

etc.) is shown on a central web page, to choose cost optimal flights from different companies

for his journey.

The example above describes an extract of the real world, which could be part of the travel

domain. A domain consists of related issues in a specific area and usually consists of several

nodes. In the travel domain, a flight company, e.g., offers its flights on different airports. The

booking of a flight by a customer yields a debit of his bank account. This is where the travel

domain interferes with another application domain, i.e., the banking domain.

Such application domains could be distributed over several nodes in the Semantic Web. Each

of the nodes has its own data and thus a special behavior. The booking of the last available

seat of a flight, known from a local database update, could trigger different local inference rules

at the node, e.g., that seats in the fully booked airplane are not available anymore.

The information retrieval via manually programmed portals is very inflexible. To be able to

describe the evolution of and the reactive behavior in the Web, the Framework for Evolution and

Reactivity in the Semantic Web, described in [24] and [1], follows an ontology-based approach.

1

1 Introduction

The information as a knowledge base can be distributed over several nodes. As a Semantic Web

application, the framework allows for the propagation of knowledge and changes in a semantic

way. To incorporate the heterogeneity of the web, independent concepts and languages, such

as URI, XML, RDF, and OWL, are used for the definition of ontologies and the propagation

of information.

As a first step to achieve additional information from underlying concepts, inference rules

stored wrt. ontologies provide means for the conduction of automated reasoning. To bridge the

gap between reactivity on the one and the heterogeneity of languages in the web on the other

side, Event-Condition-Action (ECA) rules are used in the framework. These rules, comparable

to triggers known from databases, do not only formalize the behavior of a single node in the

framework, but they also enable the description of global, i.e., node-overlapping, application-

wide behavior. Furthermore, ECA rules take events into account and thus support the integra-

tion of dynamic behavior of a node or an application.

To achieve high flexibility, the framework is modularly composed. For example, the ECA

rules offer the usage of different languages in their components. This modularity also takes

the diverse abstraction levels existing in the Semantic Web into account and separates the

semantics of ECA rules from the semantics of the underlying events and actions (cf. [13]).

To manage the dynamic propagation and execution of events and actions respectively, this

thesis deals with the development of a Domain Broker as a mediator between different frame-

work components. Taking the existing infrastructure and architecture of the framework as a

basis, information retrieval is additionally handled by an implemented Query Broker. To pro-

vide a suitable test environment, an exemplary information system acting on a travel ontology

has been developed.

1.2 Structure of the Thesis

The thesis is structured as follows: In the next chapter, the basic terms and definitions that

come along with this thesis are explained. Different types of rules and their effects wrt. on-

tologies are described in Chapter 3. A general outline of the framework and a review about

framework specific rules as well as their rule markup are given in Chapter 4. Chapter 5 in-

troduces the Jena Semantic Web Framework and gives an impression of SPARQL. Afterwards,

Domain Brokering wrt. the Framework of Evolution and Reactivity in the Semantic Web is

explained. This includes the processes related to the brokering of events and actions just as

much as the handling of a query inside the Query Broker. The implementation of a the Do-

main Broker is described in Chapter 7. Finally, the thesis is concluded and the main topics

wrt. Domain Brokering are identified to be developed in the further implementation of the

framework.

2

2 Basics

This thesis is based on the Framework for Evolution and Reactivity in the Semantic Web that

has been introduced in [24]. It follows an ontology- and resources-based approach and provides

its reactive behavior by the use of Event-Condition-Action (ECA) rules.

In this chapter a basic view of principal concepts and languages is given. These are either

used in this thesis or during the development and implementation of a prototypical Domain

Broker for the Semantic Web.

2.1 Semantic Web

Today, the World Wide Web is a network of different information resources. The content,

usually marked up in HTML1, is kept in the nodes of this huge heterogeneous network. It was

designed almost solely for humans to read and understand. Through the increasing size of the

web combined with the availability of new technologies and applications, a strong need arises

for computer programs to access information “stored” in the World Wide Web (cf. [34]).

Computers shall get a reliable way to process the semantics of web content rather than fulfill

“just” routines like parsing or searching. This extension of the current web, which is not a

separate one, is called Semantic Web (see [4]). It can be seen as a web of data which relies on

common formats for interchange of data, not only documents (cf. [31]).

As the Framework for Evolution and Reactivity in the Semantic Web, which is a Semantic Web

application as well, follows an ontology-based approach, the notion ontology is explained next.

2.2 Ontology

The word ontology originally deals with a theory of being or existence. Thomas R. Gruber

defines an ontology as “an explicit specification of a conceptualization”[16].

In computer science, an ontology is a (shared) model of a domain used as knowledge repre-

sentation. It consists of a taxonomy which describes a class hierarchy. In addition, an ontology

does not only contain what notions are used, but also how they are named. Through these

1 Hypertext Markup Language, for details see [19].

3

2 Basics

URIs2 that connect notions and objects, resources can also be identified uniquely (see Sec-

tion 2.4). Moreover, an ontology defines all kinds of relationships between the notions of a

domain. This gives the notions a meaning which can then be used for reasoning purposes.

Additionally, ontologies might contain rules that are used for reasoning and allow for making

implicit knowledge explicit. For details see [2], [34] and [15].

To be able to describe an ontology with computer-processable instruments and to express

computer-understandable meaning, more technologies, for example, for knowledge representa-

tion, are needed. The concepts which are useful for this thesis are standardized by the W3C

[39] and will be introduced briefly in the next sections.

2.3 XML and Related Recommendations

XML. The Extensible Markup Language (XML) is a generic, very flexible but simple text

format which was derived from the SGML (for details see [14]) standard. By utilizing element

tags and attributes it is used for marking up semistructured data. It allows to add arbitrary

structure to a human- and machine-readable document. Therefore, XML can be used as data

exchange format.

Since XML is capable of defining the rules for such tree-structured documents, it is called

a meta language. For a concrete XML application, the structure of an XML document has to

be specified, i.e., which names and values of elements and attributes are allowed to appear in

which (nested) order.

This can be done in a Document Type Definition (DTD) or more restrictively by an XML

Schema Definition (see below). XML can either be used to store data in a well-defined format3

or to exchange data4. To give a very brief impression how XML could look like, consider the

following XML snippet:

<root-element>

<subelement-one attribute-one="attribute value " attribute-two="another value ">

element text

</subelement-one>

<subelement-two attribute="value ">

another element text

</subelement-two>

...

</root-element>

2 Uniform Resource Identifiers.
3 For example, serialized in files or databases.
4 For example, via HTTP over the web.

4

2.3 XML and Related Recommendations

For more information see [12] and [42].

XML Schema. XML Schema is a schema definition language expressed in XML (1.0) syntax.

It describes the structure of an XML document and provides means to constrain the content,

i.e., names and values of elements and attributes. A schema is an XML document itself and

supplies methods to define the structure, content, and semantics of XML documents in more

detail than a DTD does.5

A general XML document is mapped to a special application domain through the restriction

from its schema and thus the content of the XML document gets more semantics (cf. [43] and

[12]).

But the possibilities XML Schema offers wrt. semantics are still not sufficient for reasoning.

See [41], [5] or [43] for more details.

XSLT. The Extensible Stylesheet Language Transformations (XSLT) is one part of the XSL

family [46]. It allows for the transformation of one XML source document into a result docu-

ment6.

The transformation of elements is rule-based and applied recursively. It combines declarative

and functional aspects and uses XPath (see below) as addressing language. In [21], [36] and

[47] more information can be found.

XPath. The XML Path Language (XPath) is a language applied to XML documents in order

to access (as a small query language) and adress individual elements, attributes, or sets of

them. The syntax of an XPath expression is abutted to the Unix directory notation.

For navigating from one node to another, each navigation step consists of an axis specifier,

a node test, and a predicate. XPath is a basic technology for other standards, e.g., XSLT or

XQuery (see below). For detailed information see [44].

XQuery. The XML Query Language (XQuery) is, as the name already implies, a query lan-

guage to query XML data. It has an SQL-like syntax but also provides programming language

features like variable binding and is, different from SQL, orthogonal.

XQuery uses XPath as addressing language.7 The development of XQuery has been influ-

enced by languages like XQL, XML-QL, OQL, XPath, and SQL. Detailed information can be

found at [45].

5 It allows, e.g., the definition of complex types.
6 Note that the structure of the result can completely differ from the source structure and is not necessarily in

XML format.
7 Note that XPath is a subset of XQuery.

5

2 Basics

Since issues that could be described with the languages introduced above are not necessarily

combined in one single document, URIs are needed to identify resources.

2.4 URI

Uniform Resource Identifiers (URIs)8 are attached a great importance in the Semantic Web

(see Section 2.5). A URI is a character string that identifies uniquely physical or abstract

resources.9 These resources can be in the scope of the Internet, e.g., web pages, but also

outside of machine reachability, like real world persons. The very generic structure of a URI

looks like <scheme>:<scheme specific part>.

There are different types of URIs such as Uniform Resource Locators (URLs), Uniform Re-

source Names (URN), etc. With URLs a resource is identified via its primary access mechanism,

i.e., through its location (e.g., http or ftp), while URNs identify resources through their names

or namespaces (urn:isbn for example), regardless of its location.10 More information can be

found in [38].

As RDF, RDF Schema, and OWL add semantics to computer-processable data by using the

concepts described above, these languages will be introduced in the following sections.

2.5 RDF and RDF Schema

In literature, it is often distinguished between the data level and the information or knowledge

level. The concepts introduced by now, mainly XML and XML Schema, operate on the data

level and do not provide additional information or support reasoning (cf. [13]). Therefore, more

expressive languages are needed which are described below.

RDF. The Resource Description Framework (RDF) has been developed by the W3C to encode

metadata. It can be used to describe any kind of resource. These resources can be accessed

and uniquely identified through a URI (cf. Section 2.4). This allows for the distribution of a

resource’s description over different nodes, e.g., somewhere in the web. RDF can be represented

in many ways, e.g., with a graph, with triples, or in an XML markup called RDF/XML [29].

RDF mainly distinguishes between three components:

• Resource: Resources can be any type of data which is identified by a URI and described

by RDF expressions.

8 Originally called Universal Resource Identifier.
9 An identical URI used in different documents expresses that the same resource is meant.

10 Thus, a URN is a URI with the scheme urn.

6

2.5 RDF and RDF Schema

• Property: A property defines a special aspect of a resource.

• Statement: A statement assigns a value to a property of a specific resource. A statement,

also called triple in RDF terminology, has three components:

– a subject which is a resource,

– a predicate which is a property of the resource,

– and an object which is the value of the property. This can, e.g., be a text literal or

another resource.

To get a view what RDF basically looks like, consider the following example11 which describes

some book with any title written by some author. The first description uses the N-Triple

notation12:

<http://someurl/little-rdf-book/> <http://purl.org/dc/elements/1.1/creator> “John Doe” .
<http://someurl/little-rdf-book/> <http://purl.org/dc/elements/1.1/title> “John Doe’s Little RDF Book” .

The example above can also be expressed in RDF/XML and would lead to the same RDF

graph:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://someurl/little-rdf-book/">

<dc:creator>John Doe</dc:creator>

<dc:title>John Doe’s Little RDF Book</dc:title>

</rdf:RDF>

Thus, RDF can be used to assign responsibilities to resources via properties, for example, a

domain could be allocated to a domain broker. To get more information about RDF, have a

look at [7], [15], [2] and [27].

RDF Schema. The RDF Vocabulary Description Language, RDF Schema (RDFS), adds se-

mantics to an RDF data model by defining its vocabulary. It is similar to XML and XML

Schema, for it transfers a general RDF concept to a specific application domain. Written in

RDF, the schema description provides possibilities to characterize groups of related resources

and their relationships. Moreover, it allows for inference with the use of metadata. For more

information see [12] and [28].

11 The example uses Dublin Core [10].
12 N-Triples are a fixed subset of the N3-Notation. See [3] resp. [25] for detailed information.

7

2 Basics

To offer more possibilities to represent machine-interpretable content and to have more facilities

to express meanings, the Web Ontology Language that is based on above described concepts,

such as XML, RDF , and RDF Schema, is introduced in the next section.

2.6 OWL

The Web Ontology Language (OWL) is a language to define, publish and distribute ontologies.

It is technically based on the RDF syntax, but goes beyond it in its ability to add semantics

to the machine-processable and understandable content.

OWL is more powerful in expressing meaning and semantics than XML, RDF, and RDFS.

For example, OWL extends RDFS and adds more vocabularies to describe classes, their rela-

tionships and properties, e.g., of a domain in the Semantic Web.

Furthermore it permits reasoning over data expressed in OWL. The Web Ontology Language

is derived from the DAML+OIL Web Ontology Language [8] and is divided in layers: OWL

Lite, OWL DL13, and OWL Full. Together with RDF it forms the basis of the Semantic Web.

For more information see [15] and [26].

By now, only information explicitly stated in a data model or an ontology can be extracted.

To be able to gain also implicitly stored knowledge, rules are needed. This will be the focus in

the next chapter.

13 Description Logic

8

3 Rules

In this chapter it is described how rules can be used to get infered information from an ontology.

Afterwards different types of rules will be illustrated.

3.1 Rules and Ontologies

To get more information from an ontology than it explicitly contains, rules can be used. With

their help, implicit knowledge can be extracted, e.g., to get inferred models. To achieve this,

the rules have to be deposited inside an ontology and proofed against it.

The following example forms a basis for the samples given in the following sections. It serves

as a foundation the later defined rules are applied to.

Example 3.1 Consider the following RDF statements that could be part of a travel ontology.

It represents different sections of a train schedule:

<travel:Section rdf:about="#Hamburg-Bremen">

<travel:from rdf:resource="#Hamburg"/>

<travel:to rdf:resource="#Bremen"/>

</travel:Section>

<travel:Section rdf:about="#Bremen-Oldenburg">

<travel:from rdf:resource="#Bremen"/>

<travel:to rdf:resource="#Oldenburg"/>

</travel:Section>

<travel:Section rdf:about="#Oldenburg-Osnabrück">

<travel:from rdf:resource="#Oldenburg"/>

<travel:to rdf:resource="#Osnabrück"/>

</travel:Section>

<travel:Section rdf:about="#Osnabrück-Hannover">

<travel:from rdf:resource="#Osnabrück"/>

<travel:to rdf:resource="#Hannover"/>

</travel:Section>

9

3 Rules

3.2 Types

There are several types of rules. On the one hand there are rules that describe a domain. They

have to be validated wrt. the domain to prove their correctness. This kind of rules specifies the

relationship between objects, events and actions of the ontology.

On the other hand rules can also specify the behavior of an application, e.g., business rules.

The change of such rules results in a different behavior of the application (cf. [1]).

In the next sections, different types of rules which are able to specify a domain and the behavior

of an application will be explained.

3.2.1 Deductive Rules

General rules consist of several components. Deductive rules14 known from logical languages

like Prolog (see [37]) or Datalog (see [22]) contain a rule head and a rule body.

The knowledge base in logical languages consists of a set of facts (predicates) and rules.15 To

allow for the deduction of new facts, logical statements of the form head :- body are specified.

If the rule body is valid, this directly implies the validity of the head. The :- can be read as

“if”. Thus, C :- A,B can be read as “C is true if A and B are true”. The “,” between A and

B in the rule body could have also been written as A & B (cf. [37]).

Example 3.2 To express the sections16 mentioned in Example 3.1 in a logical programming

way, the following facts are used:

section(’Hamburg’, ’Bremen’).

section(’Bremen’, ’Oldenburg’).

section(’Oldenburg’, ’Osnabrück’).

section(’Osnabrück’, ’Hannover’).

The following rules use (free) variables17 to express that in the simplest case X is connected

with Y if X is linked by a section (train route) to Y. The second rule states a connection between

X and Z if a section between X and Y exists and also Y and Z are connected. The second rule

formulates the transitive closure (transitivity) of a connection.

