
Georg-August-Universität
Göttingen
Institute for Computer Science

ISSN 1612-6793

Master Thesis
in the study program "Applied Computer Science"

Breadth First Search-Based Path Finding
for Flight Connections

Florian Henke

at the Institute for

Applied Computer Science
University of Göttingen

May 5, 2018

Georg-August-Universität Göttingen
Institute for Computer Science

Goldschmidtstraße 7
37077 Göttingen
Germany

Tel. +49 (551) 39-172000

Fax +49 (551) 39-14403

Email office@cs.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

I hereby declare that the thesis submitted is my own unaided work. All direct
or indirect sources used are acknowledged as references.

Göttingen, May 5, 2018

Master Thesis

Breadth First Search-Based Path Finding for
Flight Connections

Florian Henke

May 5, 2018

Mentors:
Prof. Dr. Wolfgang May
Prof. Dr. Stephan Waack

Abstract

The intention of this master thesis is to develop a path finding algorithm to find a connec-
tion between any two locations worldwide including driving, public means of transporta-
tion and airplanes. Therefore, APIs of Skyscaner, eStreaming and Google Maps for querying
travel data are introduced and a graph structure for storing cached flight connections and
airports is developed. Also a method to obtain the most important airports worldwide
for inter-continental flights and to approximate flight prices is developed. Then, two path
finding algorithms that can be combined to increase their performance are developed. One
algorithm is called Hotspot Search and the other one is called Modified Recursive and Parallel
Breadth First Search (MBFS). The Hotspot Search uses only a subset of all available airports
to find a connection between two airports, thus it performs very fast by accepting not to
find the best connection. Its results are used as an upper bound for the MBFS algorithm
to improve its performance. The purpose of the MBFS algorithm is to find the best con-
nections between any two places worldwide. To evaluate the algorithms an application
which implements these algorithms is developed. Both algorithms individually as well as
the combination of them are evaluated on their performance and the quality of their re-
sults. Also different settings of parameters of the MBFS algorithm are evaluated on their
performance and on the result quality to find the best setting for the algorithm.

ii

Contents

1. Introduction 1

2. Basic Notions 4

3. Collecting Data 7
3.1. Google Maps . 7
3.2. Skyscanner . 9
3.3. eStreaming . 10

4. Flight Graph 12
4.1. Caching Graph Data . 12
4.2. Hotspot Airports . 14
4.3. Approximation of Missing Prices . 15

5. Path Finding Algorithms 18
5.1. Breadth First Search . 18
5.2. Hotspot Search . 19
5.3. Modified Recursive and Parallel Breadth First Search 25

5.3.1. Origin and Departure Airports . 26
5.3.2. Termination Criteria . 28
5.3.3. Receive Outbound Connections . 35
5.3.4. Expanding of New Connections . 37

5.4. Combining both algorithms . 37

6. The Trip Planner System 38
6.1. Graphical User Interface . 38
6.2. Implementation . 42
6.3. API Access . 43

7. Experimental Investigation 44
7.1. Settings . 44
7.2. Logging Mechanisms . 44
7.3. Experimental Environment . 45
7.4. Evaluated Connections . 45

7.4.1. Göttingen to Coimbra . 45
7.4.2. Cape Town to Asuncion . 46
7.4.3. Arusha to Porto Alegre . 47
7.4.4. Haikou to Balmaceda . 47
7.4.5. Arusha to Balmaceda . 48

7.5. Experiments . 48
7.5.1. Experiment 1 - Path Length Impact on Runtime 49
7.5.2. Experiment 2 - Impact of Different Termination Criteria 51
7.5.3. Experiment 3 - Runtime Impact of Using Hotspot Search Results as Input

for MBFS . 52
7.5.4. Experiment 4 - Impact of Result Size on the Runtime 54
7.5.5. Experiment 5 - Impact of the Number of Origin and Destination Airports

on the Runtime and Result Quality . 54
7.5.6. Experiment 6 - Impact of Used Price per Hour on the Runtime and Result

Quality . 55
7.5.7. Experiment 7 - Impact of Used Average Speed on the Runtime and Result

Quality . 56

iii

8. Discussion 58
8.1. Experiment 1 . 58
8.2. Experiment 2 . 59
8.3. Experiment 3 . 59
8.4. Experiment 4 . 60
8.5. Experiment 5 . 60
8.6. Experiment 6 . 61
8.7. Experiment 7 . 61

9. Conclusion and Further Research 63

List of Tables 66

List of Figures 66

Code Snippets 67

References 68

A. Appendix I
A.1. Statistic Queries . I

A.1.1. All Airports . I
A.1.2. All Served Airports . I
A.1.3. Different Direct Flights . I
A.1.4. Different Connected Flights . I
A.1.5. Total Flights in Time Period . I
A.1.6. Number of Flights . II

A.2. Hotspot Airports . III
A.3. Experimental Data . V

A.3.1. Experiment 1 . V
A.3.2. Experiment 2 . XII
A.3.3. Experiment 3 . XIII
A.3.4. Experiment 4 . XIV
A.3.5. Experiment 5 . XIV
A.3.6. Experiment 6 . XIV
A.3.7. Experiment 7 . XV

iv

1. Introduction

For people who do not live in a town with an airport, the first question when it comes to flight
booking is how to find the best origin airport. In case the destination place does not have an
airport either the next question that arises is which is the best destination airport. Göttingen,
a city in the center of Germany with a population of 119,000 inhabitants is a very good exam-
ple for that issue. Göttingen itself has no airport. But in a 200 km beeline distance around
Göttingen there are nine civil airports located (Table 1). The closest airport is Cassel, but from
this airport departs only approximately one flight a day. The beeline distance from Göttingen
to Paderborn is twice the beeline distance between Göttingen and Cassel, however the time
needed to drive from Göttingen to Paderborn equals the time needed to get to the airport of
Cassel. Both airports are difficult to reach by public means of transport. The third closest air-
port is Erfurt which is badly reachable by car and by public transport from Göttingen. But on
the fourth rank is Hanover. Its airport provides a lot of connections to European destinations
and is excellently reachable from Göttingen by car and public transport. Leipzig, Dortmund,
Münster and Bremen are not that close but these airports provide a lot of discount connections.
Already on rank nine occurs the airport of Frankfurt which is the biggest airport in Germany
and provides connections to places worldwide. Whenever several origin airports, several des-
tination airports and maybe also different departure dates come into question a huge number
of possible combinations have to be checked.

Another problem is that usually only those connections are offered in which all sub connections
are served by the same airline or at least alliance. That leads to the problem that a connection
between two small places can often not be found by flight search engines since no airline or
alliance serves the whole connection. It also happens, that the only airline or alliance that
serves the whole connection is really expensive or time-consuming. Nevertheless, there may
exist good connections by booking different airlines. One example is the connection between
Arusha, a small town located in Tanzania (Africa) and Balmaceda, a small town in the moun-
tains of Chile (South America). By searching a connection between these places no results show
up on traditional flight search engines like Skyscanner [Skyc] although there exist connections
as shown in Figure 1.

The purpose of this thesis is to develop a path finding algorithm that addresses these issues.
Therefore the basic requirements for the algorithm are:

• Find the best fitting origin and destination airports for the given origin and destination
places and find a connection to these airports.

• Find a flight connection between these airports in case a connection exists.

Before this algorithm can be developed the underling data structure has to be defined. There-
fore a multiply weighted graph structure that contains all airports as nodes and flights between
them as edges will be introduced in this thesis. The multiple weights are required because
flights have two properties that have to be considered for path finding, the price and the dura-
tion. Later on a method to combine both of these properties by introducing virtual costs will

1

be described.

Intentionally it could be an idea to use a plain Breadth First Search to find a path on this graph
between the origin and destination airport. The problem is that a lot of airports provide a lot
of flights every day. The airport of Frankfurt for example provides in average 650 outbound
connections a day. Since the number of outbound connections of the airports describe the
branching factor of the graph a plain Breadth First Search would result in a huge number of
paths after few steps. Additional constraints like the fact that the departure time has to be after
the previous arrival time are also required but not considered by using a traditional Breadth
First Search. Therefore, an algorithm named Modified Recursive and Parallel Breadth First Search
(MBFS) which is based on the traditional Breadth First Search but proceeds recursively and in
parallel, follows additional constraints and terminates paths that are not promising, is devel-
oped in this thesis.

To increase the runtime of this algorithm, an algorithm that uses only a small subset of all air-
ports to find a connection between two given places is additionally developed. This algorithm
is named Hotspot Search, its purpose is to set an upper bound for the duration and price of a
connection for the MBFS algorithm.

To evaluate these algorithms an application named Trip Planner that implements the algorithms
is developed. To obtain data sets on which the algorithms can be tested, several APIs are used.
To find the origin and destination airports and to get the connection to and from them via car
or public transport, Google Maps APIs are used. These APIs are also used for support tasks
like time zone calculations. To find flight connections and the according prices, Skyscanner and
eStreaming APIs are used. This application also contains a database with 634,000 cached flights
and information about its airports that are obtained from these APIs. With the Trip Planner
application the algorithms are evaluated on their runtime and quality according to different
settings introduced later in this thesis.

This thesis begins with a short description of the basic terms and notions that are used in this
thesis, followed by a short introduction on how to collect the data from the different APIs in

Distance (km) Airport
41 Cassel (KSF)
91 Paderborn (PAD)
94 Erfurt (ERF)
104 Hanover (HAJ)
159 Leipzig (LEJ)
161 Dortmund (DTM)
168 Munster Osnabruck (FMO)
185 Bremen (BRE)
191 Frankfurt am Main (FRA)

Table 1: Airports within 200 km around Göttingen

2

Figure 1: Connections between Arusha and Balmaceda.

Section 3. Afterwards the Flight Graph including the caching mechanism of the flights is de-
scribed in detail in Section 4. Also a description of how to obtain a subset of the airports for
the Hotspot Search algorithm is explained in this section. Section 5 describes the developing of
the different path finding algorithms. In the beginning the traditional Breadth First Search is de-
scribed in short. Afterwards the Hotspot Search is described, followed by a detailed description
of the MBFS algorithm. Section 6 then introduces the Trip Planner and describes the possibilities
of this application including a short overview about the implementation. The next section in-
vestigates the algorithms. Therefore the connections from Göttingen to Coimbra, from Arusha
to Porto Alegre, from Arusha to Balmaceda, from Cape Town to Asuncion and from Haikou
to Balmaceda which illustrates different issues and effects are used. These connections are
queried by the Trip Planer application with different settings to evaluate the algorithms. Sec-
tion 8 discusses the results of the previous section. The last section concludes the thesis and
points out some further researches.

3

2. Basic Notions

Before describing the algorithms and its preliminaries in the next sections, this section starts
with a short introduction of the basic terms and notions which are used in this thesis.

Single flight / connected flight A single flight is a direct flight between two airports without
transit. A connected flight is a combination of at least two single flights between two airports
via at least one other airport. Often the term flight is used instead of single flight.

connection A connection describes a possibility to come from one specified place to another.
This can be throughout a single means of transportation like a car, train, bus, plain and so far
or throughout a combination of several means of transportation. A connection can have just
a single step like a single flight or drive, or several steps for example a drive, afterwards a
connected flight and in the end a bus connection. A connection is incomplete if the end of the
connection does not reach the intended destination place for this connection.

Travel Graph The Travel Graph G = (V, E, P) is the Graph that contains all reachable places
and the possible connections between them. The nodes V of the graph are the set of all places.
The edges E are the set of all connections with just one step. The paths P in the sense of this
thesis are connecting two nodes by using one or more edges while additional constraints like
that an edge can only be added to a path if the departure time of the edge is at least one hour
after the arrival time from the previous edge has to be followed. A path is a connection in the
sense of this thesis between the starting and ending place of the path. By finding a connection
usually the term path is used in this thesis, if a path between the origin and destination place
is found the term connection will be used instead.

Cached Flights Database The Cached Flights database caches flights from Skyscanner and eS-
treaming to ensure fast access to the flight data for the path finding algorithms. These data are
the basis for the Flight Graph introduced in Section 4.

Hotspot Hotspots are the 70 airports with the most intercontinental flights listed in the Cached
Flights database. These airports constitute a subset of all airports on the world and build up
a kind of own network reaching the most airports worldwide with direct flights from them.
More information about the Hotspot Airports can be obtained in Section 4.2 and from the list of
all Hotspots in Appendix A.2.

Origin (place) / destination (place) The origin and destination is the actual starting and end-
ing point of the algorithm. This can be any point on the earth defined by coordinates. Some-
times it is also named origin / destination place.

Origin airport / destination airport The origin airport is the airport where a flight route starts
and the destination airport is the airport where a flight connection ends. Obviously, those

4

points have to be airports. Usually those airports are the closest, fastest or best reachable air-
ports from an origin or destination place.

Origin Hotspot / destination Hotspot The origin Hotspot is the first Hotspot of a flight path
and the destination Hotspot is the last Hotspot of a flight path. For the connection from the
origin airport to the origin Hotspot and from the destination Hotspot to the destination airport
non-Hotspot airports are used.

Geographical distance The geographical distance between two places (a, b) is the beeline
distance between the coordinates of a and b. Often the geographical distance is just called
distance.

Travel distance The definition of the travel distance in this thesis is based on the definition of
the distance of a single and connected flight from [Hor10]. The distance of a direct connection
between a and b while a, b ∈ V, an edge (a, b) ∈ E exists, V is the set of all places and E is the set
of all direct connections, is determined by the geographical distance between the coordinates of
a and b. The distance of a path p ∈ P = (e1, e2, ..., en) is determined by the sum of the distances
of its single direct connections ∑ ei and not by the geographical distance of the start and end
coordinates of the path.

Completed distance The completed distance represents the progress of a path. It can be de-
termined by:

distancecompleted = distance f ull − distanceremaining

While distance f ull is the geographical distance between the origin and destination places and
distanceremaining is the geographical distance between the current place and the destination
place.

Duration The definition of the duration in this thesis follows the definition of the duration of
a single and connected flight from [Hor10]. The duration of a direct connection between two
places a and b, while a, b ∈ V for V as the set of all places and ∃(a, b) ∈ E for E as the set of all
direct connections, is the local arrival time at place b minus the local departure time at place a
plus the time difference of both places. But the duration of a path of multiple connections is not
the sum of all its single connections. It is the sum of all its direct connections and additional all
transit times between the connections.

durationpath = ∑(duration(subConnection)i + transitTimei)

While i iterates over all sub connections of a path and its associated transit times. That is equal
to the duration between the local departure time of the first connection and the local arrival
time of the last connection plus the timezone difference of the origin and destination place.

5

Virtual costs The edges of the Travel Graph introduced previously are have multiple weights,
the duration and the price. For graph search algorithms a metric how to deal with this multiple
weights is required. For this purpose the virtual costs are introduced. They are a metric to
combine the price of a connection with the duration by applying a financial penalty for each
hour a path requires to reach the destination. This penalty is the price that is one hour worth
for the user. The virtual price can determined by:

virtualCosts = pricepath + durationpath · x

While pricepath is the sum of the prices of all parts of the path and x is the user defined penalty
for each hour the connection requires.

valid path A valid path (also valid connection) is a path from the origin place to the destina-
tion place where each single part of the connection departs from the same point and at least
one hour after the arrival of the previous part.

Algorithmic step An algorithmic step in the sense of this thesis is the expansion of all paths
that have not been terminated or reached the destination already. For example in the first al-
gorithmic step all paths that have not been terminated already or have reached the destination
are expanded the first time, in the second algorithmic step all paths that have not been termi-
nated already or have reached the destination are expanded the second time and so forth. The
number of algorithmic steps that an algorithm required represents the number of expanding
steps from the longest path generated by the algorithm.

6

3. Collecting Data

Before searching a path in a graph, the graph needs to be filled with data. In the case of this the-
sis does that mean that data sources for all means of transportation are required. This section
describes which data sources are used by Trip Planner application and what are there abilities
and limitations to obtain the required data for the path finding algorithms.

Flights can be booked from the airline which provides the flight and from travel agencies which
are distributing flights from different airlines. The price for the same flight can differ strongly
between different suppliers. In the beginning of 2018, 424 airlines were registered by the IATA
[IAT], the total number of travel agencies is unknown, but probably a lot higher than the num-
ber of airlines. To get a full set of data, an API to all these airlines and travel agencies has to
be implemented and maintained. Especially the maintaining part is really extensive due to the
fact that the APIs are changing continuously.

Some companies like Skyscanner, ITA Matrix Search, eStreaming and Travelport are specialized in
gathering these data to sell them afterwards [ITA] [Skyb] [eSt] [Tra]. Their business concept is
to get provisions from the airlines and travel agencies for each flight booked via a link provided
by them [Skyb] plus their customers have to pay for their API access [eSt] [ITA]. The fee can
depend on the possible number of requests per second or day [eSt]. The customers gain from
this service is that they have to implement just one API instead of hundreds.

These companies cache all request results from the live price APIs in a database for several
days and provide them via cached flight APIs. Some of these companies provide restricted free
access to their cached flight APIs. This master thesis has no budget for API accesses, therefore
only the free APIs have been used for the Trip Planner application.

Additional to the flights the connection from the origin place to the origin airport and the
way from the destination airport to the destination place needs to be found. The Trip Planner
application uses Google Maps APIs to solve this problem. The APIs used for the Trip Planner
application are shortly described in this section. For a more detailed view on the APIs the
project report [Hen18] can be considered.

3.1. Google Maps

Google provides a huge range of different APIs for a lot of different applications related to map
use. The APIs are splitted in two groups, the web APIs and the web-service APIs. The web
APIs are all those APIs which can be embedded through JavaScript directly on the client side
[Gooe] and the web service APIs are those APIs which have to be accessed by an HTTP call
from the server side [Goog].

The Google Maps JavaScript API is the most important web API used for the Trip Planner ap-
plication. It provides all methods required for embedding a dynamic Google Maps map into

7

a web page by using Java Script. This API includes methods for fully customizing the map,
like the zoom level, the maps center, which functions are allowed for the user and a lot more.
Also functions for drawing on the map are provided by this API, for example is it possible to
draw lines and polygons or show content on the map by using markers and symbols. Also
info windows with text are possible to show on the map. Together with the Google Places API
JavaScript-Library it is possible to get detailed information about more than 100 million places
worldwide, like cities, countries, businesses, locations and a lot more. This library is able to
give place information for a given latitude and longitude and to return the latitude and longi-
tude for a given place [Gooe] [Goof].

The Google Maps Direction API is the most important web-service API provided by Google Maps.
It allows to request a path description for the fastest route including some alternative routes
between two or more arbitrary places in the world. For the path calculation different param-
eters like the means of transportation, including driving and public transport and the time of
the trip are considered. The result includes the duration considering the current and expected
traffic, fares, a polyline to draw on a map and a detailed route description [Goob].

The Google Maps Distance Matrix API returns the distance and the duration between several
locations but not a full route description like the Google Maps Direction API. This API can be
called with a list of up to 25 origin and destination addresses, in this case a result set with the
distance and duration for all combinations between origin and destination will be calculated
and returned. The huge advantage of this API is, that it is much faster than the Google Maps Di-
rection API. A detailed description of this API can be obtained from the project report [Hen18].

An other web-service API provided by Google Maps is the Google Maps Geolocation API
which returns the current location and the accuracy of the calculated location of the user, based
on data of mobile towers and the wifi network [Gooa]. The Google Maps Geocoding API con-
verts addresses to coordinates and coordinates or place IDs to full addresses [Gooc]. The Google
Places API allows to access data of over 100 million places in the whole world like cites, coun-
tries, businesses, locations and a lot more. For each place data like address, name, opening
hours, rating and more are available. This API also allows auto completion of places and the
search of places near the current or any arbitrary location [Gooh]. By passing the coordinates
of a location and a date to the Google Maps Time Zone API it returns information about the time
zone and the time difference to UTC time [Good]. More details and a more technical view on
the APIs can be obtained from the project report [Hen18].

Beside these APIs Google provides several APIs for iOS and Android as well as for Java,
Python, Go and Node.js. This section is limited to a short overview of the possibilities given by
the Google Maps APIs, there are a lot more functions and APIs provided by Google Maps. The
project report [Hen18] provides a deeper and more technical view into the possibilities of these
APIs.

Google Maps allows free but restricted access to all their services for public, noncommercial

8

use. The lowest access restrictions apply for the mobile APIs. The Google Maps Android and
iOS APIs have unlimited free access. The Google Place API has still a very high limit of 150,000
requests a day. The Google Maps Java Script, Static Maps and Street View Image APIs are restricted
to 25,000 loaded maps a day. The web services wich are the rest of the APIs like Google Maps
Direction or the Elevation API are restricted to 2,500 requests a day. Google offers a simple
way to increase the daily limit without entering a contract by paying 50 cents for each 1,000
requests over the free limit up to 100,000 requests a day. For commercial or access restricted
applications, other rules apply. But especially for Android applications, there are still free
opportunities available [Gooi].

