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Abstract

This thesis deals with the OWL-based, semantic query language OWLQ which
defines a query ontology based on classes, variables and constraints and whose
queries are completely stated in RDF. Hence it is possible to handle the com-
ponents of the query, i.e., definitions of relevant classes and constraints, like
any other Semantic Web resource constituting the facilities to specify metadata
about queries, reason about them with regards to their satisfiability and con-
tainment in each other and publish them as Semantic Web data.

Besides describing the theoretical concepts of OWLQ queries, this thesis ad-
dresses the implementation of an application that supports their analysis and
execution based upon the Jena framework.





Zusammenfassung

Diese Arbeit behandelt die OWL-basierte, semantische Anfragesprache OWLQ.
Diese definiert eine Query-Ontologie, die auf Klassen, Variablen und Bedingun-
gen basiert. OWLQ-Anfragen werden komplett in RDF dargestellt, somit können
die Komponenten einer Anfrage, also ihre relevanten Klassendefinitionen und Be-
dingungen als Ressourcen des Semantischen Webs behandelt werden. Dadurch
ist es möglich, die Anfragen mit Metadaten zu beschreiben, sie hinsichtlich ihrer
Erfüllbarkeit und ihres gegenseitigen Enthaltenseins zu untersuchen und sie als
Objekte des Semantischen Webs zu publizieren.

Neben der Beschreibung der theoretischen Konzepte von OWLQ-Anfragen
beschreibt diese Arbeit die Implementierung einer auf dem Jena-Framework ba-
sierenden Applikation zu deren Analyse und Ausführung.
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1 Introduction

“You don’t need to know everything. You need to know where to look it up.”
Apart from this famous citation mostly being used with reference to human
beings, it is also an important concept of the Semantic Web. An ontology that
is available through one location on the Internet may contain statements about
a resource that is published in another place and may specify relations that
connect that resource to yet another resource from yet another location.

To obtain information from this sort of distributed information database,
queries can be stated against one or more ontologies, whose combined informa-
tion is used to answer the query. However, the queries written in the established
query languages are merely syntactic entities which cannot be described in a
semantic context.

OWLQ uses a semantic approach to stating queries. It defines an ontology
that specifies the elements of a query such as classes, variables and constraints.
OWLQ queries entirely consist of RDF resources and statements about them
and are RDF resources themselves, which can again be published as Semantic
Web data and referenced in other ontologies’ statements. As OWLQ queries are
addressable via their URI, an ontology may also include statements about the
relation of two queries to one another.

The ability to refer to a query’s every particular element allows for its analysis
on a semantic level which makes it possible to examine for example the satisfia-
bility of both a whole query or a single class or constraint. Being able to compare
the structural elements of different OWLQ queries from a semantic point of view
even provides the facilities for a heuristic approach to the examination of query
containment.

To be able to semantically examine a query with regards to its satisfiability
and containment in other queries does not only provide a way to know whether
it can have any results at all or if its results can be computed out of the results
of another query, but it also serves for the examination of the completeness and
validity of both the query itself and of the ontology it refers to.
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1 Introduction

This thesis is subdivided into six chapters, the first of which is this introduc-
tion. Chapter 2 provides some basic information about Semantic Web ontologies
and queries and how they can be dealt with in Java. The 3rd chapter starts with
introducing the OWLQ query language and continues with theoretical details
about what is possible with regards to executing and reasoning about queries.
Chapter 4 describes the implementation of a Java package, that enables its im-
porting application to use the features presented before like the execution of
OWLQ queries and the analysis regarding their satisfiability and containment.
In Chapter 5, the reference implementation of an OWLQ servlet is explained to
show, how the package can be utilized in an application. Finally, the 6th chapter
concludes the thesis summarizing its results.
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2 Foundations

This chapter deals with presenting the basic concepts, on which this thesis is
based.

In the first section, a short overview is given about the Resource Description
Framework and the Web Ontology Language, followed by explanations about
the SPARQL Protocol and RDF Query Language. The presentation of those
languages is followed by the introduction of the Jena framework and one of its
plugins, namely the Pellet reasoner.

2.1 RDF and OWL

The Resource Description Framework (RDF) is a formal language, developed for
the purpose of making data and metadata available on the World Wide Web.
RDF consists of statements, which describe a resource, referred to as the subject

and which are triples in the form subject predicate object. A statement’s
subject is a resource, which can be either anonymous or identified via a Unified
Resource Identifier (URI). The predicate, which describes a relationship between
the subject and the object, is a resource as well and the object is either a resource
or a literal such as a number or a string.

RDF can be represented by a directed graph structure as well as in different
textual representations. The most common textual formats are RDF/XML and
N3. RDF/XML is commonly used when it comes to providing and transferring
RDF data via the Internet, whereas the N3 format exactly reflects the subject
predicate object syntax mentioned above, making it more intuitive for humans
to read.

The Web Ontology Language (OWL) can be seen as an extension to RDF.
OWL introduces new vocabulary and thereby makes it possible to make more
expressive statements including semantic aspects.
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2 Foundations

1 @prefix : <http://family#>.

2 @prefix rdf: <http://www.w3.org/1999/02/22­rdf­syntax­ns#>.

3 @prefix rdfs: <http://www.w3.org/2000/01/rdf­schema#>.

4 @prefix owl: <http://www.w3.org/2002/07/owl#>.

5

6 :Person a owl:Class.

7 :Female a owl:Class; rdfs:subClassOf :Person.

8 :Male a owl:Class; rdfs:subClassOf :Person; owl:disjointWith :Female.

9 :hasChild a rdf:Property; rdfs:range :Person; owl:inverseOf

:hasParent.

10 :age a owl:FunctionalProperty.

11 :name a owl:FunctionalProperty.

12

13 :kate a :Female; :name "Kate"; :age 62; :hasChild :john, :sue, :frank.

14 :john a :Male; :name "John"; :age 35; :hasChild :alice, :bob.

15 :sue :name "Sue".

Figure 2.1: An example RDF document

Figure 2.1 shows an example family ontology in N3, defining the classes
:Person, :Female and :Male and the properties :hasChild, :age and :name in
Lines 6–11. Lines 13–15 introduce the individuals :kate, :john, :sue, :frank,
:alice and :bob and make statements about them such as some parent child
relationships, names and ages.

2.2 SPARQL

To obtain information from a given RDF file, there are several query languages,
the SPARQL Protocol and RDF Query Language being the most sophisticated
of them.

The example query in Figure 2.2 shows, how SPARQL can be used to extract
information from the example family ontology. In Line 2, the query’s result
variables are defined. The query’s constraints, which define, how the variables
should be related, are specified in Lines 4–6 by again using triples. If this query
is executed against the example family ontology in Figure 2.1, it yields the
tuples (”Kate”, ”Sue”) and (”Kate”, ”John”) as results. The rest of the ontology’s

12



2.3 The Jena Framework

1 PREFIX fam: <http://family#>

2 SELECT ?ParentName ?ChildName

3 WHERE

4 { ?Parent fam:hasChild :Child;

5 fam:name ?ParentName.

6 ?Child fam:name ?ChildName.

7 }

Figure 2.2: A SPARQL query that lists parents and their children

fam:hasChild relationships, such as :kate :hasChild :frank, are not listed, due
to the fact, that the query explicitly asks for the persons’ names. As the names
are only given for :kate, :john and :sue, the other members of the :Person

class are not taken into account.

2.3 The Jena Framework

Jena is a Java framework for building Semantic Web applications. It provides a
programmatic environment for RDF, RDFS and OWL, SPARQL and includes
a rule-based inference engine[3]. It supports the input and output of RDF data
in the established formats (RDF/XML, N3, N-Triples). Internally, this data is
kept inside models, which can be processed via several functions that the Jena
API[2] provides. These include functions for modifying and extracting data from
these models and stating queries.

Jena’s model interface is defined in com.hp.hpl.jena.rdf.model.Model. An
RDF model is a set of statements. Methods are provided for creating resources,
properties and literals and the statements which link them, for adding statements
to and removing them from a model, for querying a model and set operations
for combining models[2]. Those general models are just capable of keeping RDF
data and do not have any inference support. This feature is among others offered
by the sub-interface com.hp.hpl.jena.ontology.OntModel, which incorporates a
base model with an optional reasoner. When it comes to reasoning about models,
Jena offers a built-in OWL reasoner as well as the possibility to plug in virtually
any external DIG[1] reasoner.
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2 Foundations

Queries can be stated against those models by using the ARQ package. ARQ
is a query engine for Jena, that supports the SPARQL Protocol and RDF Query
Language. Its main class is com.hp.hpl.jena.query.Query, instances of which
are created either declaratively from query strings or programmatically by set-
ting its result variables and constraints using the query object’s respective meth-
ods.

A query’s result is returned as a com.hp.hpl.jena.query.ResultSet, which is
a sub-interface of java.util.Iterator and also part of the ARQ package. A
ResultSet object can be either output using the ResultSetFormatter class or
processed by inquiring the particular entries.

2.4 Pellet

Pellet is a powerful OWL reasoner, which supports the full expressivity of OWL-
DL and most of the features proposed in OWL 1.1. Pellet provides functionalities
to validate ontology species, check consistency of ontologies, classify the taxon-
omy, check entailments and answer a subset of RDQL queries (known as ABox
queries in DL terminology) [4]. One of the main advantages that Pellet has over
the Jena framework’s internal reasoner is it being faster when it comes to bigger
and more complicated ontologies. Pellet is the recommended reasoner to be used
with Jena.

14



3 Analysis and Design

This chapter gives an overview of the concepts upon which the OWLQ query
engine was realized.

Its first section is a brief description of the work-in-progress query language
OWLQ. The rest of this chapter shows, how OWLQ queries can be executed and
analyzed with respect to their satisfiability and containment in each other, along
with some more advanced features of OWLQ. These descriptions also give an
outline on which features the implementation should have along with theoretical
explanations on how they are intended to work.

Finally, the last section lists the complete OWLQ ontology for easy reference.

3.1 An Introduction to OWLQ

The OWLQ query language was developed out of the idea that one should be
able to handle queries as semantic web data, thus making one able to reason
about them just like about any other (meta)data ontology.

In contrast to SPARQL, OWLQ is completely based on OWL. The entire
query consists of triples, so it can be represented in common RDF notations
such as RDF/XML or N3 and published as Semantic Web resources on the
Internet. Additionally, that makes it possible to make statements about OWLQ
queries as their URIs can be used to reference them in other ontologies just like
any other resource. The complete OWLQ ontology is shown in Section 3.7.

Apart from being syntactically different, there are also some semantic differ-
ences between OWLQ and SPARQL. First of all, OWLQ offers facilities to define
classes and data ranges, generally being referred to as scopes, within a query.
Both classes and data ranges resemble their OWL equivalents and are addition-
ally able to scope variables. In OWLQ, variables are not treated as syntactic
elements of a query, but they are also semantic objects that belong to the OWL
class owlq:Variable. Therefore, they can have properties and relationships with

15



3 Analysis and Design

other resources and can be utilized for the analysis of a query on a semantic
level.

An OWLQ variable can either directly range over a class or a data range, or
it can be defined as the literal value of another variable’s property. If :P is a
variable, that ranges over the class :Person, one could define another variable
:Name to refer to the name of the respective person assigned to :P.

A requested relation between two variables is expressed in a constraint, that
requires one variable to have a property with the other variable as its value.
For example, one could have the variables :Country and :City range over all
countries and cities respectively and a constraint could require, that :City is
the capital of :Country.

The query that is shown in Figure 3.1 is an OWLQ equivalent to the fam-
ily SPARQL query (Figure 2.2). The query’s root definition ranges over the
Lines 6–9. Line 7 resembles the SELECT statement in SPARQL and defines the
query’s result variables, constituting the projection part of the query. Line 8
introduces classes, which will be defined in a subsequent part of the query and
Line 9 refers to the constraint, that the result tuples have to satisfy and which
will also be defined later.

In this example query, there are two OWLQ class definitions. The :Parent

class which scopes the variable :P is defined as something that has a child which
is an element of the :Person class. The class :Child ranges over the variable
:C and is defined as everything, that has a :Person as its parent. Additionally,
for both :P and :C the owlq:VariableDefinition construct is used to assign the
result elements’ names to the variables :ParentName and :ChildName respectively.

The desired relation between the variables :P and :C is stated in Lines 25–
27 as an owlq:Constraint that limits the result set to those tuples that satisfy
the statement :P fam:hasChild :C. As the query is equivalent to the SPARQL
query from Figure 2.2, executing it also yields the tuples (”Kate”, ”Sue”) and
(”Kate”, ”John”).

16



3.1 An Introduction to OWLQ

1 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#>.

2 @prefix owl: <http://www.w3.org/2002/07/owl#>.

3 @prefix fam: <http://family#>.

4 @prefix : <ex:pl#>.

5

6 [ a owlq:Query;

7 owlq:resultVariable :ParentName, :ChildName;

8 owlq:definesClass :Parent, :Child;

9 owlq:hasConstraint :c1 ].

10

11 :Parent a owlq:Class; owlq:scopesVariable :P;

12 owl:equivalentClass [ a owl:Restriction;

13 owl:onProperty fam:hasChild;

14 owl:someValuesFrom fam:Person ].

15 :P owlq:hasVariableDefinition [ owlq:onProperty fam:name;

16 owlq:toVariable :ParentName ].

17

18 :Child a owlq:Class owlq:scopesVariable :C;

19 owl:equivalentClass [ a owl:Restriction;

20 owl:onProperty fam:hasParent;

21 owl:someValuesFrom fam:Person ].

22 :C owlq:hasVariableDefinition [ owlq:onProperty fam:name;

23 owlq:toVariable :ChildName ].

24

25 :c1 a owlq:Constraint; owlq:onVariable :P;

26 owlq:onProperty fam:hasChild;

27 owlq:equalsVariable :C.

Figure 3.1: An OWLQ query that lists parents and their children

17



3 Analysis and Design

As already mentioned, besides an owlq:Class, an owlq:Variable can also
range over an owlq:DataRange, which is a subclass of owl:DataRange. It is used
if a variable is to range over a literal data type such as a string or a numeric
interval. This variable can then be referenced in a constraint.

1 @prefix owl: <http://www.w3.org/2002/07/owl#>.

2 @prefix owl11: <http://www.w3.org/2006/12/owl11#>.

3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

4 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#>.

5 @prefix mon: <http://www.semwebtech.de/mondial/10/meta#>.

6 @prefix : <ex:pl#>.

7

8 [ a owlq:Query; owlq:resultVariable :CityName, :CityPop;

9 owlq:definesClass mon:City; owlq:hasConstraint :c1 ].

10

11 :AtLeast1M a owlq:DataRange; owlq:scopesVariable :CityPop;

12 owl11:onDataRange xsd:int; owl11:minInclusive 1000000.

13

14 :X owlq:rangesOver mon:City;

15 owlq:hasVariableDefinition [ owlq:onProperty mon:name;

16 owlq:toVariable :CityName ].

17

18 :c1 a owlq:Constraint;

19 owlq:onVariable :X;

20 owlq:onProperty mon:population;

21 owlq:equalsVariable :CityPop.

Figure 3.2: An OWLQ query that lists cities with a big population

The query shown in Figure 3.21 lists cities, that have a population of at least
one million. The scope :AtLeast1M, which ranges over xsd:int values greater or
equal than 1.000.000, is defined in Lines 11–12 and scopes the variable :CityPop.
This variable is then referenced in the constraint :c1 in Line 21 in the same way
as a variable that ranges over an owlq:Class.

1All of this thesis’ queries that use geographical facts are based on the MONDIAL database,

which can be found at http://www.dbis.informatik.uni­goettingen.de/Mondial/
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3.2 Reducing OWLQ to OWL and SPARQL

3.2 Reducing OWLQ to OWL and SPARQL

Jena does not offer the necessary facilities to handle OWLQ directly. But from
Section 3.1, one can already infer that every OWLQ query can be partitioned
into an OWL and a SPARQL portion. As Jena is meant for operating with
OWL and SPARQL, this partitioning is the only step to be taken to make Jena
capable of executing OWLQ queries by adding their OWL part to the knowledge
base and evaluating their SPARQL part against it.

3.2.1 Extracting the OWL Class Definitions

There were two possible approaches for extracting the OWL portion from the
query. The first one would consist of taking all elements of type owlq:Class

and owlq:DataRange into account and removing all the statements about them
that are specific to OWLQ. That would include all statements whose predicates
belong to the owlq namespace, i.e. the property owlq:scopesVariable. Those
predicates are exactly what distinguishes an owlq:Class from an owl:Class and
an owlq:DataRange from an owl:DataRange so the plain OWL class and data
range definitions would remain.