14 Deductive rules are also called derivation rules.
15 Because this thesis does not mainly deal with rules, it is assumed that basic notions related to rules, such as

predicates or (free) variables, are known to the reader. Detailed explanations as well as information about
syntax can be found at [37] or [22].

16 Note that a section from A to B is not the same as a section from B to A.
17 Variables are written in capital letters, whereas predicate symbols, constants and function symbols begin with

lower case letters.

10

3.2 Types

connection(X,Y) :- section(X,Y).

connection(X,Z) :- section(X,Y), connection(Y,Z).

Now it is possible to query the database to get all connections from X to Y:

?- connection(X,Y).

This would lead to the following variable bindings in the rule body for the first rule

X → “Hamburg”, Y → “Bremen” and

X → “Bremen”, Y → “Oldenburg” and

X → “Oldenburg”, Y → “Osnabrück” and

X → “Osnabrück”, Y → “Hannover”

and

X → “Hamburg”, Y → “Bremen”, Z → “Oldenburg” and

X → “Hamburg”, Y → “Bremen”, Z → “Osnabrück” and

X → “Hamburg”, Y → “Bremen”, Z → “Hannover” and

X → “Bremen”, Y → “Oldenburg”, Z → “Osnabrück” and

X → “Bremen”, Y → “Oldenburg”, Z → “Hannover” and

X → “Oldenburg”, Y → “Osnabrück”, Z → “Hannover”

for the second rule. They are now used in the head to derive the facts

connection(’Hamburg’, ’Bremen’).

connection(’Hamburg’, ’Oldenburg’).

connection(’Hamburg’, ’Osnabrück’).

connection(’Hamburg’, ’Hannover’).

connection(’Bremen’, ’Oldenburg’).

connection(’Bremen’, ’Osnabrück’).

connection(’Bremen’, ’Hannover’).

connection(’Oldenburg’, ’Osnabrück’).

connection(’Oldenburg’, ’Hannover’).

connection(’Osnabrück’, ’Hannover’).

which leads to the result of the query:

X → “Hamburg”, Y → “Bremen” and

X → “Hamburg”, Y → “Oldenburg” and

X → “Hamburg”, Y → “Osnabrück” and

X → “Hamburg”, Y → “Hannover” and

X → “Bremen”, Y → “Oldenburg” and

11

3 Rules

X → “Bremen”, Y → “Osnabrück” and

X → “Bremen”, Y → “Hannover” and

X → “Oldenburg”, Y → “Osnabrück” and

X → “Oldenburg”, Y → “Hannover” and

X → “Osnabrück”, Y → “Hannover” .

Until now, no impulse, i.e., an event from the “outside world” has been needed to extract new

information with the help of rules. Just a condition, in form of the rule body, has to be fulfilled

to provoke an action that is in this case the derivation of the rule head. Hence, the inferred

information can be seen as static because it was derived from static facts.

Thus, by now reasoning is just possible with static rules which belong to the ontology. But

this is not sufficient for the Semantic Web which also needs the application of active rules.

To integrate also dynamic aspects, another kind of rules must be taken into consideration

which is described now.

3.2.2 ECA Rules

As mentioned earlier, the Semantic Web consists of many (autonomous) nodes. Each of them

has a local state of facts, metadata, and optionally a knowledge base. Again optional, behavior

can be described in a node through ECA (Event-Condition-Action) rules. ECA rules will fire

an action provoked by an event if a certain condition is fulfilled (cf. [24]).

ECA rules show a similarity to triggers known from databases. From an external point of

view they can be formulated as “when something happens and some conditions are fulfilled

then something has to be done”. The semantics of ECA rules can be generalized as

ON event AND additional knowledge IF condition DO something.

Such active rules permit to control an application’s behavior. These very abstract ECA rules

are called ECA-Business rules.

ECA rules in contrast to deductive rules also take events into account (cf. [1]). To integrate

dynamic behavior in form of ECA rules, a framework is needed. This framework will be

introduced in the next chapter.

12

4 A General Framework for Evolution and Reactivity in

the Semantic Web

The Web of today does not only consist of browsing-oriented documents but also of nodes

which, in general, provide a behavior, often summarized as Web Services (see [22]). Fixed sets

of autonomous information systems are integrated through portals usually by “hard coded”

services. This problem of the data and semantic heterogeneity shall be bridged by the Semantic

Web. The basis of this thesis is a framework which deals with evolution and reactivity in the

Semantic Web. It was introduced in [24]. After the general description of the framework and

domain ontologies, framework specific rules and their corresponding markup are explained.

4.1 General Architecture

As mentioned above, the Semantic Web consists of many heterogeneous nodes. Hence, it is not

surprising that the Framework for Reasoning and Evolution in the Semantic Web is employed

in a distributed environment as well. It has to be taken care of a multitude of resources in form

of application nodes in different domains wrt. different ontologies.

Domains and the different languages appearing in the Semantic Web are identified by their

URIs (see Section 2.4). They are resources like every object that is integrated in the framework.

Thus, the framework is resource-based.

As the nodes inside the Semantic Web are heterogeneous, different languages appear in

the framework, too. The implementation of each language is done by a Web Service that is

associated with the language (cf. [1]).

The architecture of the framework is illustrated in Figure 4.118. The following example (adapted

from [30]) describes the coherences depicted in this figure and is based on a use case of the

travel domain.

Example 4.1 Imagine a client C, in this case a travel agency, wants to be informed via email

about events (canceled flights) from the travel domain in order to inform its staff to book a

hotel room for the customer and to reschedule the next flight on the journey.

18 Note that Figure 4.1 gives an abstract overview of the architecture of the framework and does not show every
aspect as, for example, the handling of queries stated against the Domain Broker.

13

4 A General Framework for Evolution and Reactivity in the Semantic Web

Event
Detection S
snoop:

Atomic Event
Matcher A
match:

ECA
Engine R
eca:

Action
Engine
ccs:

Domain
Broker
travel:

SMTP Mail
Service
smtp:

Lufthansa
travel:

SNCF
travel:

Client C:
Travel
Agency
travel:

1.1: register
rule
eca: travel:
match: snoop:
ccs: smtp:

1.2: register event
travel: match: snoop:

1.3: atomic
event patterns
match: travel:

1.4:
register me
travel:

2.1a:
atomic
events
travel:

2.1b:
atomic
events
travel:

2.2:
atomic events
travel:

3: detected
parameters

4: detected
parameters

5.1: action
ccs: travel: smtp:

5.2a: atomic
actions
travel:

5.2b: atomic
actions
smtp:

5.3b:
message
(here: flight-
canceled)

by url

L
an

gu
ag

e
S
er

v
ic

es
A

p
p
li
ca

ti
on

D
om

ai
n

5.3a:
LH
booking
travel:

Figure 4.1: General Framework Architecture (adapted from [13])

Therefore, the agency registers a rule that contains a composite event at the ECA engine R

(1.1). This composite event is composed of a flight-booked event that covers the name and the

email address of the passenger, the flight number and the flight date. A flight-canceled event

terminates the event composition which is given in SNOOP [6].

Because the ECA engine is not responsible for the detection of (composite) events, it registers

the event component after analyzing the rule at an appropriate Event Detection Service S (1.2)

that is able to detect composite events specified in SNOOP. The SNOOP service S then submits

the atomic event patterns at an adequate Atomic Event Matcher (AEM) A (1.3).

To be able to detect the occurrence of the relevant events, the requirements of the events are

defined by Atomic Event Specifications (AESs). AESs are the simplest kind of event components

and thus they can be seen as the leaves of an event component. An AES specifies on which events

a reaction has to be taken. Hence, the AES for an event in this example contains the name

of the event (canceled-flight) and its parameters. The formalisms to detect the relevant events

are implemented by an AEM.19

19 Cf. [1].

14

4.1 General Architecture

The AEM, in turn, registers at a dedicated Event Broker of the travel domain (1.4) since

the atomic events are part of the travel domain. The Event Broker is managed by a Domain

Broker (shown in Figure 4.1) that consists of an Event-, Action-, and Query Broker20.

This is just one possible solution how the Event Detection Engine becomes aware of all rele-

vant atomic events. Before an Event Broker has been implemented during this thesis, the clients

had to find out about relevant events themselves.21 In case an event occured, clients forwarded

the events to the rule evaluation service. Afterwards, this service forwarded the event to all

common event detection engines.

The Event Broker serves as a mediator for the distribution of events of a specific domain.

Atomic events are produced inside an application at nodes somewhere in the sphere of the

framework. A node which produces atomic events of the travel domain, e.g., the Lufthansa or

SNCF, has to identify the responsible Event Broker22 for the domain and send the events to

the broker (2.1a and 2.1b respectively). The task of the Event Broker is now to forward the

received event to the registered AEM A (2.2).

A informs the Event Detection in case the event matches the registered patterns (3). If the

former registered composite event is detected by the Event Detection, R will be notified (4). The

ECA engine then evaluates the appropriate rules and triggers, for example, the processing of

the action part of the rule registered in step 1.1.

The basic procedure of an action processing is the same as for events (cf. [13]). Therefore,

consider an extension of the rule described at the beginning of the example that in case of a flight

cancellation automatically a new flight on the next day is booked (additionally to the sending of

an email to the travel agency). At an appropriate action language service (here: CCS (Calculus

of Communication Systems)), the action component is submitted (5.1). The Action Engine, in

return, looks up the responsible Action Broker for the domain (travel in this case) and forwards

the atomic actions to the Action Broker, managed by the superior Domain Broker (5.2a). The

Action Broker disposes the execution of the action (the booking of a new flight on the next

day) at the appropriate domain nodes (5.3a). If the registered rule (1.1) contains a notification

request (sending of an email in this case) from Client C, the Action Engine also will send the

action to a domain-independent service (5.2b), here an SMTP Mail Service, which, in turn,

sends a message to the Client C (5.3b).

As described in Example 4.1, client nodes inside the Semantic Web, e.g., a travel agency, want

to be informed about special events and react on them. Events are generated by other nodes

somewhere in the web. To specify the behavior of the reactions, clients register their rules

20 The Query Broker will not explicitly be mentioned in this example.
21 This solution is not shown in Figure 4.1.
22 The Event Broker is supervised by a Domain Broker.

15

4 A General Framework for Evolution and Reactivity in the Semantic Web

locally or remotely. Remote rules are evaluated by an evaluation service, namely an ECA

engine. These engines can be interpreted as main objects for the reactive behavior in the

framework.

An event can trigger, for example, the evaluation and execution of ECA rules which are

handled by ECA engines. The propagation of events is done by Event Brokers that receive

registrations for events of a certain domain and event type. A registration that is sent to an

Event Broker basically looks as follows:

<register>

<reply-to>URL where the events shall be forwarded to</reply-to>

<domain>domain-URI</domain>

<event-type>event type</event-type>

</register>

Incoming events are forwarded wrt. the obtained registrations by the Event Broker of the

domain. The events as well as the actions have to be instantiated at appropriate services, e.g.,

at a CCS engine or at a domain node in order to be processed correctly by the relevant brokers.

To react on events, (some) nodes must be able to execute actions. Hence, Action Brokers

are informed by certain nodes that an action has to be performed. For example, an airport

operating company could decide to cancel a flight due to weather conditions. Then the Action

Broker has to find out where23 the action has to be executed.

Beside the propagation of events and the execution of actions, the retrieval of information

is another important service of the framework. To offer a wide functionality to the clients, it

must be possible to state queries against the nodes integrated in the framework. A hotel, for

example, may be asked by a customer to rent a high class car for an excursion. Therefore, the

hotel wants to know which nearby car rental company provides these cars and at what price

they are offered. Requests like these are processed by Query Brokers. They have to decompose

the request, check which concepts and nodes are relevant, integrate the collected data, state

the query, and finally send the result back to the asking node.

To be able to provide the services described above, the framework follows an ontology-based

approach. How the ontologies of specific domains are structured is subject of the next section.

4.2 Modeling of Domain Ontologies

A domain ontology describes all objects and their relationships of a specific domain. A complete

domain ontology does not only contain static issues, but also the dynamic aspects of the domain.

23 For example, at the affected flight company.

16

4.2 Modeling of Domain Ontologies

The resources in a Semantic Web environment build the static part of the domain ontology,

while, e.g., events and actions represent dynamic issues. Furthermore, a domain ontology can

be classified by answering the question if a domain ontology depends on an application or not.

Application domain ontologies describe all static and dynamic aspects that are related di-

rectly with the application. For example, an ontology of a travel domain characterizes resources

like railway or flight companies with their associated schedules. The dynamic part could contain

events like train-delayed or flight-half-booked, whereas cancel-flight stands for an action.

In contrast to the just presented ontologies, application-independent domain ontologies talk

about an application (see Figure 4.2). They make a generic infrastructure available by providing

services like transactions, messaging, or calendars. Application-independent domains contain

also static and dynamic notions and can be combined with arbitrary application domains. An

example of an application-independent domain ontology is a calendar. It can be seen as a class

of service that defines, e.g., a year as a resource and can also provide first day of year as an

event.

A complete ontology in the Semantic Web combines these different types of ontologies. Note

that in a Semantic Web application often several domains interfere with each other, e.g., travel

and banking.24 Figure 4.2 illustrates the relationship between the components of an ontology

and the interaction between the different types of ontologies.

Ontologies of Application-Independent Domains:
communication/messages, transactions, etc.

Named Events Literals Named Actions

Application-Domain Ontology

Named Events Literals Named Actions

talk about

Figure 4.2: Kinds and Components of Ontologies (from [13])

As seen in Figure 4.2, a domain ontology contains literal notions, named events and named

actions. Events and actions can be structured comparable to a class hierarchy. A metadomain

contains notions that define and structure a domain ontology. This metadomain is associated

24 Flight tickets are booked at a travel agency which is part of the travel domain, but the clearing takes places
at a node belonging to the banking domain.

17

4 A General Framework for Evolution and Reactivity in the Semantic Web

with the world namespace that is connected to the URL

http://www.semwebtech.org/domains/2006/world. The metadomain might, for example, contain

the following definitions:

<world:Domain, rdf:type, owl:Class>

<world:Event, rdf:type, owl:Class>

<world:Action, rdf:type, owl:Class>

In the framework, each domain, e.g., the travel domain, is usually associated with an URL,

where descriptions of the special domain can be found. This referenced document contains the

RDF/RDFS and OWL expressions that define the domain ontology itself. The travel domain

contains, among others, the following definitions (cf. [13]):

<travel:, rdf:type, world:Domain>

<travel:airline, rdfs:subClassOf, world:Domain-Service>

<travel:flight-event, rdfs:subClassOf, world:Event>

<travel:car-rental, rdfs:subClassOf, world:Domain-Service>

<travel:cancellation, rdf:type, world:Event>

<travel:canceled-flight, rdf:type, world:Event>

<travel:canceled-flight, rdfs:subClassOf, travel:cancellation>

<travel:canceled-flight, rdfs:subClassOf, world:Event>

<travel:cancel-flight, rdf:type, world:Action>

<travel:delay-flight, rdf:type, world:Action>

<travel:fully-booked, rdf:type, world:Event>

<travel:half-booked, rdf:type, world:Event>

<travel:booking, rdf:type, world:Event>

Besides events and actions, an ontology contains different kinds of rules which define the be-

havior of an application. These will be explained in the following sections.

4.3 Rules in Ontologies

In ontologies occur different types of rules, namely:

• logical derivation rules that derive property instances or concept memberships,

• Event-Condition-Event (ECE) rules which infer composite events from simpler ones, and

• Action-Condition-Action (ACA) rules that map high-level actions to simpler ones.

18

4.4 ECA Rules

Some rules directly belong to an ontology while others are connected to certain services. Figure

4.3 shows types of rules that belong to an ontology.