3.2. Skyscanner

Skyscanner is a flight, hotel and car rental search engine. It operates around the globe in over
30 different languages and 70 different currencies. Skyscanner tries to connect all travel agen-
cies and airlines world wide, in order that the users have access to almost all travel offers that
are available on the market to make the best deal at any time [Skyb]. Skyscanner offers several
APIs which provide different kinds of data. The main APIs are distinguished in three different
fields. The Cached Data APIs provide cached data from previous requests. The Live Price API
provides the current data of a requested flight and enables a link for booking this flight (This
API is currently not available [Skye]). The Place API provides static data about places available
on Skyscanner [Skya]. APIs for car rental and hotel search are available as well but will not
be considered in this report because they are out of topic [Skya]. The access to the Skyscanner
APIs is not restricted by a daily limit. They have only restrictions on requests per minute. The
Skyscanner Cache API is restricted to 500 requests a minute, while the Skyscanner Live Price API
is restricted to only 100 requests a minute and the Skyscanner Car Hire API is restricted to 100
requests a minute as well [Skyd].

With the Skyscanner Place APIs it is possible to request a Geo Catalog of all continents, coun-
tries, regions, cities and airports with further location and name information that are listed on
Skyscanner. Also further information of a specific place can be accessed by the Place Information
API. With the List of Places API Skyscanner realizes an auto complete for places listed on it [Skya].

The Skyscanner Cached Data API is supplied by data from requests on the Skyscanner homepage.
Skyscanner provides different Cached Data APIs for different use cases, but in the end there is
nothing that could not be done by the Browse Quotes API but with one of the other. There is
just a difference in the representation of the results that should simplify the handling of the
received data [Skya].

The Skyscanner Cached Data API requires the origin and destination place, the outbound and a
possible inbound date and the country, currency and language of the user. Thereby the origin
and destination place can be an airport, city, country or even anywhere and the outbound and
inbound date can be a specific date, a month or even anytime. The API returns the cheapest
price, the carrier and the date of recording the dataset for one direct flight if available and for

9

one connected flight [Skya].

The Flights Live Price API has been under construction for several months. Skyscanner promises,
that the API will be available soon again [Skye] but it seems as they will have it available
just for business partners in the future. Before, it was possible to request very detailed flight
information, which returned the exact times of the flight, available seats, and even direct links
to different agencies to book the flight [Skya].

3.3. eStreaming

eStreaming is an API which provides cached price data from over 10,000,000,000 daily requests[eSt].
The eStreaming API belongs to the CEE Travel Systems company which also owns the live price
travel API Travelport [CEE] [Tra]. From these servers eStreaming gets all requested data for up-
dating its cache once a day [Gonb]. eStreaming provides different APIs for different use cases. If
detailed offers for a specific connection are required the Cache API can be used. To access these
offers from a view point in the past the Historical API is the right choice. For trips where the
time period of the trip is flexible the Flex API and the Fly From To API should be used. And if
all connections for an airport are required the Fly From API returns the best results [Gonc].

Each API request requires to select a point of sale. This choice has to be made because air-
lines are distributing their flights in different ways and with different fares to different markets
[Gonc]. Depending on the exact request type additional attributes like origin and destination
airport, outbound and a probable inbound date or date range, days of stay or a quote date time
are required. The API response is a JSON file that includes a parameter base64GzippedResponse.
This parameter contains a JSON file again, compressed as .gz and encoded as Base 64 [Gond].
The second JSON file contains for each connection stored in the eStreaming database, that
matches the request string, values for the fare, carriers, duration, departure and arrival date
and time, flight number, legs, and more depending on the exact request type.

By using a free account the access is restricted to 1000 requests a day and one request per sec-
ond. The pricing system of eStreaming is to buy additional requests per second. From the first
request per second purchased the daily limit is omitted. Each request per second costs between
3.50$ and 5.00$ a day depending on how many requests are purchased in total [eSt].

Originally, IATA codes were intended to describe airports, but nowadays IATA codes can also
describe train stations and bus stations that are connected to airports in any way. For example
is it possible to book a flight from Qatar to anywhere in the world while the first part of the trip
is a bus ride from Qatar to the airport in Dubai. Therefore the bus terminal in Qatar got an IATA
code. These connections that are not a flight, are really hard to distinguish from the real flights.
If this would be ignored and the Bus and train stations with an IATA code would be handled as
airports several problems could occur. The first one is that all parts of a connection are stored in
the database as an own connection as it will be described in more detail in Section4. Therefore
would it be possible that this bus or train ride is used to catch another flight later on. But

10

often this connections can not be booked separately. Another problem is that the Trip Planner
application queries further information of airports like there coordinates which are required
for the algorithms. These information are only available for airports but not for bus and train
stations with IATA codes. These problems are solved by using the Skyscanner’s Geo Location API
which provides a list of all airports including their IATA code. Therefore all connections found
by eStreaming are checked against this list, if one stop of this connection is not in the database
this part of the connection will not be considered for the result.

11

4. Flight Graph

After explaining where the travel data can be obtained from, this section describes how to cache
the obtained data to get fast access on it when applying the path finding algorithms later. Also
how to deal with the problem of incomplete data sets obtained from the APIs is part of this
section.

The Flight Graph is the graph that contains all airports and flight connections available for the
Trip Planner application. The base for the graph is a PostgreSQL database. Like each graph
ontology the basic notions are vertices, edges and paths. The Flight Graph is a directed, edge-
labeled graph of the form G := (V, E, P). V is the set of all vertices, each vertice represents one
airport, E ⊆ V × V is the set of directed edges between the vertices, whereof each represents
a flight connection and P is the set of paths. While the set of paths is defined as a transitive
sequence of edges in the usual notion of a graph [Hor10], the set P of paths in this graph is a
subset of these usual paths since a path has to satisfy certain additional constraints like the as-
pect that the departure time of a following edge has to be chronologically after the arrival time
from the previous edge. Nevertheless, each path p ∈ P consists of single or multiple connected
edges and is therefore also a path in the traditional sense. Each path p that ends in a vertex
x can be extended by an edge (x, y), denoted by p ◦ (x, y) if the edge (x, y) satisfies the given
constraints for a path.

First, this sections deals with the database that stores the Flight Graph. Later in this section it
is described how a subset of the vertices Vh ⊂ V is generated that spans a smaller graph with a
small subset of all edges Eh ⊂ E with the characteristic to reach most other airports as possible
with direct flights from the airports of Vh to reduce the run time of the algorithm in the end.
The last part of this section describes how it is possible to determine prices of flights in the
database that did not come with a price from the APIs.

4.1. Caching Graph Data

It would be a possible solution not to store the whole graph locally but always requesting APIs
for the part of the graph that is required. The obvious advantage of this solution is that all data
are always up to date and the space complexity would be low. But requesting a flight via an
API needs a long time, if for one connection a lot of flights has to be requested from APIs the
time effort would be huge, before a result could be returned. Also most of the APIs, especially
the flight finding APIs, have a small limit of requests per second, day or even both [Skyd][eSt].
That leads to the need of caching the flight data before they are required. The Cached Flight
Connection Database stores all flights, including information like the cheapest price, departure
and arrival time and the quote date time. The database also stores each airport in the world
including its coordinates, IATA code, the related city and the daylight saving time difference to
UTC for the wintertime and the summertime as well as the dates for time shifts. Also one table
for all cities that have an airport, one table for all countries and one table for all continents is
stored in the database.

12

The core table of the database is the flight_connections table. This table has columns for the
origin, destination, departure and arrival date and time, duration, quote date time, weekday,
price, approximated price described in Section 4.3, currency, carrier, flight number and a con-
nection number which is an integer ID that is used as a foreign key to a second table that stores
all legs that the connection includes. This table has one entry for each flight. Due to the reason
that different APIs are used to request flights and some flights are direct and others are con-
nected, the stored connections can be distinguished into three different kinds. The first kind is
direct connections where no details are available for. That are flights obtained from Skyscan-
ner, for those flights it is only known that a flight exists on the specified day with the origin
and destination and the cheapest offer. For these flights is no exact departure and arrival time
known also is the duration and flight number unknown, as well as the number of flights on the
day between the origin and destination place. These flights are distinguishable from the other
flights because the duration is null.

The second kind of flights are also direct flights but with further information. For these flights
the exact departure and arrival times are available as well as the flight number, the duration
and further information. Some of these flights have a price and others do not. That kind of
flights can be distinguished from the other kinds because all these flights have a flight number
but the connection number is null since these flights are direct. The last kind of flights are con-
nected flights. These flights have all information like a precise departure and arrival time as
well as a duration, price and so on except a flight number since they are connected from flights
with different flight numbers. These flights are distinguishable from other flights because they
have a connection number.

The APIs return a lot of results for a single flight since a flight is usually offered by different
providers. But for the path finding algorithms only the cheapest offer is of interest. There-
for, because of space complexity reasons just the cheapest offer of a flight is stored into the
database. While this sounds trivial in the first moment it becomes more complex after a deeper
view into it. Since the flight number is not usable as a unique identifier because the same flight
number can repeat each day again even for different connections, a flight number can also be
the same for a flight that has several layovers where each part can be booked separately like a
flight from Paris to Arusha going on to Dar es Salaam and back to Paris with the same flight
number. Also a problem is that one flight can have several flight numbers if it is shared by
different airlines. Therefore other unique identifiers are required. The Trip Planner application
uses the origin and destination place as well as the departure and arrival time as unique identi-
fiers for a flight or connection. This does not mean that it can be guaranteed that both flights or
connections really are the same if the application identifies them as similar. But the algorithms
used for path calculation would always decide for the cheapest flight or connection anyway. If
two connections have the same departure and arrival time, it is sufficient to keep just one of
them in the database. For example if a connection has three legs and the first and last one are
the same but the middle one is different the database would deal with these connections as if
it was the same and would just keep the cheaper one. This saves a lot of storage and the path

13

finding algorithm would always chose the cheaper connection of them anyway.

The Trip Planner Server application has a function to update this database. The first step of this
method uses the Skyscanner Geo Location API to check if new places are available. In the sec-
ond step the Skyscanner Cached Flights API, which finds all outgoing flights from one specified
airport, is used to check for each airport whether there exist flights that are not in the database
already. But these flights found by the Skyscanner API have a departure date and a price but
no exact times and no information about how many times a day this connection is served.
Therefore the last step of the update process is that all connections with missing information
are requested from the eStreaming API. This API returns detailed information like the exact
departure and arrival time. Due to the limitations of the APIs this update process is able to
update the flight connections of one specific day each day. Therefore a period of two weeks
in April 2018 was chosen as a test period. For six month this two weeks period was updated
continuously to use it for the evaluation of the path finding algorithms afterwards.

All database update mechanisms are organized modularly. That means it is simply possible
to change single steps like finding all flights that an API should request or to change the API
used for the requests just by calling a different method. It is also possible to skip single steps
of the update mechanism. Changing the whole database is even simpler just by changing the
database connection information stored in one global class.

Currently the database has entries for 4,919 airports worldwide whereof 3,490 airports are
served. All in all 32,193 different direct connections and 12,050 different connected flights are
stored in the database with 634,655 different flights in a time period of 14 days (up to 61,635
flights a day). Due to the fact that some connected flights need few days some of the flights are
outside the time period while the "flights a day" value represents how many flights are really
departing on one specific day. The queries required to request these values can be found in
Appendix A.1.

4.2. Hotspot Airports

Hotspots are a subset of all airports listed in the Cached Flights database. Hotspots are represent-
ing big airports that can be reached from a lot of other airports in the same region and that
provides direct connections to a lot of airports on other continents. Therefore these airports
should be particularly suitable for switch over to come from one continent to any other conti-
nent. The idea is, to develop an algorithm that finds a fast path to the next Hotspot from any
airport in the world and to find another Hotspot that has a fast path to the destination airport.
Afterwards both Hotspot Airports can be connected just by using other Hotspots or in the best
case there is a direct connection between both Hotspot Airports or they are even the same airport.

The Hotspot Airports are determined by considering for a specific day where the cached flight
database has as many flights as possible from all airports all direct connections to an airport on
another continent (inter-continental flights). Each connection between two airports is consid-

14

ered once even in case that several flights are available on this day for this connection. These
connections are counted for each airport. That result for each airport is the number of airports
on other continents that can be reached by direct flights on this day from the considered air-
port. The 70 airports with the most connections to airports on other continents are chosen as
Hotspot Airports.

Appendix A.2 shows a list with all Hotspots determined by the method previously described.
Few things are noticeable on this list. First, all big airports in Europe and North America are
on this list but just one airport for whole Russia, just one airport in Africa and only very few
airports for South America in the end of the list. If this list would consider only the first 50
airports, South America would have just one airport in the list as well. The reason that Russia
has only one airport in the list is that almost all flights in Russia go to Moscow. Almost always
to come from one to another Russian city it is necessary to switch in Moscow especially to
leave the country. For South America and Africa is the reason that the main Hotspots for these
regions are located in Europe and the Middle East. The most countries can be reached from
there former colonial powers. That means the South American countries are especial reachable
from Lisbon (Portugal) and Madrid (Spain) and the African countries are reachable from Paris
(France) and London (Great Britain). These are also the regions where a lot of people are willing
to go to these regions since the South Americans and Africans are not traveling lot between
their countries. For the African region also Istanbul (Turkey) and Dubai serve as Hotspots. That
is caused by the fact that these countries have big airlines which business model is to serve the
European marked and the geographically good location to Africa.

4.3. Approximation of Missing Prices

Often it happens that the APIs are returning connected flights with single legs where the flights
of the single legs have not been stored in the database already. In this case the whole connec-
tion will be added to the database. But also the single legs are added to the database as direct
connections, since it can be expected that the single legs are bookable separately as well. In
this case the API provides only a price for the whole connection but no price for each single
leg. If later on this direct connection is found by another API call the price will be added to
the flight. But often it happens that the APIs do not have an entry for the single flights even
so they provide the whole connection. In this case this flight has no price in the Cached Flights
Database. This applies currently to 460,000 of the 1,300,000 connections stored in the database.
For the path finding algorithms the price is a very important evaluation criterion. This leads
to the problem that a lot of flights can not be considered for path finding. To prevent that, this
section introduces a method to approximate the price of a flight by considering the prices of
other similar flights and the general flight price behavior on the day of the flight [Hor10].

In two different cases the price for a flight can be approximated:

• The price of other flights with the same flight number and the same origin and destination
is known by the database. This is probably the best case, especially if the number of
flights with the same flight number on another day and a price stored in the database is

15

high, because it can be expected that the price of the same flight, with the same airline
on another day cost in average roughly the same. In this case the price of the flight is
approximated by:

price(f light) = avg(price(sameFlightNumber))

While price(sameFlightNumber) is the set of all direct flights that have a price and the
same flight number, origin and destination like the flight for which the price is approxi-
mated for, stored in the database. Later in this section a correction factor for this method
is described.

• The price of other flights on the same route (with the same origin and destination airports)
is known by the database. If the same route is provided by different airlines, usually the
price of the flights are quite similar for all airlines because people are unwilling to pay a
much higher fee for the same service if they can receive it also for a lower charge [ETKY03]
[Far]. Therefore an approximation for the price of a flight can be calculated by the average
over all flights on the same route:

price(f light) = avg(price(sameRoute))

While price(sameRoute) is the set of all direct flights that have a price and the same origin
and destination airports like the flight for which the price is approximated for, stored in
the database. Later in this section a correction factor for this function is described, too.

But there are limitations for this method. For example if the same route is provided by
a discount airline and a classic operator as well and the prices are available just for one
of them. In this case the service is very different and even so both flights have the same
origin and destination the price can be very different. Another reason for different prices
can be a different departure time [Far] [Che]. Therefor this case should be just the second
choice if the first solution can not be applied. However, in average this method will return
an approximated flight price.

The prices of flights can differ strongly within different days [ETKY03] [Che] [Far]. For example
flights are usually really expensive on Sundays and cheap on Wednesdays [Far]. Also interna-
tional common holidays like Christmas and Easter or the summer time can influence the flight
price massively [ETKY03] [Che] [Far]. To soften these effects a correction factor is used. This
factor assumes that the price between the same flights on different days follows the average
price difference between the flight prices on all flights in the database and the flight prices on
the day of the flight [ETKY03]. Therefore this factor uses the average of the prices from the day
of the flight and the average price from all flights stored in the database as follows:

correctionFactor(day) = avg(price(f lightsday))

avg(price(allFlights))

While price(f lightsday) is the set of the prices from all direct flights on the considered day and
price(allFlights) is the set of the prices of all direct flights stored in the database.

16

The previously approximated flight price has to be multiplied by the correction factor to soften
the flight price difference between different days: That leads to the following functions for
calculating the approximated flight price for a certain flight:

so f tedPrice(f light) = avg(price(sameFlighNumber)) · avg(price(f lightsday))

avg(price(allFlights))

if the database has entries for other flights with the flight number that contain a price and

so f tedPrice(f light) = avg(price(sameRoute)) · avg(price(f lightsday))

avg(price(allFlights))

if the database has only entries for other flights on the same route that contain a price.

As it is not a core part of this thesis to discuss how to approximate flight prices, this rough
approximation of the price is sufficient. For a better calculation especially the correction factor
could be optimized by different aspects.

• The average price difference between flights of the airline that provides the flight for
which the price is missing and the airlines of the flights that was used to calculate the ap-
proximated price should be considered. This method would consider the price difference
between discount airlines and classic airlines [ETKY03] [MPR09].

• The flights used to calculate the correction factor could be limited to flights that have the
same origin or destination country or even airport because holidays are often national or
even local.

• By calculating the correction factor, flights of the same week day could be considered
with a higher priority because the flight prices often depend on the weekdays [Far].

• The remaining seats of a flight have a significant impact on the flight price. If this informa-
tion is available it could improve the flight price approximation substantially [ETKY03].

• The remaining days until the date of departure could be considered for the approxima-
tion. Usually the flight price increases until few weeks before departure. On this point
in time the price falls down and afterwards the price is increasing again [ETKY03] [Far]
[Che] [MPR09]. If a huge data set of flights from the same airline was available these
points might be identified for improving the approximation.

• Especially for discount airlines but also for other airlines the length of the flight is an
indicator for the price and could be considered when calculating the price [MPR09].

In general the approximation gets more accurate if a bigger data set is used and more aspects
are considered. To define which aspect should considered by which proportion and what are
the best approximation methods could be part of a separate thesis.

17

5. Path Finding Algorithms

After defining the underling data structure, the Flight Graph in Section 4 and introducing the
different APIs to get the travel data in Section 3, in this Section the path finding algorithms are
described in detail. This algorithms are evaluated afterwards in the following sections.

When looking for an algorithm to find connections in a graph, the first intention could be to use
a simple shortest path algorithms like Dijkstra [MS08], Breadth First Search [AG87] or Depth First
Search [Eve11] algorithms. But after performing a more detailed analysis this approaches turns
out as inappropriate, since it is not the goal to find the shortest path or just any of many paths,
but to find the best path regarding a lot of criteria. Simple path finding algorithms are not suffi-
cient for this complex task. Especially the price and duration have to be considered finding the
best path. Even so that these criteria could be considered by combining both - the price and the
duration - as it is done later on by using the virtual costs instead of the price of a connection,
further constraints have to be contemplated. Especially the fact that a departure time has to be
chronologically after the arrival time is not feasible by using the previously stated algorithms
directly.

Therefore, the approach of this thesis is to use Breadth First Search-based algorithms with a
set-oriented approach to use the runtime enhancement of databases on data operations and
further constraints. Also parts of the Dijkstra algorithm find use in the algorithms of this thesis,
such as for the termination criteria as it will be described in Section 5.3.2. These algorithms are
modified for the travel planning use. On the one hand the modification is required to strongly
increase the runtime by allowing the algorithm to proceed recursively and parallel and on the
other hand to implement additional constraints, allow to find the best paths instead of the
shortest path and to allow the algorithm to find more than just one solution. Also especially
complex data-intensive tasks are processed on the database level to improve the efficiency of
the algorithm.

The first part of this section shortly describes the basics of a traditional Breadth First Search
algorithm. The second part describes the Hotspot Search algorithm which intention it is to use
only a predefined subset of all airports to find a connection between two arbitrary places. The
third part describes the main algorithm of this thesis, the Modified Recursive and Parallel Breadth
First Search, in detail. The last part of this section introduces an approach to combine both of
the previously described algorithms to improve the runtime.

5.1. Breadth First Search

Given a connected graph G = (V, E) with V as the set of vertexes, E as the set of all edges and
a root node r ∈ V which would be in the case of flight paths the origin airport. The Breadth
First Search would span a tree that returns the shortest path to any node n ∈ V from the root r
[KS05]. Shortest path in this case means the path from r to any n with the minimum number of
edges e ∈ E over all possible paths from r to n [AG87].

18

The initial step of the Breadth First Search is to mark the root node as visited and put it into a
queue. Until the queue is empty, the first node of the queue is removed and has to be marked as
visited as well as all its unmarked associated nodes have to be added to the queue. In case not
the whole tree is required, but only the shortest path to a specified node n ∈ V, the algorithm
can terminate as soon as n was found. The rest of the graph doesnt’t need to be expanded in
this case [Zus72].