However, a slightly different approach was taken for the OWLQ engine’s im-
plementation. Every statement is taken into account and is added to the OWL
portion’s ontology if neither its predicate nor its object are from the owlq names-
pace. It will instantly become clear, that this has the same effect as the above-
mentioned approach. Every OWL query consists of the query element, scope
definitions and constraints. As for the class and data range definitions, the ef-
fect is just the same as above, the owlq:scopesVariable predicates are ignored.
For the owlq:Query and owlq:Constraint elements, all the statements about
them have predicates from the owlq namespace, which are removed as well. Of
course, the query and constraint resources themselves are also removed, because
their objects belong to the owlq namespace as per definition.

A special treatment is needed for members of the owlq:DataRange class. As ev-
ery statement :X a owlq:DataRange would be lost because of its object belonging
to the owlq namespace, for the OWL part, it is replaced by :X a owl:DataRange.

19



3 Analysis and Design

Figure 3.3 shows the class definitions that are extracted from the query given
in Figure 3.1, that can now be added to the knowledge base.

1 @prefix owl: <http://www.w3.org/2002/07/owl#>.

2 @prefix fam: <http://family#>.

3 @prefix : <ex:pl#>.

4 :Child owl:equivalentClass [

5 a owl:Restriction; owl:onProperty fam:hasParent;

6 owl:someValuesFrom fam:Person ].

7 :Parent owl:equivalentClass [

8 a owl:Restriction; owl:onProperty fam:hasChild;

9 owl:someValuesFrom fam:Person ].

Figure 3.3: The OWL class definitions generated out of an OWL query

3.2.2 Extracting the SPARQL Query

Because of an OWLQ query being RDF data itself, an OWLQ query can be used
as a knowledge base that can be queried using SPARQL. The SPARQL query

1 PREFIX owlq: <http://www.semwebtech.org/languages/2006/owlq#>

2 SELECT ?S ?CV ?V1 ?P ?V2

3 WHERE

4 { {?S a owlq:Scope; owlq:scopesVariable ?CV}

5 UNION

6 { ?V1 owlq:hasVariableDefinition

7 [ owlq:onProperty ?P; owlq:toVariable ?V2 ] }

8 UNION

9 {?S a owlq:Constraint; owlq:onVariable ?V1;

10 owlq:onProperty ?P; owlq:equalsVariable ?V2 ] }

11 }

Figure 3.4: Extracting variables and constraints from an OWLQ query

listed in Figure 3.4 returns the necessary information for building a SPARQL
query out of an OWLQ query[7]. For the example family query (Figure 3.1), the
result would look like shown in Figure 3.5.

20



3.2 Reducing OWLQ to OWL and SPARQL

S CV V1 P V2

:Parent :P

:Child :C

:P fam:name :ParentName

:C fam:name :ChildName

:c1 :P fam:hasChild :C

Figure 3.5: Example result of the information extraction query

Each row of the result set represents either information about classes and the
variables they scope (upper part of the UNION), information on one variable being
defined on a property of another one (the middle part), or information about
the query’s constraints (lower part of the UNION). For the former, there is always
a scope (S) and its scoped variable (CV). For the variable definitions, the entry
consists of the variable V2 defined by the property P on the other variable V1.

For the constraints, the result is always the constraint’s name (S), its affected
variable (V1) and the property P, whose object is to be the variable V2.

From these results, one can easily generate a SPARQL query, which looks like
the one in Figure 3.6.

1 PREFIX : <ex:pl#>

2 PREFIX fam: <http://family#>

3 SELECT ?ChildName ?ParentName

4 WHERE

5 { ?P <http://www.w3.org/1999/02/22­rdf­syntax­ns#type> :Parent;

6 fam:name ?ParentName.

7 ?C <http://www.w3.org/1999/02/22­rdf­syntax­ns#type> :Child;

8 fam:name ?ChildName.

9 ?P fam:hasChild ?C.

10 }

Figure 3.6: A SPARQL query generated out of an OWLQ query
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3 Analysis and Design

3.3 Advanced Features of OWLQ

By means of the features described so far, one can realize all conjunctive queries
including filters, that can be stated using SPARQL, with the exception of UNION
and OPTIONAL constructs. This section describes two of the OWLQ query lan-
guage’s features, that SPARQL does not provide, namely negated constraints
and closures.

3.3.1 Negated Constraints

One feature that sets OWLQ apart from SPARQL is the ability to express
negated constraints. Those allow for constraints, that filter all tuples (X,Y),
where X is not related to Y by a property p. First of all, strictly speaking, this
formulation is not correct. In fact, negated constraints filter tuples (X,Y), about
which it is not known, that X is related to Y by a property p, which is slightly
different but much more useful. The following example will show the difference.

1 @prefix owl: <http://www.w3.org/2002/07/owl#>.

2 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#>.

3 @prefix mon: <http://www.semwebtech.de/mondial/10/meta#>.

4 @prefix : <ex:pl#>.

5

6 [ a owlq:Query;

7 owlq:resultVariable :Country, :NonNeighbor;

8 owlq:definesClass mon:Country;

9 owlq:hasConstraint :c1 ].

10

11 mon:Country a owlq:Class;

12 owlq:scopesVariable :Country, :NonNeighbor.

13

14 :c1 a owlq:NegatedConstraint; owlq:onVariable :Country;

15 owlq:onProperty mon:neighbor;

16 owlq:equalsVariable :NonNeighbor.

Figure 3.7: An OWLQ query with a negated constraint
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The OWLQ query in Figure 3.7 asks for all the tuples of two countries, that
are not neighbors of one another, or rather about which it is not said, that they
are neighbors.

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf­schema#>.

2 @prefix owl: <http://www.w3.org/2002/07/owl#>.

3 @prefix : <http://www.semwebtech.de/mondial/10/meta#>.

4

5 :Country a owl:Class.

6 :neighbor a owl:ObjectProperty, owl:SymmetricProperty;

7 rdfs:domain :Country;

8 rdfs:range :Country.

9

10 <http://www.semwebtech.de/mondial/10/countries/E/> :neighbor

<http://www.semwebtech.de/mondial/10/countries/P/>,

<http://www.semwebtech.de/mondial/10/countries/F/>.

Figure 3.8: An excerpt from the MONDIAL database

Figure 3.8 shows an excerpt of the MONDIAL database, containing the coun-
tries Spain, Portugal and France and defining a symmetric property :neighbor

between two countries. From this ontology, Pellet can infer, that Spain is a
neighbor of Portugal and France and, due to the symmetry, both Portugal and
France are also neighbors of Spain.

Pellet uses Open World Assumption (OWA), that means, all triples that
are not given are assumed just not to be known. In contrast, Closed World
Assumption (CWA) means, that all triples that are not given are false. So, as
in the above ontology, Portugal is not stated to be a neighbor of France, CWA
would mean, that there is no neighborship relation between them. However, as
Pellet is using OWA, it will not infer that Portugal and France are not neigh-
boring, because there could be a neighborship relation between them, which is
just not given in the ontology.

To have the tuples (Portugal, France) and (France, Portugal) listed in the
result set, OWLQ makes use of a SPARQL facility, that allows for the selection
of unsaid statements using a combination of OPTIONAL and FILTER constructs.
The resulting SPARQL query for the OWLQ query in Figure 3.7 is shown in
Figure 3.9.
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1 PREFIX mon: <http://www.semwebtech.de/mondial/10/meta#>.

2 SELECT ?Country ?NonNeighbor

3 WHERE

4 { ?Country a mon:Country.

5 ?NonNeighbor a mon:Country.

6 OPTIONAL

7 { ?Country mon:neighbor ?NeighborOfCountry.

8 FILTER ( ?NeighborOfCountry = ?NonNeighbor ) }

9 FILTER ( ! BOUND (?NeighborOfCountry) )

10 }

Figure 3.9: A negated constraint expressed in SPARQL

Again, the variables are introduced up to Line 5. Lines 6–9 correspond to
the negated constraint. By Line 5, the answer is mon:Country× mon:Country.
The OPTIONAL statement binds the auxiliary variable ?NeighborOfCountry to
those countries that are neighbors of ?Country and filters those entries, where
?NeighborOfCountry is ?NonNeighbor. The intermediate result set is shown be-
low.

?Country ?NonNeighbor (?NeighborOfCountry)

Spain Spain

Spain Portugal Portugal
Spain France France

Portugal Portugal

Portugal Spain Spain

France France
Portugal France

France Spain Spain

France Portugal
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The last FILTER statement in Line 9 filters all entries, where the auxiliary
variable ?NeighborOfCountry is not bound (the non-grayed), which results in
exactly those pairs of countries, which are not neighbors of each other. The
query’s final result is shown in Figure 3.10.

?Country ?NonNeighbor

Spain Spain

Portugal Portugal

France France

Portugal France

France Portugal

Figure 3.10: Results of the negated constraint query

As this result still contains the pairs where both countries are identical, it is
not exactly what was intended by the query. To additionally filter those pairs,
another negated constraint can be introduced, which is shown in Figure 3.11.

1 @prefix owl: <http://www.w3.org/2002/07/owl#>.

2 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#>.

3 @prefix : <ex:pl#>.

4

5 :c2 a owlq:NegatedConstraint;

6 owlq:onVariable :Country;

7 owlq:onProperty owl:sameAs;

8 owlq:equalsVariable :NonNeighbor.

Figure 3.11: Filtering identical values for two variables

The resulting SPARQL query is similar to the one in Figure 3.9 and is shown
in Figure 3.12. Up to Line 10, it resembles the other query and the second
negated constraint is reflected in Lines 11–14.
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1 PREFIX mon: <http://www.semwebtech.de/mondial/10/meta#>.

2 PREFIX owl: <http://www.w3.org/2002/07/owl#>

3 SELECT ?Country ?NonNeighbor

4 WHERE

5 { ?Country a mon:Country.

6 ?NonNeighbor a mon:Country.

7 OPTIONAL

8 { ?Country mon:neighbor ?NeighborOfCountry.

9 FILTER ( ?NeighborOfCountry = ?NonNeighbor ) }

10 FILTER ( ! BOUND (?NeighborOfCountry) )

11 OPTIONAL

12 { ?Country owl:sameAs ?SameAsCountry.

13 FILTER ( ?SameAsCountry = ?NonNeighbor ) }

14 FILTER ( ! BOUND (?SameAsCountry) )

15 }

Figure 3.12: A negated constraint expressed in SPARQL

?Country ?NonNeighbor (?NeighborOfCountry) (?SameAsCountry)

Spain Spain Spain
Spain Portugal Portugal
Spain France France

Portugal Portugal Portugal
Portugal Spain Spain
France France France

Portugal France

France Spain Spain

France Portugal

The FILTER statements in Lines 10 and 14 seen together filter those entries
in the result set, where neither ?NeighborOfCountry nor ?SameAsCountry are
bound. The results are the tuples (Portugal, France) and (France, Portugal).
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3.3.2 Closure of Predicates

Another feature that OWLQ offers in contrast to SPARQL is the ability to close
predicates. The query in Figure 3.13 defines an owlq:Class of countries, which

1 @prefix owl: <http://www.w3.org/2002/07/owl#>.

2 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#>.

3 @prefix mon: <http://www.semwebtech.de/mondial/10/meta#>.

4 @prefix : <ex:pl#>.

5

6 [ a owlq:Query;

7 owlq:resultVariable :Ctry;

8 owlq:definesClass :MemberOfNineOrganizations ].

9

10 :MemberOfNineOrganizations a owlq:Class;

11 owlq:scopesVariable :Ctry;

12 owl:intersectionOf (

13 mon:Country

14 [ a owl:Restriction;

15 owl:onProperty mon:isMember;

16 owl:cardinality 9 ]

17 ).

Figure 3.13: A query for countries which are in nine organizations

are members of nine organizations. But once again, the Open World Assumption
will cause Pellet not to find any results for this query, as it will not find a country,
that satisfies the cardinality restriction. If no country is explicitly stated to be
a member of nine organizations, Pellet would assume, that for each country,
about which nine mon:hasMember statements are given, there could be more
membership statements, which are just not contained in the knowledge base.
Also, if the knowledge base contains an existential assertion about a country,
that it is a member of at least nine organizations, that would not lead Pellet to
infer, that it belongs to the class :MemberOfNineOrganizations, as it could also
be a member of ten or more organizations.

The solution is to close the predicate mon:isMember by extending the query
by the statement mon:isMember a owlq:ClosedPredicate, which means, that
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Pellet should assume Closed World for all statements :X mon:isMember :Y, so
all statements that are not given are assumed not to hold. This is accomplished
by classifying all the knowledge base’s individuals by to how many organizations
they have to belong at least to satisfy the ontology.

Let P an owlq:ClosedPredicate. The restriction ≥ n.P denotes the class of all
individuals x, about which it is known, that they have at least n predicates P, be
it explicit statements of the form P(x, y) or P−(y, x) or existential assertions like
∃≥ny.P(x, y). Applied to the given example, where P is mon:isMember, ≥ n.P
would be the class of individuals :X, about which it is known from the knowledge
base, that there are at least n statements of the form :X mon:isMember :Org.
Pellet is able to tell, which individuals are in the respective classes, as each of
them is an owl:Restriction with an owl:minCardinality of n, which contains
the same individuals regardless of whether open or closed world is assumed.

For n = 1, the class ≥ n.P contains all individuals, which are assured to
have any filler of predicate P at all. For n = 2, the set is reduced to those
individuals who are known have two such fillers of P, again either explicitly
stated or existentially assured. Now the relative complement of ≥ 2.P in ≥ 1.P
is those individuals about which it is known, that they have at least one but not
necessarily two or more fillers of predicate P. By now incrementing n by one at
a time, each of the individuals in ≥ 1.P belongs to ≥ n.P up to a certain n. The
process is finished, when for each individual such an n has been found.

The next step is to create cardinality restrictions n.P and for each individual,
that belongs to ≥ n.P up to a given n, but not to ≥ (n + 1).P, to add to
the knowledge base, that it is a member of n.P. Thereafter, the knowledge
base contains that an individual belongs to the class n.P, if it is guaranteed
to have n fillers for predicates P. For the given example, that means, that for
P = mon:isMember, 9.P equals the restriction on the property mon:isMember with
a cardinality of 9 in Lines 14–16 and therefore, Pellet is able to answer the query.

Figure 3.14 shows another example for predicate closure. The individual :john
is said to have a son :bob and to be in the class :HasDaughters, which states, that
he has one daughter at least. Additionally, also :mary is defined to have :bob

as her son. When now an OWLQ query is stated against that database, that
defines fam:hasChild as an owlq:ClosedPredicate, the ontology’s individuals
will be categorized according to the procedure that has just been explained.2

2The following steps assume, that fam:hasSon and fam:hasDaughter are defined as sub-

properties of fam:hasChild with the ranges fam:Male and fam:Female respectively.
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1 @prefix owl: <http://www.w3.org/2002/07/owl#>.

2 @prefix fam: <http://family#>.

3

4 :HasDaughters a owl:Class;

5 owl:equivalentClass [ a owl:Restriction;

6 owl:onProperty fam:hasDaughter;

7 owl:minCardinality 1 ].

8

9 :john a :HasDaughters.

10 fam:hasSon :bob;

11 :mary fam:hasSon :bob.

Figure 3.14: Organizations with at most 3 countries, which are in the EU

At first, the database is queried for all individuals with at least one child,
which resembles ≥ n.P for n = 1 and P = fam:hasChild, yielding the set

{:john, :mary}, as both of them are stated to have the child :bob. Additionally,
Pellet will infer, that :john has even at least two children. On one hand, that is
:bob and on the other hand, he belongs to the :HasDaughters class, so he must
have at least one daughter. Pellet will also infer, that this daughter cannot be
:bob, as he is a fam:Male. However, :bob will not be in the set, as he is not
known to have any children at all.

Thereafter, n will be incremented to 2 so the new set contains all individuals,
which have at least two children. As already mentioned, :john will be contained
in this set. He will also be the only element of the set, as :mary is only known
to have one child. So for the individual :mary the greatest n has be found, such
that it is contained in ≥ n.P, but not in ≥ (n+ 1).P, to be 1. That information
is used to categorize :mary as an individual, who has one child and make it a
member of 1.P for P = fam:hasChild. In the next step, n will be 3 and the set
≥ 3.P will be found to be empty, which leads to :john being a 2.P. Now all
individuals have been categorized in the respective cardinality restriction classes
and thus, the closure of fam:hasChild is complete.

By further examining the query in which a closed predicate occurs, the pro-
cedure can be abbreviated. For a closed predicate P, let nP,begin the least and
nP,end the greatest n, for which the restrictions have to be computed. For every
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restriction Ri on the property P, that the query contains, let Cl(Ri) the least
value of c, such that a member of c.P is contained in the restriction. For a
restriction with an owl:cardinality of c, Cl(Ri) = c, whereas for a restriction
with an owl:maxCardinality of c, Cl(Ri) = 0. Now nP,begin can be set to the
minimum of relevant cardinalities for all restrictions min(Cl(Ri)).