Application-Domain Ontology

Named Events Literals Named Actions

Derivation

ECE Deriv. ACA Mapping

Figure 4.3: Derivation and Mapping Rules for Events, Literals and Actions (from [13])

Usually, ECE rules derive composite events from other events while ACA rules define complex

(e.g., composite) actions which are built upon other actions (e.g., simpler or lower-level actions).

Since ECE and ACA rules are special kinds of ECA rules, the latter are explained more detailed

in the next section.

4.4 ECA Rules

The Framework for Evolution and Reactivity in the Semantic Web follows an ECA-based

approach, i.e., ECA rules implement the behavior of an application and in the next step the

underlying ontologies will be extended to act as a base for reasoning (cf. [1]).

Different languages may occur in the rule components to support the heterogeneity of nodes in

the Semantic Web. These rule components are, in turn, handled by different nodes. Therefore,

the framework provides the ability to use diverse languages in the components.

Component Languages in ECA Rules. Prolog and Datalog are rule-based languages. The

expressions of their head and body are both written in the same language. This is not the case

for ECA rules required in the framework (cf. [24]). As the structure is distributed over many

different nodes in the Semantic Web, different languages in the components of a rule have to

be taken into account to realize interoperability between the nodes. Therefore, every rule uses

an event language, one or more query languages, one test language, and one or more action

languages in its components (cf. [30]):

• Event Language: The language used in the event component has to support the detection

of events. Atomic events are given as an XML fragment, thus, the applied language must

19

4 A General Framework for Evolution and Reactivity in the Semantic Web

be able to deal with the content and the structure of such an XML document. XPath

matches the demanded conditions. SNOOP can be used to handle composite events,

which are built by several atomic events.

• Query Language: Query languages must provide the functionality to deal with sets of

data items which can also be bound to variables. Logic and functional languages offer

this functionality. XQuery provides this functional property, too.

• Test Language: Expressions of test languages must result in a logical truth value, i.e.,

false or true. Results of functional languages (including XPath and XQuery) can be

interpreted as such.

• Action Language: In the action component it is expressed what actually has to be done.

Here, arbitrary languages, like “classical” programming languages (Java,...) or algebraic

languages (as process algebras), can be used. The use of Web Services via HTTP requests

is also possible.

Used on different levels, such user-defined, “actual” rules act on events and are responsible for

the behavior of the application. ECA rules are used internally for the detection of events of

the respective level (see [1]).

Since ECE and ACA rules are special types of ECA rules, their implementation is based on

ECA rules. They also use (different) languages in their components. As a characteristic, the

condition component is not only used as a test, but also as query part, e.g., for the extension

of variable bindings (cf. [13]). These specific ECA rules are described in detail below.

4.4.1 ECE Rules

Event-Condition-Event (ECE) rules infer an (composite) event from other events. Thus, the

action consists of raising another event. For example, the event hotel booked up on 31.12.2006

could be derived from book room xy on 31.12.2006 if room xy was the last available room on

that date.

ECE rules can be classified in the following way (cf. [1]):

• horizontal ECE rules: The high-level event is derived under certain conditions from an-

other event on the same abstraction level. These events are logically related and a change

of the events would affect the behavior of the application and invalidate it wrt. its ontol-

ogy.

20

4.4 ECA Rules

• upward vertical ECE rules: These rules are evoked by changes in the underlying database.

Here, the events are not logically connected but related through the physical implemen-

tation of the application. An example could be the change of a flight’s arrival time in a

database which results in a delayed flight. The change of such rules will again invalidate

the application wrt. its ontology.

4.4.2 ACA Rules

An Action-Condition-Action (ACA) rule maps higher-level actions to lower-level or simpler

actions. These rules are needed because the direct execution of abstract rules is often not

possible. This kind of rules is called reduction rules because they reduce abstract actions to

simpler levels, e.g., in the same application domain or to its components on a lower level.

ACA rules can be divided as follows (cf. [1]):

• Horizontal reduction ACA rules are described by their components which are in terms of

the application, i.e., on the same abstraction level. For example, the transfer of money

from a bank account to another is split up into the debit of money from one account and

the deposition to another bank account.

• Vertical reduction ACA rules reduce one higher level action into lower ones, for example,

the deposition of money from a bank account is broken down into reading the amount of

money, adding the deposition value, and writing the new value.

• Horizontal non-reduction ACA rules use the concept of rule chaining. An action that is

not mapped to other actions and thus has to be executed as it is, is seen as an event. This

yields the triggering of another action. This kind of rules is more related to ECA rules.

A change of this rule would change the behavior of an application, but not invalidate it.

To clarify the partitioning in a nutshell, transfer 500 Euro from account A to B by debit 500

Euro from account A and deposit 500 Euro to account B is an example for the first type of ACA

rules (i.e., horizontal reduction ACA rules), whereas debit 500 Euro from account A yields read

value from account A, subtract 500, and write the new value back is an example for a vertical

reduction ACA rule.

To operate the rules in a distributed environment, a uniform markup is needed which is ex-

plained in the next section.

21

4 A General Framework for Evolution and Reactivity in the Semantic Web

4.5 Rule Markup

In order to use rules in a heterogeneous and dynamic environment, their markup has to be

general and independent from certain languages. Different kinds of markups are introduced

below.

4.5.1 Logical Derivation Rules

Logical derivation rules or deductive rules are used wrt. an ontology. The very generic XML

based markup follows the RuleML proposal described in [17]. The basic structure is shown

below:

<ruleml:imp annotation="rule-specific annotation ">

<!-- there may be several head elements for the derivation of new facts -->

<ruleml:head>head specification</ruleml:head>

<!-- there may be several body elements -->

<ruleml:body>body specification</ruleml:body>

</ruleml:imp>

4.5.2 ECA Rules

An XML based markup language, called ECA-ML and described in [23], is used in the frame-

work to define ECA rules. The basic markup has the following form (cf. [30]):

<eca:rule rule-specific attributes>

rule-specific content, for example, declaration of logical variables

<eca:event identification of the language>

event specification, probably binding variables

</eca:event>

<!-- there may be several queries -->

<eca:query identification of the language>

query specification, using variables, binding others

</eca:query>

<eca:test identification of the language>

condition specification, using variables

</eca:test>

<!-- there may be several actions -->

<eca:action identification of the language>

action specification, using variables, probably binding local variables

</eca:action>

</eca:rule>

22

4.5 Rule Markup

The event specification enveloped in <eca:event> also contains the atomic event specifications

(AESs) in an appropriate format, e.g., in XML-QL Style Matching or based on the SNOOP

algebra (cf. [1]). Comparable to events, the atomic action specifications (AASs) are enclosed

in the (action specification) expressions inside the <eca:action> element.25

To clarify what a concrete ECA rule looks like, the rule verbally described at the beginning

of Example 4.1 is shown below:

<eca:rule xmlns:eca="http://www.semwebtech.org/eca/2006/eca-ml"

xmlns:snoopy="http://www.semwebtech.org/eca/2006/snoopy"

xmlns:travel="http://www.semwebtech.org/domains/2006/travel"

xmlns:mail="...">

<eca:event>

<snoopy:sequence>

<travel:book-flight date="{$date}" flight="{$flight}" name="{$name}"

email="{$travel-agency}"/>

<travel:canceled-flight date="{$date}" flight="{$flight}"/>

</snoopy:sequence>

</eca:event>

<eca:action>

<eca:input-variable name="travel-agency" use="$travel-agency"/>

<eca:input-variable name="flight" use="$flight"/>

<mail:send-message to="$travel-agency">

we are very sorry ... but the flight $flight had to be canceled

</mail:send-message>

</eca:action>

</eca:rule>

ECE Rules inside Ontologies. ECE rules are special types of ECA rules (cf. Section 4.3). The

action part of the ECA rule here is the raise of a new (derived) event. The markup for ECE

rules basically looks as follows (cf. [13]):

<world:definition annotation="rule-specific annotation ">

<world:defined syntax="xml">

<!-- pattern of the event to be derived -->

pattern of the derived event, marked up in XML

</world:defined>

<world:defined-as syntax="xml">

<!-- event components -->

event pattern, marked up in XML

<!-- test component -->

25 Since the languages for specifying atomic events or actions do not belong to the topic of this thesis, these are
not discussed in detail here. For further information see [1].

23

4 A General Framework for Evolution and Reactivity in the Semantic Web

test pattern, marked up in XML, can contain opaque expressions

</world:defined-as>

</world:definition>

ACA Rules inside Ontologies. Analogously to ECE rules, in this case the event part of an

ACA rule consists of an action. This more complex, abstract action can be broken down into

simpler named actions which are still abstract or into local implementations of named actions.

Below, the structure of ACA rules is shown (cf. [13]):

<world:definition annotation="rule-specific annotation ">

<world:defined syntax="xml">

<!-- pattern of the abstract action -->

pattern of the abstract action to be broken down, marked up in XML

</world:defined>

<world:defined-as syntax="xml">

<!-- test component -->

test pattern, marked up in XML, can contain opaque expressions

<!-- action components -->

action patterns to which the abstract action is broken down, marked up in XML

</world:defined-as>

</world:definition>

ECE and ACA Rules for Framework Exchange. To be able to operate ECE and ACA rules

inside the framework, the rule definitions have to be converted into a framework-known format

that can be handled by a dedicated engine, e.g., an ECA engine26. The structure for ECE rules

was briefly introduced in [13] and is shown below:

<eca:rule>

contents of the body of the ECE rule definition; i.e. the triggering event

description and the condition

<eca:action>

<eca:raise-event>

head of the ECE rule; i.e. the derived event specification

</eca:raise-event>

</eca:action>

</eca:rule>

ACA rules have also to be transformed into a format that framework-aware engines can deal

with. Therefore, a structure was described in [13] that looks as follows:

26 Note that the responsible engine has to be extended to be able to handle the below presented rule formats.

24

4.6 Communication Markup

<eca:aca-rule>

variable declarations

<eca:define-action>

head of the ACA rule, i.e. the abstract action specification

</eca:define-action>

<!-- there may be no, one or more queries -->

<eca:query>

query specifications, using variables, binding others

</eca:query>

<!-- there may be no or one test -->

<eca:test>

condition specifications, using variables

</eca:test>

<!-- there may be several actions -->

<eca:action>

action specification to which the abstract action is broken down

</eca:action>

</eca:aca-rule>

Besides rules, also other information types have to be exchanged inside the framework. For

example, the result of a SPARQL query that was stated against a Query Broker (cf. Section 6.3).

Therefore, the framework-wide communication format for variable exchange is introduced in

the next section.

4.6 Communication Markup

Before the framework-wide representation for variable bindings will be described, different kinds

of information interchange, based on logical variables, are introduced first.

Downward Communication. In case of a rule registration, the event component is communi-

cated to an appropriate event detection engine (cf. Example 4.1 and Section 4.5.2 for the rule

instance). Moreover, if variables are already bound, they can also be contained in the message

sent to the event detection service. If an event occurs that is sought-after, then queries, tests,

and actions will result in certain variable bindings due to rule evaluation. These bindings have

to be published to other services as well (cf. [13]).

Upward Communication. As part of upward communication, the results and variable bindings

of evaluation services have to be returned. These can, for example, be sets of data items as

result of queries (cf. [1]).

25

4 A General Framework for Evolution and Reactivity in the Semantic Web

As also events and actions have to be interchanged as fragments, great importance is ascribed

to the Domain Broker (cf. Chapter 6) .

To be able to interchange variable bindings within the framework, a unique communication

format, described in [13], is used. Its basic structure is illustrated below27:

<!ELEMENT answers (answer*)>

<!ELEMENT answer (result|variable-bindings|(result,variable-bindings))>

<!ELEMENT result ANY>

<!ELEMENT variable-bindings (tuple+)>

<!ELEMENT tuple (variable+)>

<!ELEMENT variable ANY>

<!ATTLIST variable name CDATA #REQUIRED

ref URI #IMPLIED> <!-- variable has either ref or content-->

<logic:answers>

<logic:answer>

<logic:result>

any result structure

</logic:result>

<logic:variable-bindings>

<logic:tuple>

<logic:variable name="name" ref="URI"/>

<logic:variable name="name">

any value

</logic:variable>

:

</logic:tuple>

</logic:variable-bindings>

</logic:answer>

<logic:answer>

:

</logic:answer>

</logic:answers>

Even if a unique communication format is used to interact consistently among the nodes that

act inside the framework, it should not be ignored that nodes in the Semantic Web use different

languages. Hence, a Semantic Web application has to take the heterogeneity of its participants

into account. As mentioned in Section 4.4, the Framework for Evolution and Reactivity in the

Semantic Web allows for the use of different languages by using opaque expressions. These are

described in the following section.

27 The namespace of logic references to http://www.semwebtech.org/lang/2006/logic .

26

4.7 Opaque Expressions

4.7 Opaque Expressions

As many different nodes act inside the framework, not every service is framework-aware and

accordingly marked up in XML. Therefore, means have to be provided to offer the integration

of these nodes.

With opaque expressions, services that are framework-unaware and/or not marked up in

XML can be embedded into the framework. Opaque expressions can, e.g., occur in queries sent

to a query engine managed by a Domain Broker (see Section 6.3). To use opaque languages in

ECA rules, the framework-unaware language has to be embedded as follows:

<opaque lang="language specification">

opaque code

</opaque>

To detect which services are offered inside the framework and to identify to which languages

the services are connected to, Language and Service Registries are needed.

4.8 Language and Service Registries

Language and Service Registries (LSR)28 implement the identification of appropriate services,

i.e., who offers which service. They can be offered by every node inside the Semantic Web. A

central LSR is not provided by the ECA framework. Thus, it is sufficient to know a good LSR

or to know, for example, an ECA engine that, in turn, knows a good LSR.

In the final version, LSRs can be used by nodes in the framework to get and look up infor-

mation. The request has a connection to a language and the answer from the LSR contains

information how the task can be requested (cf. [13]).

But such services are not only needed globally, i.e., overlapping all domains on the framework

level. To publish which nodes of a certain domain actually support which of the domain notions

(described in Section 4.2), Domain Service Registries are needed.

4.9 Domain Service Registries

A Domain Service Registry (DSR) provides metadata information about the services offered

by individual nodes of the domain inside the framework. Since the name implies, a DSR is a

registry and, thus, not static, but can be changed through the addition of a new service.

28 Currently a LSR is developed during a thesis.

27

4 A General Framework for Evolution and Reactivity in the Semantic Web

Application services are available at a URL. The information about an application service

is maintained by DSRs. A DSR declares which concepts are actually supported by a certain

application service. A railway company, for example, will support delay-train but not cancel-

flight.

The statements below could be part of an application service description maintained by a

DSR:29

<LH, rdf:type, world:company>

<LH, world:uses-domain, http://www.semwebtech.org/domains/2006/travel>

<LH, world:uses-domain, http://www.semwebtech.org/domains/2006/business>

<LH, business:has-business, world:airline>

<LH, world:has-service, http://url-to-service/lh>

<LH, world:has-url, http://url-to-lh-homepage/index.html>

<LH, world:supports, travel:airport>

<LH, world:supports, travel:flight-connection>

<LH, world:supports, travel:cancel-flight>

<LH, world:supports, travel:is-delayed>

As seen above, domain ontologies are assisted by application services which, in turn, make

use of domain ontologies. An application service, for example, an airline company, can use

several domains. The booking of a flight ticket is assigned to the travel domain, while the

payment of a booked ticket is included in the banking domain. As an application service can

use different domains, it can also support several ones, e.g., travel and business in case of an

airplane company.

This dynamic information about specific domains is provided by the world ontology that

supplies concepts to state which node in the Semantic Web actually supports which domain

and notion as well as which brokers are related to a domain.