In general the time complexity of the Breadth First Search can be expressed as O(|V|+ |E|) be-
cause each vertex and each node have to be explored in the worst case. The time complexity
is O(|V|) in the worst case, if all vertexes are connected with the root node [CLRS01]. An-
other possibility is to set the complexity in relation to the number of hops necessary to reach
the searched node. The time and space complexity can be expressed as O(bd+1) while b is
the branching factor and d is the distance of the searched node (measured in number of edge
traversals) from the root. Especially for huge graphs where the searched node is to be expected
to find within a low number of hops this calculation for the complexity is the more accurate
one [RNC+03].

5.2. Hotspot Search

A plain Breadth First Search from one to another airport grows very fast to a huge number of
different paths that have to be expanded. Because the computing power is limited and the algo-
rithm should return a proper result within a short period of time, this expansion of the search
graph has to be limited. One idea is to limit the number of open paths by applying termination
criteria that terminate paths that seem not to come to a good result in the end. Another idea is
to keep the graph lean by using just a few airports instead of the whole graph. Both methods
are not trivial. For terminating paths with low chance of success a metric for deciding at which
point the chance for success is low is necessary and for using just a subset of all airports the
problem is how to determine the best subset.

Section 4.2 describes a possible solution of how to determine a subset of the 70 most important
airports out of all airports. These airports are named Hotspots and build up their own flight
network around the whole world. The Hotspot Search algorithm uses mainly these airports to
find a path between the origin and destination airports. Only if the origin or destination airport
is not connected to one of the Hotspot Airports, connections to other airports are considered to
find a path from the origin airport to a Hotspot Airport and from the last Hotspot Airport to the
destination airport. Another special case is that a connection to the destination airport is found
by the expanding process before the first Hotspot Airport is found. In this case this connection is
used instead of using Hotspots. If for example a connection from Hanover, a town in the north-
ern part of Germany to Varna, a costal city in Bulgaria is searched. The airports of both cities
are non-Hotspot Airports, but a direct connections between both exists. In this case this connec-
tion is used instead of using a connection via Hotspots. The path that is found by this algorithm
is not necessarily the best, since it does not consider all possible connections, but if there exist

19

(a) (b)

Figure 2: Inbound connections from Hotspots to Haikou (a) and outbound connections to
Hotspots of Hanover (b).

a connection between the origin and destination airport this method finds a path. The idea is
to find the path with the least possible number of required stops by using the Hotspot Airports
for the connection. Only if the origin or destination airport is not directly connected to one
of the Hotspots the other airports are considered for the path calculation as well. This section
describes this algorithm in detail.

The algorithm will be visualized through an ongoing example throughout the whole section.
For the example a flight from Hanover, a town in the northern part of Germany, to Haikou a
town on Hainan, an island in the south of China, popular for its tourism, is used. Both airports
are not Hotspot Airports.

The Hotspot Search algorithm can be separated into four different parts. The algorithm starts
with finding Hotspot Airports which has paths to the destination airport. It is required to search
the Destination Hotspots before searching the Origin Hotspots. One reason for this is to enable
that a connection without Hotspots is identified if a direct connection to it was found by search-
ing a path from the origin airport to the Origin Hotspot. Another reason is that the path from
the Origin Hotspot to the Destination Hotspot has to be applied right after the path finding from
the origin airport to the Origin Hotspot for performance purposes. Another part is to find a
path from the origin airport to the first Hotspot Airport, the third part is to connect the Hotspot
reached from the origin and the Hotspot that reaches the destination, if they are not the same.
The last part is to combine all connections and find the path from the last Hotspot Airport to
the destination airport. The database includes connections from and to 3,481 different airports,
while 1,693 (49%) airports are Hotspots or direct connected to them; the other 1,797 (51%) air-
ports needs at least two flights to reach a Hotspot Airport.

20

Hotspot to destination airport The first part of the algorithm is to find a Hotspot that is con-
nected to the destination airport with least hops as possible. If the destination airport is already
a Hotspot the algorithm jumps to the next step, otherwise a modified Breadth First Search is used
to find a path between a Hotspot airport and the destination airport. Two list are required for
this algorithm. One list is named connection list. This list stores for each airport that was vis-
ited by the Breadth First Search and all its outbound connections. The other list is named airport
list. This list contains one entry for each airport that was added to the graph during the last
cycle of the following loop, these are the airports which have to be expanded in the next step
of the loop. The airport list is initialized with the destination airport.

The loop starts with checking for all airports listed in the airport list, whether the connection
list contains entries for this airport as well. If the airport is listed in the connection list as
well, this airport was visited before by the Breadth First Search already and does not need to
be expanded again. Otherwise all inbound connections to this airport that have a Hotspot as
origin are queried from the database. Each new origin airport is now added to the airport list
and each connection is added to the according origin entry in the connection list.

1 ∀x ∈ airportList

2 if(Not connectionList.contains(x)

3 ∀y ∈ inboundHotspotFlights(x)
4 add y to connectionList(originAirport(y))

5 add origin of y to airportList

Code Snippet 1: Pseudo-code to find the next connections from Hotspots.

inboundHotspotFlights(x) queries all inbound flights for airport x that have a Hotspot Airport
as origin from the database. If after looping throughout all airports from the airport list one
or more new connections from a Hotspot were found, the algorithm terminates and returns the
connection list. Otherwise no connection from a Hotspot Airport to one of the airports in the
airport list exists. In this case the same loop will be applied again, but instead of querying
all inbound connections coming from a Hotspot Airport now connections from all airports are
queried.

1 ∀x ∈ airportList

2 if(Not connectionList.contains(x)

3 ∀y ∈ inboundFlights(x)
4 add y to connectionList(originAirport(y))

5 add origin of y to airportList

Code Snippet 2: Pseudo-code to find the next connections regardless whether they are from
Hotspots or not.

inboundFlights(x) queries all inbound flights for airport x from the database. If again no con-
nection was found, the algorithm terminates and returns null because there is no connection
available between the origin and destination airport. Otherwise the algorithm will be applied
again until at least one connection from a Hotspot airport was found.

For the previously introduced example in this section between Hanover and Haikou a Hotspot
Airport close to the destination has to be found first. Therefore the closest airport to the desti-

21

nation will be chosen and added to the airport list. In the case of Haikou this is Haikou Meilan
International Airport. In the next loop run this airport is expanded. First all inbound connec-
tions within five days are queried from the database. If no connections are found the same
query would be done by querying all inbound connections of the airport regardless whether
these connections are from Hotspots or not. But in this case several connections from Hotspots
are available. Figure 2a shows all available inbound connections to Haikou from Hotspots. One
of the connections is the connection from Hong Kong to Haikou. Friday 2:15 pm and Saturday
2:10 pm are some of the departure times.

The connection list caches flight connections from the destination Hotspot to the destination
airport. It makes sense not to query all flights regardless its departure time from the database
when querying the inbound connections of an airport. Since the arrival time at the destination
Hotspot can not be known before knowing which are the destination Hotspots there is no earliest
departure time known for the connection. Instead the given departure time for the whole
connection could be used, because a connecting flight can not depart before the departure of
the first flight. This already excludes all flights in the database before this time. The latest
possible departure time can just roughly be approximated. In this thesis it is expected that the
duration of a whole connection is not longer than five days. Therefore the request is limited
to flights that depart between the requested departure time of the whole connection and five
days afterwards. This limits the flights that have to be cached massively but does not limit the
possible connections.

Origin airport to Hotspot The second part of the algorithm is to find a connection from the
origin airport to a Hotspot with least hops as possible. If the origin airport is already a Hotspot
the algorithm jumps to the next step, otherwise paths to Hotspots will be searched by expanding
all paths until a Hotspot is reached. This algorithm requires just a list for all paths. This list is
initialized with a connection to the origin airport.

The algorithm expands all existing paths. This can be done in parallel by applying the follow-
ing steps for all paths in parallel. In the first step it is tried only to consider flights to Hotspots.
First, each path that is expanded queries all flights departing between one hour after the ar-
rival of the previous flight and 24 hours afterwards. The minimal transit time on an airport is
set to one hour and the maximum waiting time for the next flight is set up to 24 hours, thus
flights that depart just once a day are considered as well. Afterwards it is checked for each
new connection whether it has to be added to the path. A flight has to be added if the next
airport has not been visited on the path already, to prevent cycle. Also for all flghts with the
same origin and destination airport only the best flight is chosen. The best flight is defined by
a metric. That could be the first flight, the cheapest flight, or a combination of both, the best
price performance ratio for example. More about metrics to choose the flight can be found in
Section 5.3.2.

If it was not possible to find a direct flight to a Hotspot, the same algorithm is applied again but
this time for each path all outbound flights are queried from the database and not only these

22

Figure 3: Outbound connections to Hotspots of Frankfurt.

flights to Hotspots. It is again possible to parallelize this step like described above. If again no
flight was found to add to a path, there is no connection between the origin and destination
airport and the algorithm terminates.

If at least one connection to a Hotspot was found the algorithm turns over to the next step other-
wise this loop is repeated until a Hotspot is found. It also can make sense to limit the maximum
number of loops allowed. This prevents that the algorithm expands a path again and again,
because no path to a Hotspot is available but many other connections are. Even so that this case
is really unlikely. For the special case that the algorithm finds a flight to the destination airport,
this flight is added to the previous path and the connection is returned as the result. The al-
gorithm terminates afterwards. If a connection to a departure Hotspot is found the algorithm
overturns the next step and directly jumps to the last step (Connecting Hotspot and destination
airport).

In the case of the ongoing example the closest airport to Hanover, which is Hanover Airport, is
searched. Then all outbound connections of Hanover Airport to a Hotspot Airport within one day
after the transit time are queried from the database. Figure 2b shows that ten connections to
Hotspots was found. In the case that no connection to a Hotspot would be available, all outbound
connections from Hanover would be queried and in the next loop, Hotspot connections from
this places would be searched. This is done until a connection to a Hotspot was found. But in
the case of Hanover there are flights to Hotspots available. Therefore the next step is applied.

Connection between Hotspots To find a path from the origin Hotspot to the destination Hotspot
the same algorithm is applied as for finding a path from the origin airport to the first Hotspot
as described above. This step is finished as soon as at least one path has been found to one of
the destination Hotspots or even the destination airport. All other paths are discarded now. The
only possibility to keep several paths in the path list is, that several destination Hotspots are
reached in the same cycle of the loop. In this step only connections to other Hotspots should be

23

considered by expanding the paths. But for the very unlikely case, that no connection between
the origin and destination Hotspot is available by using Hotspot connections only, other airports
could be considered as well.

One of the paths in the example above was arriving to Frankfurt. Even so the other paths are
expanded as well this example concentrates on this path. All outbound connections to Hotspots
from Frankfurt are queried from the database. The result can be seen in Figure 3. One of
the connections is a flight to Hong Kong, arriving at 6:50 am on Saturday morning. Beside
others, this flight is added to the path from Hanover to Frankfurt. Because Hong Kong is one
of the destination Hotspots, all paths that have not been reached a destination Hotspot yet, are
terminated and the next step is applied to find the connection between Hong Kong and Haikou
to finaly get a full connection between Hanover and Haikou. Otherwise the same step would
be applied again.

Connecting Hotspot and Destination Each time when a path reaches a destination Hotspot, it
is checked whether it is the final destination airport already or not. If it is the final destination
airport the way from the origin place to the origin airport and the way from the destination air-
port to the destination place have to be added. Otherwise a path from the destination Hotspot
to the destination airport has to be found.

Previously to searching, the destination Hotspots a connection list were generated with an en-
try for each airport visited with all its outbound flights. This connection list was used to cache
the flights from the destination Hotspot to the destination airport. This cache can be used now
instead of querying the database again. This step needs again a new list for the current paths,
which has been initialized by the path that reached the destination Hotspot.

1 while(destination not found)

2 ∀x ∈ pathlist

3 ∀y ∈ connectionList(destination of x)
4 if(destination of y /∈ airportsO f (x) and bestChoise(y))

5 pathlist.add(x.copy().add(y))

Code Snippet 3: Pseudo-code for connecting Hotspot and destination.

While x and y are connections, bestChoice() is a metric that returns whether x is the best flight,
of a set of flights from the same origin and to the same destination. airportsOf(x) is the set of all
airports on the connection of x. The connection list contains all outbound flights to an airport
cached by the first step (Hotspot to destination airport).

The first line of this algorithm applies the algorithm as long as no path to the destination air-
port is found. The second line takes all open paths that was not terminated already. The next
line takes all outbound flights which depart within one hour after the arrival and 24 hours af-
terwards stored in the connection list to the airport on which the path from the previous line
are ending. Line four checks whether adding a connection from the connection list would re-
sult in adding an airport that is already on the path to prevent cycles and whether there are

24

better connections on the connection list between the same origin and destination airports. If
both criteria do not apply line five copies the existing path and adds the new connection to the
copied path. Line two as well as line three can be parallelized.

For the previous example, beside other all outbound connections from Hong Kong within one
hour after the arrival date and 24 hours afterwards, cached by the connection list are consid-
ered to find a connection to the destination airport - Haikou. Previously two connections from
Hong Kong to Haikou were found. One on Friday 2:15 pm and another one on Saturday 2:10
pm. Since the flight on Friday departs before the arrival of the flight from Frankfurt, this flight
is not considered. The flight on Saturday at 2:15 pm is added to the path.

After reaching the destination airport, the connections from the origin to the origin airport and
the connection from the destination airport to the final destination have to be queried from the
Google Maps Direction API, to finally adding them to the path.

5.3. Modified Recursive and Parallel Breadth First Search

This subsection explaines the MBFS algorithm n detail before the next subsection introduces a
possibility to use the result of the Hotspot Search as input for this algorithm to obtain an upper
bound. The basic intention of a Breadth First Search is to span a tree for finding the shortest path
in an unweighted graph with bidirectional edges [KS05]. The environment for the Flight Graph
is almost the opposite of that. The edges are unidirectional, weighted by multiple weights and
to add an edge to a path certain constraints have to be considered. Also the intention of this
algorithm is not to find the path with at least nodes as possible but find the best path by consid-
ering multiple criteria. hence, the tree condition of a traditional Breadth First Search is violated.
Nevertheless, features from the traditional Breadth First Search are the base of the algorithm,
used to find the best path for a connection in this thesis. This section introduces the Modified
Recursive and Parallel Breadth First Search (MBFS) algorithm and points out the differences to the
traditional Breadth First Search and other implementations of parallel Breadth First Searches. To
illustrate the mechanisms an ongoing example will be employed.

Before describing the algorithm in detail the communication between the different threads
which is required by this algorithm is introduced. Since each path runs on a separate thread it
is necessary to coordinate all these threads. That could be done by a superior authority such
as an object which is known by all threads. To ensure communication between the different
threads this superior authority provides shared memory and functions. It includes a destina-
tion airport list with all destination airports to query whether an airport is a destination airport
or not. The destination airport list can be accessed by several threads at the same time since
only read accesses are required. Also the best connections that have already reached the desti-
nation need to be stored by the superior authority. Preferable this has to be done in any kind
of sorted list, ordered by their virtual costs. The list capacity has to be equal to the number
of connections which should be returned in the end. To ensure thread safety, this list requires
locks for avoiding race conditions between different threads which write on the list at the same

25

Figure 4: Full result of applying the MBFS algorithm for a connection between Hanover and
Haikou.

time. Additional for each airport that has been visited by any path of the algorithm the beeline
distance to the destination has to be stored as well as a list with all inbound paths that reached
the considered airport already. To increase the runtime of the algorithm the inbound paths that
should be ordered by their arrival time to this airport. The distance can be calculated once
when an airport is visited for Abgabnthe first time. Afterwards, this value has to be read only.
Therefore it is thread safe anyway. But the list of all inbound paths for an airport has to be
updated continuously since new paths can reach this airport, thus blocking is required for this
list.

5.3.1. Origin and Departure Airports

The first step of the MBFS algorithm is to find the closest airports from the origin place. De-
pending on the user input this can be the closest airport or up to the 25 closest airports. The
closest airports could be measured by the distance or by the duration. Since the distance would
affect the algorithm just by the fact that each driven km costs a certain amount of money, this
thesis will always make use of the duration measurement method because this measurement
shortens the duration of the full path as much as possible. The next step determines the closest
airports to the destination with the same method as described above. For each origin airport a
connection from the origin place to the airport is generated. All destination airports are added
to a hashset to allow quick access to them later on.

The example used for the Hotspot search is used again for this algorithm. Remembering the con-
nection from Hanover, a town in the northern part of Germany to Haikou, a town on Hainan,
an island in the south of China which is a famous Chinese holiday destination. This connection
between two small airports ensures that no direct connection is available. Figure 4 shows the
full result of this request. Because of illustration purposes only the five closest airports to the

26

origin and destination place are considered.

The first steps of the algorithm is to find the five closest airports to the origin and destination
place. The results are shown in Table 2 and Table 3. Since the duration to the airports differs
at different times because of changing traffic, the airports are ordered by the distance and not
by the duration in the list. Due to the significant differences of the distance between the single
airports usually this list should have the same order being ordered by the duration.

Afterwards, the recursive part of the algorithm is called in parallel for each of the previously
generated incomplete paths. Remembering that the nodes of the graph are the places, which
are usually airports and the edges of the graph are the connections between them, which are
usually flights. A common parallel Breadth First Search algorithm would use a queue or a related
data structure for the nodes that have to be expanded in order to guarantee that the nodes are
expanded in the right order [KS05] [BM06] [LS10]. Approaches with other data structures exist,
but they are still willingly to achieve the same goal by guaranteeing the expanding order of the
nodes [YCH+05]. Since it is possible that a node is visited several times, if certain criteria are
applied in the approach of the algorithm of this thesis, there is no need to guarantee the right
order of expanding the nodes. This can happen for example if a direct connection between
Hannover and London exists which is quite expensive and a cheaper connection exists with a
stopover in Amsterdam which is arriving in London later than the direct connection. In this
case both connections are considered by the algorithm even though the airport of London was
used by several paths. Therefore, it is absolutely fine if some paths are running ahead, while
other paths are still expanding on lower levels. This allows the combination of a recursive
as well as parallel algorithm. Why this property of the Breadth First Search can be violated
in certain cases and how to monitor this in parallel is described in this section later on. The
recursive part of the algorithm contains the following steps which will be described in detail in
following.

• Check termination criteria.

• Get rewarding outbound connections of current airport.

• Expand the new connections.

For the previously introduced example, this recursion will be applied for the connections be-
tween the origin place and each origin airport.

Distance (km) Airport
10 Hanover (HAJ)
98 Bremen (BRE)
110 Cassel (KSF)
113 Paderborn (PAD)
141 Hamburg (HAM)

Table 2: The five closest airports to
Hanover.

Distance (km) Airport
30 Haikou (HAK)
103 Bo’ao (BAR)
139 Zhanjiang (ZHA)
191 Beihai (BHY)
210 Sanya (SYX)

Table 3: The five closest airports to
Haikou.

27

5.3.2. Termination Criteria

For each node that is visited by the MBFS algorithm, its chance to reach its destination in a
proper time-price ratio is checked. If this is already impossible or at least very unlikely this
path will not be expanded anymore and thus terminate. Otherwise the path is expanded as
described in the next subsections. The algorithm terminates if all paths are terminated. Now,
the criteria for terminating and expanding are described. The following criteria are processed
in the same order as described in this section.

Airport has already been reached by better connections This criterion should eliminate all
paths to a place for which a better path exists already. A connection is better in terms of this
criterion if the connection is cheaper than all existing connections to the same airport which are
arriving earlier or if the connection arrives earlier than all other connections to this airport.

x ∈ X : @(y ∈ Y|y.arrivalTime < x.arrivalTime) : y.price < x.price

For X as the set of all new connections to this place and Y as the set of all paths which have
visited this place already and were expanded. Only better connections are expand, other paths
are terminating. This criterion is based on the idea of the Dijkstra algorithm [MS08].

This means if the algorithm has the choice between two different paths to the same airport
while both paths arrive at different times, the algorithm will always choose the earlier flight,
in case it is the cheaper of both one flights. By catching this flight it would be possible to catch
all connected flights that would be possible to catch with the later flight as well but this flight
would save also money. If the second connection had the cheaper price the algorithm would
consider both paths. In this case it could be possible that a very cheap connecting flight exists
that can only be caught by using the first connection and for which it is worth to pay even more
money for the first part of the connection. But if a later connection would be the better choice
which can be caught by the later connection to this airport, the later path would be the better
choice. Therefore, in this case both paths are expanded. It is also possible that using an earlier
connection is profitable after few further steps. Therefore, it is not enough just to expand the
first or cheapest connection but all connections that are cheaper than all previous ones. Figure
5 illustrates this procedure.