A similar statement can be made about nP,end. For every restriction Ri on
the property P, that the query contains, let Cg(Ri) the greatest value of c, such
that a member of c.P is contained in the restriction. For both a restriction with
an owl:cardinality of c and a restriction with an owl:maxCardinality of c,
Cl(Ri) = c. Now nP,end can be set to the maximum of relevant cardinalities for
all restrictions max(Cg(Ri)). The restriction classes n.P have to be created and
computed only for nP,begin ≤ n ≤ nP,end.

Even further optimizations can be made to the procedure, if for a restrictions
on P, owl11:onClass is set.

1 :OrganizationWithAtMost3EUCountries a owl:Class;

2 owl:intersectionOf (mon:Organization

3 [ a owl:Restriction;

4 owl:onProperty mon:hasMember;

5 owl:maxCardinality 3;

6 owl11:onClass :EUCountry ] ).

7

8 mon:hasMember a owlq:ClosedPredicate.

Figure 3.15: Organizations with at most 3 countries, which are in the EU

Figure 3.15 shows a class definition for all organizations, which have at least
3 members, which belong to the European Union. By now, all individuals were
categorized in the created restrictions n.P, which can principally be seen to have
owl11:onClass owl:Thing. For this example, that were those individuals, who
have any n members. The restrictions on a property P can be aggregated ac-
cording to their owl11:onClass property. Now, instead of creating the more
general n.P restrictions, for each class C, that is referenced in a group of restric-
tions’ owl11:onClass attribute, the restrictions n.P.C are created. Of course, for
those restrictions, where no explicit owl11:onClass property is given, setting C
to owl:Thing leads to n.P.C ≡ n.P.
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3.3.3 Closure of Classes

Besides the ability to close predicates, also classes can be closed in OWLQ.
The query in Figure 3.16 defines the Scandinavians :A through :H and states
that a Scandinavian is either a Dane, a Swede or a Norwegian and defines :A

and :F as Danes and :C, :G and :H as Swedes. When asking for the members of
:Norwegian, the expected answer would be :B, :D and :E. But yet again, Pellet’s
OWA makes it unable to infer those memberships. The fact, that :B, :D and :E

are not known to be Swedes or Danes, does not lead to it assuming, that this
does not hold.

1 @prefix owl: <http://www.w3.org/2002/07/owl#>.

2 @prefix owl11: <http://www.w3.org/2006/12/owl11#> .

3 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#> .

4 @prefix : <ex:pl#>.

5

6 [ a owlq:Query;

7 owlq:resultVariable :N;

8 owlq:definesClass :Scandinavian, :Dane, :Swede, :Norwegian ].

9

10 :Scandinavian owl:oneOf (:A :B :C :D :E :F :G :H);

11 owl11:disjointUnionOf ( :Dane :Swede :Norwegian ).

12

13 owl:AllDifferent owl:distinctMembers (:A :B :C :D :E :F :G :H).

14

15 :A a :Dane.

16 :C a :Swede.

17 :F a :Dane.

18 :G a :Swede.

19 :H a :Swede.

20

21 :Norwegian a owlq:Class; owlq:scopesVariable :N.

Figure 3.16: A query to infer, who is a Norwegian

By closing the classes using the statements :Dane a owlq:ClosedClass. and
:Swede a owlq:ClosedClass respectively, it can be stated, that there are no
other members than those, about which this can be told from the knowledge base.
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For every closed class :C, the results of querying the knowledge base for all its
elements can be set as the object of the class’ owl:oneOf property. Applied to the
given example, that would lead to the additional facts :Dane owl:oneOf (:A :F)

and :Swede owl:oneOf (:C :G :H) being added. Now, due to :Scandinavian

being defined as the disjoint union of :Dane, :Swede and :Norwegian, Pellet can
infer that the remaining members of :Scandinavian must belong to the class
:Norwegian.
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3.4 Query Compilation

Queries are not always written in an efficient way. Consider the example OWLQ
query listed in Figure 3.17.

1 @prefix owl: <http://www.w3.org/2002/07/owl#>.

2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

3 @prefix owl11: <http://www.w3.org/2006/12/owl11#>.

4 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#>.

5 @prefix mon: <http://www.semwebtech.de/mondial/10/meta#>.

6 @prefix : <ex:pl#>.

7

8 [ a owlq:Query;

9 owlq:resultVariable :X, :Y;

10 owlq:definesClass :BigCountry, :BigMountain;

11 owlq:hasConstraint :c1 ].

12

13 :AtLeast2K a owl:DataRange;

14 owl11:onDataRange xsd:int; owl11:minInclusive 2000.

15 :AtLeast100K a owl:DataRange;

16 owl11:onDataRange xsd:int; owl11:minInclusive 100000.

17 :BigMountain owlq:scopesVariable :X;

18 owl:intersectionOf (mon:Mountain

19 [ a owl:Restriction; owl:onProperty mon:height;

20 owl:someValuesFrom :AtLeast2K ] ).

21 :BigCountry owlq:scopesVariable :Y;

22 owl:intersectionOf (mon:Country

23 [ a owl:Restriction; owl:onProperty mon:area;

24 owl:someValuesFrom :AtLeast100K ] ).

25

26 :c1 a owlq:Constraint; owlq:onVariable :X;

27 owlq:onProperty mon:locatedIn;

28 owlq:equalsVariable :Y.

Figure 3.17: An OWLQ query that lists big mountains and their countries

This query defines four scopes, two of them being linked to result variables.
The variable :Y ranges over all elements of the class :BigCountry. A :BigCountry
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is a country whose area value is at least 100.000 km2. The variable :X is bound
to all resources of type :BigMountain, which contains all mountains that have a
height of at least 2000 meters. In the end, the constraint :c1 restricts the result
set to those tuples that satisfy the statement :X mon:locatedIn :Y, that is all
big mountains that are located in big countries.

In the final step, the evaluation of the constraint :c1, the reasoner has to
iterate over all the possible combinations of assignments to :X and :Y to check,
whether they satisfy the constraint. Executing the query against only the Eu-
ropean part of the MONDIAL database, the reasoner has to check 16 different
assignments of :X against 18 values of :Y, which makes 288 possible combina-
tions. For the explanation why this is anything but optimal, the results of the
query are shown in Figure 3.18.

X Y

Bjelucha Russia

Elbrus Russia

Galdhoeppig Norway

Glittertind Norway

Jostedalsbre Norway

Kasbek Russia

Kebnekaise Sweden

Korab Serbia and Montenegro

Montblanc France

Oeraefajoekull Iceland

Portefjaellen Sweden

Sarektjokko Sweden

Snoehetta Norway

Zugspitze Germany

Figure 3.18: Results of the big mountains query
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Considering the MONDIAL database, one can observe, that there are big
mountains, that do not appear in the list, namely the “Großglockner” (3797 m)
and the “Jezerce” (2694 m). In spite of them being higher than 2000 meters, of
course, they are not contained in the result because of the countries they are lo-
cated in being too small, namely Austria (83850 km2) and Albania (28750 km2).

3.4.1 Creating Result Classes out of Constraints

The set of relevant mountains comprises exactly those, which are located in
big countries, that is those elements out of the :BigMountain class who have a
property mon:locatedIn with an object out of the :BigCountry class, which is
exactly the purpose of the constraint :c1 in the query from Figure 3.17. As the
other elements from the :BigMountain class are not relevant for the result, a new
class can be defined as an intersection of :BigMountain and everything that is
located in a :BigCountry. Its class definition is shown in Figure 3.19.

1 :X­BigMountainlocatedInBigCountry a owl:Class;

2 owl:intersectionOf (:BigMountain [ a owl:Restriction;

3 owl:onProperty mon:locatedIn;

4 owl:someValuesFrom :BigCountry ]

5 ).

Figure 3.19: Restricting the :BigMountain class to the relevant elements

As the members of the original :BigMountain class, which are not in the
newly-generated one, are not relevant for the result sets anyway, for the com-
piled query, the variable X can be stated to range only over the new class
:X­BigMountainlocatedInBigCountry. The final query is shown in Figure 3.20.

Unfortunately, the generation of those restriction classes cannot be applied
to both sides of the constraint. If both the :BigMountain and the :BigCountry

class were refined using restrictions on the constraint’s property, the resulting
classes would look like shown in Figure 3.21.

35



1 @prefix : <ex:pl#>.

2 @prefix owl11: <http://www.w3.org/2006/12/owl11#>.

3 @prefix owl: <http://www.w3.org/2002/07/owl#>.

4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

5 @prefix mon: <http://www.semwebtech.de/mondial/10/meta#>.

6 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#>.

7

8 [ a owlq:Query;

9 owlq:resultVariable :X, :Y;

10 owlq:definesClass :BigMountain, :BigCountry,

:X­BigMountainlocatedInBigCountry;

11 owlq:hasConstraint :c1 ].

12

13 :AtLeast2K a owl:DataRange;

14 owl11:minInclusive 2000;

15 owl11:onDataRange xsd:int.

16 :AtLeast100K a owl:DataRange;

17 owl11:minInclusive 100000;

18 owl11:onDataRange xsd:int.

19 :BigCountry

20 owl:intersectionOf (mon:Country [ a owl:Restriction;

21 owl:onProperty mon:area;

22 owl:someValuesFrom :AtLeast100K ] ).

23 :BigMountain

24 owl:intersectionOf (mon:Mountain [ a owl:Restriction;

25 owl:onProperty mon:height;

26 owl:someValuesFrom :AtLeast2K ] ).

27 :X­BigMountainlocatedInBigCountry owlq:scopesVariable :X;

28 a owl:Class;

29 owl:intersectionOf (:BigMountain [ a owl:Restriction;

30 owl:onProperty mon:locatedIn;

31 owl:someValuesFrom :BigCountry ] ).

32

33 :c1 a owlq:Constraint;

34 owlq:equalsVariable :Y;

35 owlq:onProperty mon:locatedIn;

36 owlq:onVariable :X.

Figure 3.20: The compiled version of the big mountains OWLQ query
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1 :X­BigMountainlocatedInBigCountry a owl:Class;

2 owl:intersectionOf (:BigMountain [ a owl:Restriction;

3 owl:onProperty mon:locatedIn;

4 owl:someValuesFrom :Y­BigCountryinverseOfLocadedInBigMountain ] ).

5

6 mon:inverseOfLocatedIn owl:inverseOf mon:locatedIn.

7

8 :Y­BigCountryinverseOfLocadedInBigMountain a owl:Class;

9 owl:intersectionOf (:BigCountry [ a owl:Restriction;

10 owl:onProperty mon:inverseOfLocatedIn;

11 owl:someValuesFrom :X­BigMountainlocatedInBigCountry ] ).

Figure 3.21: Restricting both the :BigMountain and the :BigCountry classes

Taking a closer look at those classes, one will find, that there is a cyclic
dependency of the classes on one another. Both of them are intersections con-
taining an owl:someValuesFrom restriction with the respective other class as
its target. So as both classes do not have any explicit members, Pellet will
come to the conclusion, that they are both empty. For each tuple (:X, Y),
where :X a :BigMountain and :Y a :BigCountry, :X also belongs to the class
:X­BigMountainlocatedInBigCountry, if and only if :Y is already known to be
a :Y­BigCountryinverseOfLocadedInBigMountain and vice versa. So the class
restriction may only be applied to either variable.

The decision on which of a constraint’s variable is to be restricted by such
a class depends on which variable belongs to the query’s result variables. For
example, a query could define two variables :P and :C to range over the class
fam:Person and a constraint requiring :P fam:hasChild :C. If the query had
the single result variable :P, the restriction class would be defined as the in-
tersection of fam:Person and a restriction on the property fam:hasChild with
owl:someValuesFrom fam:Person and would scope the variable :P. However if
:C was the only result variable, the restriction class would be created for :C as
the intersection of fam:Person and a restriction on fam:hasParent (the inverse
of fam:hasChild) with owl:someValuesFrom fam:Person.

If both of a constraint’s variables belong to the query’s result variables, it
makes no difference for which of them the restriction class is created. However,
generally the restriction class is to be created for the variable, that is ‘closer’ to
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one of a query’s result variables in terms of the minimal number of constraints
that create a link between the variables.

Again, there is a special case that involves the use of an owlq:DataRange as
one of a constraint’s variable’s scope. Such a query is shown in Figure 3.22. For

1 @prefix owl11: <http://www.w3.org/2006/12/owl11#>.

2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

3 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#>.

4 @prefix mon: <http://www.semwebtech.de/mondial/10/meta#>.

5 @prefix : <ex:pl#>.

6

7 [ a owlq:Query;

8 owlq:resultVariable :City, :CityPop;

9 owlq:definesClass :City;

10 owlq:hasConstraint :c1 ].

11

12 :AtLeast1M owlq:scopesVariable :CityPop;

13 a owlq:DataRange;

14 owl11:onDataRange xsd:int;

15 owl11:minInclusive 1000000.

16 mon:City owlq:scopesVariable :City;

17

18 :c1 a owlq:Constraint; owlq:onVariable :City;

19 owlq:onProperty mon:population;

20 owlq:equalsVariable :CityPop.

Figure 3.22: A query that uses an owlq:DataRange in a constraint

the result of that query, only those members of mon:City are to be taken into
consideration, that have a population of at least one million. Consequently, the
class can be restricted to mon:CitypopulationAtLeast1M analogously to what
was shown in the previous example.

For the opposite direction, obviously it does not make sense to restrict the set
of numbers starting from 1.000.000 to those, that are populations of a mon:City.
Therefore, if one of a constraint’s variables ranges over an owlq:DataRange, the
restriction class is to be created for the other variable. For this example, the
resulting class definition is shown in Figure 3.23.
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1 mon:CitypopulationAtLeast1M a owl:Class;

2 owl:intersectionOf (mon:City [ a owl:Restriction;

3 owl:onProperty mon:population;

4 owl:someValuesFrom :AtLeast1M

5 ] ).

Figure 3.23: The generated class of cities with at least a million inhabitants

3.4.2 Removing Obsolete Constraints

After having compiled the query with respect to restricting the variables’ scopes
depending on the constraints on the variables, there are cases, in which one or
more of the constraints have become obsolete.

1 @prefix : <ex:pl#> .

2 @prefix owl: <http://www.w3.org/2002/07/owl#> .

3 @prefix fam: <http://family#>.

4 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#> .

5

6 [ a owlq:Query; owlq:definesClass fam:Person;

7 owlq:resultVariable :Grandparent; owlq:hasConstraint :c1, :c2 ].

8

9 fam:Person a owlq:Class;

10 owlq:scopesVariable :Person, :Parent, :Grandparent.

11

12 :c1 owlq:onVariable :Grandparent;

13 owlq:onProperty fam:hasChild;

14 owlq:equalsVariable :Parent.

15 :c2 owlq:onVariable :Parent;

16 owlq:onProperty fam:hasChild;

17 owlq:equalsVariable :Person.

Figure 3.24: A query for grandparents

The query shown in Figure 3.24 defines three variables :Person, :Parent

and :Grandparent all of which range over the class fam:Person. The constraints
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:c1 and :c2 state the necessary fam:hasChild relationships. The restriction
classes resulting from compiling this query are shown in Figure 3.25.

1 @prefix : <ex:pl#>.

2 @prefix owl: <http://www.w3.org/2002/07/owl#>.

3 @prefix fam: <http://family#>.

4

5 :Parent­PersonhasChildPerson a owl:Class;

6 owl:intersectionOf (fam:Person

7 [ a owl:Restriction;

8 owl:onProperty fam:hasChild;

9 owl:someValuesFrom fam:Person ]

10 ) .

11

12 :Grandparent­PersonhasChildPerson a owl:Class ;

13 owl:intersectionOf (fam:Person

14 [ a owl:Restriction;

15 owl:onProperty fam:hasChild;

16 owl:someValuesFrom

:Parent­PersonhasChildPerson ]

17 ) .

Figure 3.25: Restriction classes for the grandparents query

Taking a closer look at the query’s root definition, one can see, that its only
result variable is :Grandparent. The other variables :Parent and :Person are
just required to exist at all but their specific assignments are not relevant for the
result. As the relationships about who is whose child are irrelevant, both con-
straints :c1 and :c2 just have an existential nature and only affect the variable
:Grandparent.

Considering again the generated classes in figure 3.25, one can observe, that
the requirement of the plain existence of values for :Parent and :Person is
exactly, what is expressed by the generated classes’ owl:someValuesFrom restric-
tions in Lines 9 and 16. So as the purpose of the original query’s constraints :c1
and :c2 is completely encoded into those classes, the constraints can be removed
from the query’s compiled version of the query. The query’s final compiled ver-
sion is listed in Figure 3.26.
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1 @prefix : <ex:pl#> .

2 @prefix owl: <http://www.w3.org/2002/07/owl#> .

3 @prefix fam: <http://family#>.

4 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#> .