In this chapter, the Framework for Evolution and Reactivity in the Semantic Web with its basic

architecture and concepts has been introduced. Another kind of framework that supports the

development of Semantic Web applications is described in the next chapter. It has been used

during this thesis to implement the Domain Broker and its components.

29 Because there is no DSR available as a Web Service in the framework yet, this information would be content
of an ontology file inside a Domain Broker.

28

5 Jena Semantic Web Framework

Jena [20] is an open source framework for building Semantic Web applications with Java [35].

It arose from the HP Labs Semantic Web Programme [18]. The provided environment allows

for dealing with RDF, RDFS, OWL and SPARQL (see Section 5.3.2). Moreover, it includes an

(rule-based) inference engine. While offering the mentioned functionality, the Jena Framework

is very convenient to model ontologies and their related issues.

The Jena Framework supports the user in many ways: It provides an RDF- and OWL-API30,

has means to read and write RDF/XML as well as N3 and N-Triples respectively. Moreover, the

modeled data can either be stored in-memory or persistent. To support to query a constructed

ontology, a SPARQL query engine is available.

The provided means that are relevant for this thesis are introduced now (more detailed

information related to this chapter can also be found at [20]).

5.1 Jena RDF API

The Jena RDF API provides tools in form of Java classes to deal with RDF. It permits the

creation of RDF models with Java by using the dedicated APIs. To keep the code readable,

the use of prefixes is supported. Therefore, Jena makes methods available to write an RDF

model to a file as serialized XML. Methods for reading models from a file are also designated.

But to work with RDF data, reading and writing files is not sufficient. Thus, Jena supports

methods to navigate through a model in order to process the information held in a model. The

framework offers the access and manipulation of the objects that are represented as sets of

statements, each containing subject, predicate, and object of the RDF graph.

Moreover, the Jena Framework provides means to query models. But the core API of Jena

supports only very restricted search primitives. As the queries are embedded in Java, they have

to be formulated imperatively. Hence, they are not as powerful as declarative query languages

as, for example, SQL or SPARQL (described in Section 5.3.2).

Jena enables several operations on models: union, intersection, and difference. These con-

cepts are known from mathematical set theory and behave in the same way in Jena.

30 Application Programming Interface

29

5 Jena Semantic Web Framework

5.2 Reasoning and Inference

To support the usage of languages like OWL or RDFS, one part of the Jena Framework provides

means for reasoning. Therefore, diverse reasoning engines31 can be plugged into Jena. To work

with a reasoner, it is useful to create inferred models by using the functionality provided by

the Jena API. This thesis focuses on the general rule based reasoner that allows inference with

the application of self defined rules. Therefore, a brief overview of the rule format that Jena

claims is given now.

Rule Format. Rules in Jena basically consist of an optional rule name and a rule term which

can be nested and constructed under the use of functions.

Example 5.1 The following rule defines an “aunt” and visualizes the basic rule syntax in

Jena, here in forward mode (body → head) :

[aunt: (?m ns:mother ?x) (?s ns:sister ?m) → (?s ns:aunt ?x)]

The rule says, that if m32 is a mother33 of x and s is a sister of m, then s is an aunt of x.

Jena supports different ways to express and process rules. Besides a forward and backward

mode, it is also possible to combine these rule styles.

Forward Chaining Engine. The evaluation of rules in a bottom-up style is called forward

chaining, since it starts from facts to derive new tuples. This results in a benefit of forward

chaining34, because optimization and evaluation techniques from relational algebra may be

applied (for details see [22]).

The first time an inferred model is queried by applying a reasoner configured in forward

mode35, a deduction graph is created. Rules that fire can trigger additional rules. Thus, the

process holds on until the graph is stable.36 This leads to a drawback of forward chaining: If

a request is interested only in a small area of the data basis, nevertheless the whole data will

be comprised in the inference and after that the relevant section will be extracted (see [22]).

31 Two examples of predefined reasoners are the Transitive Reasoner or the Generic Rule Reasoner.
32 Variables are denoted by a ? at the beginning.
33 “ns” in the rule stands for a specific namespace.
34 To be able to process rules specified in forward (“→”) mode, the applied reasoner has to be configured to run

in forward mode.
35 Note that a reasoner configured in forward mode treats all rules as if they were forward rules, even backward

rules.
36 Note that it is easily possible to create infinite loops.

30

5.3 ARQ and SPARQL

Backward Chaining Engine. The execution strategy, a rule reasoner running in backward

chaining mode follows, is comparable to Prolog engines. In case of a query, the logic program-

ming engine translates the query into a goal and tries to satisfy it by matching the stored triples

backward against the rule. This avoids the disadvantage mentioned wrt. forward chaining (cf.

[22]).

Hybrid Rule Engine. A rule reasoner may also be configured in hybrid mode, i.e., the reasoner

can handle both, forward and backward rules. This option can be used to achieve better

performance.

5.3 ARQ and SPARQL

ARQ is a query engine inside the Jena Framework that supports the SPARQL query language

(see [32] for details) for RDF. Before the introduction of SPAQRL, an overview of ARQ’s

functionalities is given.

5.3.1 ARQ

ARQ, a SPARQL processor for Jena, does not only assist in SPAQRL queries, but provides

also means for multiple query languages:

• RDQL,

• SPARQL, and

• ARQ, which is the engine’s own language and mainly used for experimental purposes.

In addition to supply many query languages, ARQ also features multiple query engines:

• a general purpose engine,

• remote access engines, and

• a rewriter to SQL.

Furthermore, it provides command line utilities to parse or execute queries, to run test sets,

or to handle result sets. Since Jena is a Java framework, SPARQL requests can of course

be embedded into Java code using the allocated API. Through this embedding it is possible

to extend the SPARQL provided functionality. Moreover, it is tolerated to use customized

functions in SPARQL FILTER expressions (see Section 5.3.2). These customized function

library, provided by Jena, can be extended and used to map queries into application specific

functions.

31

5 Jena Semantic Web Framework

5.3.2 SPARQL

SPARQL is a recursive acronym and stands for SPARQL Protocol And RDF Query Language.

SPARQL is both, a query language as well as a data access protocol and language for the

Semantic Web. SPARQL delivers information from RDF graphs, which are a set of triples.

The triples consist of a subject, a predicate, and an object (see Section 2.5). SPARQL provides

functionalities to

• extract information represented as literals, blank nodes, and URIs,

• gather RDF subgraphs, and

• build new RDF graphs upon information achieved from the queried graphs.

Moreover, it can be used locally and remotely to access RDF data based on matching graph

patterns.

To point out the syntax and functionality of SPARQL, the following RDF/XML document

that could be part of a car rental domain contains two car rental companies and several cars as

well as their category. Together with their category, it provides a basis of the later examples.

Imagine it can be addressed by http://localhost/exampleontology/carrental.rdf.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:carrental="http://www.semwebtech.org/domains/2006/carrental#">

<rdf:Description rdf:ID="JohnDoeCarRentalService">

<carrental:hasCar rdf:resource="#GolfIV"/>

<carrental:hasCar rdf:resource="#BMW330" />

<carrental:hasCar rdf:resource="#E55AMG"/>

</rdf:Description>

<rdf:Description rdf:ID="RentACar">

<carrental:hasCar rdf:resource="#GolfV"/>

<carrental:hasCar rdf:resource="#Polo"/>

</rdf:Description>

<rdf:Description rdf:ID="Polo">

<carrental:carCategory>A</carrental:carCategory>

</rdf:Description>

<rdf:Description rdf:ID="GolfIV">

<carrental:carCategory>B</carrental:carCategory>

</rdf:Description>

<rdf:Description rdf:ID="GolfV">

<carrental:carCategory>B</carrental:carCategory>

</rdf:Description>

<rdf:Description rdf:ID="BMW330">

<carrental:carCategory>C</carrental:carCategory>

32

5.3 ARQ and SPARQL

</rdf:Description>

<rdf:Description rdf:ID="E55AMG">

<carrental:carCategory>F</carrental:carCategory>

</rdf:Description>

</rdf:RDF>

Graph Patterns. The simplest form of a graph pattern is a triple pattern, which basically

looks like an RDF triple. The difference is that a graph pattern may contain variables instead

of RDF terms in any position. The combination of triple patterns mixed with value constraints

yields a basic graph pattern. To fulfill a pattern, an exact match to a graph pattern is needed

(cf. [32]).

Basic Syntax. The syntax resembles the SELECT ... FROM ... WHERE ... style of the

SQL syntax. The basic structure of a SPARQL query consists of a SELECT and a WHERE

part, but is usually expanded with a FROM part to declare where the data to be queried is

found. Thus, a general SPARQL query looks like the following:

SELECT requested variables

FROM specification of data sources

WHERE

{

dot-separated list of conditions, each formulated as triple and/or FILTER expression .

}

Variables. Variables are indicated by a ? at the beginning. $ can be used as an alternative

to ?. In the result of a request, each variable assignment that matches the patterns specified

in the conditions and therefore fulfills the constraints is returned.

Example 5.2 A very basic request that looks up all cars that belong to category A looks as

follows:

SELECT ?car

FROM <http://localhost/exampleontology/carrental.rdf>

WHERE

{

?car <http://www.semwebtech.org/domains/2006/carrental#carCategory> “A” .

}

33

5 Jena Semantic Web Framework

The result of this query contains a Polo as the only car available in category A at the two car

rental companies:

car
<#Polo>

Terms delimited by <> are IRI37 references. The # in front of Polo aroused through the

definition of a Polo as rdf:ID inside the RDF document, means that Polo is a locally defined

and accessible node.

Prefix. To keep a SPARQL query (human) readable, the declaration of namespace prefixes,

prefaced with the keyword PREFIX, is possible.38 Thus, the query denoted in Example 5.2

can now be formulated as seen below:

PREFIX carrental: <http://www.semwebtech.org/domains/2006/carrental#>

SELECT ?car

FROM <http://localhost/exampleontology/carrental.rdf>

WHERE

{

?car carrental:carCategory “A” .

}

Value Constraints. To specify the result of a query that is received through graph pattern

matching, SPARQL permits to constrain values. Value constraints take the form of boolean

expressions and are stated in the query inside the WHERE clause, commenced by the keyword

FILTER.

Example 5.3 Consider a query which wants to find all “higher class” automobiles, i.e., higher

than category B:

PREFIX carrental: <http://www.semwebtech.org/domains/2006/carrental#>

SELECT ?car ?category

FROM <http://localhost/exampleontology/carrental.rdf>

WHERE

{

37 Internationalized Resource Identifiers (IRIs) are generalizations of URIs and fully compatible to URLs and
URIs. For detailed information see [11].

38 It is also possible to specify a base namespace by using the keyword BASE.

34

5.3 ARQ and SPARQL

?car carrental:carCategory ?category .

FILTER (?category > “B”) .

}

The above query results in the following cars:

car category
<#E55AMG> F
<#BMW330> C

Optional Pattern Matching. Until now, the entire query pattern has to match to be a solution

in basic graph pattern. As there are not always complete structures in RDF graphs, optional

matching allows for adding information to a query where it is available, but does not reject

the solution if one part in the OPTIONAL {pattern} part does not match. Note that nested

optional patterns are permitted.

Matching Alternatives. Furthermore, SPARQL provides means to combine graph patterns.

This makes it possible that one of several patterns may match. In case that more patterns

match, all possible solutions are found. The syntax for pattern alternatives is the UNION

keyword. A usage example looks like pattern UNION pattern.

Result Format Results can be considered as a result set or table analogous to the ones shown

in the examples above. For each query solution there is one row that may contain empty “cells”

if a variable is not bound in a certain solution.

The result sets can be accessed via an API in a supporting programming language and then

be serialized into either an RDF graph or XML. An XML format, recommended by the W3C,

is called the SPARQL Query Results XML Format and is described in [33].

Example 5.4 This query looks for all companies offering cars in a higher class than A but

lower than F:

PREFIX carrental: <http://www.semwebtech.org/domains/2006/carrental#>

SELECT ?company ?car ?category

FROM <http://localhost/exampleontology/carrental.rdf>

WHERE

{

?company carrental:hasCar ?car .

35

5 Jena Semantic Web Framework

?car carrental:carCategory ?category .

FILTER (?category > “A”) .

FILTER (?category < “F”) .

}

The result in XML format looks as follows:

<?xml version="1.0"?>

<sparql xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xs="http://www.w3.org/2001/XMLSchema#"

xmlns="http://www.w3.org/2005/sparql-results#">

<head>

<variable name="company"/>

<variable name="car"/>

<variable name="category"/>

</head>

<results ordered="false" distinct="false">

<result>

<binding name="company"><uri>#RentACar</uri></binding>

<binding name="car"><uri>#GolfV</uri></binding>

<binding name="category"><literal>B</literal></binding>

</result>

<result>

<binding name="company"><uri>#JohnDoeCarRentalService</uri></binding>

<binding name="car"><uri>#BMW330</uri></binding>

<binding name="category"><literal>C</literal></binding>

</result>

<result>

<binding name="company"><uri>#JohnDoeCarRentalService</uri></binding>

<binding name="car"><uri>#GolfIV</uri></binding>

<binding name="category"><literal>B</literal></binding>

</result>

</results>

</sparql>

This SPARQL Query Results XML Format can now easily be converted, e.g., into framework-

known exchange formats (cf. Section 4.6), by using XSLT stylesheets.

The description given above is just a brief overview of the functionalities of SPARQL. But

SPARQL, overall, provides means like most other query languages, for example, SQL, including

ORDER BY, DISTINCT and other constructs that are not mentioned here. For more detailed

information about SPARQL see [32], for the XML result format see [33] and [9].

In this chapter the Jena Semantic Web Framework for building Semantic Web applications

36

5.3 ARQ and SPARQL

has been introduced. Now, all theoretical and programming relevant concepts are present to

describe the developed Domain Broker.

37

5 Jena Semantic Web Framework

38

6 Domain Brokering

This chapter describes the Domain Broker which has been developed and implemented during

this thesis. It is composed of an Event Broker that handles the propagation of events, an Action

Broker which is responsible for the execution (in form of forwarding) of actions, and a Query

Broker that handles requests exemplary shown with a SPARQL Query Broker. These specific

brokers will be introduced in detail in the following sections.

6.1 Event Brokering

In this section, the purpose of Event Brokers and their integration into the framework is intro-

duced.

Event Brokers act as mediators between several nodes of the framework. They are fed with

events of their domain by event producing nodes, namely Domain Service Nodes, and forward

the events to registered consumers, such as Atomic Event Matchers (AEMs). This cooperation

is shown in Figure 6.1 and is described below.

Communication between CED, AEM and Event Broker. The Composite Event Detection

Service (CED) (for example, a SNOOP engine) can register an Atomic Event Specification

(AES) at an AEM that implements the language corresponding to the CED to enable the

detection of composed events (cf. Example 4.1 and Figure 6.1 respectively). To be aware of

all relevant events, the AEM, in turn, registers at an Event Broker which serves the required

domain. Since an AEM can accept registrations from CEDs of different languages, an AEM

itself can also register at Event Brokers of different domains to execute their service. Before the

registration at an Event Broker, the AEM has to determine the domain (URI) and optionally

the event type of the requested events. With the obtained URI of the domain, the relevant

Event Broker can be asked at an LSR (cf. Section 4.8). Then, the AEM tells the Event Broker

to forward the events of the received domain, optionally just these of a specific event type. As

seen above, a registration at an Event Broker must contain the URI, because the Broker may

support more than one domain and optionally an event type.

Of course, not only atomic events as part of composite events can be handled by AEMs. ECA

39

6 Domain Brokering

engines39, for example, can register AESs at AEMs too, in order to be aware of the occurrence

of atomic events. The communication between Domain Services on the one, and AEMs or

CEDs on the other hand is depicted in Figure 6.1.