This criterion requires a list which contains one entry for each airport that was visited by the
algorithm. For each airport this list contains a second list that has one entry for each path which
had visited this airport and was expanded. This path list contains the arrival time and the price
for the connection to this airport. The path list is in ascending order by the arrival date. Due to
the constraints of this criterion this implies that the path list is in descending order by the price
as well. Consequently it is sufficient to request the price for the last connection arriving before
the considered connection to decide whether the path should be expanded or not. In that case
that the price of the considered connection is cheaper as the price of the earlier connection, this
connection has to be expanded. That request is done in O(1). But the request needs locks to
ensure thread safety. Otherwise race conditions between reading from the path list and writing

28

Figure 5: Illustrates which flights are terminating because better flights have reached the same
airport already.

to it would occur.

Consider again the example above for the connection from Hanover to Haikou. After all five
airports from Table 2 were expanded the first time, several flights are reaching Frankfurt. I.a.
one flight from Hanover and one from Bremen. The required duration to reach the airport of
Hanover from Hanover center is 24 minutes. Expecting that the user specifies that saving one
hour of the trip time is worth 47 Euro and one km driving by car costs 10 cents (which is ap-
proximately the price for the fuel), the virtual costs to get to the airport of Hanover are 20.85.
The required time to drive from the center of Hanover to the airport of Bremen is 1:27 (at the
rush hour in this case), this leads to a virtual cost of 108.42. At both airports a transit time of
one hour is required which leads to additional virtual costs of 47. The flight from Bremen to
Frankfurt costs 62.70 Euro and requires 1 hour which leads to virtual costs of 109.70. The vir-
tual costs for the whole connection are 177.55 now. The flight arrives in Frankfurt at 09:25 am.
The flight from Hanover to Frankfurt costs 127.03 Euro and requires 55 minutes. That leads to
virtual costs of 170.11. The virtual costs for the whole connection are accordingly 325.53. The
arrival time of this connection at Frankfurt is 11:25 am. Since this connection arrives later at
Frankfurt than the connection coming from Bremen and is also more expensive regarding the
virtual costs, the connection coming from Hanover terminates on this point even so it is faster
than the other connection. The connection coming from Bremen would be expanded. The same
consideration apply for the following steps.

One of the flights that can be caught after the flight from Bremen to Frankfurt is a flight to
Moscow. After two hours of transit, this flight departs at 11:25 am from Frankfurt and needs 3
hours to arrive in Moscow at 03:25 pm (all times are in local time). This flight costs 110.10 Euro
which leads to virtual costs of 522.65 for the whole connection. A direct flight from Hanover

29

to Moscow is also available. This flight requires 2:45 hour and arrives at 05:45 pm in Moscow.
The costs for this flight are 134.82 Euro. That leads to virtual costs of 378.92 for the whole
connection including transfer to the airport and transit times. In this case no connection would
terminate, even though that the connection via Frankfurt is much more expensive: Because this
connection is arriving earlier in Moscow and could catch a flight that can not be caught by the
direct flight coming from Hanover both flights are kept.

If after evaluating this criterion the considered path has to be terminated, this is done immedi-
ately and all the next steps are not executed anymore. But if the path has to be expanded after
this criterion the next steps also have to be checked.

Airport is destination airport If the airport reached in some step is one of the destination
airports obtained in the first step of this algorithm, the connection from the airport to the des-
tination requested from the Google Maps Direction API is added to the path. Afterwards the
full connection is added to the list of connections that have reached the destination. This list
is implemented as a list in ascending order by the virtual costs. The list can hold up to that
number connections as the user input was pointing out as the maximal number of connections.
If the list is already full and another connection is added, the list drops the connection with
the highest virtual costs. This could also be the newly added connection. Since all destination
airports are in a hashset, it can be checked inO(1) whether an airport is a destination airport or
not. But this step again needs locks to ensure thread safety. Otherwise race conditions between
reading the list of connections to check whether the new connection has to be added or not
and writing on it could arise. After evaluating all following termination criteria the connection
will be marked as destination found but not automatically terminate immediately as it will be
explained in detail in the next termination criterion.

The last airport was a destination airport If a destination airport was found, it is not nec-
essarily the best destination airport. Therefore the algorithm has the chance to reach a better
destination airport in one more step. Especially for an increasing number of origin and destina-
tion airports chosen by the user, the probability to find an additional connection with a better
departure airport arises. Due to the order of processing the termination criteria it is checked
whether the airport is a destination airport before checking if the last airport was a destination
airport as well.

For example in case Haikou is the destination place and the airport of Haikou as well as the
airport of Hong Kong are in the list of destination airports. When a flight arrives to Hong Kong
this is already a destination airport and for the remaining distance public means of transporta-
tion or a car could be used. The path could terminate then. But probably it is better to use one
more flight from Hong Kong to Haikou in this case instead of driving whole the way. Therefor
this criterion allows after reaching a destination airport to use one more flight. In this case a
flight to Haikou can be caught and only a very short remaining distance has to be solved by
public transport or car.

30

Maximum virtual costs reached The virtual costs describe the price-time ratio of the path.
The benefit by using virtual costs instead of the price and the duration of a path is that the
algorithm has to deal with only one weight instead of multiple weights. The virtual costs are
determined by:

virtualCosts = pricepath + durationpath · x

While x is the price that is one hour worth for the user.

This criterion compares the virtual costs of the current path with the virtual costs of the best
so far found connections. The maximal virtual costs are the virtual costs of the last connection
(most expensive connection) of the list of the connections which have reached the destination
already. If the virtual costs of the current path are higher than the maximal virtual costs the
path has to terminate. Since the price as well as the duration are only able to grow and not to
decrease, it is impossible that the path is added to the solution anymore, because the virtual
costs are too high. This criterion only applies if the solution list has the maximum number
of connections as defined by the user input. Otherwise also connections with higher virtual
costs than the maximal virtual costs will be added to the list and therefore these paths will be
expanded as well.

The distance to the destination in relation to the required time is too high With the previ-
ous criterion it is possible that a path uses a lot of very cheap and short discount connections,
probably all in the same area, without coming closer to the destination.

For example when a path from Hanover to New York is searched. Assume the cheapest flight
from Europe to any US airport costs 300 Euro. A lot of connections in Europe are available for
20 Euro. Or even cheaper. But assuming for this example, it exists a path which is always able
to find flights between European cities for 20 Euro, this path could use 15 single flights and
would still be in Europe, before the price of the flight would increase to the price of the flight
between Europe and the US.

A possible solution to prevent this scenario would be to use a mechanism that ensures that
each newly added flight to a connection decreases the remaining distance to the destination.
The problem of this mechanism is that sometimes it is better or even indispensable to catch a
flight which goes further away from the destination first, to catch a significantly better flight
heading to the destination afterwards.

For example a connection from Saint Johns which (Newfoundland/Canada) to Frankfurt or
any other place in Europe. The airport of Saint Johns provides only flights to the Canadian
mainland and is the most eastern city of Canada and even the whole American continent ex-
cept Greenland. The only possibility to reach Europe is first to move further away from the
destination by catching a flight to the Canadian mainland and to be able to catch a flight to Eu-
rope afterwards. Section 7 will deal with detailed examples of connections between Africa and
South America. For these connections this problem occurs really often. But also in Europe this

31

phenomenon can be observed. For example by booking a flight from Germany to any Asian
place and using a connection via Amsterdam.

Instead of measuring the remaining geographical distance to the destination, the already com-
pleted distance can be measured and set in ratio to the elapsed time since the departure. The
already completed distance is measured by subtracting the geographical distance of the current
place to the geographical destination from the distance of the origin place to the destination:

distancecompleted = distance f ull − distanceremaining

While distance f ull is the geographical distance between the origin and destination place and
distanceremaining is the remaining geographical distance from the current place to the destina-
tion. By defining a minimum average speed of the connection (including the transit times) a
function s · x while s is the average speed, can be defined to determine the minimum completed
distance at any point of time x where x is measured in hours. To allow that a connection is start-
ing heading the opposite direction as the direction of the destination, the function is extended
by a constant d that specifies the distance that the connection is allowed to further get away
from the destination at the time zero. For d = distance f ull the equation looks as follow:

y > 2sx− d

While y is the already completed distance. This equation specifies all connections which are
within the range of allowed completed distances.

By using this function a path has to head pretty fast to the destination. But on some connections
it is essential to head to the wrong direction for a longer time first, to catch a flight that directly
heads to the destination afterwards. Section 7 demonstrates this with connections between
Africa and South America, which are usually connected via Europe. These connections need a
long time before coming closer to the destination. Therefore a connection needs to be able to
spend more time in the negative area in the beginning, which it can catch up on later through a
good intercontinental flight for example. This problem is solved by using a quadratic function
instead of a linear function. To ensure that the average speed still applies and the function
scales well for short-distance connections as well as for long-distance connections the pure
speed as the factor is replaces by a which will be described in following.

y > ax2 − d

The factor a has to be chosen in a way that guarantees that the equation fulfills the average
speed by reaching the destination. This is done when the quadratic function intersects the
secant describing the average speed at the maximal time the connection needs by fulfilling the
average speed. a has to be chosen as follows:

ax2 − d = sx

a =
sx + d

x2

32

Figure 6: Some paths between Hanover and Haikou in relation to time and completed distance.

holds for x at the time that the connection would need, if it used exact by the average speed.
That leads to x = d

s :

a =
s · d

s + d

(d
s)

2

=
2s2

d

The factor for the quadratic function has to be calculated just once for each run of the MBFS,
since it depends only on the average speed and the full geographical distance between the ori-
gin and destination. The average speed is part of the user input and will be evaluated in Section
7. A path has to terminate if the upper quadratic equation for y is not fulfilled anymore. If the
equation is fulfilled the next criterion will be checked.

Consider the previously introduced example about the connection between Hanover and Haikou
to illustrate this termination criterion. The distance between Hanover and Haikou is 8,900 km.
Using an average speed of 125 km/h does lead to the following calculation of a:

a =
2s2

d
=

2 · 1252

8900
= 3.51

This example looks at four of many thousand paths that are checked to find the best connec-
tions and makes only use of this termination criterion. By applying the full algorithm these
paths could be terminated by other criteria at an earlier point of time. Figure 6 illustrates this
example. The black curve shows the minimum completed distance for any point of time when
a flight arrives to an airport. The linear black function shows the completed distance for the
average speed.

33

All considered paths are starting in Hanover and reaching London after 3:10 hours (blue path).
At this moment the distance to the destination is 714 km longer as from the origin place. Dif-
ferent flights can be caught from London now. Next to other flights, one flight to Mexico City
(yellow path) is caught and one flight heading to the destination and arriving in Hong Kong
(blue path). The path to Mexico City will be dealt with later. First the path to Hong Kong will
be considered. This path solved already 8,438 km of the full 8,900 km geographical distance
in 19:15 hours. From Hong Kong a direct flight to Haikou can be caught after a transit time of
4:15 hours (blue path). After arriving in Haikou a car drive of 45 minutes is required to reach
the destination. The full connection requires 26:40 hours, this is much faster than the maximal
allowed time by average speed even so the first part of the connection was heading to the op-
posite direction as the destination place. Another connection that can be caught from Hong
Kong is a flight to Toronto which arrives there 42:30 hours after starting the trip (red path). The
distance from Toronto to Haikou is 12,859 km, accordingly 3,959 km more than from the origin
place. Since 3.51 · 42.52 − 8900 = −2560 is the minimum completed distance after 24:30 hours
and the completed distance from Toronto is -3,959 this path is terminated at that point. The val-
ues for the distance are negative in this case because the remaining distance to the destination
at this point is longer than the distance from the origin place to the destination.

Back to the path from Hanover via London to Mexico City arriving after 23:20 hours (yellow
path). Even so it looks like this path is totally out of the direction, which is also underpinned
by the geographical distance from Mexico City to Haikou of 14,590 km, this path will not be
terminated. The minimum completed distance after 23:20 hours is -6,989 km and the completed
distance from Mexico City is -5,690 km, therefore this path still will be expanded. After 11:00
hours of transit a flight to Dallas could be caught (green path). This flight would arrive in Dal-
las after a total time of the trip of 37:15 hours. The completed distance at Dallas is -4,550 km.
Since the minimum completed distance after 37:15 hours is -4,055 km this path will terminate
at that point.

Another flight that can be caught from Mexico City is a flight to Los Angeles arriving after 36:50
hours of travel (yellow path). As the minimum completed distance after this time is -4,138 and
the completed distance from Los Angeles is -3,210 this path will be expanded again. Now a
flight to Guangzhou, arriving after 66:00 hours is available. Remembering that only the arrival
time has to be in this function. The time of departure does not matter for this criterion. In
Guangzhou 8,400 km are completed already and after one more hour a flight to Haikou de-
parts. After a duration of 70:05 hours the final destination is reached within the maximum time
interval defined by this criterion. Even so, this connection has done a huge detour and was
always close to the termination it was able to reach the destination in the end. But this criterion
does not consider the price of the connection. By applying all criteria it would be possible that
the yellow path would have been terminated by another criterion.

A short example of the connection between Hamburg and Rome shows the scalability of the
algorithm even for short-distance connections. Figure 7 illustrates this example. A direct con-

34

Figure 7: Some paths between Hamburg and Rome in relation to time and completed distance.

nection (blue path) requires about 6 hours, including transfer from and to the airports and
transit times. A connection via Vienna (yellow path) which is quite a detour but still heads
to the right direction is possible as well. Also a connection via Copenhagen, London or even
Dubai, which would start heading to the opposite direction as the destination is possible, if
the transit times are not to long. However, a flight that heads to a destination far away like
Havana (red path) terminates immediately. Also a connection which flies too much zigzag, as
for example the connection from Hamburg via Vienna to Oslo (green path) will be terminated
quickly. Such a start of a connection could be acceptable for a long-distance flight but not for
short distances.

In the beginning there were approaches to use the ratio of the number of flights of a connection
and the proportional completed distance. But it turned out that this approach was not scalable
for short- and long-distance connections.

To many steps This criterion terminates a path after a certain number of algorithmic steps.
An algorithmic step is each call of the recursion to find the path to the destination place. This
prevents paths with a huge number of very cheap and short flights and is a security guard that
guarantees that no endless loops can be applied.

5.3.3. Receive Outbound Connections

To expand a path the database is queried for all outbound connections of the according airport.
Requesting all outbound connections for one airport instead of requesting each single connec-
tion saves runtime since the operations are very fast on the database level. At this point it is
already possible to reject some flights. Therefore only the best flights to each airport will be
chosen and cyclic connections are removed. Cyclic connections are connections that use the
same airport several times.

Recall the example of the connection from Hanover to Haikou. There exists a flight from

35

Hanover to London. When expanding this path the next time, the return flight from London to
Hanover will show up. For a human brain it is obvious that it makes no sense to take this flight
afterwards. Since flights never can cost a negative amount of money and it can be expected
that a flight is also not offered for free, it would be cheaper just to wait in Hanover instead
of flying to London and returning. For a search algorithm this behavior has to be considered.
Another flight that can be caught from London is a flight to Moscow. In Moscow a flight back
to Hanover is available again. Also taking this flight would end up in flying a cycle.

To prevent this behavior for each flight that should be added to a path, it is checked whether
the destination airport is on the path already. In this case, this flight will not be added to the
path. Now, adding all remaining flights would result in generating a lot of connections that
will terminate after the next step. Therefore all flights without a chance to survive will be re-
moved as well. One solution would be to add just the cheapest connection to each airport or
adding for each destination airport the connection with the earliest departure time. But both
approaches can eliminate the best connections as shown in the following examples.

Consider two flights between Hanover and London and two flights between London and Hong
Kong. The first flight from Hanover to London costs 100 Euro and arrives at 1 pm and the sec-
ond one costs 50 Euro and arrives at 3 pm. The first flight from London to Hong Kong costs
500 Euro and departs at 2 pm while the second one costs just 300 Euro and departs at 3 pm. If
always the first flight would be chosen, in both cases the more expensive flight would be cho-
sen without any time benefit. Now assume that the first flight to London costs 100 Euro and
the second one costs 50 Euro. The cheapest connection would be to choose the more expensive
flight first to be able to catch the cheaper one afterwards. But if always only the cheapest flight
is chosen, the algorithm would catch the second flight to London and would not even be able to
catch the cheaper flight to Hong Kong because this flight was departing before the flight from
Hanover was arriving.

Section 5.3.2 introduced a mechanism that decides whether a connection to an airport should
be terminated or not, in the case that other connections were reaching the same airport already.
The same procedure can be applied for this case as well. For each airport a flight will be added
to the connection if all previous flights to the same airport are more expensive than this flight
or if there is no earlier flight. Accordingly the first flight to each airport is added generally.
Figure 5 illustrates this mechanism. In contrast to the cycle detection this can be done very fast,
set oriented on the database level.

If the connection added in this step was the first flight on the path, the full connection from the
origin place to the origin airport has to be obtained from the Google Maps Direction API and is
added to the path. Because the connection to the airport depends on the departure time of the
first flight this can not be done at an earlier point.

36

5.3.4. Expanding of New Connections

After all connections that should be used to expand the path are found, for each newly found
connection the old connection has to be cloned and the new connection needs to be added to
the cloned old connection. Afterwards the recursion can be called with each of this connections.
This step can be done in parallel.

5.4. Combining both algorithms

To enhance the efficiency of the algorithm it is possible to combine both previous described al-
gorithms, the Hotspot Search and the Modified Recursive and Parallel Breadth First Search (MBFS).
In case of using just the MBFS some connections need to reach the destination, before con-
nections can terminate because their virtual costs are higher than the virtual costs of the best
connections.

When the Hotspot Search is applied before using the MBFS algorithm, the results of the Hotspot
Search can be used as the input for the MBFS algorithm to have a valid path from the begin-
ning, to apply the maximum virtual costs criterion from the first moment. While usually the
Hotspot Search requires only a few seconds for processing, a huge runtime enhancement can be
expected. The next section will examine this enhancement in more detail.

37

Figure 8: Input box of the Trip Planner user interface.

6. The Trip Planner System

To test the previously described algorithms the Trip Planner application was developed. The
application generates the Flight Graph as described in Section 4, provides access to the different
APIs as described in Section 3, offers the different path finding methods introduced in Section
5 and visualizes the result connections via a user interface. Before using this application in the
next section for evaluation purposes, this section introduces the most important parts of the
application.

The first part of this section concentrates on the description of the graphical user interface
of the Trip Planner application. Afterwards the implementation of the application is roughly
described. In the end the use of the different APIs introduced in Section 3 in the Trip Planner
application is described.

6.1. Graphical User Interface

The user interface of the Trip Planner application is provided by the Trip Planner Client applica-
tion. The interface allows the user to insert a query comfortably and to display the results in
a nice and clear way. The functions of the client application are therefore limited to functions
for validating the user input, generating a request for the server, connecting to the server and
processing the response from the server application to display it for the user. The window of
the user interface is split into three different parts. The first part is the input window where the
user inputs the request, the second part is the map that visualizes the result and the last part is
the text output that gives detailed information about the journey.

Input Window The input window, shown in Figure 8, allows the user to insert the origin and
destination place. These fields dispose over a Google auto complete function which completes
the place name as well as adding coordinates to it. This function ensures that a place used for
the request is unique. Also the inbound and outbound departure dates and times can be in-
serted from a calendar with valid date and time values. The next box allows the user to choose
which further means of transportation should be considered by calculating the path. Car, pub-
lic transport, walk and bicycle are possible selections.

38

The last box provides further options about the calculation algorithm and how to display the
results. The first option lets the user choose one of the following path finding methods:

• The Google Distance and Google Direction methods are just forwarding the request to the
according Google Maps APIs and returning the results. The Skyscanner and eStreaming
methods are querying the database for the closest airport (measured in beeline distance)
to the origin and destination place and query the according API for a connection between
those two airports afterwards. If no connection can be found between these airports an
empty connection list is returned.

• The Query Database method returns all flight connections stored in the Cached Flights
Database between the closest airport to the origin place and the closest airport to the desti-
nation place (measured in beeline distance). The Query Database method returns all flights
regardless the date, the Query Database (Time) method considers the date and time and re-
turns all flights within 24 hours after the given departure time. If no connection between
these airports was found these methods return an empty connection object.

• The Connected Airports method returns all outbound connections of the closest airport to
the origin place and all inbound connections of the closest airport to the destination place
(measured in beeline distance), regardless the time. The Connected Airports (Time) limits
the results to the outbound connections within 24 hours after the departure time and the
inbound connection within five days after the departure time. The inbound connections
are returned for a time period of 5 days instead of 24 hours because the Hotspot Search
requires this time frame for inbound connections. The Connected Hotspots (Time) in turn
limits these results to outbound connections to Hotspots and inbound connections from
Hotspots stored in the Cached Flights Database.

• The Hotspot Connection Search starts searching a connection between the origin and desti-
nation place on the specified departure date by using the Hotspot Search algorithm intro-
duced in Section 5.2.

• The MBFS method uses the Modified Recursive and Parallel Breadth First Search algorithm
introduced in Section 5.3 to find a path between the origin and destination place on the
specified day by considering the given settings.

• The Full Search applies both, the Hotspot Search and the MBFS as described in Section 5.4.
By applying the Hotspot Search before the MBFS algorithm.