5

6 [ a owlq:Query; owlq:definesClass fam:Person,

:Parent­PersonhasChildPerson, :Grandparent­PersonhasChildPerson;

7 owlq:resultVariable :Grandparent ].

8

9 fam:Person a owlq:Class;

10 owlq:scopesVariable :Person.

11 :Parent­PersonhasChildPerson a owlq:Class ;

12 owlq:scopesVariable :Parent ;

13 owl:intersectionOf (fam:Person [ a owl:Restriction ;

14 owl:onProperty fam:hasChild ;

15 owl:someValuesFrom fam:Person

16 ]) .

17 :Grandparent­PersonhasChildPerson a owlq:Class ;

18 owlq:scopesVariable :Grandparent ;

19 owl:intersectionOf (fam:Person [ a owl:Restriction ;

20 owl:onProperty fam:hasChild ;

21 owl:someValuesFrom :Parent­PersonhasChildPerson

22 ]) .

Figure 3.26: Final compiled version of the grandparents query

When extracting the SPARQL portion of a compiled query with removed con-
straints, it is necessary to set the query DISTINCT, as otherwise, it might contain
the same result multiple times. If for example the DISTINCT is omitted in the
SPARQL query, that is generated from the OWLQ query listed in Figure 3.26, it
would compute the Cartesian product of :Grandparent­PersonhasChildPerson,
:Parent­PersonhasChildPerson and :Person. As :Grandparent is the only re-
sult variable, if there are m possible values for :Parent and n for :Person, each
value for :Grandparent would occur m · n times in the result set.

In the most cases however, all of a query’s constraints are necessary and cannot
be removed. If the grandparents query for example had the result variables
:Grandparent and :Person, both of the constraints would be needed, because
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they do not only express an existential qualification on one variable, but the
actual relation between the two result variables is important, so neither of the
constraints :c1 or :c2 can be removed without changing the query. Altogether,
a constraint can be removed, if it is not part in chain of constraints that link
two result variables.

3.5 Evaluating a Query’s Satisfiability

When reasoning about a query, an important aspect is its satisfiability. Being
able to tell if a query is satisfiable can help to find errors in the query itself as
well as in the ontology that it refers to.

Telling whether a query is satisfiable is not a matter of telling whether it has
any results when executing it against a given database, but whether it can have
any results at all. That is why the analysis of a query’s satisfiability only takes
the metadata into account, leaving the real individuals aside.

A simple example for an unsatisfiable OWLQ query is given in Figure 3.27.
The query asks for all tuples of (:Person, :Child), where :Child is a child of
:Person. As the variable :Person ranges over the class :Childless, which is
a restricted not to have any children, the result of stating the query against
an arbitrary database would be empty. To make the engine able to draw this
conclusion, we use again the SPARQL extraction query from Figure 3.4. The
result for the unsatisfiable example query is shown in Figure 3.28. The query is
satisfiable if and only if there can be an assignment to all of its variables that
satisfies all of its constraints. That means, first, for each variable v, its scope
S(v) must be satisfiable, which means, that it can have any members at all. An
example for an unsatisfiable class is shown in Figure 3.29.

The class :ChildlessParent is defined as those individuals, that have some
children (Lines 6–8) as well as none at all (Lines 9–11). If one of a query’s result
variables ranges over that class or one of its subclasses, the query would not be
satisfiable.

Besides all of the query’s result variables’ scopes, its constraints must be
satisfiable as well. An owlq:Constraint requests, that for two variables v1 and
v2 and a property p, the statement v1 p v2 holds. The constraint is satisfiable, if
and only if a member of the subject variable’s scope (S(v1)) can have a property
p with a member of the object variable’s scope (S(v2)) as its target. In detail,
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1 @prefix owl: <http://www.w3.org/2002/07/owl#>.

2 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#>.

3 @prefix fam: <http://family#>.

4 @prefix : <ex:pl#>.

5

6 [ a owlq:Query;

7 owlq:resultVariable :Person, :Child;

8 owlq:definesClass :Childless, :Child;

9 owlq:hasConstraint :c1 ].

10

11 :Childless owlq:scopesVariable :Person;

12 a owlq:Class;

13 owl:equivalentClass [ a owl:Restriction;

14 owl:onProperty fam:hasChild;

15 owl:cardinality 0 ].

16 :Child owlq:scopesVariable :Child;

17 a owlq:Class.

18

19 :c1 a owlq:Constraint; owlq:onVariable :Person;

20 owlq:onProperty fam:hasChild;

21 owlq:equalsVariable :Child.

Figure 3.27: An unsatisfiable OWLQ query

S CV P V1 V2

:Child :Child

:Childless :Person

:c1 fam:hasChild :Person :Child

Figure 3.28: Information about the unsatisfiable query from Figure 3.27
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1 @prefix owl: <http://www.w3.org/2002/07/owl#>.

2 @prefix fam: <http://family#>.

3 @prefix : <ex:pl#>.

4

5 :ChildlessParent owl:intersectionOf (

6 [ a owl:Restriction;

7 owl:onProperty fam:hasChild;

8 owl:someValuesFrom fam:Person ]

9 [ a owl:Restriction;

10 owl:onProperty fam:hasChild;

11 owl:cardinality 0 ] ).

Figure 3.29: An unsatisfiable OWL class

that means, that S(v1) is a equal to or a subclass of the domain of p and
S(v2) is equal to or a subclass of its range. Furthermore, neither must S(v1) be
restricted to not have a cardinality of 0 on the property p, nor must S(v2) contain
a zero cardinality restriction on the inverse of p. A constraint’s satisfiability can
be examined by using the same auxiliary classes like in the process of query
compilation, that was explained in Section 3.4. By creating the classes S(v1)

′ =
S(v1)⊓ ∃p.S(v2) and S(v2)′ = S(v2)⊓ ∃p−.S(v1) and checking whether both of
them can have any members. If at least one of them is equal to owl:Nothing,
that is it cannot have members, the constraint is not satisfiable.

For the constraint :c1 in the example query (see Figures 3.27 and 3.28), p
is fam:hasChild, S(v1) is :Childless and S(v2) is :Child. According to the
previously explained procedure, the classes S(v1)

′ and S(v2)′ would be created,
S(v1)

′ being defined as :Childless ⊓ ∃fam:hasChild .:Child, which is exactly
the class :ChildlessParent from Figure 3.29. As this class is already known
to be equivalent to owl:Nothing, the whole constraint would be found to be
unsatisfiable.

So far, this process takes care of a query’s result variables’ scopes and every
individual constraint, but there are also queries, which are not satisfiable due to
their combination of multiple constraints.
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1 @prefix owl: <http://www.w3.org/2002/07/owl#>.

2 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#>.

3 @prefix fam: <http://family#>.

4 @prefix : <ex:pl#>.

5

6 [ a owlq:Query;

7 owlq:resultVariable :A, :B;

8 owlq:definesClass :Person;

9 owlq:hasConstraint :c1, :c2 ].

10

11 :Person owlq:scopesVariable :A, :B;

12 a owlq:Class;

13 owl:equivalentClass fam:Person.

14

15 :c1 a owlq:Constraint; owlq:onVariable :A;

16 owlq:onProperty fam:hasChild;

17 owlq:equalsVariable :B.

18 :c2 a owlq:Constraint; owlq:onVariable :B;

19 owlq:onProperty fam:hasChild;

20 owlq:equalsVariable :A.

Figure 3.30: Another unsatisfiable OWLQ query

Figure 3.30 shows a query like that. Both of its variables :A and :B range
over the satisfiable class :Person and each of the constraints is satisfiable too,
because for both of them, S(v1)

′ would be :Person ⊓ ∃fam:hasChild .:Person,
the people, who have one child at least, and S(v2)′ would be the people, who
are children of somebody else. What makes the query unsatisfiable in the end
is the combination, requesting those tuples (:A, :B) where :A has a child :B and
:B has a child :A.3

The query’s unsatisfiability can be proved by contradiction. Assuming, that
it is satisfiable, one tries to assign an individual to each of the variables and add
a relation for each constraint. If the resulting ontology is deemed inconsistent,
the query is not satisfiable. For the query from Figure 3.30, the results of the
SPARQL extraction query are presented in Figure 3.31.

3This requires an ontology about family relationships, that defines fam:hasChild as an anti-

symmetric property.
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S CV P V1 V2

:Person :A

:Person :B

:c1 fam:hasChild :A :B

:c2 fam:hasChild :B :A

Figure 3.31: Information about the unsatisfiable query from Figure 3.30

The resulting proof ontology is shown Figure 3.32. A reasoner can be utilized
to show, that this ontology is not consistent, which means, that the query is
unsatisfiable.

1 @prefix fam: <http://family#>.

2 @prefix : <ex:pl#>.

3

4 :A a :Person; fam:hasChild :B.

5 :B a :Person; fam:hasChild :A.

Figure 3.32: Proving the unsatisfiability of the query from Figure 3.30

3.6 Query Containment

Another statement that can be made about a query, is whether it is contained
in another query. Let q1 and q2 queries against a database instance D with the
results qi(D), i ∈ {1, 2}. The query q1 is ‘contained’ in q2, if and only if q1(D) ⊆
q2(D) holds for an arbitrary D. The examination of containment of conjunctive
queries is NP-complete [5], so this section only describes a heuristic approach
that checks a sufficient criterion for query containment. This approach is based
on comparing the queries’ variables and constraints and allows for examining
containment by the means of the facilities that OWLQ provides.

Let q1 and q2 queries with result variables Vq1,i and Vq2,j respectively. Each of
those variables depends on an owlq:Class. A variable depends on a class, if it
either directly ranges over that class or, in the case of a variable with a literal
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value, if it originates from a variable definition or constraint on another variable,
that ranges over the class. Let for a variable Vqn,s, C(Vqn,s) the class it is defined
by. A necessary condition for q1 ⊆ q2 is, that for every Vq1,i, there is a Vq2,j
with C(Vq1,i) ⊑ C(Vq2,j). For every literal-valued variable Vqn,s that is defined by
an owlq:VariableDefinition or referenced by an owlq:Constraint, let r(Vqn,s)
denote the property of the definition or constraint. In this case, besides the
foregoing condition, that there has to be a subset relation of the classes they
depend on, also ∀Vq1,i ∃Vq2,j . r(Vq1,i) = r(Vq2,j) must hold.

1 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#>.

2 @prefix mon: <http://www.semwebtech.de/mondial/10/meta#>.

3 @prefix : <ex:pl#>.

4

5 [ a owlq:Query; owlq:resultVariable :City1, :Population1;

6 owlq:definesClass mon:City ].

7

8 mon:City a owlq:Class; owlq:scopesVariable :C.

9 :C owlq:hasVariableDefinition

10 [ owlq:onProperty mon:name; owlq:toVariable :City1 ];

11 owlq:hasVariableDefinition

12 [ owlq:onProperty mon:population; owlq:toVariable :Population1 ].

1 @prefix owlq: <http://www.semwebtech.org/languages/2006/owlq#>.

2 @prefix mon: <http://www.semwebtech.de/mondial/10/meta#>.

3 @prefix : <ex:pl#>.

4

5 [ a owlq:Query; owlq:resultVariable :City2;

6 owlq:definesClass mon:City ].

7

8 mon:City a owlq:Class; owlq:scopesVariable :C.

9 :C owlq:hasVariableDefinition

10 [ owlq:onProperty mon:name; owlq:toVariable :City2 ].

Figure 3.33: Query containment checking by variables

Figure 3.33 shows two queries that are equal in their selection parts but dif-
fer in their projection portions. Obviously, the first query is not contained in
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the second one, as it also lists the cities’ populations along with their names.
This information is obtained by iterating over the first query’s result variables
(:City1 and :Population1) and comparing their classes to all of the second
query’s variables’ classes. First, :City1 is considered, whose class is mon:City.
For the second query, there is only one variable (:City2), whose class is also
mon:City. Comparing those classes, one finds that mon:City ⊑ mon:City, so
the first condition is met. As the variable :City1 is results from a (literal-
valued) variable definition on another variable, now it has to be checked, whether
r(:City1) = r(:City2). Both variables are defined on the property mon:name, so
this condition is also true, so one can infer that :City1 is contained in :City2.

For the other variable, :Population1, the same steps are taken. Again, there
is only one variable from the second query to compare it to, namely :City2 and
again, both variables’ classes are the same, so again the first condition is met.
For second condition however, r(:Population1) = r(:City2) does not hold, so
the first query’s variable :Population1 does not have a counterpart in the second
query. This leads to the conclusion that the first query can not be contained in
the second one.

If the variable containment for two queries was checked to hold, the next step
is the comparison of their constraints. For example, the example family query on
Page 17 has one constraint c1, which requires :P to have a property fam:hasChild

with the object :C. As the variables :P and :C range over the classes :Parent

and :Child, the constraint can be expressed via :Parent fam:hasChild :Child.
Generally spoken, every constraint can be expressed by r(C1,C2), where C1 and
C2 are the classes its variables range over and r is its property. Now, for two
queries q1 and q2, if all of q2’s constraints are contained in q1’s constraints, q1 is
a sub-query of q2. The constraints have to be compared ‘backwards’ because q1
can only be contained in q2, if its constraints are at least equally restrictive.

Let α and β constraints, that can be described by r1(C1,D1) and r2(C2,D2)
respectively. Let α ⊆ β, if α is less or equally restrictive as β. Figure 3.34 shows
an example, in which, of course, :alpha is less restrictive than :beta, as :alpha

only requires :Y to be a child of :X, whereas :beta requires :Y to be a son of :X.
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1 :alpha a owlq:Constraint;

2 owlq:onVariable :X;

3 owlq:onProperty fam:hasChild;

4 owlq:toVariable :Y.

1 :beta a owlq:Constraint;

2 owlq:onVariable :X;

3 owlq:onProperty fam:hasSon;

4 owlq:toVariable :Y.

Figure 3.34: An example for constraint containment

In the case of non-negated constraints, a sufficient criterion that leads to α ⊆ β

consists again of three criteria:� ∀x1 : C1(x1) → C2(x1) or C1 ⊑ C2
(β’s affected variable ranges over at least the same set as α’s)� ∀x2 : D2(x2) → D1(x2) or D2 ⊑ D1
(β’s targeted variable ranges over at most the same set as α’s)� ∀x1, x2 : r2(x1, x2) → r1(x1, x2)
(β restricts on a property at least as specific as α’s)

The approach used by the OWLQ engine is assuming that α ⊆ β and trying to
prove the opposite by contradiction. This proof involves creating two resources
x1 ∈ C1 and x2 ∈ D2 with r2(x1, x2) and checking, whether adding the negations
of all of the above criteria to the knowledge base leads to an inconsistency. The
complete formula, whose satisfiability leads to the conclusion α 6⊆ β, is shown
below.

(x1 ∈ C1 ∧ x2 ∈ D2 ∧ x1 r2 x2) ∧
(

x1 6∈ C2 ∨ x2 6∈ D1 ∨ ¬ (x1 r1 x2)
)

If this formula is not satisfiable, α ⊆ β holds. Now, if for all of q2’s constraints
αi, there is a constraint β j in q1 so that αi ⊆ β j, under the premise that the
variables’ containment is given, then q1(D) ⊆ q2(D) can be guaranteed.
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For negated constraints, the first criterion for α ⊆ β is the same as for non-
negated ones, but the second and third ones are inverse:� ∀x1 : C1(x1) → C2(x1)

(β’s affected variable ranges over at least the same set as α’s)� ∀x2 : D1(x2) → D2(x2)
(β’s targeted variable ranges over at least the same set as α’s)� ∀x1, x2 : r1(x1, x2) → r2(x1, x2)
(β restricts on a property at most as specific as α’s)

As for the properties, if in the example, :alpha and :beta were negated, this
time it were :beta, which were less restrictive that :alpha, because :beta would
only require :Y not to be a son of :X, whereas :alpha would require :Y not to
be a child of :X at all.

A similar example can be used for the second criterion. If for example both
α and β were negated constraints of the form X: fam:hasChild :Y, where for
α, :Y ranges over fam:Son and for β, :Y ranges over fam:Child, α ⊆ β would
hold, as α would only exclude those pairs of :X and :Y, where :Y is a son of :X
and in contrast, β would exclude the pairs, where :Y is just a child of :X. This
leads to the containment formula for α 6⊆ β in the case of them being negated
constraints, looks as follows:

(x1 ∈ C1 ∧ x2 ∈ D1 ∧ x1 r1 x2) ∧
(

x1 6∈ C2 ∨ x2 6∈ D2 ∨ ¬ (x1 r2 x2)
)

.

3.7 The OWLQ Ontology

The complete OWLQ ontology is listed in this section. Figure 3.35 shows its class
definitions and its predicates including their domains, ranges and cardinalities
are given in Figure 3.36.
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1 @prefix rdf: <http://www.w3.org/1999/02/22­rdf­syntax­ns#> .

2 @prefix rdfs: <http://www.w3.org/2000/01/rdf­schema#> .