Composite Event
Detection Service
for language CESL1

Composite Event
Detection Service
for language CESL2

Atomic Event Matcher
for formalism AESL1

Atomic Event Matcher
for formalism AESL2

Event Broker
for domain D1

Event Broker
for domain D2

• •· · · Domain Services for D1· · · • • •· · · Domain Services for D2· · · •

AES for
event of type t1 in
domain D1 in
formalism AESL1

answers

AES for
event of type t2 in
domain D2 in
formalism
AESL1

answers

AES for
event of type t3 in
domain D2 in
formalism AESL2

answers

Registration for
events of types t1
of domain D1 Events(D1, t1)

Reg(D2, t2)

Events(D2, t2)
Reg(D2, t3) Events(D2, t3)

events events

Figure 6.1: Architecture: Communication with Event Brokers (from [13])

As seen above, the nodes which are interested in events of a domain can register at the Event

Broker for this domain. Therefore, they have to send registrations marked up in a special XML

format to the Service-URL of the Event Broker, managed by a superior Domain Broker:

<register>

<reply-to>URL where the events shall be forwarded to</reply-to>

<domain>domain-URI</domain>

<event-type>event type</event-type>

</register>

39 ECA engines are not explicitly mentioned in Figure 6.1.

40

6.1 Event Brokering

If a consumer, e.g. an Atomic Event Matcher, wants to be informed about all events of a

domain, the <event-type> element can be omitted. The <reply-to> URL could optionally be

communicated to the Event Broker via HTTP header.40

Which Event Broker is responsible for the respective domain is available at an LSR (cf. Sec-

tion 4.8). These provide also the URL of the service for the registration.

In the future, there will exist services which give answers in an appropriate format, e.g.,

for the request of an Atomic Event Matcher which Event Broker is responsible for the travel

domain.

The following example clarifies the process of registration and deregistration at an Event

Broker.

Example 6.1 (Registration at the Event Broker) Consider an AEM which gets the task

to detect the following event type (comparable to Example 4.1):

<travel:canceled-flight xmlns:travel="http://www.semwebtech.org/domains/2006/travel" />

It determines the fact that the root element is from the travel domain and, moreover, specifies

the event type canceled-flight. Thus, the AEM requests an LSR which Event Broker supports

the travel domain. Afterwards the AEM sends a registration XML document of the following

form to the Event Broker:

<register>

<reply-to>http://www.semwebtech.org/aem/2006/services/aem/receive-events</reply-to>

<domain>http://www.semwebtech.org/domains/2006/travel</domain>

<event-type>canceled-flight</event-type>

</register>

Now, the Event Broker forwards all events that match the given domain and event type to the

given reply-to URL.

If a consumer has no interest in getting events anymore, it can certainly deregister at the

Event Broker in the same way as it applied, except for replacing the root element by <deregister>:

<deregister>

<reply-to>http://www.semwebtech.org/aem/2006/services/aem/receive-events</reply-to>

<domain>http://www.semwebtech.org/domains/2006/travel</domain>

<event-type>canceled-flight</event-type>

</deregister>

40 This has not been implemented in the prototype yet.

41

6 Domain Brokering

It should be clear that the Event Broker needs book keeping to keep track of who is registered

for which event. If no node is interested in an incoming event, the Event Broker can omit it.

But not only consuming clients, e.g., AEMs which want to be informed about events of a special

domain, use the services of an Event Broker. In a domain exist many nodes which produce

events. These Domain Services can be flight or railway companies, for example. The event

producing nodes send their generated events not directly to the consumer (e.g., some travel

agencies) but to the Event Broker of the appropriate domain where the event fits in.

Brokering of Derived Events. Inside the Framework for Evolution and Reactivity in the Se-

mantic Web, not only atomic events occur. It is possible that the espousal of one event triggers,

under certain conditions, another event. These derived events are defined through (composite)

event specifications with an optional query and/or a test part.

There exist event types that are directly supported by certain domain nodes which have their

own rule definitions. But also event specifications occur, for which the ontology provides global

ECE derivation rules (cf. [13]).

Example 6.2 Flight companies, for example, could be interested in events that inform them

about the utilization of their machines to adjust their travel prices contemporarily. Therefore,

a rule can be stored wrt. an ontology that defines the event half-booked:

<world:definition xmlns:world="http://www.semwebtech.org/domains/2006/world"

annotation="half-booked definition">

<world:defined syntax="xml" xmlns:eca="http://www.semwebtech.org/eca/2006/eca-ml">

<travel:half-booked to="$To" from="$From" date="$Date" flight="$Flight"

xmlns:travel="http://www.semwebtech.org/domains/2006/travel"/>

</world:defined>

<world:defined-as xmlns:eca="http://www.semwebtech.org/eca/2006/eca-ml"

syntax="xml">

<eca:event xmlns:travel="http://www.semwebtech.org/domains/2006/travel">

<travel:booking person="{$Person}" to="{$To}" from="{$From}" date="{$Date}"

flight="{$Flight}"/>

</eca:event>

<eca:variable name="Seats">

<eca:query>

query the number of seats available for flight $Flight

</eca:query>

</eca:variable>

<eca:variable name="BookedSeats">

<eca:query>

query the number of seats already booked for flight $Flight

42

6.2 Action Brokering

</eca:query>

</eca:variable>

<eca:test>

<eca:input-variable name="Seats"/>

<eca:input-variable name="BookedSeats"/>

<eca:opaque lang="http://www.w3.org/XPath">

<![CDATA[

number($BookedSeats) + 1 >= number($Seats) div 2

]]>

</eca:opaque>

</eca:test>

</world:defined-as>

</world:definition>

During the initialization of the Event Broker, this definition is sent in a framework-aware

format (see Section 4.5.2) to the ECA engine41 which registers the rule. The ECA-engine, in

turn, informs an AEM to be aware of the relevant events which, again, applies for booking

events of the travel domain at the Event Broker. While the occurrence of a booking, the ECA

engine evaluates the rule and causes the propagation of the half-booked event if the test part is

fulfilled.

Optional and Additional Functionality of Event Brokers. An Event Broker can also offer ser-

vices usually provided by AEMs. As every service registers at an LSR, a CED searching for

functionality, e.g., matching of some AES, would then get an appropriate Event Broker as its

service provider.

Not every domain node is able to publish events. Therefore, an Event Broker could be

used for polling issues: The Event Broker could monitor the considered resources and apply

continuous query event (CQE) rules to get events. A use case of polling Event Brokers is the

RSS-based Event Brokering. This results in raising of events which are obtained, for example,

from bioinformatics services (cf. [13]).42

The brokering of actions is described in the next section.

6.2 Action Brokering

Action Brokering can be compared to Event Brokering. The difference, as the name already

says, lies in the handling of actions. It has to be distinguished where the action request takes

41 The ECA engine has to be adjusted in the next version to be able to handle the format for ECE rules.
42 Note that in the developed prototype these functionalities are not implemented.

43

6 Domain Brokering

place. This can either be at a certain domain node, which will basically happen for opaque

actions, e.g., for updating data. The other possibility is the use of an Action Broker to distribute

actions to relevant nodes.

This chapter focuses on the latter option43. In principle there are two ways to implement

the distribution of action requests (cf. [13]):

Action Forwarding via Broadcast. First, the requested action is broadcast to all potential

nodes of the domain. The rough procedure is the same as in the main Event Broker task: The

ontology inside the Action Broker is asked who supports44 the incoming action45 request. After

the list of nodes is collected, the action is broadcast to all supporting nodes. Then, the node

that receives the action, e.g., an airline company, has to decide what to do. It is naturally that

only very few or just one node is really interested in executing this action. Nevertheless, this

option is realized as a first step in the prototype.

Data-Dependent Action Forwarding. The second opportunity forwards the action only to

the relevant nodes, but this requires more information from the ontology, i.e., data and not

“only” metadata. If the ontology contains specifications, for example, which airline offers which

flight, this information can be requested by the Domain Broker through a DSR. In this case,

the action is just forwarded to these nodes.

Example 6.3 Consider a railway company that detects huge technical problems at Hamburg

Central Station. The responsible compartment decides to delay all arriving trains for 2 hours,

expressed by a rule, e.g.:

<eca:rule xmlns:travel="http://www.semwebtech.org/domains/2006/travel">

<eca:event>technical problem detected</eca:event>

<eca:query>all $trains arriving in the next hour</eca:query>

<eca:action>

<travel:delay-train code="{$train}" delay="2h">

<travel:reason>technical problem</travel:reason>

</travel:delay-train>

</eca:action>

</eca:rule>

The affected trains are caught in the <eca:query> part, for example, in a request at a Query

Broker. Then, the results are bound to the variable $train. One following action instance could

43 This option is also implemented in the Action Broker.
44 That is world:supports.
45 To be declared in the ontology as world:Action.

44

6.2 Action Brokering

look like this:

<eca:action>

<travel:delay-train code="DB678" delay="2h">

<travel:reason>technical problem</travel:reason>

</travel:delay-train>

<eca:action>

To ensure that the action shown above is indeed an action, the underlying ontology has to

contain a triple of the form

<travel:delay-train, rdf:type, world:Action> .

Of course, this action only interests the Deutsche Bahn which operates the train DB678. But

this information the user gets through a “sharp look” at the code of the train has to be extracted

somehow from the ontology. This, in return, involves not only the use of metadata, but data.

Hence, the ontology has to specify the responsible nodes through rules. This has to be done

for each action:

(?A, has-relevant-node, ?RailwayCompany) :-

(?A, rdf:type, travel:delay-train),

(?A, talks-about, ?Train),

(?Train, travel:operated-by, ?RailwayCompany).

To acquire the information represented by the triple (?Train, travel:operated-by, ?RailwayCompany),

different realization approaches are imaginable. To get the information, either a Service Reg-

istry has to be asked which railway company runs this special train, or all nodes have to be

asked if they operate the train, or the required piece of information must be deposited in a

Domain Broker. Thus, a Domain Broker with a domain-dependent knowledge base would be

useful (cf. [13]).

Usually, a domain ontology, e.g., for the travel domain, contains expressions which node

world:supports a world:Action. Thus, the following statement could be part of the travel on-

tology:

<http://lh.com/, world:supports, travel:delay-flight>

If just atomic actions were handled by Action Brokers and every appropriate service was men-

tioned in the ontology as seen above, no registrations at dedicated brokers would be needed to

get desired actions forwarded. But, for example, through ACA rules it is possible to add new

notions to an ontology.

45

6 Domain Brokering

Brokering of Complex Actions via ACA rules. How a new notion can be contained in an

ACA rule, is shown in the following example.

Example 6.4 The booking of a return ticket from X to Y on date A and B will yield the

booking of a ticket from X to Y on date A and a ticket from Y to X on date B.

<world:definition annotation="return ticket definition">

<world:defined syntax="xml">

<travel:book-return-ticket dateA="{$dA}" dateB="{$dB}" from="{$from}" to="{$to}"

xmlns:travel="http://www.semwebtech.org/domains/2006/travel"/>

</world:defined>

<world:defined-as syntax="xml">

<travel:book-flight dateA="{$dA}" from="{$from}" to="{$to}"

xmlns:travel="http://www.semwebtech.org/domains/2006/travel"/>

<travel:book-flight dateB="{$dB}" from="{$to}" to="{$from}"

xmlns:travel="http://www.semwebtech.org/domains/2006/travel"/>

</world:defined-as>

</world:definition>

Therefore, means have to be provided by an Action Broker to register or deregister for action

types. During the initialization of the Action Broker, the rule which defines a return ticket is

sent for registration to an appropriate service engine. The rule is converted into the following

format46:

<eca:aca-rule>

<eca:define-action>

<travel:book-return-ticket dateA="{$dA}" dateB="{$dB}" from="{$from}" to="{$to}"

xmlns:travel="http://www.semwebtech.org/domains/2006/travel"/>

</eca:define-action>

<eca:action>

<travel:book-flight dateA="{$dA}" from="{$from}" to="{$to}"

xmlns:travel="http://www.semwebtech.org/domains/2006/travel"/>

</eca:action>

<eca:action>

<travel:book-flight dateB="{$dB}" from="{$to}" to="{$from}"

xmlns:travel="http://www.semwebtech.org/domains/2006/travel"/>

</eca:action>

</eca:aca-rule>

The service engine (an ECA engine or another appropriate service), in turn, registers for the

action type (book-return-ticket) of the given domain (travel) at the Action Broker.

46 The ECA engine has to be adjusted in the next version to be able to handle the format.

46

6.3 Query Brokering

The registration, marked up the same way as for Event Broker registrations (see Section 6.1),

is then sent to a dedicated Action Broker of the domain, e.g. to

http://www.semwebtech.org/domains/2006/domain-broker/action-broker/register-for-action.

Mapping from XML to RDF. Until now, only XML events resp. actions have been consid-

ered. If RDF URIs are used, (somehow) a mapping from XML to RDF has to take place. It

has to be decided where the actual mapping is performed.

This can either happen at the Domain Broker or at the relevant domain nodes. For the first

possibility, the ontology has to contain an ACA rule that specifies how the action is mapped

onto RDF level. Then, the action, comparable to the above-mentioned, has to be broadcast to

all nodes that support the action or is just sent to the relevant ones by using specific data.

The second option is to broadcast the action to all nodes that are mentioned in the ontology

to support it. Then, the mapping is executed at the appropriate domain nodes (cf. [13]).

As mentioned above, besides an Event- and Action Broker, a Domain Broker consists also of a

Query Broker which is introduced in the following section.

6.3 Query Brokering

Clients in the Semantic Web are not only interested in getting events of a certain domain. In

fact, they want to get information for individual purposes. Thus, the functionality of queries

is needed for the framework to fulfill the necessities of the nodes integrated in the framework.

Queries can be stated against single domain nodes, which mainly makes sense for opaque

queries. In addition, Domain Brokers should allow for querying data sources of their domain

distributed over several nodes in the network. Acting as mediators, they accept a query, process

it, and return the answer. Therefore, Domain Brokers have the acquirements of the dedicated

ontology, including RDF and OWL statements and the corresponding rules.

The so far basically drafted procedure can be adopted in the framework using, e.g., different

algorithms to achieve and integrate the required information or to unite the diverse probably

different data models. To get a working application, a simple approach of a Query Broker is

realized first. This is done by the implementation of a Query Broker that is able to operate on

SPARQL queries.

Example 6.5 Consider a travel agency that wants to know all possible connections from Göttin-

gen to Paris and how often the means of transport have to be changed47. Hence, the transitive

47 For example, from train to train or train to airplane, etc.

47

6 Domain Brokering

closure is required. Therefore, all connections with all possible means of locomotion in the un-

derlying ontology, e.g. train, aircraft and ship, must be considered. That the notion Connection

is indeed a transitive closure has to be contained in the ontology. Thus, the Query Broker has

to ask every node supporting travel:Connection for its connections, combine them and extract

all connections starting in Göttingen and ending somehow, i.e., without cycles, in Paris.

To clarify the process a query request runs through, the single steps are accompanied by an

example from the travel domain mentioned above. Imagine a strongly simplified ontology that

takes only trains and airplanes into consideration. To keep the example simple48, our ontology

consists only of five connections, operated by different companies (two railway and one flight

company):

• Göttingen - Hamburg

• Hamburg - Bremen

• Hamburg - Paris

• Hamburg - München

• München - Paris

To reduce the complexity of the RDF statements and to keep the RDF graph concise, all

resources (i.e., cities, trains and flights) are identified via URIs. Cities are accessed via the

mondial (mon) protocol, trains via train and airplanes through airplane respectively. Thus,

mon://country/de/city/Hamburg represents the German city named “Hamburg” in this exam-

ple.