With the next option the user can select, whether each sub connection should get a new color,
or just each alternative connection should get a new color on the map. With the third option
it is possible to use a predefined example. This allows the user to define an example once and
use it afterwards all the time instead of inserting all input fields lot of times for test purposes.
The level defines how detailed the lines and the text output should be. If the level is one there
is just a line drawn between the origin and the destination place. If the level is four, it will be

39

(a) (b)

Figure 9: The map on the Trip Planner user interface shows the used connection in colors (b)
and the terminated paths in gray (a), for the connection between Hanover and Rome.

described how to proceed for each corner. The text output part of this section describes the dif-
ferent levels in detail. The next option selects whether only the result should be shown on the
map and the text output (plain connection) or also all terminated paths, that were generated
by calculating the connection (all connections). In this case all previously terminated paths are
displayed in grey.

The next part of the input box allows to set some values that have impact on the procedure of
the MBFS algorithm. These settings are required for the experimental evaluation in Section 7.
Therefore the number of airports used as origin and destination airports can be specified. Also
the maximum number of result can be chosen. Valid values for both fields are integers between
one and 20. Moreover, the average speed can be chosen from a scale between 50 and 500 and
the price a user would pay to save one hour of travel time can be inserted. This can be a value
between zero and 1000. By selecting "Show Debug Info" the transmitted JSON string is printed
as well. Pushing the green Go. button in the end requests the results.

Map The map displays the paths of all connections found for a request or even all connections
used to calculate the path by the path finding algorithms depending on the settings. Figure 9
shows the result by using the Full Search algorithm to query a flight from Hanover to Rome.
All paths that have been used for the calculation but that are not part of the result connections,
are displayed in grey (Figure 9a). All other paths have different colors for each step or for each
connection (Figure 9b), depending on the previous selections. If the user follows the path with
the cursor, further information like the means of transportation, stops or the flight number of a
flight occurs in an info window on the path.

Text Output The text output of the Trip Planner user interface provides detailed information
about the trip and its single steps. The detail level of the output depends on the selected op-
tions in the input window.

40

Figure 10: The four levels of a connection.

Each connection is separated in up to four different levels. The highest level only includes the
origin and destination of the whole connection. The second level splits the connection into
different parts for each means of transportation. All means of ground public transportation
are aggregated to one means of transportation in this case. The third level splits the means of
transportation into one connection for each ride. This level splits a connected flight for exam-
ple into several direct flights. The fourth level splits the connection into very small steps where
each step has a detailed route description. This level is mainly used by Google Maps Direction
for navigation.

For example the connection from Hanover to Rome by plane shown in Figure 10 would have
just one step for the first level (downtown Hanover to downtown Rome). The second level
would split this connection into three parts: The drive from the downtown Hanover to the air-
port of Hanover, the flight from Hanover to Rome and the drive from the airport of Rome to
downtown Rome. The third level separates the flight connection into its single direct flights, in
case the flight is not direct already. For example into the flights from Hanover to Zurich and
from Zurich to Rome. The fourth level would separate the car connection to Hanover airport
and from Rome airport into small steps with a detailed route description. The fourth level is
introduced because details about the path of the flights are often required but a detailed route
description of the drive would overload the response and would lead to an unclear text output
of the journey.

The first line of the text output of each step shows the origin and destination place of this step.
This can be an address or an airport name. The next line shows the departure and arrival dates.

41

Figure 11: A part of the text output of the connection between Hanover and Rome on the user
interface of the Trip Planner application.

Usually a third line appears with further information about the connection like the intermediate
stops. If this line starts with the term "Hotspot Search Result" this indicates that the connection
was found by the Hotspot Search. Afterwards the travel distance of the connection is shown if
available. This is followed by the duration. The last information is the price of the connection.
The value behind the price in bracelets represents the virtual costs of this part. Each higher
level summarizes the values of all levels below. Figure 11 shows a part of the text output of the
connection from Hanover to Rome.

6.2. Implementation

In this section only the core features of the implementation are described very shortly. For a
detailed description of the implementation the technical report [Hen18] can be consulted. First
the basic structure of the different application parts are introduced and afterwards some core
mechanisms of the implementation are described.

The Trip Planner application consists of two parts. One part is the server application which is
written in Java and runs on an Apache Server. The second part is the client application which is
mostly written in JavaScript and runs on the client’s web browser. This part is mainly written
in Java Script because it uses the Google Maps Web API which requires the client to be imple-
mented in JavaScript. While the task of the client application is mainly to visualize the output
and take over the graphical user interface part of the Trip Planner application, the server ap-
plication takes over the main tasks of the application. The server application consists of three
different parts. The first one is the access to the different APIs. The second one is to create the
flight graph with cached flight connections to use them later on for the path finding. The third
part is the flight path finding which consists of different path finding algorithms to get the best
connections between two given places, which is the core task of the application.

42

The different path finding methods are modularly implemented in the Trip Planner Server ap-
plication, therefore it is simple to change, add or remove a method. The path finding is imple-
mented on the server side. A detailed description of how to add, change or remove methods
can be found in the project report [Hen18]. Also the different APIs are implemented modularly,
therefore it is easy to replace one API by another if the new API used the same parameters as
the previous one.

Connections are implemented throughout a Connection object. This object contains fields for all
means of transportation and is therefore applicable very flexibly. For each kind of connection
in the whole Trip Planner Server and Client application this object is used. Also for paths, this
object is used. In this case, the Connection object is used to describe an overview over the whole
path and a list of sub connections describes the single parts of the connection in detail. This can
be nested into a lot of levels. The paths are implemented throughout thread-safe queues that
can contain several nested Connection objects.

6.3. API Access

APIs from three different companies are used in the Trip Planer application. The server applica-
tion uses APIs from Skyscanner, eStreaming and Google, the client application uses Google APIs
only. The first idea was that all APIs from the server application are accessible by a simple
interface class that allows the access to all APIs by using the same attributes. For example an
origin place, a destination place and a departure date. This would enable replacing one API
by any other very easily. But during the development process it turned out that each API re-
quires different input parameters and has very different possibilities. For example Google Maps
distinguishes between different means of transportation [Goob] while Skyscanner just provides
flight connections [Skya]. On the other hand Skyscanner and eStreaming require a given market
place [Skya][Gona] while Google Maps just optionally allows to pass a language [Goob] but it is
not possible to pass a response language to eStreaming [Gona]. That leads to the problem, that
it is hard to simplify each API access to such a simple method call. Therefore, the classes for
accessing the APIs have own specified methods to call the APIs and additionally there is one
simplified interface for all APIs. But in the end this cannot be used for the most cases.

The eStreaming API access has some specials that should be explained on this point. Regardless
that the same APIs are used, the Trip Planer application provides different functions that pro-
cess the same received data in different ways. The simplest methods return only the cheapest
direct or connected flight. Another method returns all direct connections and splits the con-
nected flights into single flights and returns them as direct connections. In this case the direct
connections obtained from the connected connections do not have a price. The last method
returns all direct and connected flights. But the connected flights are returned twice. Once the
whole connection including the single legs and once they are split up into the single flights
as described above. This is required because a lot of direct connections are not stored in the
eStreaming database as direct connections but as parts of connected flights. This method is used
to generate the Cached Flights Connection Database described in Section 4.

43

7. Experimental Investigation

In the previous section, different flight path search algorithms with various settings were in-
troduced. In this section these algorithms are investigated. The MBFS is investigated in terms
of its performance and quality of different settings, while the Hotspot Search is basically inves-
tigated with regard to its quality and its runtime benefit in contrast to the MBFS algorithm.
Therefore experiments with different settings are applied.

The first part of this section describes the different settings the user can perform to influence
the algorithms. Afterwards the logging mechanisms of the algorithms for evaluation purpose
are described. The next part introduces the experimental environment. Before applying the
different experiments, the connections that are investigated in this section are introduced. For
the experiments five different connections of different lengths are introduced. Each of the con-
nections has its special characteristic, like an origin place without an airport or an airport with
just one flight daily. The last part describes and investigates the experiments of this section.
Seven different experiments are applied to investigate the impact of different settings on the
runtime of the algorithms and the quality of the results.

7.1. Settings

The user is able to define several parameters which have impact on the behavior of the MBFS
algorithm. The first is to choose the plain MBFS algorithm or the Full Search which performs the
Hotspot Search before applying the MBFS to use the results from the Hotspot Search as input for
the MBFS algorithm. The next parameter sets the number of origin and destination airports to
use. The third parameter sets the number of connections for the result set. The fourth parameter
sets the minimum average speed that a connection has to perform and the last parameter sets
the amount of money that the user is willing to pay for each hour of travel time saved. Those
are the parameters that are evaluated in this section.

7.2. Logging Mechanisms

The Trip Planner counts and logs different properties for the MBFS algorithm which can be
used for evaluation purposes. Therefore for each expanding step it is measured for each ter-
mination criterion how many paths were terminated by it. Next to the termination criteria, for
each expanding step it is measured how many connections have not been considered for ex-
panding because they are not promising. This logging function distinguishes between a flight
that was not considered because it would lead to a cycle in the connection and a flight that was
not considered because other flights on the same route are better. Also the number of valid
connections that were found in each expanding step and the number of open paths after each
expanding step are measured. The total number of terminated paths and paths that reached
the destination is the total number of generated paths. After processing the algorithm the Trip
Planner application returns an array for all these logs.

44

Figure 12: Connections between Arusha and Porto Alegre.

Furthermore, the total number of visited airports throughout the whole search process is mea-
sured as well as the number of Google Maps API calls required to get the connection from the
origin place to the origin airport and from the destination airport to the destination place.
Moreover, the pure runtime of both algorithms - the Hotspot Search and the MBFS - is mea-
sured individually.

7.3. Experimental Environment

The Trip Planner Server application and the Trip Planner Client application are running on the
same machine: A DELL laptop computer with 8 GB DDR4 Ram and an Intel Core i7 processor
in the mobile edition with up to 3.20 GHz on two physical and 4 virtual cores. The operating
system running on the laptop is a 64 bit Windows 10. The database system used for the Cached
Flights Database is PostgreSQL 9. As there does not run a pure research system on the laptop,
other tasks were running on the same machine as well, even though these tasks were reduced
to a minimum, it is possible that some runtimes are affected by them.

7.4. Evaluated Connections

To evaluate the algorithms on their behavior with the different settings introduced previously,
different connections are used for the experiments. Among those connections are short and
long-distance connections as well as connections between big airports and between very small
airports. Therefore, the five connections between Göttingen and Coimbra, Cape Town and
Asuncion, Arusha and Porto Alegre, Haikou and Balmaceda and Arusha and Balmaceda are
investigated. This section introduces these connections and their purpose before they are in-
vestigated in detail in the next section.

7.4.1. Göttingen to Coimbra

Göttingen is a city in the center of Germany popular for its university, with a population of
119,000 inhabitants. Coimbra is a city in the center of Portugal with a population of 143,000 in-

45

Figure 13: Connections between Cape Town and Asuncion.

habitants. Both cities do not have an airport, but they are served by high speed trains. Another
similarity of both cities is that both are hosting very old traditional universities. Since both
universities are members of the Coimbra Group it is realistic that people are traveling between
both places.

Finding a connection between these cities shows how the algorithms are searching for the best
origin and destination airports by using public transport to get to the airports. Furthermore
this connection shows how the algorithms find short connections within a very closely meshed
flight network as it is available in Europe. Figure 14 shows that the algorithm uses different
origin and destination airports which are reached by train from the origin and destination cities.
Hanover, Erfurt and Frankfurt are used as origin airports while Lisbon and Porto are used as
destination airports. Afterwards a lot of different connections are available from each airport.

7.4.2. Cape Town to Asuncion

Cape Town is the second largest city of South Africa with a population of 433,000 people, but
the metropolitan area of Cape Town has a population of 3.7 million people. Asuncion is the
capital and the largest city of Paraguay. Its population is 525,000 people and in its metropolitan
area live 2.2 million people.

A connection between these two cities would connect an African metropolitan region with a
South American metropolitan region, but there is no direct connection available. As it can be
seen in Figure 13 these cities are connected via a flight between Johannesburg and Sao Paulo,
the Middle East or Europe.

46

Figure 14: Connections between Göttingen and Coimbra.

7.4.3. Arusha to Porto Alegre

Arusha is an African town in the north of Tanzania with a population of 416,000 people. Arusha
is located on the foot of the Mount Meru and close to the Kilimanjaro, Africa’s highest moun-
tain. Also the Serengeti National Park which is popular for its animal population is right next to
the town. Therefore, Arusha is a popular tourist destination. Beside the tourism, Arusha also
has an important international diplomatic impact since the East African Community’s head-
quarter is located in Arusha. Porto Alegre is located on the coast of the southernmost part of
Brazil. It is on rank 10 of the most populated cities of Brazil with 1.5 million inhabitants. Its
metropolitan area has a population of 4.4 million inhabitants. Nevertheless, its airport provides
only one inter continental flight a day, which goes to Lisbon. Figure 12 shows different connec-
tions between these cities, but in contrast to the connection between Cape Town and Asuncion
it can be observed that no direct flight between Africa and South America is available for this
connection. Therefore the connections are using flights via Europe or the Middle East.

7.4.4. Haikou to Balmaceda

Haikou is a town on an island in the south of China and Balmaceda is a small village with a
population of 500 people, high in the mountains of Chile. Each day there is only one flight
to Balmaceda coming from Puerto Montt which itself is a town on the coast of Chile with a
population of about 240,000 people. Its airport provides several flights from Puerto Montt to
Santiago each day.

47

Figure 15: Connections between Balmaceda and Haikou.

A flight between these two cities connects an Asian island with the countryside of South Amer-
ica. Figure 15 shows that it is possible to head east around the world from China to South
America via North America or Australia as well as using the west route around the world to
South America via Europe. A special characteristic of this connection is that for the connection
from Haikou to Balmaceda usually the path via Australia or North America is suggested while
for the connection from Balmaceda to Haikou the path via Europe is the more common one.

7.4.5. Arusha to Balmaceda

Arusha and Balmaceda were introduced in Section 7.4.4 and Section 7.4.3 already. However,
this connection is especially interesting because routes heading west and routes heading east
around the world are available as it can be seen in Figure 16.

The special feature of both cities is that their airports provide no connections to Hotspot Airports.
Hence, to reach a Hotspot Airport at least two flights are required. While the only connected
airport from Balmaceda is Santiago, Arusha provides connections to Dar es Salaam, Zanzibar
and Kilimanjaro airport. These airports then provide flights to Hotspots.

7.5. Experiments

This part describes and investigates the experiments of this section before they are discussed
in Section 8. Therefore, seven experiments are applied. First, for each experiment its purpose
and the connections used for it are introduced. Afterwards, the settings that were applied
for the experiment are described and then the experimental results are investigated. The first
experiment deals with the impact of the path length on the runtime. Experiment 2 investigates
the impact of the different termination criteria. The next experiment concentrates on the impact
of using the results of the Hotspot Search as input for the MBFS algorithm on the runtime and
the quality of the Hotspot Search results. Experiments 4 to 7 investigate the impact of the result
size, the number of origin and destination airports, the price for each hour of travel time and

48

Figure 16: Connections between Arusha and Balmaceda.

the average speed on the runtime. For Experiments 5 to 7 their impact on the quality of the
results is also investigated.

7.5.1. Experiment 1 - Path Length Impact on Runtime

This experiment investigates the runtime on different lengths of paths, while length in this case
means the number of steps required between origin and destination. Two different connec-
tions are investigated: The connections between Arusha and Balmaceda (Figure 16) introduced
in Section 7.4.5 for Experiment 1a and between Haikou and Balmaceda (Figure 15) introduced
in Section 7.4.4 for Experiment 1b. For both connections the outbound connections as well as
the inbound connections are considered to investigate whether there is a difference between
them. Both connections are complex since a lot of steps are required to get a path between
them. To investigate the impact of the length of a path on the runtime, not only the full connec-
tions are queried by the Trip Planner application, but also subsets of these connections as it will
be described in the corresponding experiment. To investigate the relation of the runtime it is
set in relation to the number of algorithmic steps required for the connection and the number
of paths that were generated by the MBFS algorithm.

For this experiment the number of origin and destination airports is set to 1 since the connection
between exactly those airports should be inspected. The number of results to show is set to 4.
The average speed is set to 150 km/h and the price per hour is set to 64 Euro.

Experiment 1a - Arusha to Balmaceda A common connection from Arusha to Balmaceda
uses flights via Dar es Salaam, Nairobi, Dubai, London, Santiago and Puerto Montt to finally
reach Balmaceda. To compare the runtime of long paths with the runtime of shorter paths for
this experiment, in addition to the full connection between Arusha and Balmaceda also the
shorter parts of the connection between Dar es Salaam and Puerto Montt and between Dubai
and Santiago are investigated.

49

(a) (b)

Figure 17: Relation of the runtime and number of generated paths (a) and relation of the run-
time and the number of steps required by the MBFS algorithm (b), for the connection
between Arusha and Balmaceda.

(a) (b)

Figure 18: Relation of the runtime and number of generated paths (a) and relation of the run-
time and the number of steps required by the MBFS algorithm (b), for the connection
between Haikou and Balmaceda.

Figure 17 illustrates the runtime for a query for these connections in relation to the generated
paths and the required algorithmic steps. It can be observed in Figure 17a that the number
of generated paths for the inbound as well as the outbound connections are approximately
equal and that the runtime scales very well with the number of paths the MBFS algorithm
was generating. Figure 17b shows that for the connection between Arusha and Balmaceda the
number of required algorithmic steps is pretty high while the runtime is low, the connection
between Dar es Salaam and Puerto Montt requires less algorithmically steps but has a much
higher runtime. The last connection between Dubai and Santiago has a better runtime as well
as less algorithmic steps. The inbound and outbound connections differs only slightly for the
first two connections. The underlying data can be obtained from Appendix A.3.1.

Experiment 1b - Haikou to Balmaceda A common connection from Haikou to Balmaceda is
the path via Hong Kong, Auckland, Santiago and Puerto Montt. An interesting fact is that
while the outbound connection prefers a path via Australia, usually a path via Europe is sug-
gested by the algorithm for the inbound connection. For example from Balmaceda to Puerto
Montt, Santiago, Sao Paulo, Frankfurt, Hong Kong and Haikou. However, the sub connections

50

queried to the Trip Planner application for this experiment are Haikou to Balmaceda, Haikou to
Puerto Montt, Haikou to Santiago, Hong Kong to Santiago and the return connections of them.
While for the first two return connections the most result connections use paths via Europe, the
connections from Santiago to Haikou and Santiago to Hong Kong use only connections over
the Pacific Ocean.

Figure 18 shows the impact of the number of generated paths and the number of algorithmic
steps on the runtime as well as the differences of the runtime, number of generated paths and
required algorithmic steps between the outbound connections and inbound connections. First
a huge difference of the generated paths between the outbound and inbound connections es-
pecially between Haikou and Balmaceda as well as Haikou and Puerto Montt can be observed
in Figure 18a. Beside the fact that the runtime corresponds pretty well with the number of gen-
erated paths in general, there can be observed one exception in Figure 18a. While the number
of generated paths between the connection from Puerto Montt to Haikou and Balmaceda to
Haikou increases only very slightly, the runtime increases disproportionally. From Figure 18b
it can be observed that the runtime slightly follows the number of algorithmic steps but the
number of algorithmic steps for the connection from Puerto Montt to Haiko is similar to the
required steps on the connection from Balmaceda to Haikou while the runtime is increasing
very fast. The underlying data can be obtained from Appendix A.3.1.

7.5.2. Experiment 2 - Impact of Different Termination Criteria

Section 5.3.2 introduces different termination criteria for paths. This experiment investigates
how big the impact of each single termination criterion is by analyzing the number of connec-
tions that are terminated by each criterion. This is investigated on three different connections.
The first connection is a short flight between the two European cities Göttingen and Coimbra
introduced in Section 7.4.1. The difficulty of this flight is that both cities have no own airport.
Therefore, the number of origin and destination airports considered is set to five. This connec-
tion requires four algorithmic steps. The second connection is the connection between Cape
Town and Asuncion two metropolis with big airports as introduced in Section 7.4.2. Calculat-
ing this connection requires seven algorithmic steps. The last connection is the one between
Arusha and Porto Alegre, one small African city and a Brazilian metropolis as introduced in
Section 7.4.3. Finding this connection requires nine algorithmic steps. For all experiments the
number of connections to show was set to 10, the average speed was set to 150 km/h and the
price for each hour of travel time was set to 64 Euro.

Figure 19 shows the results of the experiment. It can clearly be seen that most paths were ter-
minated because there were other paths reaching the same airport earlier or with a better price.
But especially for the short distance flight (Figure 19a) but also for the other connections the
termination criterion that measures the remaining distance to the destination terminates a lot
of paths as well. But even though the termination criterion that terminates paths when their
rank is too low, that means if their virtual costs are already higher than the virtual costs for the
worst connection of the result set, seems to be unimportant since its line on the chart is always

51

(a) (b)

(c)

Figure 19: Shows on different connections for each termination criterion the number of paths
that were terminated in the corresponding step because of this criterion.

close to zero but this termination criterion terminates up to 5,114 paths in total for the connec-
tion between Arusha and Porto Alegre. Some of the termination criteria are investigated with
different settings again in other experiments later on.