3 @prefix owl: <http://www.w3.org/2002/07/owl#> .

4 @prefix owl11: <http://www.w3.org/2006/12/owl11#> .

5 @prefix : <http://www.semwebtech.org/languages/2006/owlq#> .

6

7 :Query a owl:Class.

8 rdfs:subClassOf [ a owl:Restriction;

9 owl:onProperty :resultVariable;

10 owl:minCardinality 1 ].

11

12 :Scope a owl:Class;

13 owl11:disjointUnionOf (:Class :DataRange).

14

15 :Class a owl:Class;

16 rdfs:subClassOf owl:Class.

17

18 :DataRange a owl:Class;

19 rdfs:subClassOf owl:DataRange.

20

21 :Variable a owl:Class.

22 rdfs:subClassOf [ a owl:Restriction;

23 owl:onProperty :varDefinedBy;

24 owl:cardinality 1 ].

25

26 :VariableDefinition a owl:Class;

27 rdfs:subClassOf [ a owl:Restriction; owl:onProperty :onProperty;

28 owl:allValuesFrom owl:DatatypeProperty ],

29 [ a owl:Restriction; owl:onProperty :onProperty;

30 owl:cardinality 1 ],

31 [ a owl:Restriction; owl:onProperty :toVariable;

32 owl:cardinality 1 ].

33

34 :Constraint a owl:Class;

35 rdfs:subClassOf [ a owl:Restriction; owl:onProperty :onVariable;

36 owl:cardinality 1 ],

37 [ a owl:Restriction; owl:onProperty :onProperty;

38 owl:cardinality 1 ],

39 [ a owl:Restriction; owl:onProperty :equalsVariable;

40 owl:cardinality 1 ].

41

42 :NegatedConstraint a owl:Class;

43 rdfs:subClassOf :Constraint.

44

45 :ClosedClass a owl:Class;

46 rdfs:subClassOf :Class.

47

48 :ClosedPredicate a owl:Class;

49 rdfs:subClassOf rdf:Property.

Figure 3.35: The OWLQ ontology: OWLQ classes



50 :definesClass a rdf:Property;

51 rdfs:domain :Query; rdfs:range :Class.

52

53 :hasConstraint a rdf:Property;

54 rdfs:domain :Query; rdfs:range :Constraint.

55

56 :usesVariable a rdf:Property;

57 rdfs:domain :Query; rdfs:range :Variable.

58

59 :resultVariable a rdf:Property;

60 rdfs:subPropertyOf :usesVariable.

61

62 :varDefinedBy a owl:FunctionalProperty;

63 rdfs:domain :Variable.

64

65 :rangesOver rdfs:subPropertyOf :varDefinedBy;

66 rdfs:range :Scope.

67

68 :varDefinedByVarDef rdfs:subPropertyOf :varDefinedBy;

69 rdfs:range :VariableDefinition.

70

71 :scopesVariable a owl:InverseFunctionalProperty;

72 owl:inverseOf :rangesOver.

73

74 :hasVariableDefinition a rdf:Property;

75 rdfs:domain :Variable; rdfs:range :VariableDefinition.

76

77 :hasMandatoryVariableDefinition a rdf:Property;

78 rdfs:subPropertyOf :hasVariableDefinition.

79

80 :hasOptionalVariableDefinition a rdf:Property;

81 rdfs:subPropertyOf :hasVariableDefinition.

82

83 :toVariable a owl:FunctionalProperty;

84 owl:inverseOf :varDefinedByVarDef.

85 rdfs:domain :VariableDefinition; rdfs:range :Variable.

86

87 :onProperty a owl:FunctionalProperty;

88 rdfs:domain [ owl:unionOf (:Constraint

89 :VariableDefinition) ] .

90 rdfs:range rdf:Property.

91

92 :onVariable a owl:FunctionalProperty;

93 rdfs:domain :Constraint; rdfs:range :Variable.

94

95 :equalsVariable a owl:FunctionalProperty;

96 rdfs:domain :Constraint; rdfs:range :Variable.

Figure 3.36: The OWLQ ontology (cont’d): OWLQ predicates



4 Implementing the OWLQ Engine

While in the previous chapter, the theoretical background of the engine’s fea-
tures was presented, this chapter describes the engine’s actual implementation.
Figure 4.1 outlines the basic package structure and shows the implementation’s
classes and how they are connected.

Figure 4.1: The package structure of the OWLQ engine implementation
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4.1 Managing of Models and Queries

For applications that want to make use of the OWLQ package, the OWLQEngine is
the contact point. It offers methods to add, remove and retrieve ontologies and
queries and to execute and analyze queries. To support the handling of multiple
ontologies and queries, the OWLQ engine keeps two lists each of which being a
typed java.util.LinkedList. Those lists’ elements are of type LoadedModel and
LoadedQueryModel respectively, which are classes that extend the functionality
of Jena’s Model class. Those classes make the engine able to transparently op-
erate on data and queries given as either objects of Jena’s Model class or string
representations in N3 or RDF/XML.

Both those classes extend the abstract class AbstractLoadedModel, which is a
structure that basically offers access to an ontology’s Model and String repre-
sentations. It offers two constructor methods to create an instance from either
a Model or a String (that is e.g. the RDF/XML oder N3 representation of
the model). To create the respective other representation, the constructors use
the functions modelToString() and stringToModel() from the ModelTools class.
Furthermore, the AbstractLoadedModel class offers some methods that return in-
formation about the model such as its name, its string representation in several
languages and whether it was created from a String or a Model.

For data ontologies, there is the LoadedModel class, that extends its abstract
super-class by the possibility to query only its metadata, for the extraction of
which it uses the extractMetadata() method from the ModelTools class.

Queries are held inside the LoadedQueryModel structure, which also extends
the AbstractLoadedModel class. In addition to its inherited functions, it has
several methods which are needed for the analysis and execution of queries and
the extraction and retrieval of the queries’ OWL and SPARQL portions among
others.

A common task would be the registration of one or more ontologies and a
query, followed by asking for the results of the query, which would be done as it
is shown in Figure 4.2.

The first three lines add two models and a query, each of them being a Model

or string read from a file1. For the purpose of registering models, the engine

1The methods readFileIntoString() and readFileIntoModel() are not part of the OWLQ

engine but are supposed to be implemented in the application itself.
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1 OWLQEngine.addModel(readFileIntoModel("family­facts.n3"), null);

2 OWLQEngine.addModel(readFileIntoString("family.n3"),

"Family ontology");

3 OWLQEngine.addQuery(readFileIntoString("family­query.owlq"), null);

4

5 System.out.println("The query’s OWL part is");

6 OWLQEngine.getOwlPart(0).write(System.out, "N3");

7

8 System.out.println("The query’s SPARQL part is");

9 System.out.println(OWLQEngine.getSparqlPart(0)));

10

11 System.out.println("Results for "+OWLQEngine.getQueryName(0)+":");

12 OWLQEngine.outputQueryResults(0, System.out);

Figure 4.2: Executing an OWLQ query from an external application

offers the method addModel(). The first argument is either a Model (see Line 1)
or a model string (see Line 2), whose language is tried to be inferred by the
guessLanguage() function of the ModelTools class. The second argument is a
name for the model, which will be generated if null. Queries are added to the
engine via its method addQuery(), which takes the query string and an optional
name as its arguments.

In Line 6, a model of the query’s OWL portion is asked for and output. The
method getOwlPart() is also overloaded. It can take an int, which denotes the
index of the model of interest, and return a Model or it takes the int and a
String stating the desired language such as "N3" or "RDF/XML" and returns a
model string.

The SPARQL part is queried in Line 9 via the method getSparqlPart(),
whose int argument is the index of the relevant query.

Both of these two methods return the respective portion of the compiled query.
They are basically useful for testing purposes, as one can also directly exe-
cute an OWLQ query like in Line 12 via the functions getQueryResults() and
outputQueryResults(). The process of executing a query will be described in
detail in Section 4.3.
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4.2 Compiling Queries

For most of the operations that the OWLQ engine is able to perform on queries,
it uses their compiled versions. The advantages of using those queries and the
theoretical compilation process were discussed in Section 3.4 and the engine’s
respective function is shown in Figure 4.3.

1 private Model compileQuery() {

2 Model newQuery = ModelFactory.createDefaultModel();

3 Model oldQuery = getModel();

4 newQuery.add(oldQuery);

5 newQuery.setNsPrefixes(getModel());

6 newQuery.setNsPrefix("rdf", RDF.getURI());

7

8 ResultSet constraintInformation =

getConstraintInformationForDynamicClasses(newQuery);

9 if (constraintInformation.hasNext()) {

10 HashMap<Resource, OntClass> specializedClasses = new

HashMap<Resource, OntClass>();

11 while (constraintInformation.hasNext()) {

12 processConstraint(newQuery, specializedClasses,

constraintInformation.nextSolution());

13 }

14 }

15 removeObsoleteConstraints(newQuery,

ResultSetFactory.copyResults(constraintInformation));

16 return newQuery;

17 }

Figure 4.3: The method compileQuery()

This function is responsible for generating the compiled version of the query.
For this purpose, first it creates a copy of the original query’s model. Line 8
is a call to the function getConstraintInformationForDynamicClasses(), that
extracts some information about the query’s constraints. This function will be
described below. If the query has any constraints, the function instantiates a
HashMap, whose purpose will also become clear later. The generation of the
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OWL restriction classes out of the query’s constraints and the modification of
the query happens in Line 12, where the method processConstraint() is called
for each of the query’s constraints. Finally, those of the query’s constraints
which have become obsolete in the compiled version are removed in Line 15.

The getConstraintInformationForDynamicClasses() function executes the
SPARQL select query, which is shown in Figure 4.4, against the OWLQ query
model. This query’s purpose is to extract for each of a query’s constraints its
affected variables, the classes or data ranges that scope those variables, the
constraint’s property and the owlq:Query resource, that the constraint belongs
to.

1 PREFIX owlq: <http://www.semwebtech.org/languages/2006/owlq#>

2 SELECT ?Query ?Constraint ?Var1 ?Var1Scope ?Property ?Var2 ?Var2Scope

3 WHERE

4 { ?Var1Scope owlq:scopesVariable ?Var1.

5 ?Var2Scope owlq:scopesVariable ?Var2.

6 ?Query owlq:hasConstraint ?Constraint

7 ?Constraint owlq:onVariable ?Var1;

8 owlq:onProperty ?Property;

9 owlq:equalsVariable ?Var2 .

10 OPTIONAL

11 { ?Constraint a ?ConstraintType .

12 FILTER ( ?ConstraintType = owlq:NegatedConstraint )

13 }

14 FILTER ( ! bound(?ConstraintType) )

15 }

Figure 4.4: Extracting information about constraints (SPARQL version)
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4 Implementing the OWLQ Engine

4.2.1 Processing the Constraints into Class Definitions

The function processConstraint() extracts the resources from each of the result
set’s entries and prepares them for further processing. The method is shown in
Figure 4.5.

From the given QuerySolution object, the method extracts the query in which
the constraint occurs, the variable resources that the constraint refers to, the
scopes, that those variables range over and the constraint’s property. The scopes
are then looked up in the specializedClasses map, which for every class that
was generated as a restriction out of a constraint, contains a mapping of the
affected variable to the new class. This ensures, that if multiple constraints
state a restriction on the same variable, after having worked off the first of
them, the second one restricts the class that was created when processing the
first one and so on, so that all of the restrictions are merged in the last class.
For both variables, if the map contains an entry for the variable, which means,
that the associated class was already restricted, this new class is assigned to the
var1Scope and var2Scope fields respectively. This leads to the effect, that the
two fields are assigned the most specialized scope that the variables range over.

As the next step, the method hopsToNextResultVariable() checks for both of
the constraint’s variables, how many intermediate constraints the shortest link
between the variable and the next of the query’s result variables consists of.
This is achieved by doing a breadth-first search starting from each of the result
variables to the variables they are connected to by constraints. In the next step,
the search is started from those variables and so on. The number of iterations
before the variable var1 or var2 is reached, is returned.

Still, this method has just some preparatory tasks. The real process of
OWL class generation is delegated to the method createRestrictionClass()

in Lines 25 and 27, respectively. As already mentioned in Section 3.4, that
restriction class is to be generated for the variable that is ‘closer’ to one of
the query’s result variables. Regardless of that, if one of the constraint’s vari-
ables ranges over an owlq:DataRange, the engine should restrict the other scope.
Therefore, in Line 24, the engine checks, which variable’s scope is to be restricted
and has the according restriction class created. The method definesDatatype()

just looks up the given Resource in all ontologies’ metadata and returns true if
it is an owl:DataRange.
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1 private void processConstraint(Model newQuery,

HashMap<Resource, OntClass> specializedClasses,

QuerySolution constraintInformation) {

2 OntModel pelletModel = ModelFactory.createOntologyModel(

PelletReasonerFactory.THE_SPEC);

3 pelletModel.add(getOwlPart(false));

4 pelletModel.add(OWLQEngine.getAllModelMetadata());

5 Resource query = constraintInformation.getResource("Query");

6 Resource var1 = constraintInformation.getResource("Var1");

7 Resource var2 = constraintInformation.getResource("Var2");

8 Resource var1Scope = constraintInformation.getResource("Var1Scope");

9 Resource var2Scope = constraintInformation.getResource("Var2Scope");

10 OntResource propertyRes = pelletModel.getOntResource(

constraintInformation.getResource("Property"));

11 if (propertyRes == null || !propertyRes.isProperty()) {

12 return;

13 }

14 OntProperty property = propertyRes.asProperty();

15 if (specializedClasses.containsKey(var1)) {

16 var1Scope = specializedClasses.get(var1);

17 }

18 if (specializedClasses.containsKey(var2)) {

19 var2Scope = specializedClasses.get(var2);

20 }

21 int hopsToNextResultVariableFromVar1 =

hopsToNextResultVariable(newQuery, query, var1);

22 int hopsToNextResultVariableFromVar2 =

hopsToNextResultVariable(newQuery, query, var2);

23

24 if (hopsToNextResultVariableFromVar2 <

hopsToNextResultVariableFromVar1 &&

!definesDatatype(var2Scope)) {

25 createRestrictionClass(newQuery, var2Scope, var2, var1Scope, var1,

property, true, query, specializedClasses);

26 } else {

27 createRestrictionClass(newQuery, var1Scope, var1, var2Scope, var2,

property, false, query, specializedClasses);

28 }

29 }

Figure 4.5: Checking whether a constraint can restrict a class
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The method createRestrictionClass (see Page 61) uses a temporary ontology
model tmpModel, in which the classes are generated. As one can already see
in Figure 4.5, the function is used to create the restricted class for either of
the variables that occur in a constraint, depending on its boolean parameter
inverse. If set to false, it derives a class from classToRestrict, that has a
property theProperty, whose target value is a member of targetClass. If set
to true, the resulting class is an intersection of classToRestrict and anything
that has a property, which is the inverse of theProperty, with a value from
targetClass. For given variables a ∈ C1 and b ∈ C2 and a property r, that
means, inverse set to false results in the new class C′ ≡ C1 ⊓ ∃ r.C2, whereas
when it is set to true, the function generates the class C′ ≡ C1 ⊓ ∃ r−.C2.

The restriction (∃ p.C2, where p is r or r−) is made in Line 14 and the final
intersection class (C′ ≡ C1 ⊓ ∃ p.C2) is created in Line 17. The generated class
would be useless if it was describing the same class that it restricts, so this is
checked in Line 19. If the classes are not equivalent, the new class is added to
the compiled query’s model in Line 20 and 21. To make use of that class, now,
the query has to be modified to have the concerned variable range over that
class instead of classToRestrict. This is done by the function adaptQuery(),
which is called in Line 22. Finally, in Line 23, the new class is added to the
specializedClasses map.