Since the nodes in the Semantic Web are distributed and ontologies are mostly divided over

several resources as well, the travel ontology supported by three companies49 in this example

is partitioned, too. The following RDF statements show the individual travel services of each

company, taken from different nodes:

<travel:Train rdf:about="train://db/ICE123/">

<travel:from rdf:resource="mon://country/de/city/Goettingen"/>

<travel:to rdf:resource="mon://country/de/city/Hamburg"/>

<travel:connected-by>Train</travel:connected-by>

</travel:Train>

<travel:Train rdf:about="train://nwb/nwb456/">

48 To clarify, how a general query is answered.
49 Namely NWB, DB and LH.

48

6.3 Query Brokering

<travel:from rdf:resource="mon://country/de/city/Hamburg"/>

<travel:to rdf:resource="mon://country/de/city/Bremen"/>

<travel:connected-by>Train</travel:connected-by>

</travel:Train>

<travel:Flight rdf:about="airplane://lh/lh461/">

<travel:from rdf:resource="mon://country/de/city/Hamburg"/>

<travel:to rdf:resource="mon://country/fr/city/Paris"/>

<travel:connected-by>Airplane</travel:connected-by>

</travel:Flight>

<travel:Flight rdf:about="airplane://lh/lh789/">

<travel:from rdf:resource="mon://country/de/city/Hamburg"/>

<travel:to rdf:resource="mon://country/de/city/Muenchen"/>

<travel:connected-by>Airplane</travel:connected-by>

</travel:Flight>

<travel:Flight rdf:about="airplane://lh/lh444/">

<travel:from rdf:resource="mon://country/de/city/Muenchen"/>

<travel:to rdf:resource="mon://country/fr/city/Paris"/>

<travel:connected-by>Airplane</travel:connected-by>

</travel:Flight>

Each of the above statements that belong together50 can be visualized51 by an RDF graph,

depicted in Figure 6.2, which has not yet a connection to the other graphs.52

train://db/ICE123/

http://www.semwebtech.org/domains/2006/travel#Trainhttp://www.w3.org/1999/02/22-rdf-syntax-ns#type

mon://country/de/city/Goettingenhttp://www.semwebtech.org/domains/2006/travel#from

mon://country/de/city/Hamburg

http://www.semwebtech.org/domains/2006/travel#to

Train

http://www.semwebtech.org/domains/2006/travel#connected-by

Figure 6.2: RDF Graph of a Travel Route offered by DB

6.3.1 Request Format

Requests sent to a Query Broker via the superior Domain Broker have to be marked up in

XML format. To allow a Query Broker to handle the request, a query has to be of the following

50 Here, the statements of each company, i.e., DB, NWB and LH belong together.
51 The visualization of the graph was created with the W3C RDF Validation Service [40].
52 Note that there is an implicit connection through identical URIs in the isolated RDF documents, but this

connection has not been “established” in the Query Broker by now.

49

train://db/ICE123/
http://www.semwebtech.org/domains/2006/travel#Train
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
mon://country/de/city/Goettingen
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#from
mon://country/de/city/Hamburg
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#connected-by
http://www.semwebtech.org/domains/2006/travel#connected-by
http://www.semwebtech.org/domains/2006/travel#connected-by

6 Domain Brokering

form:

<query>

<opaque lang="language specification ">

query in opaque query language

</opaque>

<reply-to>URL where the answer is sent to</reply-to>

</query>

The handling of a query within the Query Broker shall be made clear as a showcase on the

basis of the following request. The query asks all connections of the travel domain that start

in Göttingen and end in Paris. Furthermore, it is questioned how often the means of transport

have to be changed.

<query>

<opaque lang="http://www.w3.org/2005/01/sparql-protocol#">

PREFIX travel: <http://www.semwebtech.org/domains/2006/travel#>

SELECT ?from ?to ?changes

WHERE {

?a ?b travel:Connection .

?a travel:from ?from .

?a travel:to ?to .

?a travel:from <mon://country/de/city/Goettingen>.

?a travel:to <mon://country/fr/city/Paris>.

?a travel:changes ?changes .

}

</opaque>

<reply-to>reply-to URL of the asking node</reply-to>

</query>

6.3.2 Query Decomposition

To answer the query, all static notions occurring in the request, i.e., concepts and properties,

have to be collected. Relevant notions are not only directly mentioned in the query, but also

implicitly through

• owl:equivalentProperty,

• owl:inverseOf,

• owl:equivalentClass ,and so on,

which must also be considered. Furthermore, if the ontology contains rules of the form head

← body (or body → head respectively), they also have to be taken into account. If a request

50

6.3 Query Brokering

queries the head of a rule, notions in the body have to be considered. Thus, the rules have to

be denoted in an appropriate format, e.g. RuleML, to be able to extract and apply the needed

rules.

The concepts Connection and changes are never mentioned directly in the ontology of the

travel domain. The decomposition of the query yields a set of relevant concepts and properties

that have to be incorporated: Connection, from, to and changes. Furthermore, the ontology

contains the following rules53, which have also be taken into account:

[rule1: (?s1 rdf:type travel:Train) (?s1 travel:from ?a) (?s1 travel:to ?b)

makeTemp(?s2)

→ (?s2 rdf:type travel:Connection) (?s2 travel:from ?a) (?s2 travel:to ?b) (?s2 travel:changes 0)]

[rule2: (?s1 rdf:type travel:Flight) (?s1 travel:from ?a) (?s1 travel:to ?b)

makeTemp(?s2)

→ (?s2 rdf:type travel:Connection) (?s2 travel:from ?a) (?s2 travel:to ?b) (?s2 travel:changes 0)]

[rule3: (?s1 rdf:type travel:Flight) (?s1 travel:from ?a) (?s1 travel:to ?b)

(?s2 rdf:type travel:Connection) (?s2 travel:from ?b) (?s2 travel:to ?c) (?s2 travel:changes ?d)

notEqual(?s1, ?s2)

addOne(?d, ?e)

makeTemp(?st)

→ (?st rdf:type travel:Connection) (?st travel:from ?a) (?st travel:to ?c) (?st travel:changes ?e)]

[rule4: (?s1 rdf:type travel:Train) (?s1 travel:from ?a) (?s1 travel:to ?b)

(?s2 rdf:type travel:Connection) (?s2 travel:from ?b) (?s2 travel:to ?c) (?s2 travel:changes ?d)

notEqual(?s1, ?s2)

addOne(?d, ?e)

makeTemp(?st)

→ (?st rdf:type travel:Connection) (?st travel:from ?a) (?st travel:to ?c) (?st travel:changes ?e)]

6.3.3 Required Nodes Selection

After the decomposition has taken place, the ontology or better a Service Registry is asked

who world:supports the ascertained important notions and concepts. The request results in

an answer which contains all distributed single models that were mentioned above. In this

example, these are the models represented by the RDF statements depicted above, namely the

services offered by DB, NWB and LH.

53 The rules are described in a format known from the Jena Framework (cf. Section 5.2).

51

6 Domain Brokering

6.3.4 Data Integration

After the relevant nodes have been discovered, the (germane parts of the) data of the affected

ontologies are combined. In this example, the union of the three received single models has to

be built. The resulting graph is visualized54 in Figure 6.3.

train://db/ICE123/

http://www.semwebtech.org/domains/2006/travel#Train

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

mon://country/de/city/Goettingen

http://www.semwebtech.org/domains/2006/travel#from

mon://country/de/city/Hamburg

http://www.semwebtech.org/domains/2006/travel#to

Train
http://www.semwebtech.org/domains/2006/travel#connected-by

train://nwb/nwb456/
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.semwebtech.org/domains/2006/travel#from

mon://country/de/city/Bremenhttp://www.semwebtech.org/domains/2006/travel#to

Trainhttp://www.semwebtech.org/domains/2006/travel#connected-by

airplane://lh/lh461/

http://www.semwebtech.org/domains/2006/travel#from

http://www.semwebtech.org/domains/2006/travel#Flight

http://www.w3.org/1999/02/22-rdf-syntax-ns#type mon://country/fr/city/Paris

http://www.semwebtech.org/domains/2006/travel#to

Airplanehttp://www.semwebtech.org/domains/2006/travel#connected-by

airplane://lh/lh789/

http://www.semwebtech.org/domains/2006/travel#from

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

mon://country/de/city/Muenchen

http://www.semwebtech.org/domains/2006/travel#to

Airplanehttp://www.semwebtech.org/domains/2006/travel#connected-by

airplane://lh/lh444/

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.semwebtech.org/domains/2006/travel#to

http://www.semwebtech.org/domains/2006/travel#from

Airplane

http://www.semwebtech.org/domains/2006/travel#connected-by

Figure 6.3: United Ontology

The integrated data model is now available at the Query Broker. Before the query could be

stated against the model, an inferred model has to be built. This considers the above mentioned

rules to be able to extract travel:Connection information.

Now, the query is stated against the local model as a knowledge base and the complete

answer is returned. Another possibility would be to query the obtained relevant classes and

properties (as RDF triples) and take the union of the separated answers to solve the original

54 The visualization of the graph was created with the W3C RDF Validation Service [40].

52

train://db/ICE123/
http://www.semwebtech.org/domains/2006/travel#Train
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
mon://country/de/city/Goettingen
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#from
mon://country/de/city/Hamburg
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#connected-by
http://www.semwebtech.org/domains/2006/travel#connected-by
http://www.semwebtech.org/domains/2006/travel#connected-by
train://nwb/nwb456/
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#from
mon://country/de/city/Bremen
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#connected-by
http://www.semwebtech.org/domains/2006/travel#connected-by
http://www.semwebtech.org/domains/2006/travel#connected-by
airplane://lh/lh461/
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#Flight
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
mon://country/fr/city/Paris
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#connected-by
http://www.semwebtech.org/domains/2006/travel#connected-by
http://www.semwebtech.org/domains/2006/travel#connected-by
airplane://lh/lh789/
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#from
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
mon://country/de/city/Muenchen
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#connected-by
http://www.semwebtech.org/domains/2006/travel#connected-by
http://www.semwebtech.org/domains/2006/travel#connected-by
airplane://lh/lh444/
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#to
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#from
http://www.semwebtech.org/domains/2006/travel#connected-by
http://www.semwebtech.org/domains/2006/travel#connected-by
http://www.semwebtech.org/domains/2006/travel#connected-by

6.3 Query Brokering

query. Note that this would lead to a more complex approach, for example, for a request which

requires a transitive closure as seen in Example 6.5.

6.3.5 Query Answering

To get the desired answer of the query, the rules have been applied to the integrated model

first. The query was stated against the inferred model and the result was received. As the

request was formulated as an opaque SPARQL query, the intermediate result is of the following

form:

<?xml version="1.0"?>

<sparql

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xs="http://www.w3.org/2001/XMLSchema#"

xmlns="http://www.w3.org/2005/sparql-results#">

<head>

<variable name="from"/>

<variable name="to"/>

<variable name="changes"/>

</head>

<results ordered="false" distinct="false">

<result>

<binding name="from">

<uri>mon://country/de/city/Goettingen</uri>

</binding>

<binding name="to">

<uri>mon://country/fr/city/Paris</uri>

</binding>

<binding name="changes">

<literal datatype="http://www.w3.org/2001/XMLSchema#int">2</literal>

</binding>

</result>

<result>

<binding name="from">

<uri>mon://country/de/city/Goettingen</uri>

</binding>

<binding name="to">

<uri>mon://country/fr/city/Paris</uri>

</binding>

<binding name="changes">

<literal datatype="http://www.w3.org/2001/XMLSchema#int">1</literal>

</binding>

</result>

53

6 Domain Brokering

</results>

</sparql>

Afterwards, the response has to be transformed from the SPARQL Query Results XML Format

(see [33]) to a format for basic interchange of variable bindings (cf. Section 4.6). Hence, the

query used in this example results in the XML document shown below:

<logic:variable-bindings>

<logic:tuple>

<logic:variable name="from">mon://country/de/city/Goettingen</logic:variable>

<logic:variable name="to">mon://country/fr/city/Paris</logic:variable>

<logic:variable name="changes">2</logic:variable>

</logic:tuple>

<logic:tuple>

<logic:variable name="from">mon://country/de/city/Goettingen</logic:variable>

<logic:variable name="to">mon://country/fr/city/Paris</logic:variable>

<logic:variable name="changes">1</logic:variable>

</logic:tuple>

</logic:variable-bindings>

This XML document55 is finally sent back to the URL that was mentioned in the <reply-

to> element of the query.

6.4 Miscellaneous

Until now, each domain disposes about one Domain Broker. Since the Semantic Web is very

dynamic, it is not debarred that different Domain Brokers with, for example, several Event

Brokers will be established in the future. This extension would lead to a huge problem56: An

event, generated at some node in the web, would be sent to several event brokers of the relevant

domain. Then, each event broker would forward this event to the applied nodes. Hence, these

nodes or some other framework service would have to decide if the event has to be handled,

i.e., if the received event is actually a new one.

The issue has to be solved, how events, actions, etc. can be made unique and, thus, be

distinguished by domain nodes or framework services.

As the theoretical description of a Domain Broker with its use of an Event-, Query-, and Action

Broker has been given above, the next chapter deals with the prototypical implementation of

the Domain Brokering Service.

55 As here only sets of tuples are treated, the elements answers, answer and result can be omitted.
56 This problem is not topic of this thesis and is, therefore, not discussed in detail.

54

7 Implementation

In this chapter the current implementation of the prototypical Domain Broker for the Semantic

Web is introduced. First, an overview of the employed technologies is given. Afterwards, the

class structure and the communication interfaces of the components will be described. Finally,

the graphical Domain Broker Client will be presented.

7.1 Employed Technologies

The prototypical Domain Broker and its components are implemented in Java. The function-

alities are realized as Web Services via HTTP. Some components use the Jena Framework to

fulfill their tasks.

Java. Java is an object-oriented programming language. It has been invented and developed

by Sun Microsystems. Software written in Java is independent from the underlying hardware as

well as from operating systems. This property makes it optimally qualified for the development

of a Domain Broker for the Semantic Web which shall be able to run on different systems inside

of the heterogeneous Semantic Web. For more information see [35].

Jena Framework. Jena is a Java based framework for building Semantic Web applications. It

provides means in form of programming environments for operating RDF, RDFS, OWL, and

SPARQL concepts. For details see Chapter 5 and [20].

Web Services with HTTP. The nodes inside the Semantic Web are heterogeneous systems,

implemented in diverse programming languages that run on different hardware architectures.

The components of the Domain Broker, which are arbitrary framework and thus Semantic Web

nodes as well, have to provide their services independent from platforms and programming lan-

guages to allow smooth communication. To accomplish these requirements, the communication

inside the framework is done by XML exchange via plain HTTP methods.

In the next sections, the architecture and implementation of the Domain Broker and its com-

ponents will be described in detail.

55

7 Implementation

7.2 General Architecture

The Domain Broker prototype is subdivided into two different kinds of classes. On the one

hand there are functionalities which are needed by many or all parts of the prototype such

as the handling of XML code. On the other hand each main component57 provides a special

service that has its own needs.

This breakdown is also represented in the package structure of the implemented prototype.

All classes are beneath the package org.semwebtech.broker. The commonly used classes are

contained in the subpackage common. More specific classes are kept inside packages that have

the name of the considered component, e.g., actionbroker for classes wrt. the Action Broker and

eventbroker, querybroker, and domainbroker respectively.

7.3 Common Classes

All classes which are used by several classes inside the prototypical Domain Broker of the

framework are kept inside the package common. It is substructured in util for general utility

classes and the subpackage ontology for ontology depending classes.

7.3.1 Utility classes

The classes inside the packages util (see Figure 7.1)58 represent helper classes that are useful

for several other classes. A very generic class is XMLHelper, which is, among others, used for

the serialization and deserialization of XML documents from and to their string representation.

It is, for example, used by the Event- and Action Broker to extract the text of elements from

XML documents.

The classes XMLRegisterHelper and XMLDeregisterHelper inherit from this class to provide

functionalities used for the registration and deregistration at Event- and Action Brokers.