Not considered by these criteria are connections that have never been added to a path because
they were rejected by expanding the path as described in Section 5.3.3. Thereby, about three to
four times that many connections are rejected before being added to a path as paths that gets
terminated. For the connection between Arusha and Porto Alegre for example 624,391 paths are
terminated by the termination criteria and 2,379,973 paths are not even been generated because
they are rejected before. The underlying data for this experiments is given in Appendix A.3.2.

7.5.3. Experiment 3 - Runtime Impact of Using Hotspot Search Results as Input for MBFS

This experiment shows the impact of the runtime by using the Hotspot Search before applying
the MBFS algorithm. Therefore, the connections between Arusha and Porto Alegre, Arusha
and Balmaceda, Cape Town and Asuncion and Haikou and Balmaceda are first evaluated by to
the MBFS algorithm only and then by the MBFS algorithm after applying the Hotspot Search be-
fore. Also the quality differences between both algorithms are investigated in this experiment.
Therefore, the previously listed connections are queried once only with the Hotspot Search al-
gorithm and once only with the MBFS algorithm. Then the virtual costs of the best path found

52

(a) Illustration of the impact of the Hotspot Search on the runtime of the path finding.

(b) Differences of the virtual price of the best connection found by the according algorithm.

Figure 20: Runtime impact of applying the Hotspot Search before applying the MBFS algorithm
and compares the quality of the results of the Hotpots Search and the MBFS algorithm.

in both algorithms are compared. Since the goal of the algorithms is to find a path with least
virtual costs as possible, it can be assumed that a result with lower virtual costs has a higher
quality.

For this experiment the number of origin and destination airports is set to one, the number of
results shown is set to four, the average speed is set to 100 km/h and the price for each hour of
travel time is set to 64 Euro.

Figure 20a shows the impact of the runtime by calling the Hotspot Search before using the MBFS.
The chart shows that the Hotspot Search itself only requires very few seconds. The exact run-
times can be obtained from Appendix A.3.3. It can also be observed that the runtimes when
calling the Hotspot Search first are lower than without using it. For the connections from Cape
Town to Asuncion and from Arusha to Porto Alegre the runtime enhancement is only few
seconds while the runtime enhancement of the connections from Arusha to Balmaceda and
Haikou to Balmaceda comes up to 40%.

The virtual costs for the best path found for each connection by each path finding algorithm is
illustrated in Figure 20b. Always the virtual costs for the best path are lower by using the MBFS
algorithm, but for the connection from Cape Town to Asuncion and from Arusha to Balmaceda
the difference is minimal. The difference of both for the other connections is quite high. But

53

Figure 21: Impact of the result size on the runtime.

it turned out that the intermediate stops were mostly the same by using the Hotspot Search as
for using the MBFS, but the Hotspot Search was choosing a more expensive flight for single sub
connections as the MBFS algorithm because the Hotspot Search always takes the next possible
connection instead of waiting for a maybe cheaper connection as described in Section 5.2. That
results in a much higher price for the whole connection by using the Hotspot Search in a lot of
cases.

7.5.4. Experiment 4 - Impact of Result Size on the Runtime

This experiment investigates the impact of the maximal number of results returned by the
MBFS algorithm on its runtime. Since paths are terminating if their virtual costs exceed the
virtual costs of the worst connection from the current result list, a runtime impact from the
result size can be expected. For this experiment the connection from Göttingen to Coimbra
(Section 7.4.1), the connection from Cape Town to Asuncion (Section 7.4.2) and the connection
from Arusha to Porto Alegre (Section 7.4.3) are investigated.

For this experiment the number of origin and destination airports is set to five, the average
speed is set to 150 km/h, the price for each hour of travel time is set to 64 Euro and for the
result size the values one, five, ten and 20 are used.

The connection from Arusha to Porto Alegre in Figure 21 shows clearly that the runtime in-
creases with a higher number of results. The runtime for the other connections is slightly in-
creasing for a higher number of results as well, but due to the small increase it can not be seen
on the chart. Appendix A.3.4 contains a table with all detailed results.

7.5.5. Experiment 5 - Impact of the Number of Origin and Destination Airports on the

Runtime and Result Quality

In this experiment the impact of the number of origin and destination airports that are consid-
ered by the MBFS algorithm on the runtime and the virtual costs is investigated. The virtual

54

(a) (b)

Figure 22: Impact of the number of origin and destination airports on the runtime (a) and the
virtual costs (b).

costs again represent the quality of the result. Lower virtual costs for the same connection in-
dicates a higher quality of the result. Therefore three different connections are investigated,
the connection from Göttingen to Coimbra, from Cape Town to Asuncion and from Arusha to
Porto Alegre. The virtual costs are always measured for the best (cheapest virtual costs) result
connection.

For this experiment the number of results is set to four, the average speed is set to 150 km/h
and the price for each hour of travel time is set to 64 Euro. The experiment investigates the
impact of one, five, ten and 20 origin and destination airports.

Figure 22a shows that for all connections the runtime increases for a higher number of air-
ports. Especially for the connection from Arusha and Göttingen the runtime is increasing with
a higher number of origin and destination airports. The runtime for more origin and destina-
tion airports from Cape Town which provides an airport with a lot of connections already is
increasing only very slightly. According to Figure 22b the virtual costs are decreasing in the
beginning but from five to ten airports on, the virtual costs are on a stable level and do not
decrease anymore. The detailed test results can be obtained from Appendix A.3.5.

7.5.6. Experiment 6 - Impact of Used Price per Hour on the Runtime and Result Quality

This experiment investigates the impact of the price for each hour of travel time on the dura-
tion and price of a trip, the runtime of the MBFS and the number of paths that were terminated
because the virtual costs were too high. For this, the connections from Göttingen to Coimbra,
Cape Town to Asuncion and Arusha to Porto Alegre are investigated.

For this experiment the number of results is set to four, the average speed is set to 150 km/h
and the number of origin and destination airports is set to five. The price for each hour of travel
time is set to zero Euro, 64 Euro and 1000 Euro. While zero Euro means that the duration of the
trip does not matter, which could be for example the case for a student with less money in the
long summer break, the 1000 Euro can address the business manager who has less time and
needs to be as fast as possible at the next place and does not care about the price. The 64 Euro

55

(a) (b)

(c) (d)

Figure 23: Impact of the chosen price for each hour of travel on the runtime (a), the termination
criterion for too high virtual costs (b), the price (c) and the duration (d) of the trip.

for one hour could represent the holiday traveler who has not that much money but also not a
lot of time.

Figure 23a shows that the runtime is decreasing for a higher price for each hour of travel in
general. But for the connection between Cape Town and Asuncion the runtime is stable. Fig-
ure 23c and Figure 23d point out that for this connection the duration and the price are stable
as well. For the other connections the travel price is increasing and the travel duration is de-
creasing for a higher amount of money for each hour of travel time. Hence, if the price and the
duration are stable the runtime is stable as well. Otherwise the runtime changes proportionally
to the duration of a trip and non-proportionally to the price of a trip. Accordingly to Figure 23b
the terminated paths because of too high virtual costs were generally decreasing with a higher
price for each hour of travel time but they do not really correspond to the price for each hour
of travel time. The detailed test results can be seen in Appendix A.3.6.

7.5.7. Experiment 7 - Impact of Used Average Speed on the Runtime and Result Quality

The last experiment investigates the impact of the average speed used on the runtime and the
quality of the MBFS algorithm. The quality again is measured by the virtual costs of the best
result connection. Also the number of paths that were terminated because their distance to the
destination in relation to the required time is investigated. For this experiment again the con-
nections from Göttingen to Coimbra, from Cape Town to Asuncion and from Arusha to Porto
Alegre are used.

56

(a) (b)

(c)

Figure 24: Impact of the used average speed on the runtime (a), virtual costs (b) and terminated
paths because of the path is to far away from the destination (c)

For this experiment the number of results is set to four, the price for each hour of travel time
is set to 64 Euro and the number of origin and destination airports is set to five. The average
speed of the connection is set to all values from 100 km/h to 300 km/h in steps of 50 km/h.

Figure 24a shows a clear runtime enhancement for the connection from Cape Town to Asuncion
and Arusha to Porto Alegre when the average speed is increasing. But also the runtime for the
connection between Göttingen and Coimbra is decreasing even though not too strong because
it already starts on a very low level. According to Figure 24b the virtual costs are very stable
for the first time but start increasing then. The virtual costs for the connection from Arusha to
Porto Alegre start increasing by an average speed of 250 km/h. While the connection between
Göttingen and Coimbra stays stable even on an average speed of 300 km/h, the connection
between Cape Town and Asuncion starts increasing its virtual costs on this point. Figure 24c
shows that the number of terminated paths because of the distance to the destination airport is
decreasing with a higher average speed, except the connection between Göttingen and Coim-
bra which has always approximately 1,000 terminated paths for this criterion. Appendix A.3.7
provides detailed test results for this experiment.

57

8. Discussion

After investigating the experiments in the previous section, this section discusses these results.
It is preferable to find the optimal settings for the MBFS algorithm which guarantees a very
high quality of the results, which means that it finds the best available connections and has
a low runtime as well. But not for all settings it is possible to find proper generally valid
settings since some settings depend on personal factors, as for example the money a person
is willing to spend in order to save one hour of travel time. Also the number of results the
user wants to return can maybe be influenced by the application but is a user preference in the
end. However, for the average speed and the number of origin and destination airports, values
could be suggested by the algorithm. The discussion evaluates proper values for these settings
to obtain a very high quality level but also a low runtime. Also the purpose of the Hotspot
Search is evaluated in this section. But due to the small number of test cases investigated in
Section 7, the evaluation results give a tendency how the proper settings could look like but
does not represent a meaningful overall result for the best settings.

8.1. Experiment 1

In Experiment 1 (Section 7.5.1) the impact of the length of a connection was investigated on
the runtime of the MBFS algorithm. The experiment investigated the runtime differences of
the inbound and outbound connections. For the connections between Arusha and Balmaceda
(Experiment 1a) the inbound connections used the reverse paths of the outbound connections.
The runtime for the outbound and inbound connections are really similar in this experiment.
For the connection between Haikou and Balmaceda the outbound connections use paths via
North America or Australia while the inbound connections are using paths via Europe, except
the sub connections between Haikou and Santiago and Hong Kong and Santiago. While the
runtime for these inbound and outbound connections is quite similar, the runtime of the full
connection and the connection between Haikou and Puerto Montt differs strongly between the
outbound and inbound connections. Therefore, it can be expected that if the inbound connec-
tions are using the reverse paths of the outbound connections the runtime is approximately the
same, otherwise the runtime can differ heavily.

In Experiment 1 the runtime corresponds exactly to the number of generated paths while it does
not correspond to the number of required algorithmic steps. Most of the runtime is required
by expanding paths. Consequently, the runtime increases if the number of generated paths is
increasing and the runtime decreases if the number of generated paths is decreasing, as it can be
seen in Figure 17a. Figure 18a shows that the runtime for the connection between Balmaceda
and Haikou increases disproportionally to the number of generated paths in relation to the
connection between Puerto Montt and Haikou in Experiment 1b. As described in Section 6.2
each Connection object stores a lot of values and therefore requires some memory for storing.
If a lot of these Connection objects are generated the amount of required memory exceeds the
available memory and the memory starts to swap parts of it to the hard drive. Even if this is
a SSD the swapping requires a lot of time and slows the application down. After exceeding

58

1.5 million generated paths for the connection from Balmaceda to Haikou the memory starts
swapping and the runtime thus increases disproportionally. Finally, it can be observed that the
runtime depends on the number of generated paths but increases disproportionally as soon as
the available memory is not sufficient.

8.2. Experiment 2

Experiment 2 investigated the impact of the different termination criteria. Therefor for each
termination criterion it was measured how many paths it has terminated in each algorithmic
step to find a connection. Experiment 6 and 7 also investigated specific termination criteria.
Experiment 6 investigated how many paths were terminated because of too high virtual costs
and Experiment 7 investigated how many paths have been terminated because the remaining
distance to the destination was too far in relation to the already required travel time.

It turns out really clearly that the most important termination of paths is the rejecting of con-
nections before they are even added to a path. Because not even generating a path that has no
chance to reach its destination in time saves a lot of runtime as figured out in Experiment 1.
Figure 19 shows that the most paths were terminated because they were reaching an airport
which was reached by a better connection already. Since this termination criterion terminates
most paths it can be expected that it has the biggest impact on the runtime. But also due to
the distance to the destination and too high virtual costs a lot of paths were terminated. Fig-
ure 23b from Experiment 6 shows that by using more origin and destination airports and less
result connections the number of paths that are terminated because of too high virtual costs
can increase heavily but has still no direct impact on the runtime. Figure 24c from Experiment
7 shows that the number of terminated paths because of a too long remaining distance to the
destination is increasing when using a lower average speed. Figure 24a shows that the num-
ber of terminated paths due to the remaining distance to the destination corresponds to the
runtime of the algorithm. Therefore, it can be expected that this termination criterion has a
major impact on the behavior of the algorithm. That only very few connections are terminated
because the last airport was one of the destination airports shows that this criterion has not a
huge impact on the algorithm but is required anyway to ensure that paths that have reached
their destination do not run onward for a long time.

8.3. Experiment 3

Since valid paths are required for the MBFS algorithm to terminate paths that have too high
virtual costs, the idea is to apply the Hotspot Search before applying the MBFS algorithm to use
the results of the Hotspot Search as an upper bound for the virtual costs in the MBFS algorithm.
By doing this a runtime gain is expected. The purpose of Experiment 3 is to show this gain and
compare the quality of the results from the MBFS algorithm and the Hotspot Search.

Experiment 3 pointed out that the Hotspot Search itself required only very few seconds for all
connections. Therefore, also for very fast runs of the MBFS the runtime of the Hotspot Search
has not a major impact on the total runtime of the search process. The experiment also shows

59

that the total runtime by applying the Hotspot Search before using the MBFS was always faster
than applying only the MBFS algorithm, in half of the cases a huge runtime enhancement was
observed. Therefore, it can be recommended to always apply the Hotspot Search before using
the MBFS algorithm.

In Experiment 3 it was also observed that the Hotspot Search found the same routes as the
MBFS algorithm in a lot of cases. But due to the fact that the Hotspot Search only uses the
next departing outbound connection to each reachable destination when expanding a path, in
a lot of cases not the best flights for this connection were chosen. This results in higher costs
and thus also higher virtual costs of the connection as by applying the MBFS algorithm. This
proofs the significance of the Hotspot Airports but also points out possibilities for improving the
algorithm. By using not only one, but more outbound connections between the same airports
when expanding a path the algorithm could find better results. But that would turn into more
generated paths and therefore in a higher runtime as discovered in Experiment 1. Even if the
result quality of the Hotspot Search would be improved this way it could not be ensured that its
connections are really the best available connections since the Hotspot Search always prefers to
use a path via the Hotspot Airports which is only a small subset of all airports. Therefore even
after improving the algorithm it still can only be used as input for the MBFS algorithm or to
give a tendency for a good connection. However, whether the runtime improvement of the
MBFS by using an improved Hotspot Search algorithm exceeds the runtime penalty of a better
Hotspot Search could be part of a separate study.

8.4. Experiment 4

Only the best connections, that means the connections with the lowest virtual costs are stored
as results by the MBFS algorithm. The number of paths that have to be stored is defined by
the user as the number of connections that have to be shown. All paths whose virtual costs
are worse than the virtual costs of the connection with the lowest rank, that means the highest
virtual costs from the result list, are terminated. For a smaller list it can be expected that the
virtual costs of the worst connection are lower than for the worst connection if the list was
be longer. Consequently paths are terminated earlier because of their virtual costs by using a
smaller result list. Since Experiment 1 shows that the number of generated paths corresponds
to the runtime a better runtime is expected by using a smaller number of result connection.
Experiment 4 investigated this expectation. It turned out that for all connections the runtime
was increasing for a higher number of results. But the impact on the runtime increases with the
complexity of the connection. Therefore, the runtime for the connection between Arusha and
Porto Alegre was increasing much faster than the runtime for the other connections.

8.5. Experiment 5

Experiment 5 investigated the impact of the number of considered origin and destination air-
ports on the runtime and the result quality of the MBFS algorithms. With a higher number of
origin and destination airports more different connections are possible. It is possible that the
closest airports provides no proper connections while a further airport provides a direct con-

60

nection where it is worth for to have a longer trip to the airport. In such cases it is expected that
the result quality is increasing when the number of origin and destination airports is increas-
ing. But it is also possible that the best connection departs from the closest airport already. In
this case a higher number of origin and destination airports is expected to have no influence
on the result quality. Experiment 5 underpins these assumptions. However, by increasing the
number of origin and destination airports, new possible connections appear, this leads to a
higher number of paths which leads to a higher runtime as shown in Example 1. Experiment
5 underpins this thesis as well. The difficulty is to decide how many origin and destination
airports are worth to use, to get a good result but also to keep the runtime low. In Experiment
5 there is no quality enhancement by using more than ten origin and destination airports but
the runtime is still increasing clearly. Therefore, it is suggested to use not more than 10 origin
and destination airports.

8.6. Experiment 6

Experiment 6 investigated the impact of the price a user is willing to pay to save one hour of
travel time on the runtime and quality of the results. While it is expected that the price of a
connection increases and the duration decreases if the user is willing to pay more for saving
one hour of travel time, this behavior is observed by this experiment for the connections from
Göttingen to Coimbra and from Arusha to Porto Alegre. But the connection from Cape Town
to Asuncion stays stable on both, the duration and the price. This behavior can be observed
if the fastest connection is also the cheapest connection. Experiment 6 pointed out that for
this connection the runtime stays stable as well while for the other connections the runtime
decreases proportionally to the duration. The runtime improvement when using a high price
for each hour of travel time saved can be explained with the prompt termination of all paths
which require more time by using a detour even if they save a lot of money by doing so. The
lower number of terminated paths for a very high price for each hour of travel time saved, seen
in Figure 23b, can be explained by the very low number of all generated paths because a lot of
paths have already been terminated in a very early stadium.

8.7. Experiment 7

The last experiment investigated the impact of the minimum average speed on the runtime
and the quality of the results. A clear runtime enhancement was shown by this experiment
for all connections by using a higher average speed. Especially in the range from 100 km/h to
200 km/h huge runtime enhancements were observed. The enhancement can be justified by
the higher number of paths that are terminated at an early point, because the distance to the
destination is too high in relation to the already required travel time of a path, for the higher
average speed. It can be confusing that Figure 24c shows that the total number of paths that
were terminated due to this termination criterion is decreasing. The reason for that is that the
paths by using a higher average speed are terminated pretty early. By terminating the paths in
the beginning the total number of generated paths is kept very low and therefore even if less
paths were terminated in total by this criterion the impact of this criterion was increasing and

61

the total number of generated paths was pretty low.

Terminating more paths by increasing the average speed leads at any point to the problem
that paths which would be a good result are terminated as well. This experiment investigated
this issue as well. It was observed that until an average speed of 200 km/h the virtual costs
for all connections were stable but then they started to increase, which means that the best
connections were terminated. To prevent this the average speed should be keep low enough
to receive good results but also high enough to obtain a good runtime. Since the runtime for
an average speed of 200 km/h is already pretty low and the virtual costs are still stable at this
point, according to this experiment an average speed of 200 km/h can be suggested.

62

9. Conclusion and Further Research

First the conclusion gives a short review about the topics dealt with in this thesis. Afterwards
the results of this thesis are summarized and in the end some further research fields are pointed
out. In this thesis the development of a graph data structure to cache flight data has been de-
picted. Also a subset with the most important airports worldwide for inter-continental flights
has been found and a method to approximate flight prices has been developed. The devel-
opment of different path finding algorithms has been done in this thesis as well. The Hotspot
Search algorithm and the MBFS algorithm was developed. The main purpose of the Hotspot
Search algorithm is to fastly find a possible connection between two arbitrary places which
does not necessarily need to be the best connection it is used as an upper bound for the MBFS
algorithm to increase its runtime. The purpose of the MBFS algorithm is to find the best connec-
tions between any two places worldwide. Furthermore, experiments on the algorithms with
different settings to evaluate their performance and to find the best settings for different prop-
erties have been done. To perform the experiments an application which uses the algorithms
has been developed.