The method adaptQuery() is used to have the newly-generated restriction
class scope the variable instead of the original one by removing the state-
ment :classToRestrict owlq:scopesVariable :scopedVariable or its equiva-
lent :scopedVariable owlq:rangesOver :classToRestrict from the query and
adding :dynamicClass owlq:scopesVariable :scopedVariable instead. Addi-
tionally, the function also updates all of the query’s previously-generated re-
striction classes that contain an owl:someValuesFrom :classToRestrict to refer
to the new class (:dynamicClass) instead.
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1 private void createRestrictionClass(Model newQuery,

Resource targetClass, Resource targetVariable,

OntProperty theProperty, boolean inverse, Resource theQuery,

HashMap<Resource, OntClass> specializedClasses) {

2 OntModel tmpModel = ModelFactory.createOntologyModel(

PelletReasonerFactory.THE_SPEC);

3 SomeValuesFromRestriction dynamicRestriction;

4 String className;

5 OntProperty property;

6 if (!inverse || theProperty.isSymmetricProperty()) {

7 property = theProperty;

8 } else {

9 if ((property = theProperty.getInverse()) == null) {

10 property =

tmpModel.createOntProperty(theProperty.getNameSpace() +

"inverseOf" + property.getLocalName());

11 property.setInverseOf(theProperty);

12 }

13 }

14 dynamicRestriction = tmpModel.createSomeValuesFromRestriction(null,

property, targetClass);

15 className = className = scopedVariable.getURI() + "­" +

classToRestrict.getLocalName() + property.getLocalName() +

targetClass.getLocalName();

16 RDFList intersectionList = tmpModel.createList(new RDFNode[] {

classToRestrict, dynamicRestriction });

17 OntClass dynamicClass = tmpModel.createIntersectionClass(className,

intersectionList);

18 dynamicClass.addRDFType(OWLQ.Class);

19 if (!dynamicClass.hasEquivalentClass(classToRestrict)){

20 newQuery.add(tmpModel.getBaseModel());

21 newQuery.add(theQuery, OWLQ.definesClass, dynamicClass);

22 adaptQuery(newQuery, scopedVariable, classToRestrict,

dynamicClass, targetVariable);

23 specializedClasses.put(scopedVariable, dynamicClass);

24 }

25 }

Figure 4.6: Generating the restricted classes
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4.2.2 Deleting the Unneeded Constraints

And now for the last function in the process of query compilation. Figure 4.7
shows the method removeObsoleteConstraints() that is responsible for remov-
ing those of a query’s constraints that have become obsolete during the query’s
compilation. The approach, that is utilized to find those constraints was de-
scribed in Section 3.4.2.

The method has a Model of the query’s result variables and constraints gen-
erated by the method findObsoleteConstraints() in Line 8. This model con-
tains resources for each of the query’s variables and constraints. The result
variables belong to the class <aux://ResultVariable> and for each constraint
:c that is involved in chain of constraints that constitute a connection be-
tween two variables :v1 and :v2, the statements :c <aux://linksFrom> :v1

and :c <aux://linksTo> :v2 are added to the model.
Within Lines 10–23, those constraints, which occur in a link of two (not nec-

essarily distinct) result variables, are retrieved from the model and added to
the list neededConstraintList. Now the method iterated over all of the query’s
constraints. For each one, that is not contained in the neededConstraintList,
its definition and reference in the query are deleted. If a constraint was re-
moved from the query, the boolean field obsoleteConstraintRemoved of the
LoadedQueryModel is set to true, so that the resulting SPARQL query can be
set DISTINCT later on.

After going through those steps, the compiled query is ready and stored inside
a field of the LoadedQueryModel for further access.
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1 private void removeObsoleteConstraints(Model theQuery,

ResultSet constraintInformation) {

2 LinkedList<Resource> queryConstraints = new LinkedList<Resource>();

3 OntModel query = ModelFactory.createOntologyModel(

PelletReasonerFactory.THE_SPEC, theQuery);

4 OntModel model = ModelFactory.createOntologyModel(

PelletReasonerFactory.THE_SPEC);

5 ObjectProperty linksFrom =

model.createObjectProperty("aux://linksFrom");

6 ObjectProperty linksTo =

model.createObjectProperty("aux://linksTo");

7 OntClass resultVariable = model.createClass("aux://ResultVariable");

8 findObsoleteConstraints(constraintInformation, queryConstraints,

query, model, linksFrom, linksTo, resultVariable);

9

10 String neededConstraintsQueryString =

11 "SELECT ?Constraint\n"

12 + "WHERE\n"

13 + " { ?Constraint <" + linksFrom + "> ?Var1;\n"

14 + " <" + linksTo + "> ?Var2.\n"

15 + " ?Var1 a <" + resultVariable + ">.\n"

16 + " ?Var2 a <" + resultVariable + ">.\n"

17 + " }";

18 Query neededConstraintsQuery =

QueryFactory.create(neededConstraintsQueryString);

19 ResultSet neededConstraints = OWLQEngine.executeQuery(

neededConstraintsQuery, model);

20 LinkedList<Resource> neededConstraintList =

new LinkedList<Resource>();

21 while (neededConstraints.hasNext()) {

22 neededConstraintList.add(

neededConstraints.nextSolution().getResource("Constraint"));

23 }

24 for (Resource constraint : queryConstraints) {

25 if (!neededConstraintList.contains(constraint)) {

26 query.removeAll(constraint, null, null);

27 query.removeAll(null, OWLQ.hasConstraint, constraint);

28 obsoleteConstraintRemoved = true;

29 }

30 }

31 model.close();

32 }

Figure 4.7: Removing a query’s obsolete constraints
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4.3 Query Execution

As one of the simple tasks, the OWLQ engine supports the execution of queries
against RDF data. The result of an execution can be obtained through ei-
ther the getQueryResults() method, which returns it as a String or through
outputQueryResults(), which writes the result directly to the OutputStream

that is given as a parameter. These functions are basically wrappers around
the getResult() method of the LoadedQueryModel class, which is shown in Fig-
ure 4.8.

1 protected ResultSet getResult() {

2 if (OWLQEngine.cacheQueryResults && cachedResult != null) {

3 return cachedResult;

4 } else {

5 ResultSet result;

6 OntModel model = OWLQEngine.getModelOfAllModels();

7 model.add(getOwlPart(true));

8 Query qu = QueryFactory.create(getSparqlPart());

9 closePredicates(model);

10 closeClasses(model);

11

12 if (OWLQEngine.cacheQueryResults) {

13 cachedResult = OWLQEngine.executeQuery(qu, model);

14 result = cachedResult;

15 model.close();

16 } else {

17 QueryExecution qexec = QueryExecutionFactory.create(qu, model);

18 result = qexec.execSelect();

19 }

20 return result;

21 }

22 }

Figure 4.8: The method getResult()

The OWLQ engine supports the caching of results of queries. That speeds up
repeatedly answering the same query as the results only have to be computed
once and can be returned whenever needed. This method’s drawback is the
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time that the engine needs to create an in-memory copy of the result set, so if
the queries are predictable to be executed one time only, the engine performs
better when the caching facility is disabled. This behavior can be set using the
engine’s cacheQueryResults() method that takes a boolean argument to enable
and disable the result caching, respectively.

The LoadedQueryModel object has a field cachedResult, which contains the
result of the query’s last execution if the engine’s result caching is enabled. In
this case, the field is reset if there are changes to the loaded data ontology
models. At first, the engine checks whether the caching of results is enabled and
the cachedResult field already contains the needed information (Line 2) and, in
this case, returns them. In the other case, beginning at Line 4, either caching is
disabled or the results have not been computed yet.

To compute a query’s result, at first, an ontology of all loaded models is cre-
ated by the function getModelOfAllModels(). This model is then extended by
the query’s OWL part in Line 7. The boolean parameter to the getOwlPart()

method states, whether or not the compiled query is to be returned (see Sec-
tion 4.2). Line 8 creates a Query object from the query’s SPARQL part. Both the
methods getOwlPart() and getSparqlPart() are wrappers that check whether
the OWL and SPARQL portions have already been computed and can be re-
turned. If that is not the case, they call the functions owlFromOwlq() and
extractSparqlQuery() respectively.

In the next step, if present, the query’s closed classes and predicates are
processed in Lines 9 and 10 respectively. The methods closePredicates() and
closeClasses(), which accomplish these tasks, will be explained later.

The final steps depend on whether result caching is enabled or not. If caching
is enabled, Line 13 executes the query against the model and assigns the execu-
tion’s result to the cachedResult field. If caching is disabled, the result is just
computed in Line 18. Finally, the result is returned in Line 20.
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4.3.1 Extracting the OWL Class Definitions

The OWL class definitions of an OWLQ query are extracted by the method
owlFromOwlq() as shown in Figure 4.9.

1 private Model owlFromOwlq(Model model) {

2 Model newModel = ModelFactory.createDefaultModel();

3 newModel.setNsPrefixes(model);

4 StmtIterator iter = model.listStatements();

5 while (iter.hasNext()) {

6 Statement statement = iter.nextStatement();

7 RDFNode object = statement.getObject();

8 if (object.toString().startsWith( OWLQ.getURI())) {

9 if (object.equals(OWLQ.DataRange)) {

10 newModel.add(statement.getSubject(), statement.getPredicate(),

OWL.DataRange);

11 } else if (object.equals(OWLQ.Class)) {

12 newModel.add(statement.getSubject(), statement.getPredicate(),

OWL.Class);

13 }

14 continue;

15 }

16 Property p = statement.getPredicate();

17 if (p.getNameSpace().equals(OWLQ.getURI())) {

18 continue;

19 }

20 newModel.add(statement);

21 }

22 return newModel;

23 }

Figure 4.9: Extracting the OWL portion from an OWLQ query

As already depicted in Section 3.2.1, the OWL part is extracted out of the
OWLQ query by iterating over all of the query’s statements and copying them
into the OWL ontology if neither their predicate nor their object belong to the
owlq namespace.
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At first, the function first creates a new Model and then iterates over the
query’s statements in Lines 5–21. Inside the loop, first, the statement’s object is
considered (Lines 7–15). If it is an OWLQ resource the loop continues with the
next statement. As special cases, if the object is owlq:DataRange, it is replaced
by owl:DataRange (Line 10), and if the object is owlq:Class, is is replaced by
owl:Class and the resulting statement is added to the new query. The same is
done with the predicate in Lines 16–19. Finally, the remaining statements are
added to the OWL model (Line 20), which is returned in Line 22.

67



4 Implementing the OWLQ Engine

4.3.2 Extracting the SPARQL Portion

The remaining part is the extraction of the SPARQL query from the original
OWLQ query. This is done by the function extractSparqlQuery() shown in
Figure 4.10, which does exactly what is described in Section 3.2.2.

1 private String extractSparqlQuery(Model model) {

2 Query sparqlQuery = new Query();

3 sparqlQuery.setQuerySelectType();

4 sparqlQuery.setPrefixMapping(model);

5 ElementGroup elg = new ElementGroup();

6 ResultSet results = extractInformationForSparqlExtraction(model);

7 while (results.hasNext()) {

8 QuerySolution solution = results.nextSolution();

9 processResultEntry(elg, solution);

10 }

11 sparqlQuery.setQueryPattern(elg);

12

13 LinkedList<String> resultVariables = extractResultVariables(model);

14 for (String variable : resultVariables) {

15 sparqlQuery.addResultVar(variable);

16 }

17 if (obsoleteConstraintRemoved) {

18 sparqlQuery.setDistinct(true);

19 }

20 return sparqlQuery.toString();

21 }

Figure 4.10: Building the SPARQL query

The method creates a new Query object which is stated to become a select
query and is configured to have the same namespaces as the original OWLQ
query. The call in Line 6 executes the SPARQL query from Figure 3.4 against
the OWLQ query, which returns a ResultSet, that contains all the needed in-
formation.

This information has to be processed into an ElementGroup, that contains
the SPARQL query’s statements. This processing is done in Lines 7–10. The
while loop iterates over all entries in the result set and has them processed, in
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Line 9, by the processResultEntry() function, which will be explained later. In
Line 11, the query’s pattern is set from the ElementGroup. This concludes the
construction of the query’s selection part.

What is missing is the projection part which is assembled in Lines 13–16. The
extractResultVariables() function, which will also be described later, is used
to extract the result variables from the query model. Those are then added to the
list of the SPARQL query’s result variables. If, during the query’s compilation,
there were constraints removed from the query, it is set DISTINCT to prevent the
same result being output multiple times (Lines 17–19). Finally the new query
is transformed to a String and returned in Line 20.
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Consider again the example result set in Figure 3.5 and the explanations
about the result set’s structure on Page 21. As for the processing of the result
entries (Line 9 of the extractSparqlQuery() function), obviously, there are three
possible structures for each entry. Treating negative constraints separately, that
makes four cases. Either, the row describes a class, which means, that CV is
not null (case A). In the other case, there are again two possibilities. Either,
the line has a value in the column S, which would mean, that it corresponds to
a constraint, whose name is given in column S (case B.a). Or, if S is not set,
the entry describes a variable definition (case B.b). As there are positive and
negative constraints, this creates again two cases B.a+ and B.a-, respectively.

b

Case A

CV != null

b

CV == null

b

:S != null

Case B.a-

S.isNegatedConstraint()

Case B.a+

!S.isNegatedConstraint()

Case B.b

S == null

Figure 4.11 shows the function processResultEntry(), which is responsible
for transforming the QuerySolution objects into triples for the SPARQL query.

First, it extracts the answer resources from every entry in Lines 2–6. Then
it distinguishes the four cases explained above. For every result that satisfies
case A (a class and a scoped variable), it adds a triple CV a S. For the case B.b
(variable definition) and B.a+ (positive constraint), which result in the same
SPARQL structure, it adds a triple CV P V1.

For the negated constraints, that is those triples, that fall in case B.a-, the
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1 private void processResultEntry(ElementGroup elg,

QuerySolution entry) {

2 Resource S = entry.getResource("S");

3 Resource CV = entry.getResource("CV");

4 Resource P = entry.getResource("P");

5 Resource V1 = entry.getResource("V1");

6 Resource V2 = entry.getResource("V2");

7 if (CV != null) { /*case A*/

8 Node subject = CV.asNode();

9 elg.addTriplePattern(new Triple(Var.alloc(subject.getLocalName()),

RDF.type.asNode(), S.asNode()));

10 } else { /*case B*/

11 Var v1Var = Var.alloc(V1.asNode().getLocalName());

12 Var v2Var = Var.alloc(V2.asNode().getLocalName());

13 if (S == null || !S.hasProperty(RDF.type,

OWLQ.NegatedConstraint)){ /*cases B.b and B.a+*/

14 elg.addTriplePattern(new Triple(v1Var, P.asNode(), v2Var));

15 } else { /*case B.a­*/

16 Var additionalPropertyValue = Var.alloc(v1Var.getName() +

P.getLocalName() + "NOT" + v2Var.getName());

17 ElementGroup optGroup = new ElementGroup();

18 optGroup.addTriplePattern(new Triple(v1Var, P.asNode(),

additionalPropertyValue));

19 Expr eqV2Expr = new E_Equals(

new NodeVar(additionalPropertyValue), new NodeVar(v2Var));

20 ElementFilter eqV2Filter = new ElementFilter(eqV2Expr);

21 optGroup.addElement(eqV2Filter);

22 ElementOptional elgOpt = new ElementOptional(optGroup);

23 elg.addElement(elgOpt);

24 Expr notBoundExpr = new E_LogicalNot(new E_Bound(

new NodeVar(additionalPropertyValue)));

25 ElementFilter notBoundFilter = new ElementFilter(notBoundExpr);

26 elg.addElement(notBoundFilter);

27 }

28 }

29 }

Figure 4.11: Generating the SPARQL query’s selection statements
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engine implements the procedures that were explained in Section 3.3.1 and gen-
erates the OPTIONAL and FILTER elements in Lines 16–26.

The extraction of the result variables is implemented straightforwardly as can
be seen in Figure 4.12. The function extractResultVariables() obtains an
iterator over all the model’s nodes, that are the objects of statements with the
predicate owlq:resultVariable in Line 3. The while loop then iterates over
those nodes and adds their names to the LinkedList of result variables, which
is returned in Line 9.

1 private LinkedList<String> extractResultVariables(Model model) {

2 LinkedList<String> resultVariables = new LinkedList<String>();

3 NodeIterator resultVariableIter =

model.listObjectsOfProperty(OWLQ.resultVariable);

4

5 while (resultVariableIter.hasNext()) {

6 Resource resultVariable = (Resource)

resultVariableIter.nextNode().as(Resource.class);

7 resultVariables.add(resultVariable.getLocalName());

8 }

9 return resultVariables;

10 }

Figure 4.12: Extracting the result variables

4.3.3 Processing Closures of Predicates and Classes

According to the procedures which were depicted in sections 3.3.2 and 3.3.3, the
methods closePredicates() and closeClasses() process a query’s closed pred-
icates and classes respectively. Figure 4.13 shows the former of those functions.

The loop in Lines 4–18 iterates over a query’s closed predicates. The respec-
tive property resource is obtained from the model and is passed to the method
getClassLimitsForPredicateClosure() in Line 12, along with all of the model’s
owl:Restriction resources. In accordance with considerations on Page 30, that
method examines all the restrictions on the given property grouped by their
owl11:onClass attribute and returns a mapping of class resources to an int vec-
tor, containing the values of the least and greatest cardinalities, that are relevant
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for the predicate’s closure. Then, for every entry in that mapping, the method
categorizeIndividualsForPredicateClosure() is used to create the actual re-
striction classes and classify their prospective members by following the steps in
Section 3.3.2.