To be able to make registrations within broker components persistent, the class Registra-

tionsHelper is available. It uses the class RegistrationsHelperXML to serialize and deserialize the

content of registration objects within files with the help of FileHelper.

7.3.2 Ontology

Classes within the package common.ontology, depicted in Figure 7.2, implement the concept

and means to operate ontologies. The class Ontology forms the basis of this package. It contains

57 Namely the Domain Broker which consists of an Event-, Action- and Query Broker.
58 Note that the declaration of getter and setter methods for attributes of all classes are omitted within the

whole chapter.

56

7.3 Common Classes

RegistrationsHelper

loadRegistrations(type:String, url:URL, registrations:Object, notion:String):boolean
saveRegistrations(type:String, url:URL, registrations:Object, notion:String):boolean

XMLRegistrationsHelperXML

loadRegistrations(url:URL, registrations:Object, notion:String):boolean
loadActionRegistrationsFromXMLDocument(document:Document, registrations:actionbroker.Registrations):boolean
loadEventRegistrationsFromXMLDocument(document:Document, registrations:eventbroker.Registrations):boolean
saveRegistrations(url:URL, registrations:Object, notion:String):boolean
saveActionRegistrationsAsXMLDocument(registrations:actionbroker.Registrations):Document
saveEventRegistrationsAsXMLDocument(registrations:eventbroker.Registrations):Document

FileHelper

getFile(url:URL):File
getFileAsString(fileURL:URL):String
writeFile(content:String, fileURL:URL):boolean

XMLHelper
namespaceMap:Map<String,String>

getAttributeVal(document:Document, elementname:String, attributename:String):String
getAttributeVal(document:String, elementname:String, attributename:String):String
getAttributeValue(document:Document, elementname:String, attributename:String):String
getAttributeValue(document:String, elementname:String, attributename:String):String
getContentFromXMLFile(file:File):String
getElement(document:Document, elementname:String):Element
getElement(document:Document, namespace:String, elementname:String):Element
getElement(document:String, elementname:String):Element
getElementText(document:Document, elementname:String):String
getElementText(document:String, elementname:String):String
getNode(document:Document, elementname:String):Node
getNode(document:String, elementname:String):Node
getNodes(document:Document, elementname:String):List<Node>
getNodes(document:Document, namespace:String, elementname:String):List<Node>
getNodeText(document:Document, elementname:String):String
getNodeText(document:String, elementname:String):String
getSubNodes(document:Document, nodename:String):List<Node>
getSubNodes(document:Document, namespace:String, nodename:String):List<Node>
getSubNodes(document:String, nodename:String):List<Node>
getSubNodes(document:String, namespace:String, nodename:String):List<Node>
hasElement(document:Document, elementname:String):boolean
hasElement(document:Document, namespace:String, elementname:String):boolean
hasElement(document:String, elementname:String):boolean
hasElement(document:String, namespace:String, elementname:String):boolean
hasNode(document:Document, elementname:String):boolean
hasNode(document:String, elementname:String):boolean
setNamespace(prefix:String, namespace:String)
toDocument(xml:String):Document
toString(document:Document):String
toString(nodes:List<Node>):String
toString(node:Node):String

XMLDeregisterHelper

hasDeregisterElement(document:Document):boolean
isDeregistration(document:Document):boolean

XMLRegisterHelper

hasRegisterElement(document:Document):boolean
isRegistration(document:Document):boolean

RuleHelper

createACARule(head:String, body:String):String
createECE(head:String, body:String):String

URLHelper

getURL(url:String):URL

HttpHelper

doGet(url:String):String
doPost(url:String, content:String):String
doPost(url:String, content:String):String
doPost(url:String, content:String, type:String):String
doPost(url:URL, content:String):String
doPost(url:URL, content:String, type:String):String
read(reader:BufferedReader):String
read(in:InputStream):String

Figure 7.1: Class Diagram for Utility Classes

the N3 [3] representation of an ontology and the ontology-wide rules59.

It offers methods to get lists of events and actions supported by the ontology. Moreover, the

definition of deduction rules and ECE or ACA rules can be achieved through methods of this

class. As the ontology can be provided by different nodes inside the framework, the URLs of

supporting nodes can also be asked.

To be able to operate with ontology representations written in N3 format, Ontology uses the

class JenaHelper to get a model out of the N3 representation.

To keep the class Ontology flexible, it uses OntologyHelper as assistance class. It supports

Ontology, for example, in getting the URLs from the special ontology-related N3 representation

of the nodes that support a domain.

The classes in this section are used by the classes described in the following sections.

59 These are logical derivation rules wrt. the ontology as well as ECE and ACA rules as described in Section 3.2.1,
Section 4.4.1, and Section 4.4.2 respectively.

57

7 Implementation

Ontology
actionList:List<String>
compositeActions:List<String>
derivedEvents:List<String>
domain:String
eventList:String
ontology:Ontology
ontologyModel:Model
prefixMap:Map<String,String>
rulesAndDefinitions:String
rulesAndDefinitionsDocument:Document

createDocumentFromRulesAndDefinitions()
createModelFromOntology()
generateActionList()
generateCompositeActionList()
generateDerivedEventList()
generateEventList()
generatePrefixMap()
getActionDefinitionBody(domain:String, actionname:String):String
getActionDefinitionHead(domain:String, actionname:String):String
getDomain(domainWithNotion:String):String
getEventDefinitionBody(domain:String, eventname:String):String
getEventDefinitionHead(domain:String, eventname:String)
getModelURLs(node:URL, domain:String):List<URL>
getNotion(domainWithNotion:String):String
getRelatedConcept(originalDomain:String, originalProperty:String, predicateDomain:String, predicateProperty:String):List<String>
getRuleBodies(ruleHead:String):List<String>
getRuleHeads(domain:String, property:String):List<String>
getSupportingNodes(domain:String, notion:String):List<URL>
isAtomicAction(domain:String, actionname:String):boolean
isAtomicEvent(domain:String, eventname:String):boolean

OntologyHelper

getModelURLs(model:Model, prefixMap:Map<String,String>, node:URL, domain:String):List<URL>
getRelatedConcept(ontologyModel:Model, prefixMap:Map<String,String>, originalDomain:String, originalProperty:String, predicateDomain:String, predicateProperty:String):List<String>
getSupportingNodes(model:Model, domain:String, notion:String):List<URL>
splitN3String(prefixMap:Map<String,String>, n3String:String):List<String>

JenaHelper

getModelFromN3File(fileURL:URL):Model
getModelFromN3String(modelString:String):Model

PrefixMap
prefixMap:Map<String,String>

getKey(value:String):String
getKeys():Set<String>
getValue(key:String):String
put(key:String, value:String)
removeKey(key:String)

Figure 7.2: Class Diagram for Ontology

7.4 Domain Broker

In this section the communication interface and the parts which a Domain Broker consists of

in the prototypical implementation that was developed during this thesis is described.

7.4.1 Communication Interface of the Domain Broker

In this section the interface via which clients can communicate with the Domain Broker is

described. It is depicted in Figure 7.3.

Domain Broker Service. The services directly provided by the Domain Broker, namely register-

ontology and register-rules-and-definitions are mainly used while the Domain Broker is initialized.

Event Broker Service. With view of the Event- and Action Broker services, clients can be

divided into two groups:

• consuming and

• producing nodes.60

60 Note that these sets are not necessarily disjoint.

58

7.4 Domain Broker

Domain Broker Interface

Domain Broker
register-ontology(<<Ontology>>)
register-rules-and-definitions(<<Rules-And-Definitions>>)

Event Broker
register-for-event(<<Registration>>)
deregister-for-event(<<Deregistration>>)
receive-event(<<Event>>)

Action Broker
register-for-action(<<Registration>>)
deregister-for-action(<<Deregistration>>)
execute-action(<<Action>>)

Query Broker
execute-query(<<Query>>) : <<Answer>>

<<Ontology>> and <<Rules-And-Definitions>> represent a string which identifies an ontology

resp. rules and definitions of derived events or complex actions in XML format,

<<Registration>>, <<Deregistration>>, <<Event>> and <<Action>> represent the respective XML documents,

<<Query>> represents a query request in SPARQL syntax. The result <<Answer>> is an XML document

in the framework-aware logic format (cf. Section 6.3).

Figure 7.3: Communication Interface of the Domain Broker

From the consumers’ point of view, the services register-for-event and deregister-for-event of the

Event Broker are the most important ones.

Producers, on the other side, are more interested in the propagation of their events, which

makes the services receive-event more interesting for them. All functionalities mentioned above

deal with XML fragments.

Example 7.1 Imagine a client, e.g., a travel agency that wants to register at an Event Bro-

ker to be informed about delayed flights. Therefore, it sends the following registration XML

document to the dedicated Event Broker mentioned in an LSR:

<register>

<reply-to>http://www.travel-agency.nop/events</reply-to>

<domain>http://www.semwebtech.org/domains/2006/travel</domain>

<event-type>delayed-flight</event-type>

</register>

59

7 Implementation

If an airport, as a producing node, in return, announces a delayed flight, the informed Event

Broker will forward the following event to the travel agency that applied for it, i.e.,

http://www.travel-agency.nop/events:

<travel:delayed-flight xmlns:travel="http://www.semwebtech.org/domains/2006/travel"

flight="LH123"/>

Action Broker Service. The procedure for the broadcasting of actions is nearly the same as

for the Event Broker. Nodes that offer support, i.e., the execution of an action in this case, can

be looked up in the ontology. Thus, for simple actions no registrations are needed.

In case a node is not mentioned in the ontology to world:support a certain action, the node can

register for it through the method register-for-action of the interface. To sign off, the function

deregister-for-action of the Action Broker is provided. To achieve the execution of an action, the

action to be executed has to be sent to the interface method execute-action. Then, the action

is forwarded to all nodes that support this action.

During the initialization of the Action Broker, the associated ontology is searched for com-

plex 61 actions. The action banking:money-transfer, for example, is defined as an ACA-rule

within the rules for the banking ontology. An Action Broker registers the rule definition at an

appropriate engine. In this case a registration of a CCS engine at the Action Broker via the

communication interface of the Domain Broker for this action could be the consecution.

Query Broker Service. The service offered by the Query Broker inside the Domain Broker

can be used by different kinds of nodes in the framework to achieve information about the

considered domain. The (distributed) data sources are queried with a SPARQL engine. Thus,

the input of receive-query has to be a SPARQL query delivered as a string enveloped in XML

markup that additionally contains a <reply-to> element. The result is sent back to the URL

mentioned in the <reply-to> element.

The following example briefly shows the markup of an enveloped SPARQL query and after-

wards the framework-aware result format.

Example 7.2 Imagine a client inside the Semantic Web framework that wants to state a

SPARQL query against the Domain Broker. It wraps the query in the following format (cf.

Section 6.3.1):

<query>

<opaque lang="http://www.w3.org/2005/01/sparql-protocol#">

61 For example, composite actions.

60

7.4 Domain Broker

query in SPARQL format

</opaque>

<reply-to>URL where the query result is expected</reply-to>

</query>

The result that the Query Broker achieves is returned (after transformation) in the following

XML markup (cf. Section 4.6):

<logic:variable-bindings xmlns:logic="http://www.semwebtech.org/lang/2006/logic">

<logic:tuple>

<logic:variable name="variable1">variable value</logic:variable>

<logic:variable name="variable2">variable value</logic:variable>

...

</logic:tuple>

<logic:tuple>

...

</logic:tuple>

</logic:variable-bindings>

7.4.2 Architecture of the Domain Broker

A Domain Broker consists of an Event Broker, an Action Broker, and a Query Broker as

depicted in Figure 7.4. These parts are described in detail in the following subsections. The

individual broker components are implemented modularly and could also be used autonomously.

The implementation according to this thesis uses a showcase Query Broker that can operate

SPARQL queries. A Domain Broker takes care of a certain domain, e.g., the travel domain.

To fulfill the requested tasks, it uses the functionalities of other diverse brokers. It also uses

an ontology (see Section 7.3.2) that is forwarded to each broker to ensure that they are able

to solve their tasks. The requested tasks reach the Domain Broker via the Communication

Interface described in Section 7.4.1. Depending on the type of request, one of the brokers

contained in the Domain Broker is taken to handle the operation.

7.4.3 Architecture of the Event Broker

The class EventBroker implements the concept of an Event Broker. It allows for the registration

and deregistration for event types of a domain. Furthermore, it is possible to register and

deregister rules for derived events.

To handle registrations of nodes and to be informed about events, it uses the class Registra-

tions. To make registrations persistent and, in return, to load registrations the class Registrations

provides specific methods.

61

7 Implementation

DomainBroker
actionbroker:ActionBroker
domain:String
eventbroker:EventBroker
ontology:Ontology
querybroker:GenericQueryBroker

registerACARules()
registerECERules()

ActionBroker
register:Registrations

deregister(xml:String):boolean
deregisterACARule(head:String, body:String):boolean
forwardAction(xmlAction:String)
loadRegistrations(type:String):boolean
register(xml:String):boolean
registerACARule(head:String, body:String):boolean
saveRegistrations(type:String):boolean

EventBroker
register:Registrations
ontology:Ontology

deleteEventDomain(eventdomain:String)
deregister(xml:String):boolean
deregisterAll(replyto:String):boolean
deregister(replyto:String, eventdomain:String):boolean
deregister(replyto:String, eventdomain:String, eventtype:String):boolean
deregisterECERule(head:String, body:String):boolean
forwardEvent(event:String)
loadRegistrations(type:String):boolean
register(xml:String):boolean
register(replyto:String, xml:String):boolean
registerECERule(head:String, body:String):boolean
saveRegistrations(type:String):boolean

<<abstract>>

GenericQueryBroker
ontology:Ontology
language:String

abstract processRequest(request:String):Object
abstract transformQueryResult(result:Object)

QueryBrokerSPARQL
infModel:InfModel
model:Model
reasoner:Reasoner

createInfModel()
getAllRelevantConcepts(queryString:String):List<String>
getModelURLs(nodes:List<URL>):List<URL>
getRelatedConcepts(domain:String, property:String):List<String>
getRules(concepts:List<String>):List<Rule>
getSupportingNodes(concepts:List<String>):List<URL>
processRequest(queryString:String):ResultSet
registerPrefix(prefix:String, identifier:String)
transformQueryResult(result:Object):String
transformQueryResult(result:ResultSet):String
unionModels(ml:List<Model>)
unionModels(m:Model)

Figure 7.4: Class Diagram for the Domain Broker

The main function of EventBroker is the forwarding of events. Therefore, it provides the

method forwardEvent that uses the class XMLEventHelper.

The above described architecture is depicted in Figure 7.5.

EventBroker
register:Registrations
ontology:Ontology

deleteEventDomain(eventdomain:String)
deregister(xml:String):boolean
deregisterAll(replyto:String):boolean
deregister(replyto:String, eventdomain:String):boolean
deregister(replyto:String, eventdomain:String, eventtype:String):boolean
deregisterECERule(head:String, body:String):boolean
forwardEvent(event:String)
loadRegistrations(type:String):boolean
register(xml:String):boolean
register(replyto:String, xml:String):boolean
registerECERule(head:String, body:String):boolean
saveRegistrations(type:String):boolean

Registrations
registrations:Map<String,HashMap<String,ArrayList<String>>>

deregister(replyto:String):boolean
deregister(eventdomain:String, replyto:String):boolean
deregister(eventdomain:String, eventtype:String, replyto:String):boolean
deregisterAll():boolean
getEventDomains():Set<String>
getEventtypes(eventdomain:String):Set<String>
getRegisteredURIs(eventdomain:String, eventtype:String):List<String>
loadRegistrations(type:String, url:URL):boolean
register(eventdomain:String, replyto:String):boolean
register(eventdomain:String, eventtype:String, replyto:String):boolean
saveRegistrations(type:String, url:URL)
toString():String

XMLEventHelper
registrations:Map<String,HashMap<String,ArrayList<String>>>

getEventdomain(document:Document):String
getEventdomains(event:String):String
getEventtype(document:Document):String
getEventtype(event:String):String

Figure 7.5: Class Diagram for the Event Broker

62

7.4 Domain Broker

7.4.4 Architecture of the Action Broker

The architecture of the Action Broker is visualized in Figure 7.6. The main class ActionBroker

implements the forwarding of actions that can then be executed at the appropriate nodes. To

enable the handling of complex actions, ACA rules can be registered.