In Section 7 and 8 it turned out that the main impact of the runtime comes from the number
of paths that were generated by the search algorithm. Therefore, it is required to keep this
number as low as possible. Experiment 2 shows that the termination criteria are closing a lot
of paths which would not reach the destination in a proper time or with a proper price. It was
also determined that the use of the Hotspot Search as input for the MBFS algorithm is reasonable
in general, since it improves the runtime. As a number of origin and destination airports, ten
turned up as a reasonable value. By using less than ten origin and destination airports the re-
sult quality was decreasing and by using more than ten origin and destination airports only the
runtime was increasing, however, no quality enhancement could be observed anymore. Exper-
iment 7 determined for the average speed that 200 km/h is a good value since the result quality
was stable until this point and the runtime has already been reduced significantly. As pointed
out before, for the price each hour of additional travel time costs the user no specific price can
be suggested since it strongly depends on personal factors like the amount of available money
and time. But by choosing a lower amount of money a higher runtime can be expected. If the
user is willing to pay more money for his flights by saving time on the travel duration it is
reasonable also to increase the average speed for the query to terminate slow connections at an
early point. The result size also depends on the personal preferences of the user. If a user is
fine with only getting the connection with the best price and time ratio, it is sufficient to return
only the best connection. But often the user wants to be able to decide between several good
connections and does maybe not take the best price and time ratio connection but another one
because of personal experiences or other reasons. Thereby the user can expect a higher runtime
for a larger result set.

The introduction listed two basic requirements that the developed algorithm has to fulfill:

• Find the best fitting origin and destination airports for the given origin and destination
places and find a connection to these airports.

63

• Find a flight connection between these airports in case a connection exists.

Experiment 5 (Section 7.5.5) shows that the MBFS algorithm dynamically reacts on different ori-
gin and destination airports and finds better connections if the algorithm considers more origin
and destination airports. Section 7.4.5 shows on behalf of the connection between Arusha and
Balmaceda that even for connections where conventional flight search engines like Skyscanner
or eStreaming can not find a connection anymore, the MBFS algorithm as well as the Hotspot
Search algorithm are able to find connections by combining offers from different suppliers.

In the end of this thesis some further research areas and limitations that turned out during
writing this thesis but would exceed the scope of it will be outlined. A massive problem dur-
ing the whole time of research was to obtain proper test data since especially the flight price
APIs are strongly restricted and provide only cached data [Skyd] [eSt]. Especially to obtain live
price data would increase the result quality and would be essential for a productive system.
Since the runtime tests were done on a private laptop instead of a dedicated server system, the
results are not that accurate because a background task was running and the performance of
a laptop is worse than the performance of a server system. Therefore, it could be assumed to
achieve better runtimes on a proper server system.

Section 4.3 introduced a method to approximate flight prices. Since it was not the scope of this
thesis to develop price approximation algorithms the approximation is limited to a minimum.
But earlier studies discovered that it is possible to approximate flight prices pretty accurately
when considering enough attributes of the flight [ETKY03] [MPR09]. Especially with the avail-
able computing power in our days new possibilities are arising. Section 8.3 dealt with the ques-
tion whether it is reasonable to increase the quality of the Hotspot Search algorithm by accepting
a runtime disadvantage. To improve this algorithm and maximize the runtime enhancement
of the full search process could be part of a separate thesis. As pointed out above in this sec-
tion it is reasonable to increase the minimum average speed value as well when increasing the
price for each hour of travel time. A further research could deal with the idea of automatically
increasing the average speed value when increasing the price for one hour of travel time. To
determine an accurate dependency between both values is a non-trivial problem.

Experiment 1 pointed out that the amount of required memory for the application is quite high
and a problem when it comes to complex connections because the RAM starts to swap to the
hard drive at any point and thus slows down the application massively. To avoid this prob-
lem the Connection object introduced in Section 6.2 could be minimized and certain properties
could be loaded from the database or the APIs when required to decrease the required amount
of RAM. The problem is that the properties stored in this object are required by the search algo-
rithms or that they are parts of API responses which are required at an early point because of
other required properties. Since the APIs are pretty slow and limited only to a certain number
of calls for each day it has to be avoided to query them several times for the same properties. A
possible solution could be to outsource some data to a database level, compress the Connection

objects or proceed even more operations on the database level to reduce the required amount

64

of memory. Another idea could be to cache full results and parts of it in the database to reuse
them for a later similar query. Then a lot of path finding steps could be avoided just by using
the cached results. This could also increase the runtime of the algorithms significantly.

65

List of Tables

1. Airports within 200 km around Göttingen . 2
2. The five closest airports to Hanover. 27
3. The five closest airports to Haikou. 27
4. Hotspot Airports . III

List of Figures

1. Connections between Arusha and Balmaceda. 3
2. Inbound connections from Hotspots to Haikou (a) and outbound connections to

Hotspots of Hanover (b). 20
3. Outbound connections to Hotspots of Frankfurt. 23
4. Full result of applying the MBFS algorithm for a connection between Hanover

and Haikou. 26
5. Illustrates which flights are terminating because better flights have reached the

same airport already. 29
6. Some paths between Hanover and Haikou in relation to time and completed

distance. 33
7. Some paths between Hamburg and Rome in relation to time and completed dis-

tance. 35
8. Input box of the Trip Planner user interface. 38
9. The map on the Trip Planner user interface shows the used connection in colors

(b) and the terminated paths in gray (a), for the connection between Hanover
and Rome. 40

10. The four levels of a connection. 41
11. A part of the text output of the connection between Hanover and Rome on the

user interface of the Trip Planner application. 42
12. Connections between Arusha and Porto Alegre. 45
13. Connections between Cape Town and Asuncion. 46
14. Connections between Göttingen and Coimbra. 47
15. Connections between Balmaceda and Haikou. 48
16. Connections between Arusha and Balmaceda. 49
17. Relation of the runtime and number of generated paths (a) and relation of the

runtime and the number of steps required by the MBFS algorithm (b), for the
connection between Arusha and Balmaceda. 50

18. Relation of the runtime and number of generated paths (a) and relation of the
runtime and the number of steps required by the MBFS algorithm (b), for the
connection between Haikou and Balmaceda. 50

19. Shows on different connections for each termination criterion the number of
paths that were terminated in the corresponding step because of this criterion. . 52

66

20. Runtime impact of applying the Hotspot Search before applying the MBFS algo-
rithm and compares the quality of the results of the Hotpots Search and the MBFS
algorithm. 53

21. Impact of the result size on the runtime. 54
22. Impact of the number of origin and destination airports on the runtime (a) and

the virtual costs (b). 55
23. Impact of the chosen price for each hour of travel on the runtime (a), the termi-

nation criterion for too high virtual costs (b), the price (c) and the duration (d) of
the trip. 56

24. Impact of the used average speed on the runtime (a), virtual costs (b) and termi-
nated paths because of the path is to far away from the destination (c) 57

Code Snippets

1. Pseudo-code to find the next connections from Hotspots. 21
2. Pseudo-code to find the next connections regardless whether they are from Hotspots

or not. 21
3. Pseudo-code for connecting Hotspot and destination. 24

67

References

[AG87] B. Awerbuch and R. Gallager. A new distributed algorithm to find breadth first
search trees. IEEE Transactions on Information Theory, 33(3):315–322, 1987.

[BM06] D. A. Bader and K. Madduri. Designing multithreaded algorithms for breadth-first
search and st-connectivity on the Cray MTA-2. In Parallel Processing, 2006. ICPP
2006. International Conference on, pp. 523–530. IEEE, 2006.

[CEE] CEE. CEE Travel Systems. Available at http://www.cee-systems.com/.

[Che] Cheapair.com. When to buy airline tickets ? Based on 1.5 Billion
Airfares. Available at https://www.cheapair.com/blog/travel-tips/

when-to-buy-airline-tickets-based-on-1-5-billion-airfares/.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, 2001.

[eSt] eStreaming. eStreaming API home page. Available at http://estrapi.

cee-systems.com.

[ETKY03] O. Etzioni, R. Tuchinda, C. A. Knoblock, and A. Yates. To buy or not to buy: min-
ing airfare data to minimize ticket purchase price. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 119–128.
ACM, 2003.

[Eve11] S. Even. Graph algorithms. Cambridge University Press, 2011.

[Far] Farecompare.com. Cheapest Days to Fly and Best Time to Buy Air-
line Tickets. Available at https://www.farecompare.com/travel-advice/

tips-from-air-travel-insiders/.

[Gona] Y. Goncharenko. Cache API - CEE eStreaming API. Available at https://docs.
travelcloudpro.eu/cached-api.html.

[Gonb] Y. Goncharenko. Introduction to eStreaming API - CEE eStreaming API. Available
at https://docs.travelcloudpro.eu/.

[Gonc] Y. Goncharenko. Point Of Sale - CEE eStreaming API. Available at https://docs.
travelcloudpro.eu/pointofsale.html.

[Gond] Y. Goncharenko. Using Postman Application - CEE eStreaming API. Available at
https://docs.travelcloudpro.eu/using-postman-application.html.

[Gooa] Google. Die Google Maps Geolocation API | Google Maps Geolocation
API | Google Developers. Available at https://developers.google.com/maps/
documentation/geolocation/intro.

[Goob] Google. Entwickler-Leitfaden | Google Maps Directions API | Google De-
velopers. Available at https://developers.google.com/maps/documentation/

directions/intro?hl=de.

[Gooc] Google. Entwickler-Leitfaden | Google Maps Geocoding API | Google De-
velopers. Available at https://developers.google.com/maps/documentation/

geocoding/intro#ComponentFiltering.

[Good] Google. Erste Schritte | Google Maps Time Zone API | Google Developers. Avail-
able at https://developers.google.com/maps/documentation/timezone/start.

68

http://www.cee-systems.com/
https://www.cheapair.com/blog/travel-tips/when-to-buy-airline-tickets-based-on-1-5-billion-airfares/
https://www.cheapair.com/blog/travel-tips/when-to-buy-airline-tickets-based-on-1-5-billion-airfares/
http://estrapi.cee-systems.com
http://estrapi.cee-systems.com
https://www.farecompare.com/travel-advice/tips-from-air-travel-insiders/
https://www.farecompare.com/travel-advice/tips-from-air-travel-insiders/
https://docs.travelcloudpro.eu/cached-api.html
https://docs.travelcloudpro.eu/cached-api.html
https://docs.travelcloudpro.eu/
https://docs.travelcloudpro.eu/pointofsale.html
https://docs.travelcloudpro.eu/pointofsale.html
https://docs.travelcloudpro.eu/using-postman-application.html
https://developers.google.com/maps/documentation/geolocation/intro
https://developers.google.com/maps/documentation/geolocation/intro
https://developers.google.com/maps/documentation/directions/intro?hl=de
https://developers.google.com/maps/documentation/directions/intro?hl=de
https://developers.google.com/maps/documentation/geocoding/intro#ComponentFiltering
https://developers.google.com/maps/documentation/geocoding/intro#ComponentFiltering
https://developers.google.com/maps/documentation/timezone/start

[Gooe] Google. Google Maps APIs for Web | Google Developers. Available at https:
//developers.google.com/maps/web/.

[Goof] Google. Google Maps JavaScript API V3 Reference. Available at https://

developers.google.com/maps/documentation/javascript/reference.

[Goog] Google. Google Maps Web Service APIs | Google Developers. Available at https:
//developers.google.com/maps/web-services/.

[Gooh] Google. Google Places API Web Service | Google Developers. Available at https:
//developers.google.com/places/web-service/.

[Gooi] Google. Preise und Nutzungsmodelle | Preise und Nutzungsmodelle für Google
Maps APIs | Google Developers. Available at https://developers.google.com/
maps/pricing-and-plans/.

[Hen18] F. Henke. Google Maps, Skyscanner and eStreaming APIs for collecting and pre-
senting travel route information, 2018.

[Hor10] T. D. Hornung. Query workflows over web data sources. PhD thesis, University of
Freiburg, 2010.

[IAT] IATA. IATA - IOSA Registry. Available at http://www.iata.org/whatwedo/

safety/audit/iosa/Pages/registry.aspx.

[ITA] ITA Software by Google. ITA Software by Google. Available at http://www.

itasoftware.com/.

[KS05] R. E. Korf and P. Schultze. Large-scale parallel breadth-first search. In AAAI, vol-
ume 5, pp. 1380–1385, 2005.

[LS10] C. E. Leiserson and T. B. Schardl. A work-efficient parallel breadth-first search al-
gorithm (or how to cope with the nondeterminism of reducers). In Proceedings of the
twenty-second annual ACM symposium on Parallelism in algorithms and architectures,
pp. 303–314. ACM, 2010.

[MPR09] P. Malighetti, S. Paleari, and R. Redondi. Pricing strategies of low-cost airlines: The
Ryanair case study. Journal of Air Transport Management, 15(4):195–203, 2009.

[MS08] K. Mehlhorn and P. Sanders. Algorithms and data structures: The basic toolbox.
Springer Science & Business Media, 2008.

[RNC+03] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards. Artificial intelli-
gence: a modern approach, volume 2. Prentice hall Upper Saddle River, 2003.

[Skya] Skyscanner. API Reference. Available at https://skyscanner.github.io/slate/
#geo-catalog.

[Skyb] Skyscanner. Skyscanner - Discover Skyscanner. Available at https://www.

skyscanner.net/aboutskyscanner.aspx.

[Skyc] Skyscanner. Skyscanner Homepage. Available at https://www.skyscanner.de/.

[Skyd] Skyscanner. Which services can I access and what are the rate limits?
Available at https://support.business.skyscanner.net/hc/en-us/articles/

206800359-Which-services-can-I-access-and-what-are-the-rate-limits.

69

https://developers.google.com/maps/web/
https://developers.google.com/maps/web/
https://developers.google.com/maps/documentation/javascript/reference
https://developers.google.com/maps/documentation/javascript/reference
https://developers.google.com/maps/web-services/
https://developers.google.com/maps/web-services/
https://developers.google.com/places/web-service/
https://developers.google.com/places/web-service/
https://developers.google.com/maps/pricing-and-plans/
https://developers.google.com/maps/pricing-and-plans/
http://www.iata.org/whatwedo/safety/audit/iosa/Pages/registry.aspx
http://www.iata.org/whatwedo/safety/audit/iosa/Pages/registry.aspx
http://www.itasoftware.com/
http://www.itasoftware.com/
https://skyscanner.github.io/slate/#geo-catalog
https://skyscanner.github.io/slate/#geo-catalog
https://www.skyscanner.net/aboutskyscanner.aspx
https://www.skyscanner.net/aboutskyscanner.aspx
https://www.skyscanner.de/
https://support.business.skyscanner.net/hc/en-us/articles/206800359-Which-services-can-I-access-and-what-are-the-rate-limits
https://support.business.skyscanner.net/hc/en-us/articles/206800359-Which-services-can-I-access-and-what-are-the-rate-limits

[Skye] Skyscanner. Why do I get an error when accessing the Flights Live Pricing API?
Available at https://support.business.skyscanner.net/hc/en-us/articles/

212682245-Why-do-I-get-an-error-when-accessing-the-Flights-Live-Pricing-API.

[Tra] Travelport. Travelport Home Page. Available at https://www.travelport.com/.

[YCH+05] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and U. Catalyurek.
A scalable distributed parallel breadth-first search algorithm on BlueGene/L. In
Proceedings of the 2005 ACM/IEEE conference on Supercomputing, page 25. IEEE Com-
puter Society, 2005.

[Zus72] K. Zuse. Der Plankalkül. Gesellschaft für Mathematik und Datenverarbeitung, 1972.

70

https://support.business.skyscanner.net/hc/en-us/articles/212682245-Why-do-I-get-an-error-when-accessing-the-Flights-Live-Pricing-API
https://support.business.skyscanner.net/hc/en-us/articles/212682245-Why-do-I-get-an-error-when-accessing-the-Flights-Live-Pricing-API
https://www.travelport.com/

A. Appendix

A.1. Statistic Queries

Queries to the cached flights database, to give statistical information about the stored data.

A.1.1. All Airports

Returns all airports listed in the database.

1 SELECT *
2 FROM a i r p o r t s ;

A.1.2. All Served Airports

Returns all served airports listed in the database.

1 SELECT DISITINCT o r i g i n
2 FROM f l i g h t _ c o n n e c t i o n s ;

A.1.3. Different Direct Flights

Returns all different direct connections in a certain time period listed in the database.

1 SELECT DISITINCT or ig in , d e s t i n a t i o n
2 FROM f l i g h t _ c o n n e c t i o n s
3 WHERE connection_number IS NULL
4 AND departure_date BETWEEN ’ 2018−04−05 0 0 : 0 0 : 0 0 ’ : : timestamp AND ’ 2018−04−18

2 3 : 5 9 : 0 0 ’ : : timestamp ;

A.1.4. Different Connected Flights

Returns all different connected connections in a certain time period listed in the database.

1 SELECT DISITINCT or ig in , d e s t i n a t i o n
2 FROM f l i g h t _ c o n n e c t i o n s
3 WHERE connection_number IS NOT NULL
4 AND departure_date BETWEEN ’ 2018−04−05 0 0 : 0 0 : 0 0 ’ : : timestamp AND ’ 2018−04−18

2 3 : 5 9 : 0 0 ’ : : timestamp ;

A.1.5. Total Flights in Time Period

Returns all served airports listed in the database.

1 SELECT or ig in , d e s t i n a t i o n
2 FROM f l i g h t _ c o n n e c t i o n s
3 WHERE connection_number IS NULL
4 AND departure_date BETWEEN ’ 2018−04−05 0 0 : 0 0 : 0 0 ’ : : timestamp AND ’ 2018−04−18

2 3 : 5 9 : 0 0 ’ : : timestamp ;

I

A.1.6. Number of Flights

Returns for each day on the defined time periode the amount of flights listed in the database.

1 SELECT departure_date , count (departure_date)
2 FROM (
3 SELECT or ig in , d e s t i n a t i o n , connection_number , CAST(CAST(departure_date

AS date) AS timestamp) AS departure_date
4 FROM f l i g h t _ c o n n e c t i o n s) AS connect ions
5 WHERE departure_date BETWEEN ’ 2018−04−05 0 0 : 0 0 : 0 0 ’ : : timestamp AND ’

2018−04−18 2 3 : 5 9 : 0 0 ’ : : timestamp
6 AND connection_number IS NULL
7 GROUP BY departure_date ;

II

A.2. Hotspot Airports

Table 4: Hotspot Airports
Position Airport name IATA Inter-continental flights
1 Istanbul Ataturk IST 135
2 Dubai DXB 118
3 Frankfurt am Main FRA 84
4 Hong Kong International HKG 82
5 Amsterdam AMS 74
6 Bangkok Suvarnabhumi BKK 71
7 Paris Charles de Gaulle CDG 69
8 London Heathrow LHR 63
9 Hamad International DOH 63
10 Abu Dhabi International AUH 61
11 Singapore Changi SIN 60
12 Miami International MIA 55
13 Madrid MAD 51
14 Ben Gurion Intl TLV 48
15 Los Angeles International LAX 45
16 Taipei Taiwan Taoyuan TPE 42
17 Seoul Incheon Int’l ICN 40
18 Munich MUC 40
19 Panama City Tocumen International PTY 38
20 Kuala Lumpur International KUL 37
21 Guangzhou CAN 36
22 Istanbul Sabiha SAW 36
23 Tokyo Narita NRT 35
24 Brussels International BRU 34
25 Atlanta Hartsfield-Jackson ATL 33
26 Zurich ZRH 33
27 Shanghai Pu Dong PVG 32
28 Manila Ninoy Aquino MNL 32
29 San Francisco International SFO 30
30 Cairo CAI 30
31 New York John F. Kennedy JFK 30
32 Sydney SYD 29
33 Bogota BOG 29
34 Addis Ababa ADD 28
35 Toronto Pearson International YYZ 28
36 Mumbai BOM 27
37 New Delhi DEL 27
38 Jeddah JED 26
39 Muscat MCT 26
40 Moscow Sheremetyevo SVO 25

III

Position Airport name IATA Inter-continental flights
41 New York Newark EWR 25
42 Lisbon LIS 24
43 Rome Fiumicino FCO 23
44 Beijing Capital PEK 23
45 Mexico City Juarez International MEX 22
46 Melbourne Tullamarine MEL 21
47 Havana HAV 21
48 Riyadh RUH 21
49 Kuwait KWI 20
50 Auckland International AKL 19
51 Ho Chi Minh City SGN 19
52 Vienna VIE 19
53 Sao Paulo Guarulhos GRU 19
54 Tbilisi TBS 19
55 Punta Cana PUJ 18
56 Fort Lauderdale International FLL 18
57 Bahrain BAH 18
58 Houston George Bush Intercntl. IAH 18
59 Boston Logan International BOS 18
60 Barcelona BCN 18
61 Colombo Bandaranayake CMB 18
62 San Salvador SAL 17
63 Dallas Fort Worth International DFW 17
64 Hanoi HAN 17
65 Johannesburg O.R. Tambo JNB 17
66 Casablanca Mohamed V. CMN 17
67 Lima LIM 17
68 Santiago Arturo Merino Benitez SCL 17
69 Tokyo Haneda HND 17
70 Dublin DUB 16

IV

A.3. Experimental Data

This part of the appendix provides the log outputs for the program fetches that was evaluated
in Section 7. The output contains the runtime and the amount of found valid connections for
the Hotspot Seacrch if applied. Also the total amount of generated paths, visited airports, Google
API calls and the runtime of the MBFS algorithm as well as a table with stepwise information
about the generated paths is provided.