1 private void closePredicates(OntModel model) {

2 Model query = getModel();

3 ResIterator closedPredicates =

query.listSubjectsWithProperty(RDF.type, OWLQ.ClosedPredicate);

4 while (closedPredicates.hasNext()) {

5 Resource closedPredicate = closedPredicates.nextResource();

6 OntResource propertyRes = model.getOntResource(closedPredicate);

7 if (propertyRes == null || !propertyRes.isProperty()) {

8 return;

9 }

10 OntProperty property = propertyRes.asProperty();

11 ExtendedIterator queryRestrictions =

model.listIndividuals(OWL.Restriction);

12 HashMap<Resource, int[]> limitsForClasses =

getClassLimitsForPredicateClosure(property,

queryRestrictions);

13 for (Resource onClass : limitsForClasses.keySet()) {

14 int startCardinality = limitsForClasses.get(onClass)[0];

15 int endCardinality = limitsForClasses.get(onClass)[1];

16 categorizeIndividualsForPredicateClosure(model, property,

onClass, startCardinality, endCardinality);

17 }

18 }

19 }

Figure 4.13: Computing the closure of predicates
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1 private void closeClasses(OntModel model) {

2 OntModel queryModel = ModelFactory.createOntologyModel(

PelletReasonerFactory.THE_SPEC);

3 queryModel.add(getModel());

4 ExtendedIterator closedClasses =

queryModel.listIndividuals(OWLQ.ClosedClass);

5 while (closedClasses.hasNext()) {

6 Resource closedClass = (Individual) closedClasses.next();

7 RDFList classMembers =

model.createList(model.listIndividuals(closedClass));

8 model.add(closedClass, OWL.oneOf, classMembers);

9 }

10 }

Figure 4.14: Computing the closure of classes

The method that is responsible for closing classes is shown in Figure 4.14.
Every class that is defined as being an owlq:ClosedClass is extended by an
owl:oneOf statement whose object is a list of all the individuals of that class.

4.4 Reasoning about Queries

While the last sections described the preparatory work and the mere execution of
queries, this section describes, how the OWLQ engine was extended by reasoning
capabilities and how a query can be inspected with regard to its satisfiability
and containment in another query.

4.4.1 Satisfiability

A query’s satisfiability can be checked via the checkQuerySatisfiability()

method from the OWLQEngine, which is shown in Figure 4.15.
The method takes an int parameter, that denotes the query’s index and re-

turns a SatisfiabilityInformation object, which is defined in an inner class
of the OWLQEngine. This structure comprises a list of unsatisfiable classes and
constraints, the reason for the query’s unsatisfiability and the respective set-
ters and getters. In Lines 4–7, the query’s unsatisfiable classes are extracted by
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the method extractUnsatisfiableClasses() from the LoadedQueryModel class,
which returns the URIs of those classes, that are equal to owl:Nothing and
which are then added to the respective SatisfiabilityInformation object, that
is to be returned. The same is done for the query’s constraints in Lines 9–12
according to the process explained in Section 3.6. The call to the method
extractUnsatisfiableConstraints() in Line 9 creates the restriction classes
that result from the constraints and also compare them to owl:Nothing. The
unsatisfiable constraints, which are returned by the method are again added to
the SatisfiabilityInformation object. The constraint combination is checked
in line 14 by the method getReasonForUnsatisfiability(), which will be de-
scribed in a moment, and Lines 15–16 assign the String returned by that func-
tion to the SatisfiabilityInformation object and return it afterwards.

1 public static SatisfiabilityInformation checkQuerySatisfiability(

int index) {

2 SatisfiabilityInformation satInfo = new SatisfiabilityInformation();

3

4 LinkedList<String> unsatisfiableClasses =

loadedQueryModels.get(index).extractUnsatisfiableClasses();

5 for (String classURI : unsatisfiableClasses) {

6 satInfo.addUnsatisfiableClass(classURI);

7 }

8

9 LinkedList<String> unsatisfiableConstraints =

loadedQueryModels.get(index).extractUnsatisfiableConstraints();

10 for (String constraintURI : unsatisfiableConstraints) {

11 satInfo.addUnsatisfiableConstraint(constraintURI);

12 }

13

14 String reasonForUnsatisfiability =

loadedQueryModels.get(index).getReasonForUnsatisfiability();

15 satInfo.setReasonForUnsatisfiability(reasonForUnsatisfiability);

16 return satInfo;

17 }

Figure 4.15: Checking a query’s satisfiability
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While the extraction of a query’s unsatisfiable classes and constraints, which
are obtained in Lines 4 and 7 respectively, can be useful to find mistakes in the
query formulation, they do not necessarily affect the satisfiability of the query as
a whole. A query might very well define an unsatisfiable class, but the query can
still be satisfiable, if none of its variables range over that class. So, as explained
in Section 3.5, the combination of classes and constraints has to be checked to
be able to tell whether a query is satisfiable or not. This analysis is made by the
LoadedModel class’ method getReasonForUnsatisfiability(). The method uses
again the method extractInformationForSparqlExtraction() that executes the
SPARQL query from Page 20. The ResultSet which is returned by that function
can be used, according to the steps explained in Section 3.5, to create a model
containing an individual for each variable and an assertion for each constraint.
This model’s validate() method is then used to examine its consistency. If the
model is not valid which means that a database instance that satisfies the query
cannot exist, the getReasonForUnsatisfiability() method returns the error
message that can be obtained from the model. If the model is valid, the method
returns null. So if the return value of getReasonForUnsatisfiability() is null,
the query is satisfiable, otherwise, it is not.

4.4.2 Query Containment

In Section 3.6, the theoretical aspects of query containment were dealt with,
now we go for the implementation. The OWLQEngine class offers the method
checkQueryContainments() (Figure 4.16) to check whether one of its registered
queries is contained in another one.

The method has an int parameter, which denotes the index of the query
(q) that is to be examined. It uses the compiled version of q and extracts
information about its result variables and constraints in Lines 3–4 by exe-
cuting the respective methods of the LoadedQueryModel class. The methods
getConstraintInformation()and getVariableInformation() will be explained
later on.

Now, the function iterates over all of the engine’s registered queries but q
(Lines 6–17). Within the loop, the function checkTwoQueriesForContainment()

is used to generate a ContainmentInformation object for each of the other
queries. Like the SatisfiabilityInformation class, this structure is defined
in an inner class of the engine and keeps information about the containment of
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the query q in another, for example whether it is contained at all, which variables
and constraints are matched in the other query and which are not. There will be
more information about how this class is utilized in the following explanations
about the checkTwoQueriesForContainment() method and in Chapter 5, which
outlines the reference implementation of a servlet that uses the OWLQ engine.
After having generated a ContainmentInformation object for each of the other
queries, finally the method checkQueryContainments() returns them in an array.

1 public static ContainmentInformation[] checkQueryContainments(

int index) {

2 LinkedList<ContainmentInformation> result =

new LinkedList<ContainmentInformation>();

3 ResultSet variablesInfo =

loadedQueryModels.get(index).getVariableInformation();

4 ResultSet constraintInfo =

loadedQueryModels.get(index).getConstraintInformation();

5

6 for (int i = 0; i < loadedQueryModels.size(); i++) {

7 if (i == index) {

8 continue;

9 }

10 Model proofModel = ModelFactory.createDefaultModel();

11 proofModel.add(loadedQueryModels.get(index).getOwlPart(true));

12 proofModel.add(loadedQueryModels.get(i).getOwlPart(true));

13

14 ContainmentInformation contInfo =

checkTwoQueriesForContainment(variablesInfo, constraintInfo,

i, proofModel);

15 proofModel.close();

16 result.add(contInfo);

17 }

18 ContainmentInformation[] resultAsArray =

new ContainmentInformation[result.size()];

19 return result.toArray(resultAsArray);

20 }

Figure 4.16: Checking whether a query is contained in another one

77



4 Implementing the OWLQ Engine

As the analysis of query containment is based on comparing two queries’ vari-
ables and constraints, those have to be extracted from the comparees. For that
purpose, the LoadedQueryModel offers the functions getVariableInformation()

and getConstraintInformation() respectively. Both of them return the results
of executing a query against the respective OWLQ query. Those queries are
shown in Figure 4.17.

The first query extracts information about a query’s result variables and the
classes on which they depend. Those variables can either directly range over
a class, or represent a literal value and originate from a variable definition or
constraint on a property of another variable, like in Figure 3.2 on Page 18. In
this case, the query returns that class, that the other variable ranges over.

Information about the query’s constraints is obtained via the second query.
For each constraint, it returns the associated query resource, the constraint
itself, the constraint’s property and its variables along with either the scopes
they range over, or the scopes of the variables they are defined by. All this
information is then passed to the function checkTwoQueriesForContainment(),
which is shown in Figure 4.18.

This method allocates a ContainmentInformation object and extracts the
variables and constraints from the other query. This information is compared
to the other query’s variables and constraints in Lines 6 and 18 respectively.
The methods compareResultVariables() and compareConstraints() both re-
turn a HashMap. In the case of compareResultVariables(), the returned map
contains a mapping of q’s variables to the matching variables of the other query.
The compareConstraints() method returns a mapping of the other query’s con-
straints to q’s constraints. As the next step, the method loops over those map-
pings and adds the information to the ContainmentInformation object (see Lines
11, 14, 23 and 26). If a map contains an entry that is mapped to null, that
means, that no match for the specific variable or constraint was found, this
is kept track of by two boolean variables (Lines 12 and 24), which are evalu-
ated in Line 29 for the final verdict concerning the containment. Finally the
ContainmentInformation object is returned.

The result variables of the queries are compared with respect to containment
by the method compareResultVariables(). It iterates over the result variables
of q, which are passed to the function as an argument, and tries for each one
to find a matching variable in the other query by looping over those. For each
variable, it adds an entry in the map, its value being either the name of the
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1 PREFIX owlq: <http://www.semwebtech.org/languages/2006/owlq#>

2 PREFIX owl: <http://www.w3.org/2002/07/owl#>

3 SELECT DISTINCT ?Variable ?Scope ?Property

4 WHERE

5 { ?Query owlq:resultVariable ?Variable.

6 ?Scope a owlq:Class.

7 { ?Scope owlq:scopesVariable ?Variable.}

8 UNION

9 { ?Scope owlq:scopesVariable ?Var2

10 { ?Constraint a owlq:Constraint;

11 owlq:onVariable ?Var2;

12 owlq:onProperty ?Property;

13 owlq:equalsVariable ?Variable.

14 ?Property a owl:DatatypeProperty.

15 OPTIONAL

16 { ?Constraint a ?ConstraintType.

17 FILTER ( ?ConstraintType = owlq:NegatedConstraint )

18 }

19 FILTER ( ! bound(?ConstraintType) )

20 }

21 UNION

22 { ?Var2 owlq:hasVariableDefinition

23 [ owlq:onProperty ?Property;

24 owlq:toVariable ?Variable ]

25 }

26 }

27 }

1 PREFIX owlq: <http://www.semwebtech.org/languages/2006/owlq#>

2 SELECT ?Query ?Constraint ?Var1 ?Var1Scope ?Property ?Var2 ?Var2Scope

3 WHERE

4 { { ?Var1Scope owlq:scopesVariable ?Var1.}

5 UNION

6 { ?Var1Scope owlq:scopesVariable

7 [ owlq:hasVariableDefinition

8 [ owlq:toVariable ?Var1 ]

9 ]. }

10 ?Var2Scope a owlq:Class.

11 { ?Var2Scope owlq:scopesVariable ?Var2.}

12 UNION

13 { ?Var2Scope owlq:scopesVariable

14 [ owlq:hasVariableDefinition

15 [ owlq:toVariable ?Var2 ]

16 ]. }

17 ?Query owlq:hasConstraint ?Constraint.

18 ?Constraint owlq:onVariable ?Var1;

19 owlq:onProperty ?Property;

20 owlq:equalsVariable ?Var2.

21 }

Figure 4.17: Obtaining a query’s variables and constraints



1 private static ContainmentInformation

checkTwoQueriesForContainment(ResultSet variables,

ResultSet constraints, int index, Model proofModel) {

2 ContainmentInformation contInfo = new ContainmentInformation(index);

3 ResultSet otherVariablesInfo =

loadedQueryModels.get(index).getVariableInformation();

4 ResultSet otherConstraintInfo =

loadedQueryModels.get(index).getConstraintInformation();

5

6 HashMap<String, String> resultVariablesComparison =

compareResultVariables(proofModel,

ResultSetFactory.copyResults(variables),otherVariablesInfo);

7 boolean variableWithNoCounterpartFound = false;

8 for (String q1Variable : resultVariablesComparison.keySet()) {

9 String relatedq2Variable =

resultVariablesComparison.get(q1Variable);

10 if (relatedq2Variable == null) {

11 contInfo.addVariableWithoutCounterpart(q1Variable);

12 variableWithNoCounterpartFound = true;

13 } else {

14 contInfo.addVariableMapping(q1Variable, relatedq2Variable);

15 }

16 }

17

18 HashMap<String, String> constraintComparison =

compareConstraints(proofModel,

ResultSetFactory.copyResults(constraints), otherConstraintInfo);

19 boolean constraintWithNoCounterpartFound = false;

20 for (String q2Constraint : constraintComparison.keySet()) {

21 String relatedq1Constraint =

constraintComparison.get(q2Constraint);

22 if (relatedq1Constraint == null) {

23 contInfo.addConstraintWithoutCounterpart(q2Constraint);

24 constraintWithNoCounterpartFound = true;

25 } else {

26 contInfo.addConstraintMapping(q2Constraint,

relatedq1Constraint);

27 }

28 }

29 if (!(constraintWithNoCounterpartFound ||

variableWithNoCounterpartFound)) {

30 contInfo.setContained(true);

31 }

32 return contInfo;

33 }

Figure 4.18: Checking whether one query is contained in another
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other query’s matching variable or null, if no match was found. So each of
q’s variables is compared with each of the other query’s variables. For checking,
whether one variable matches another, the method checkVariableContainment()

is used, which is shown in Figure 4.19.

1 private static boolean checkVariableContainment(Resource v1,

Resource c1, Property r1, Resource v2, Resource c2, Property r2) {

2 if (r1 == null ^ r2 == null) {

3 return false;

4 } else {

5 if (r1 != null && !r1.equals(r2)) {

6 return false;

7 }

8 }

9 if (!isSubclass(c1, c2)) {

10 return false;

11 }

12 return true;

13 }

Figure 4.19: Checking two variables for containment

In this method, two variables are checked for containment. In spite of this
term being a bit fuzzy, because one variable v1 can not be ‘contained’ in another
variable v2, we use it as a synonym for ‘each of the possible assignments to v1
is contained in the set of possible assignments to v2’. However, the method gets
two variables along with either the classes they range over or the classes they are
defined by and the property on which they are defined (consider again the first
query in Figure 4.17). The method returns true if and only if v1 is contained in
v2. For example one variable (v1) could range over a class :City (c1), and the
other one (v2) could result from a variable definition on the property mon:name

(r2) of a class :River (c2). In this case, of course variable containment would
not be given, because of r1 not being equal to r2, that they are neither both
null nor do they represent the same property. The containment is confirmed, if
and only if the properties are the same (including both of them being null) and
the scope of v1 is a subclass of the scope that c2 ranges over (Line 9).
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After having built the map of variable containment relationships, the engine
proceeds with comparing the queries’ constraints. The process resembles the
variables’ comparison, only that it is done by comparing the other query’s con-
straints to q’s instead of the other way around (see Section 3.6). The engine loops
over the other constraints in an outer loop and for each one, tries to find a coun-
terpart in q in the inner loop. As it only makes sense to check two constraints
for containment, if they are either both negated or both not negated, only if this
is the case, the pair is passed to the method checkConstraintContainment(),
which is shown in Figure 4.20.

This method is responsible for comparing two constraints for containment.
Its parameters are the resources, that describe the constraints, which is their
properties and the scopes their variables range over, along with the proofModel

from from the method checkTwoQueriesForContainment() (Figure 4.18) and a
boolean parameter that denotes whether the constraints are negated or not.
That method tries to prove the containment by contradiction, according to the
containment formulae from pages 49 and 50, respectively, by proving that their
respective complements lead to an inconsistency.

At first, two resources x1 and x2 are created and x1 is made a member of
c1. The next steps depend on whether the comparees are negated or not. For
negated constraints, x2 is made a member of d1 and the relationship between x1

and x2 on the property r1 is stated in Line 12. This concludes the leftmost half
of the containment equation. For the other part, now the the restriction class
r2x2 is created as those resources, that have a predicate r2, with the object x2

(Line 13). By creating that restriction class’s complement in Line 14, notr2x2
now represents the class of those resources, which do not have a predicate r2,
with the object x2. The statement s, which is created in Line 15, denotes that
x1 belongs to that class, which would mean that x1 r2 x2 does not hold, which
resembles the rightmost part of the containment equation. Finally, Line 15
checks, whether d2 is a subclass of d1 and assigns the result to the variable
conditionForD1andD2.

For non-negated constraints, the necessary steps are taken in Lines 18–23,
adapted to the according containment formula.