As already seen in the Event Broker architecture description, the Action Broker also uses a

Registration class that is on the one hand capable of the registration and deregistration of nodes

as well as of persistence mechanisms on the other hand.

ActionBroker
register:Registrations
ontology:Ontology

deregister(xml:String):boolean
deregisterACARule(head:String, body:String):boolean
forwardAction(xmlAction:String)
loadRegistrations(type:String):boolean
register(xml:String):boolean
registerACARule(head:String, body:String):boolean
saveRegistrations(type:String):boolean

Registrations
registrations:Map<String,HashMap<String,ArrayList<String>>>

deregister(replyto:String):boolean
deregister(eventdomain:String, replyto:String):boolean
deregister(eventdomain:String, eventtype:String, replyto:String):boolean
deregisterAll():boolean
getActionDomains():Set<String>
getActiontypes(actiondomain:String):Set<String>
getRegisteredURIs(eventdomain:String, eventtype:String):List<String>
loadRegistrations(type:String, url:URL):boolean
register(actiondomain:String, replyto:String):boolean
register(actiondomain:String, actiontype:String, replyto:String):boolean
saveRegistrations(type:String, url:URL)
toString():String

Figure 7.6: Class Diagram for the Action Broker

7.4.5 Architecture of the Query Broker

The structure of the Query Broker is more complex than the above displayed Event- or Action

Broker architecture. The central part of the Query Broker in this prototypical implementa-

tion is the class QueryBrokerSPARQL inside the package broker.querybroker. To fulfill interface

and modularity requirements, QueryBrokerSPARQL inherits from GenericQueryBroker and im-

plements its abstract methods. This permits the expansion of functionality through classes

that use another query language, like for example SQL.

To be able to answer a query request, behind the scene QueryBrokerSPARQL uses services of

different classes which can be seen in Figure 7.7. The reasoning over the collected models and

the following result format transformation is introduced next.

Reasoning over models. To answer a query, the Query Broker has to collect the different

data sources that support the relevant concepts. This is managed by the method getAllRele-

vantConcepts of QueryBrokerSPARQL. Therefore, it uses the class SPARQLHelper that is also in

the package querybroker.sparql. It supports the Query Broker to operate the SPARQL request.

To retrieve the separate models from different nodes, the class ModelHelper inside the package

63

7 Implementation

QueryBrokerSPARQL
infModel:InfModel
model:Model
reasoner:Reasoner

createInfModel()
getAllRelevantConcepts(queryString:String):List<String>
getDomain(domainWithNotion:String):String
getModelURLs(nodes:List<URL>):List<URL>
getNotion(domainWithNotion:String):String
getRelatedConcepts(domain:String, property:String):List<String>
getRules(concepts:List<String>):List<Rule>
getSupportingNodes(concepts:List<String>):List<URL>
processRequest(queryString:String):ResultSet
registerPrefix(prefix:String, identifier:String)
transformQueryResult(result:Object):String
transformQueryResult(result:ResultSet):String
unionModels(ml:List<Model>)
unionModels(m:Model)

<<abstract>>

GenericQueryBroker
ontology:Ontology
language:String

abstract processRequest(request:String):Object
abstract transformQueryResult(result:Object)

XSLTHelper

getTransformer(xsltfile:File):Transformer
getTransformer(xsltfile:File, cached:boolean):Transformer
getTransformer(xslt:Source):Transformer
getTransformer(xslt:Source, cached:boolean):Transformer
getTransformer(xsltfile:String):Transformer
getTransformer(xsltfile:String, cached:boolean):Transformer
getTransformer(xsltfile:URL):Transformer
getTransformer(xsltfile:URL, cached:boolean):Transformer
getTransformerFromString(stylesheet:String):Transformer
transform(trans:Transformer, xmlSource:Source, target:Result)
transformDocument(sourceDocument:Document, transformer:Transformer):Document

StringHelper

addLists(one:List<String>, two:List<String>):List<String>
getDomainAndPropertiesFromSparqlStr(separator:String, sparqlStr:String):Map<String, List<String>>
getPartsOfString(separator:String, str:String):List<String>

SPARQLHelper

getDomainAndProperties(sparqlquery:String):Map<String,List<String>>
getDomainAndPropertiesAsList(sparqlquery:String):List<String>
getNSFromPrefix(sparqlquery:String):Map<String,List<String>>

ReasonerHelper

getGenericRuleReasoner(ruleList:List<Rule>):Reasoner

ModelHelper

getInfModel(model:Model, reasoner:Reasoner):InfModel
getModel(uri:String):Model
getModel(url:URL):Model
getModelFromFile(inputFileName:String):Model
getModelFromUrl(url:String):Model
getModelFromUrl(url:URL):Model
unionModels(modelList:List<Model>):Model
unionModels(m1:Model, m2:Model):Model

JenaRuleHelper

createBackwardJenaRule(head:String, body:String):Rule
createForwardJenaRule(head:String, body:String):Rule
tableAll():Rule

Figure 7.7: Class Diagram for the Query Broker

querybroker.util.jena is utilized. It also supports the union of different models. The class Rea-

sonerHelper in the same package provides, as the name implies, a reasoner. To be able to create

a reasoner, the Query Broker can use the class JenaRuleHelper that manages different kinds of

rules (see Figure 7.7).

Transformation of result format. A SPARQL query can result in different formats. The one

used in this implementation is the SPARQL Query Results XML Format [33]. Of course, the

returned result format of a query has to be framework-aware for other query languages will be

supported in the future. Thus, the Domain Broker needs means to transform query language

specific result formats to global framework accepted formats. This functionality is provided, at

least for XML based markups, by the class XSLTHelper from the package domainbroker.util.xslt

(see Figure 7.7).

It serves the Domain Broker with supplying transformers and methods to transform one

XML document into another.

In the next section, the graphical Domain Broker Client is introduced.

64

7.5 Domain Broker Client

Figure 7.8: Managing Registrations with the Domain Broker Client

7.5 Domain Broker Client

The graphical Domain Broker Client is implemented as an HTML web interface. It is adapted

from the graphical ECA engine client62 to show a consistent layout wrt. the frameworks graph-

ical clients.

The functions of the graphical Domain Broker Client can mainly be summarized by three

parts:

1. It allows for the registration (link Register) and deregistration (link Deregister) of events

and actions. The requests have to be marked up in the appropriate XML markup and

then, the snippets are directly sent to the Domain Broker, i.e., the Event- or Action

Broker (see Figure 7.8).

2. The graphical Domain Broker client provides also means to send events (link Events) or

62 The ECA engine client was developed by Daniel Schubert, see [30].

65

7 Implementation

Figure 7.9: Sending SPARQL Queries with the Domain Broker Client

actions (link Actions) to the responsible broker. SPARQL queries can be stated via an

interface of the graphical client, too (link Queries) (see Figure 7.9).

3. The output that is generated by the framework-wide logger is presented to the user via

the link Framework Log (see Figure 7.10).

66

7.5 Domain Broker Client

Figure 7.10: Viewing the Framework Log with the Domain Broker Client

67

7 Implementation

68

8 Conclusion

The development of a Domain Broker builds the basis of this thesis. First, rules and their effect

in form of getting implicit knowledge from ontologies have been described. To also integrate

dynamic aspects and take events into account, the Framework for Evolution and Reactivity in

the Semantic Web, based on ECA rules and ontologies, has been explained.

Since the nodes inside the framework have to react on events in order to execute actions on

their specific domains, a Domain Broker was needed to act as a mediator between different

nodes of the framework. Consisting of an Event-, Action-, and Query Broker, the Domain

Broker was integrated as a module into the Framework for Evolution and Reactivity in the

Semantic Web.

The Domain Broker was implemented by using standard web technologies such as HTTP-

POST requests. This ensures an easy integration into information systems like the framework

and transforms the components of the Domain Broker into active participants of the Semantic

Web.

Although the Domain Broker uses several services of the existing framework infrastructure,

still important aspects of the framework have not yet been dealt with wrt. their development

as modular web services:

• A Language and Service Registry is currently under construction as subject of a thesis

and will answer requests about the responsibility of nodes wrt. certain services in the

near future.

• At the moment, events, actions, and queries are being simulated by test environments

inside the framework components. A possible area for further development will be the

establishment of producing and consuming nodes in a certain domain ontology.

• Since some nodes will not be able to send their generated events to dedicated Event

Brokers, the Event Broker could be extended with polling functionality.

69

8 Conclusion

70

Bibliography

[1] José Júlio Alferes, Ricardo Amador, Erik Behrends, Mikael Berndtsson, François Bry,

Gihan Dawelbait, Andreas Doms, Michael Eckert, Oliver Fritzen, Wolfgang May,

Paula Lavinia Pătrânjan, Loic Royer, Franz Schenk, and Michael Schröder. Specification

of a Model, Language and Architecture for Evolution and Reactivity. Technical Report

I5-D4, REWERSE EU FP6 NoE, 2005. Available at http://www.rewerse.net.

[2] Chris Bates. XML in Theory and Practice. John Wiley & Sons Ltd, 2003.

[3] Tim Berners-Lee. Notation 3. http://www.w3.org/DesignIssues/Notation3.html,

1998.

[4] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. A new form of

Web content that is meaningful to computers will unleash a revolution of new possibili-

ties. Scientific American, May 2001.

[5] Cliff Binstock, Dave Peterson, Mitchell Smith, Mike Wooding, Chris Dix, and Chris Gal-

tenberg. The XML Schema Complete Reference. Addison-Wesley, 2003.

[6] Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and S.-K. Kim. Composite

Events for Active Databases: Semantics, Contexts and Detection. In Jorge B. Bocca,

Matthias Jarke, and Carlo Zaniolo, editors, VLDB ’94: Proceedings of the 20th Interna-

tional Conference on Very Large Data Bases, pages 606–617. Morgan Kaufmann Pub-

lishers Inc., 1994.

[7] Wolfgang Dalitz, Winfried Neun, and Wolfram Sperber. Semantic Annotation in Mathe-

matics and Math-Net. In Siegfried Handschuh and Steffen Staab, editors, Annotation for

the Semantic Web, pages 3–22. IOS Press, 2003.

[8] DAML+OIL (March 2001) Reference Description. http://www.w3.org/TR/daml+

oil-reference, 2001.

[9] Leigh Dodds. Introducing SPARQL: Querying the Semantic Web. http://www.xml.

com/pub/a/2005/11/16/introducing-sparql-querying-semantic-web-tutorial.

html, 2005.

71

Bibliography

[10] Dublin Core Metadata Initiative. http://dublincore.org/, 1994.

[11] Martin Duerst and Michel Suignard. RFC 3987, Internationalized Resource Identifiers

(IRIs). http://www.ietf.org/rfc/rfc3987.txt, 2005.

[12] Rainer Eckstein and Silke Eckstein. XML und Datenmodellierung. XML-Schema und

RDF zur Modellierung von Daten und Metadaten einsetzen. dpunkt.verlag, 2004.

[13] A General Framework for Evolution and Reactivity in the Semantic Web. Draft, for

further information see http://www.dbis.informatik.uni-goettingen.de/rewerse.

[14] Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1991.

[15] Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho. Ontological Engi-

neering. With examples from the areas of Knowledge Management, e-Commerce and the

Semantic Web. Advanced Information and Knowledge Processing. Springer, 2004.

[16] Thomas R. Gruber. A Translation Approach to Portable Ontology Specifications.

Knowledge Acquisition, 5(2):199–220, June 1993.

[17] David Hirtle, Harold Boley, Benjamin Grosof, Michael Kifer, Michael Sintek, Said Tabet,

and Gerd Wagner. Schema Specification of RuleML 0.91. http://www.ruleml.org/0.

91, 2006.

[18] HP Labs Semantic Web Research. http://www.hpl.hp.com/semweb.

[19] HyperText Markup Language (HTML) Home Page. http://www.w3.org/MarkUp, 1989.

[20] Jena - A Semantic Web Framework for Java. http://jena.sourceforge.net.

[21] Michael Kay. XSLT Programmer’s Reference. Wrox Press Ltd., 2000.

[22] Alfons Kemper and André Eickler. Datenbanksysteme. Eine Einführung. Oldenbourg,

5th edition, 2004.

[23] Wolfgang May, José Júlio Alferes, and Ricardo Amador. Active Rules in the Semantic

Web: Dealing with Language Heterogeneity. In Rule Markup Languages (RuleML), num-

ber 3791, pages 30–44. Springer, 2005.

[24] Wolfgang May, José Júlio Alferes, and Ricardo Amador. An Ontology- and Resources-

Based Approach to Evolution and Reactivity in the Semantic Web. In Ontologies,

Databases and Semantics (ODBASE), number 3761, pages 1553–1570. Springer, 2005.

72

Bibliography

[25] N-Triples. http://www.w3.org/2001/sw/RDFCore/ntriples, 2001.

[26] OWL Web Ontology Language. http://www.w3.org/TR/owl-features, 2002.

[27] Resource Description Framework (RDF). http://www.w3.org/RDF, 2000.

[28] RDF Vocabulary Description Language 1.0: RDF Schema. http://www.w3.org/TR/

rdf-schema, 2000.

[29] RDF/XML Syntax Specification (Revised). http://www.w3.org/TR/

rdf-syntax-grammar, 2004.

[30] Daniel Schubert. Development of a Prototypical Event-Condition-Action Engine for the

Semantic Web. Bachelor Thesis, Univ. Göttingen, 2005.

[31] Semantic Web. http://www.w3.org/2001/sw.

[32] SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query, 2004.

[33] SPARQL Query Results XML Format. http://www.w3.org/TR/rdf-sparql-XMLres,

2004.

[34] Heiner Stuckenschmidt, Frank van Harmelen, Wolf Siberski, and Steffen Staab. Peer-to-

Peer and Semantic Web. In Steffen Staab and Heiner Stuckenschmidt, editors, Semantic

Web and Peer-to-Peer. Decentralized Management and Exchange of Knowledge and In-

formation, volume 96 of Frontiers in Artificial Intelligence and Applications. Springer,

2006.

[35] Sun Microsystems, Inc. The Source for Java Developers. http://java.sun.com/.

[36] Jenny Tennison. XSLT and XPath On The Edge, Unlimited Edition. M&T Books, 2001.

[37] Jeffrey D. Ullmann. Principles of Database and Knowledge-Base Systems, volume I:

Classical Database Systems. Computer Science Press, 8th edition, 1995.

[38] Web Naming and Addressing Overview (URIs, URLs, ...). http://www.w3.org/

Addressing, 1993.

[39] W3C – World Wide Web Consortium. www.w3c.org.

[40] W3C RDF Validation Service. http://www.w3.org/RDF/Validator.

[41] R. Allen Wyke and Andrew Watt. XML Schema Essentials. John Wiley & Sons, Inc.,

2002.

73

Bibliography

[42] Extensible Markup Language (XML). http://www.w3.org/XML, 1998.

[43] XML Schema. http://www.w3.org/XML/Schema, 2001.

[44] XML Path Language (XPath). http://www.w3.org/TR/xpath, 1999.

[45] XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery, 2001.

[46] The Extensible Stylesheet Language Family (XSL). http://www.w3.org/Style/XSL,

1998.

[47] XSL Transformations (XSLT). http://www.w3.org/TR/xslt, November 1999.

74