The table contains information about which termination criteria was applied how often for
each step as well as how many paths was reaching the destination (Dest. 1) and how many
paths was open in each step (Open path). Therefor the table contains the following termination
criteria. The first column describes how often a path was terminating because a better connec-
tion was existing to the same airport already (BCSA). The next column describes, how many
paths was terminating because the maximum amount of steps was applied (Steps). (Dest. 2)
describes how many paths was terminating because a destination airport was found in the
previous step. The fourth column describes for each step, how many paths was terminating
because there virtual costs are higher than the costs from the worst path of the current result
set (rank). (too far) describes how many paths was terminating because there distance to the
destination was too far accordingly to the termination criteria. The third last column contains
the amount of flights that that was not even been added to a path because it would result in a
cycle (Cycle) and the second last column counts the amount of flights was never been added to
a path because other flights on the same connection was better (Bad con.).

For experiments that used a lot of different program calls, but required only very few of the
logging values, not the whole log output but only the required properties organized in tables
are shown to ensure clarity.

A.3.1. Experiment 1

This experiment investigates the impact of the length of a path on the runtime.

Arusha - Balmaceda :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 8 seconds
Number of Hotspot Connections found: 4

Step 1 2 3 4 5 6 7 8 9 10 Total
BCSA 0 0 2 1049 19412 76085 110429 55048 9917 333 272275
Steps 0 0 0 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 0 0 0 0 0 0
Rank 0 0 0 3 28 116 419 512 175 1 1254
Too far 0 0 0 246 2088 5871 6844 3517 628 21 19215
Dest. 1 0 0 0 0 0 0 0 8 8 0 16
Cycle 0 1 89 3413 19612 34656 25827 4849 58 0 88505
Bad con. 2 57 5610 72363 283709 391003 182738 35547 982 0 972009
Open paths 1 1 14 1680 23324 84827 119481 59582 10744 355 300008

Total number of generated paths: 292760

V

Total number of visited airports: 842
Google API calls: 17
Time needed for MBFS: 114 seconds

Balmaceda - Arusha :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 6 seconds
Number of Hotspot Connections found: 8

Step 1 2 3 4 5 6 7 8 9 10 11 Total
BCSA 0 0 0 10 1197 15685 67927 124863 72684 9121 169 291656
Steps 0 0 0 0 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 0 0 0 0 0 0 0
Rank 0 0 0 0 5 76 395 431 146 20 0 1073
Too far 0 0 0 2 124 1221 3655 6945 3223 397 5 15572
Dest. 1 0 0 0 0 0 0 3 2 0 0 0 5
Cycle 0 0 13 331 5267 15327 28740 22900 4187 102 0 76867
Bad con. 0 4 230 5724 67122 268278 479129 236455 28264 559 0 1085765
Open paths 1 1 2 46 1750 18665 74833 134072 76313 9544 174 315400

Total number of generated paths: 308306
Total number of visited airports: 864
Google API calls: 6
Time needed for MBFS: 107 seconds

Dar es Salaam - Puerto Montt :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 7 seconds
Number of Hotspot Connections found: 4

Step 1 2 3 4 5 6 7 8 9 Total
BCSA 0 4 759 41168 277759 345450 127288 24700 2409 819537
Steps 0 0 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 1 0 0 0 1
Rank 0 0 2 33 1073 4336 3258 971 120 9793
Too far 0 0 57 2052 8791 6717 1272 78 0 18967
Dest. 1 0 0 0 0 10 4 0 0 0 14
Cycle 0 82 6857 71616 148414 81447 21278 4451 0 334145
Bad con. 159 4679 162598 985280 1223471 478292 105146 13389 0 2972855
Open paths 1 27 1647 49016 297042 360426 132484 25810 2529 868981

Total number of generated paths: 848312
Total number of visited airports: 961

VI

Google API calls: 41
Time needed for MBFS: 315 seconds

Puerto Montt - Dar es Salaam :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 3 seconds
Number of Hotspot Connections found: 4

Step 1 2 3 4 5 6 7 8 9 10 Total
BCSA 0 0 19 1126 22317 166072 363513 215619 21617 3 790286
Steps 0 0 0 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 2 2 0 0 0 4
Rank 0 0 0 10 1325 12100 23990 12742 1147 0 51314
Too far 0 0 3 100 897 1053 142 0 0 0 2195
Dest. 1 0 0 0 0 5 14 1 0 0 0 20
Cycle 0 16 449 5141 29436 89328 68115 9577 2 0 202064
Bad con. 12 228 6008 99329 670570 1479532 894673 92421 0 0 3242761
Open paths 1 3 61 1763 27990 186918 392659 228844 22765 3 861006

Total number of generated paths: 843819
Total number of visited airports: 877
Google API calls: 23
Time needed for MBFS: 338 seconds

Dubai - Santiago :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 4 seconds
Number of Hotspot Connections found: 8

Step 1 2 3 4 5 6 7 Total
BCSA 0 3 8686 65777 60704 9295 123 144588
Steps 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 0 0 0
Rank 0 2 297 1957 2075 325 6 4662
Too far 0 0 0 0 0 0 0 0
Dest. 1 0 0 5 5 1 0 0 11
Cycle 0 998 18283 23941 6145 102 0 49469
Bad con. 350 37246 225720 198579 33442 256 0 495243
Open paths 1 194 10958 70368 63375 9633 129 154657

Total number of generated paths: 149261
Total number of visited airports: 929
Google API calls: 205
Time needed for MBFS: 95 seconds

VII

Santiago - Dubai :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 4 seconds
Number of Hotspot Connections found: 6

Step 1 2 3 4 5 6 7 Total
BCSA 0 5 1397 29537 82633 40978 1498 156048
Steps 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 0 0 0
Rank 0 0 363 5102 9617 4090 137 19309
Too far 0 0 0 0 0 0 0 0
Dest. 1 0 0 7 23 15 0 0 45
Cycle 0 389 5592 13519 7888 390 0 27778
Bad con. 143 7697 112590 283342 155287 6320 0 565236
Open paths 1 46 2405 35879 92856 45087 1635 177908

Total number of generated paths: 175402
Total number of visited airports: 806
Google API calls: 91
Time needed for MBFS: 66 seconds

Haikou - Balmaceda :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 6 seconds Amount of Hotspot Connections found: 4

Step 1 2 3 4 5 6 7 8 9 10 Total
BCSA 0 2 289 14760 142401 419571 411583 159645 24585 1991 1174827
Steps 0 0 0 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 0 0 0 0 0 0
Rank 0 0 0 2 34 1438 4864 3286 645 59 10328
Too far 0 0 0 4 26 115 111 21 0 0 277
Dest. 1 0 0 0 0 0 4 3 0 0 0 7
Cycle 0 71 2176 33049 115874 147802 75801 14463 1261 0 390497
Bad con. 47 1921 61597 507728 1383187 1261210 495898 79960 5382 0 3796883
Open paths 1 12 626 18789 157178 440020 425215 164468 25358 2050 1233716

Total number of generated paths: 1185439 Visited airports: 1017 Google API calls: 19 Time
needed for MBFS: 502 seconds

Balmaceda - Haikou :

Departure date: April 5th 2018
Number of origin and destination airports: 1

VIII

Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 5 seconds
Amount of Hotspot Connections found: 4

Step 1 2 3 4 5 6 7 8 9 10 11 Total
BCSA 0 0 1 11 964 23361 176362 526136 648291 274110 29050 1678286
Steps 0 0 0 0 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 0 0 0 0 0 0 0
Rank 0 0 0 0 5 1115 13045 39283 45333 16522 1328 116631
Too far 0 0 0 0 0 21 55 60 6 0 0 142
Dest. 1 0 0 0 0 0 6 10 0 0 0 0 16
Cycle 0 1 6 258 4207 34001 113540 162227 85623 10268 0 410131
Bad con. 0 3 125 4696 87802 631695 1792629 2088762 874735 93750 0 5574197
Open paths 1 1 2 41 1432 28187 199567 576372 698115 291088 30378 1825183

Total amount of generated paths: 1795075
Total amount of isited airports: 951
Google API calls: 17
Time needed for MBFS: 1302 seconds

Haikou - Santiago :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 15 seconds
Number of Hotspot Connections found: 28

Step 1 2 3 4 5 6 7 8 Total
BCSA 0 0 508 14058 87966 143462 63919 5253 315166
Steps 0 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 0 0 0 0
Rank 0 0 34 749 4137 5412 1726 63 12121
Too far 0 0 0 0 0 0 0 0 0
Dest. 1 0 0 0 4 0 0 0 0 4
Cycle 0 71 2237 20186 38057 16536 1117 0 78204
Bad con. 47 2958 59047 325227 523617 231626 21132 0 1163607
Open paths 1 12 876 17476 96135 150491 65750 5316 336056

Total number of generated paths: 327291
Total number of visited airports: 945
Google API calls: 16
Time needed for MBFS: 134 seconds

Santiago - Haikou :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h

IX

Price per hour: 64 Euro

Time needed for Hotspot Search: 3 seconds
Number of Hotspot Connections found: 4

Step 1 2 3 4 5 6 7 8 9 Total
BCSA 0 0 1094 24115 141992 188345 61133 4401 165 421245
Steps 0 0 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 0 0 0 0 0
Rank 0 0 37 667 3614 3817 1183 55 1 9374
Too far 0 0 0 0 0 0 0 0 0 0
Dest. 1 0 0 0 10 5 1 0 0 0 16
Cycle 0 218 5756 36629 59908 27497 2953 212 0 133173
Bad con. 122 6113 97050 481687 591452 207947 15595 764 0 1400608
Open paths 1 38 1820 28619 151100 194188 62485 4463 166 442879

Total number of generated paths: 430635
Total number of visited airports: 974
Google API calls: 54
Time needed for MBFS: 173 seconds

Hong Kong - Santiago :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 5 seconds
Number of Hotspot Connections found: 8

Step 1 2 3 4 5 6 7 8 Total
BCSA 0 10 3650 44998 122965 117228 26097 1241 316189
Steps 0 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 1 0 0 0 0 1
Rank 0 1 186 1449 3108 2902 763 30 8439
Too far 0 0 0 0 0 0 0 0 0
Dest. 1 0 0 1 12 1 0 0 0 14
Cycle 0 938 10228 37389 36078 10190 491 0 95314
Bad con. 235 15865 152235 411765 403256 93886 3895 0 1080902
Open paths 1 106 5170 51045 129982 121109 26926 1272 335610

Total number of generated paths: 324643
Total number of visited airports: 1009
Google API calls: 120
Time needed for MBFS: 152 seconds

Santiago - Hong Kong :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

X

Time needed for Hotspot Search: 6 seconds
Number of Hotspot Connections found: 11

Step 1 2 3 4 5 6 7 Total
BCSA 0 0 754 20142 73200 43421 2257 139774
Steps 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 0 0 0
Rank 0 2 229 2581 5020 2218 79 10129
Too far 0 0 0 0 0 0 0 0
Dest. 1 0 0 3 1 0 0 0 4
Cycle 0 207 4227 14483 10567 417 0 29901
Bad con. 122 4922 80914 264935 146995 6720 0 504486
Open paths 1 38 1478 24315 79246 45716 2336 153129

Total number of generated paths: 149907
Total number of visited airports: 840
Google API calls: 42
Time needed for MBFS: 72 seconds

Haikou - Puerto Montt :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 4 seconds
Number of Hotspot Connections found: 4

Step 1 2 3 4 5 6 7 8 9 10 Total
BCSA 0 2 293 14954 139169 452915 414308 89090 4637 58 1115426
Steps 0 0 0 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 0 0 0 0 0 0
Rank 0 0 0 44 1493 12695 13450 2399 152 1 30234
Too far 0 0 0 0 11 11 1 0 0 0 23
Dest. 1 0 0 0 0 4 2 1 1 0 0 8
Cycle 0 71 1751 30292 116267 119656 30070 2333 31 0 300471
Bad con. 47 1921 63387 503018 1558114 1321357 264360 14643 238 0 3727038
Open paths 1 12 626 19143 154167 476797 430036 91705 4790 59 1177335

Total number of generated paths: 1145691
Total number of visited airports: 1032
Google API calls: 20
Time needed for MBFS: 446 seconds

Puerto Montt - Haikou :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 4
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 3 seconds
Number of Hotspot Connections found: 4

XI

Step 1 2 3 4 5 6 7 8 9 10 Total
BCSA 0 0 19 1810 34627 205520 620219 566373 113097 5811 1547476
Steps 0 0 0 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 4 0 0 0 0 4
Rank 0 0 0 31 1090 7136 44812 49558 10002 613 113242
Too far 0 0 0 1 36 371 583 82 0 0 1073
Dest. 1 0 0 0 0 3 7 2 0 0 0 12
Cycle 0 16 556 7615 45032 156878 187826 44259 3436 0 445618
Bad con. 5 262 8559 132063 719898 2149614 2002522 406224 22004 0 5441146
Open paths 1 4 83 2712 40765 226452 677692 618711 123285 6424 1696128

Total number of generated paths: 1661807
Total number of visited airports: 1034
Google API calls: 16
Time needed for MBFS: 676 seconds

A.3.2. Experiment 2

This experiment investigates the impact of different termination criteria

Arusha - Porto Alegre :

Departure date: April 5th 2018
Number of origin and destination airports: 1
Result size: 10
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 7 seconds
Number of Hotspot Connections found: 4

Step 1 2 3 4 5 6 7 8 9 Total
BCSA 0 0 356 14862 96833 223438 203742 48764 898 588893
Steps 0 0 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 0 0 0 0 0 0
Rank 0 0 0 14 219 1430 2354 1048 49 5114
Too far 0 0 43 1304 6245 12812 8426 1527 27 30384
Dest. 1 0 0 0 0 5 8 10 0 0 23
Cycle 0 75 1715 21596 65657 75223 24673 1841 0 190780
Bad con. 64 1755 65858 385385 883671 711902 137591 3031 0 2189193
Open paths 5 12 680 18442 108599 242528 215857 51443 974 638535

Total number of generated paths: 624414
Total number of visited airports: 821
Google API calls: 35
Time needed for MBFS: 243 seconds

Göttingen - Coimbra :

Departure date: April 5th 2018
Number of origin and destination airports: 5
Result size: 10
Averrage speed: 150km/h
Price per hour: 64 Euro

XII

Step 1 2 3 4 Total
BCSA 0 6 1077 797 1880
Steps 0 0 0 0 0
Dest. 2 0 0 0 15 15
Rank 0 0 0 32 32
Too far 0 35 1021 104 1160
Dest. 1 0 0 14 3 17
Cycle 0 93 147 0 240
Bad con. 293 6369 2669 0 9038
Open paths 3 59 2111 948 3118

Total number of generated paths: 3104
Total number of visited airports: 316
Google API calls: 76
Time needed for MBFS: 18 seconds

Cape Town - Asuncion :

Departure date: April 5th 2018
Number of origin and destination airports: 5
Result size: 10
Averrage speed: 150km/h
Price per hour: 64 Euro

Time needed for Hotspot Search: 3 seconds
Number of Hotspot Connections found: 4

Step 1 2 3 4 5 6 7 Total
BCSA 0 9 1383 14979 19417 3131 246 39165
Steps 0 0 0 0 0 0 0 0
Dest. 2 0 0 0 0 3 0 0 3
Rank 0 0 1 85 329 163 22 600
Too far 0 4 821 2687 1851 200 13 5576
Dest. 1 0 0 0 8 10 3 0 21
Cycle 0 470 2810 4797 2261 447 0 10785
Bad con. 289 8869 62623 76463 13394 569 0 161918
Open paths 1 48 2519 18264 21795 3539 281 46446

Total number of generated paths: 45365
Total number of visited airports: 606
Google API calls: 69
Time needed for MBFS: 32 seconds

A.3.3. Experiment 3

Runtime :

XIII

Connection MBFS Hotspot Search
Cape Town - Asuncion (MBFS) 149 0
Cape Town - Asuncion (HS + MBFS) 144 4
Arusha - Porto Alegre (MBFS) 756 0
Arusha - Porto Alegre (HS + MBFS) 732 5
Arusha - Balmaceda (MBFS) 464 0
Arusha - Balmaceda (HS + MBFS) 318 5
Haikou - Balmaceda (MBFS) 1405 0
Haikou - Balmaceda (HS + MBFS) 1010 4

Virtual Costs :

Connection MBFS Hotspot Search
Cape Town - Asuncion 4443 5290
Arusha - Porto Alegre 5200 7993
Arusha - Balmaceda 8111 8546
Haikou - Balmaceda 5498 8086

A.3.4. Experiment 4

Runtime :

Connection 1 result 5 results 10 results 20 results
Göttingen - Coimbra 16 18 21 21
Cape Town - Asuncion 17 26 30 35
Arusha - Porto Alegre 329 405 648 1025

A.3.5. Experiment 5

Runtime :

Connection 1 airport 5 airports 10 airports 20 airports
Göttingen - Coimbra 17 77 141
Cape Town - Asuncion 21 26 32 36
Arusha - Porto Alegre 25 382 559 703

Virtual costs :

Connection 1 airport 5 airports 10 airports 20 airports
Göttingen - Coimbra 973 696 696
Cape Town - Asuncion 2167 2167 2167 2167
Arusha - Porto Alegre 4982 4339 4254 4254

A.3.6. Experiment 6

Runtime :

XIV

Connection 0 Euro per hour 64 Euro per hour 1000 Euro per hour
Göttingen - Coimbra 22 16 16
Cape Town - Asuncion 21 25 25
Arusha - Porto Alegre 440 339 221

Price for the connection :

Connection 0 Euro per hour 64 Euro per hour 1000 Euro per hour
Göttingen - Coimbra 98 138 437
Cape Town - Asuncion 541 541 541
Arusha - Porto Alegre 880 1194 1519

Duration required by the connection :

Connection 0 Euro per hour 64 Euro per hour 1000 Euro per hour
Göttingen - Coimbra 18 13 12
Cape Town - Asuncion 25 25 25
Arusha - Porto Alegre 63 48 45

Terminated paths because of too high virtual costs :

Connection 0 Euro per hour 64 Euro per hour 1000 Euro per hour
Göttingen - Coimbra 2923 2453 2031
Cape Town - Asuncion 3704 3399 2432
Arusha - Porto Alegre 27036 28314 12809

A.3.7. Experiment 7

Runtime :

connection 100 hm/h 150 km/h 200 km/h 250 km/h 300 km/k
Göttingen - Coimbra 21 17 13 15 15
Cape Town - Asuncion 252 26 10 9 8
Arusha - Porto Alegre 1551 382 62 16 9

Virtual costs :

Connection 100 hm/h 150 km/h 200 km/h 250 km/h 300 km/k
Göttingen - Coimbra 974 974 974 974 974
Cape Town - Asuncion 2167 2167 2167 2167 2222
Arusha - Porto Alegre 4254 4254 4254 4385 8131

Number of paths that were terminated because the destination was too far compared to the
duration :

XV

Connection 100 hm/h 150 km/h 200 km/h 250 km/h 300 km/k
Göttingen - Coimbra 893 1112 1110 1061 966
Cape Town - Asuncion 19600 6997 2506 1204 756
Arusha - Porto Alegre 32389 31389 30542 6099 4299

XVI

	Introduction
	Basic Notions
	Collecting Data
	Google Maps
	Skyscanner
	eStreaming

	Flight Graph
	Caching Graph Data
	Hotspot Airports
	Approximation of Missing Prices

	Path Finding Algorithms
	Breadth First Search
	Hotspot Search
	Modified Recursive and Parallel Breadth First Search
	Origin and Departure Airports
	Termination Criteria
	Receive Outbound Connections
	Expanding of New Connections

	Combining both algorithms

	The Trip Planner System
	Graphical User Interface
	Implementation
	API Access

	Experimental Investigation
	Settings
	Logging Mechanisms
	Experimental Environment
	Evaluated Connections
	Göttingen to Coimbra
	Cape Town to Asuncion
	Arusha to Porto Alegre
	Haikou to Balmaceda
	Arusha to Balmaceda

	Experiments
	Experiment 1 - Path Length Impact on Runtime
	Experiment 2 - Impact of Different Termination Criteria
	Experiment 3 - Runtime Impact of Using Hotspot Search Results as Input for MBFS
	Experiment 4 - Impact of Result Size on the Runtime
	Experiment 5 - Impact of the Number of Origin and Destination Airports on the Runtime and Result Quality
	Experiment 6 - Impact of Used Price per Hour on the Runtime and Result Quality
	Experiment 7 - Impact of Used Average Speed on the Runtime and Result Quality

	Discussion
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6
	Experiment 7

	Conclusion and Further Research
	List of Tables
	List of Figures
	Code Snippets
	References
	Appendix
	Statistic Queries
	All Airports
	All Served Airports
	Different Direct Flights
	Different Connected Flights
	Total Flights in Time Period
	Number of Flights

	Hotspot Airports
	Experimental Data
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6
	Experiment 7