The result is computed in Line 25. If the constraint, which is represented by
c1, d1 and r1 is contained in the constraint denoted by c2, d2 and r2, first of all,
c1 must be a subclass of c2, which in terms of the equations would cause x1 6∈ C2
not to hold. If the subclass relationship is given, the next step is the subclass
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1 private static boolean checkConstraintContainment(Model inputModel,

Resource c1, Property r1, Resource d1, Resource c2, Property r2,

Resource d2, boolean isNegated) {

2 boolean contained;

3 OntModel model = getAllModelMetadata();

4 model.add(inputModel);

5

6 OntResource x1 = createIndividual(c1);

7 OntResource x2 = model.createcreateOntResource(null);

8 boolean conditionForD1andD2;

9 Statement s;

10 if (isNegated) {

11 x2.addRDFType(d1);

12 x1.addProperty(r1, x2);

13 HasValueRestriction r2x2 = model.createHasValueRestriction(null,

r2, x2);

14 ComplementClass notr2x2 = model.createComplementClass(null, r2x2);

15 s = model.createStatement(x1, RDF.type, notr2x2);

16 conditionForD1andD2 = isSubclass(model.getBaseModel(), d1, d2);

17 } else {

18 x2.addRDFType(d2);

19 x1.addProperty(r2, x2);

20 HasValueRestriction r1x2 = model.createHasValueRestriction(null,

r1, x2);

21 ComplementClass notr1x2 = model.createComplementClass(null, r1x2);

22 s = model.createStatement(x1, RDF.type, notRr1x2);

23 conditionForD1andD2 = isSubclass(model.getBaseModel(), d2, d1);

24 }

25 contained = isSubclass(model.getBaseModel(), c1, c2) &&

conditionForD1andD2 && !statementSatisfiable(model, s);

26 model.close();

27 return contained;

28 }

Figure 4.20: Checking two constraints for containment
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relationship of d1 and d2, whose direction depends on whether the constraints
are negated. Applied to the containment equations this would cause x2 6∈ D1
and x2 6∈ D2 to be false respectively. For the constraint to be contained, the only
thing left is its property, that is r2 must be a sub-property of r1 or vice versa.
This is exactly the opposite of the statement s, so if s is satisfiable, that leads
to the last operand being false. Should s not be satisfiable, all the necessary
conditions for the constraint’s containment are given and the method returns
true in Line 27.

4.5 Performance

Most of the information that the OWLQ engine provides is almost instantly
available. The computation times given here apply to a single query with an
average complexity.

The following information is computed independently of the knowledge base,
so the execution is performed in near-constant time and takes less than a second.� compilation� transformation to OWL and SPARQL

The computation time of the tasks listed below depends on the scale of the
knowledge base.� examination of satisfiability or containment in another query

(within a second, uses only metadata)� closure of classes
(within a few seconds)� closure of predicates
(several minutes for cardinalities up to about 5, unfeasible for two-digit
cardinalities)

The final execution of a query involves stating the extracted SPARQL portion
against the knowledge base and and having the results computed by the Pellet
reasoner. As the answering of SPARQL queries is not a feature that is specific
for OWLQ, its computation is not affected by the engine.
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of an OWLQ Servlet

So far, the main features of the OWLQ engine have been presented and ex-
plained, now this chapter shows how to use the engine inside an example appli-
cation. This is accomplished by means of a Java servlet for the Apache Tomcat
Servlet/JSP container1. As it is meant to be a demonstration object, the exam-
ple servlet is kept simple. It uses static HTML pages, but generates them from
static strings and dynamic information about the models and queries used.

The servlet extends the abstract javax.servlet.http.HttpServlet class by
implementing its two main functions doGet() and doPost() which are responsible
to process HTTP GET and POST requests, respectively. Besides the servlet-
specific classes, the servlet has to import the OWLQ engine itself and its two
inner classes ContainmentInformation and SatisfiabilityInformation.

Providing access to the OWLQ engine, the servlet serves two purposes: modi-
fying the engine’s state in terms of adding and removing models and queries and
presenting data that is output from the engine, such as results, containment or
satisfiability information. Everything that is meant to modify the engine’s data
is done in POST requests and thus handled by the doPost() method, whereas
information is obtained via GET requests which are processed by the function
doGet().

5.1 The doGet() Method

This method is responsible of processing GET requests to the servlet, which
is done by first returning the HTML header, then, depending on which page
was requested, delegating the construction of the HTML body to the servlet’s

1The OWLQ servlet was written for version 6 of Tomcat, which is available through

http://tomcat.apache.org/download­60.cgi.
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respective function and finally outputting the HTML footer. The servlet is able
to display four different pages, namely the overview page (index.html), one to
edit models and queries, one to view information about queries, such as results
or containment and an error page. The methods that generate those pages will
be outlined in this section, however the listings is this chapter show slightly
simplified versions of the real source code, which omit most of the HTML tags
outputting.

5.1.1 Presenting an Overview

The servlet’s index.html page is used to show an overview of the loaded models
and queries and providing access to the OWLQ engine’s functionality such as
adding and removing models, examining a query’s results, satisfiability or con-
tainment. The first part of this overview is generated by the code snipped shown
in Figure 5.1.

1 String[] loadedQueriesNames = OWLQEngine.getLoadedQueryNames();

2 if (loadedQueriesNames.length > 0) {

3 int i = 0;

4 for (String queryName : loadedQueriesNames) {

5 out.write("queryName + "<input type=\"submit\" value=\"Edit\"" +

6 " name=\"editq" + i + "\"/>" + "<input type=\"submit\"" +

7 " value=\"Remove\" name=\"removeq" + i + "\"/>");

8 if (OWLQEngine.hasGeneratedClasses(i)) {

9 out.write("<input type=\"submit\"" +

10 " value=\"View generated classes\"" +

11 " name=\"viewg + i + "\"/>");

12 }

13 out.write("<input type=\"submit\" value=\"View results\"" +

14 " name=\"viewr" + i + "\"/>");

15 i++;

16 }

17 }

18 out.write("<input type=\"submit\" name=\"addq\"" +

19 " value=\"Add query\"/><br/>");

Figure 5.1: Generating an overview over the loaded queries

86



5.1 The doGet() Method

At first the servlet accesses the OWLQ engine in Line 1 to ask about the loaded
queries and prints each of their names in a table along with buttons to edit or
remove the specific query, or view its results. An additional button is shown for
queries with constraints, to view the OWL classes, that were generated out of
these constraints. The knowledge whether there are such classes is obtained from
the engine in Line 8. After this section, the servlet uses the engine’s method
getLoadedModelNames() to display a table containing the models, again with
buttons to edit or remove each of them.

The next part is the displaying of information on each query’s satisfiability.
That portion of the index.html page is generated by the lines listed in Figure 5.2.
For each of the queries, a corresponding SatisfiabilityInformation object is

1 out.write("<h3>Query " + loadedQueriesNames[i] + "</h3>");

2 SatisfiabilityInformation satInfo =

3 OWLQEngine.checkQuerySatisfiability(i);

4 if (!satInfo.isSatisfiable()) {

5 out.write("This query is not satisfiable: "

6 + satInfo.getReasonForUnsatisfiability());

7 }

8 if (satInfo.hasUnsatisfiableClasses()) {

9 out.write("Unsatisfiable classes: ");

10 for (String className : satInfo.getUnsatisfiableClasses()) {

11 out.write(className)

12 }

13 }

14 if (satInfo.hasUnsatisfiableConstraints()) {

15 out.write("Unsatisfiable constraints: ");

16 for (String constraintName : satInfo.getUnsatisfiableConstraints()){

17 out.write(constraintName);

18 }

19 }

Figure 5.2: Displaying information on queries’ satisfiability

generated in Line 3, which is used for further analysis. First, it is checked if
the query is satisfiable at all in Line 4. If it is not, the reason is output. Then,
if the query contains any unsatisfiable classes or constraints, they are listed in
Lines 8–19.
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5 Reference Implementation Example of an OWLQ Servlet

The final part of the overview page, namely the containment information
portion, is generated by the excerpt in Figure 5.3. In line 2, the servlet obtains an

1 ContainmentInformation[] containmentInfo =

2 OWLQEngine.checkQueryContainments(i);

3 for (ContainmentInformation contInfo : containmentInfo) {

4 out.write(loadedQueriesNames[contInfo.getIndex()] + ": ");

5 if (contInfo.isContained()) {

6 out.write("contained");

7 } else {

8 out.write("not contained");

9 }

10 }

11 out.write("<input type=\"submit\" " +

12 "value=\"Show details\" name=\"viewc" + i + "\"/>");

Figure 5.3: Presenting containment information

array of ContainmentInformation objects from the engine, over which it iterates
in Lines 3–10. For each of the array’s entries, the according other query’s name
is output using the query’s index (Line 4, along with whether the current query
is contained in it (Lines 5–9). Finally, a button is added, that leads to a page
with more detailed containment information. An example screenshot of this
page with two loaded queries and one model is shown in Figure 5.4.

5.1.2 Editing Models and Queries

To be able to add and edit models and queries via the servlet, an edit page
is displayed whose body is created by the servlet’s serveEditPage() method,
which is shown in Figure 5.5.

This page is used to both add and edit both models and queries, therefore,
Lines 4–16 check whether the subject to edit is a model or a query and whether
a model or query with the given index is already present in the OWLQ engine.
The parameter index is passed by the servlet’s doGet() method which calls
serveEditPage() and depends on which button was clicked on the overview
page. If a model’s or query’s edit button was clicked, index is the according
query’s index. If it was the add button, index will be the number of loaded
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5.1 The doGet() Method

Figure 5.4: A screenshot of the servlet’s overview page
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5 Reference Implementation Example of an OWLQ Servlet

1 private void serveEditPage(PrintWriter out, int index,

boolean isAQuery) {

2 String modelString = new String(), modelName = new String();

3

4 if (isAQuery) {

5 if (index >= 0 && index < OWLQEngine.getNumberOfLoadedQueries()) {

6 modelString = OWLQEngine.getQuery(index, null);

7 modelName = OWLQEngine.getQueryName(index);

8 OWLQEngine.removeQuery(index);

9 }

10 } else {

11 if (index >= 0 && index < OWLQEngine.getNumberOfLoadedModels()) {

12 modelString = OWLQEngine.getModelString(index, null);

13 modelName = OWLQEngine.getModelName(index;

14 OWLQEngine.removeModel(index);

15 }

16 }

17

18 String editPageString = "<form action=\"index.html\"" +

19 "method=\"post\" enctype=\"multipart/form­data\">" +

20 "Model name: <input name=\"modelName\" type=\"text\"" +

21 "value=\" + modelName + "\"/>" +

22 "<textarea name=\"modelText\">" +

23 modelString + "</textarea>" +

24 "Load from file:" +

25 "<input name=\"modelFile\" type=\"file\"/>" +

26 "<input type=\"submit\" value=\"Submit\"/></form>";

27

28 if (isAQuery) {

29 editPageString = editPageString.replaceAll("model", "query");

30 editPageString = editPageString.replaceAll("Model", "Query");

31 }

32 out.write(editPageString);

33 }

Figure 5.5: Creating the servlet’s edit page

90



5.1 The doGet() Method

queries or models respectively, which will lead to no existing query or model
with the index being found in Lines 4–16.

The page’s content is created in Lines 18–31, which create input fields for the
model’s or query’s name and its actual content. In the case of a model or query
is to be added, these fields are blank, whereas in the editing case, they are filled
with the respective model’s or query’s actual values in Lines 21 and 23. Finally,
the resulting page body is output in Line 32. Figure 5.6 shows a screenshot of
the edit page.

Figure 5.6: A screenshot of the servlet’s edit page
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5 Reference Implementation Example of an OWLQ Servlet

5.1.3 Showing Detailed Information

While the servlet’s index.html page just displays some basic information about
which models and queries are loaded and which queries are contained in other
ones, the edit page is used to display a query’s generated classes, results or
containment details. This page is created by the serveViewPage(), which is
depicted in Figure 5.7. Again, the doGet() method passes two parameters,

1 private void serveViewPage(PrintWriter out, int index, char code)

throws ServletException {

2 if (code == ’g’) {

3 out.write("Generated classes for " +

OWLQEngine.getQueryName(index) + "<pre>" +

OWLQEngine.getGeneratedClassesString(index,

OWLQEngine.getQueryLanguage(index)) + "</pre>");

4 } else if (code == ’r’) {

5 out.write("Query results for " + OWLQEngine.getQueryName(index) +

"<pre>" + OWLQEngine.getQueryResults(index) + "</pre>");

6 } else if (code == ’c’) {

7 serveContainmentViewPage(out, index);

8 } else {

9 throw new ServletException();

10 }

11 }

Figure 5.7: Creating the servlet’s edit page

namely index and code. The former denotes the query’s index and the latter
specifies, which information is to view. In the case of the requested information
being the generated classes (’g’) or the query results (’r’), that information
is output in Lines 3 and 5, respectively. The containment information (’c’), is
displayed by the serveContainmentViewPage(), an excerpt of which is given in
Figure 5.8.

Like for the overview page, at first, the ContainmentInformation array is re-
trieved from the engine in Line 2. For all of its entries, the details are output by
obtaining the information from the respective ContainmentInformation object.
The code fragment in Figure 5.8 outputs the information about which variables
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5.1 The doGet() Method

1 private void serveContainmentViewPage(PrintWriter out, int index) {

2 ContainmentInformation[] containmentInfo =

OWLQEngine.checkQueryContainments(index);

3 String[] loadedQueriesNames = OWLQEngine.getLoadedQueryNames();

4 out.write("Detailed containment information for " +

loadedQueriesNames[index] + ":");

5 for (ContainmentInformation contInfo : containmentInfo) {

6 if (!contInfo.isContained()) {

7 out.write("not ");

8 }

9 out.write("contained in " +

loadedQueriesNames[contInfo.getIndex()] + ":");

10

11 if (contInfo.hasVariablesWithCounterpart()) {

12 out.write("Matching variables:");

13 for (String element : contInfo.getVariableMappings().keySet()) {

14 out.write(element + " is contained in " +

contInfo.getVariableMappings().get(element));

15 }

16 }

17

18 if (contInfo.hasVariablesWithNoCounterpart()) {

19 out.write("Missing variables:");

20 for (String element : contInfo.getVariablesWithNoCounterpart())

{

21 out.write(element + " has no counterpart");

22 }

23 }

24

25 /* output the same information for the query’s constraints */

26 }

27 }

Figure 5.8: Outputting containment information
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5 Reference Implementation Example of an OWLQ Servlet

of one query match the ones of the other query (Line 14) and which ones do
not have a counterpart (Line 21). The code, that outputs the details about the
containment of constraints looks quite the same and is therefore omitted in the
listing.

5.2 The doPost() Method

The doPost() method is responsible for adding models and queries to the OWLQ
engine. If a POST request is sent to the servlet, which corresponds to a model
or query being committed from the edit page (Figure 5.6), the function reads
the form data from the request and assigns each if the form’s field to a String

variable. The next part of the method processes that data and has the OWLQ
engine create models and queries respectively.

1 if (queryFile.equals("")) {

2 if (!(queryText.equals(""))) {

3 OWLQEngine.addQuery(queryText, queryName);

4 }

5 } else {

6 if (queryName.equals("")) {

7 queryName = queryFileName;

8 }

9 OWLQEngine.addQuery(queryFile, queryName);

10 }

Figure 5.9: Adding models and queries from the servlet

Figure 5.9 lists that part of the function, that is responsible for adding a query
to the OWLQ engine. If the queryFile input field is empty (Line 1), which means
that the query is not to be loaded from a file, the text area (queryText) is used
as input. If it is non-empty, its content is added as a query in Line 3.

If the query is to be loaded from a file (Line 5 et seq.), the file’s content
(queryFile) is passed to the engine’s addQuery() method in Line 9, along with
either the name given in the queryName input field or, if the field is empty, the
file name.
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6 Conclusion

The OWLQ query language uses RDF triples to represent queries as Semantic
Web data. In addition to providing the features to state conjunctive queries in-
cluding closures, negated constraints and a form of sub-queries based on specify-
ing result classes in OWL, OWLQ allows for making statements and semantically
reasoning about a query.

Besides a way to examine a query’s satisfiability, a heuristic approach to com-
paring two queries regarding their containment has been shown.

The implementation developed within the scope of this thesis is able to execute
OWLQ queries and cope with some basic analysis tasks. The information about
a query’s satisfiability or containment in another query can be computed within
near-constant time.

Some possible ideas for starting points for further work on the OWLQ query
language and the engine’s implementation are pointed out below:

OWLQ language elements� equivalents to the SPARQL UNION and OPTIONAL constructs,� relational operators for owlq:Constraint, e.g. owlq:greaterThan.

OWLQ engine implementation� answering a query by utilizing the results of some other query it is con-
tained in,� partial query execution, e.g. listing possible values for a result variable
without considering constraints, listing which constraints eliminate which
assignments.
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