
Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZFI-BM-2007-02

Masterarbeit
im Studiengang "Angewandte Informatik"

Evaluation of the Oracle 10g Rules Manager
for a Domain Node Architecture in the

Semantic Web ECA Framework

Carsten Gottschlich

am Lehrstuhl für

Datenbanken und Informationssysteme

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen

31. Januar 2007

Georg-August-Universität Göttingen
Zentrum für Informatik

Lotzestraße 16-18
37083 Göttingen
Germany

Tel. +49 (5 51) 39-1 44 14

Fax +49 (5 51) 39-1 44 15

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den 31. Januar 2007

Evaluation of the
Oracle 10g Rules Manager

for a Domain Node Architecture
in the Semantic Web

ECA Framework

Carsten Gottschlich

January 2007

Abstract
A major challenge of the nascent Semantic Web is the multitude of data
formats, languages, schemas and ontologies. “A General Framework for
Evolution and Reactivity in the Semantic Web” was designed for bridging
the gap torn apart by the heterogeneity. This framework is based on Event-
Condition-Action (ECA) rules.

With the release of version 10g Oracle has enhanced its database soft-
ware by adding a Rules Manager package that allows the user to define and
manage ECA rules. In this thesis, the features of the Oracle Rules Manager
are examined and it is analysed how and to what extent the Rules Manager
can function as a domain node in the ECA Framework for the Semantic
Web.

Acknowledgements
I would like to thank Prof. Dr. Wolfgang May and Dr. Erik Behrends for
their personal and scientific supervision during my course of studies and the
becoming of this thesis.

I appreciate their adjuvant comments and consultations, technical support
and the invaluable recommendations I received.

Carsten Gottschlich

Göttingen, January 2007

Contents

1 Introduction 12
1.1 Motivation . 12
1.2 Structure of the Thesis . 13

2 Event-Condition-Action Rules 14
2.1 Fundamentals of ECA Rules 14
2.2 Events in Oracle . 15

2.2.1 Primitive Events . 16
2.2.2 Composite Events . 21

2.3 Rules in Oracle . 23
2.3.1 Rule Conditions . 28
2.3.2 Rule Action . 34

2.4 Event Management . 35
2.4.1 Consumption of Events 35
2.4.2 Ordering and Conflict Resolution 36
2.4.3 Duration of Events . 37

3 Internal Representation of the Rules Manager 39
3.1 Fundamental Structure . 39
3.2 Structure of a Scenario with Primitive Events 42
3.3 Structure of a Scenario with Composite Events 49

4 Example Scenario: An Airline 63
4.1 Simple Rule Conditions . 64
4.2 Rule Conditions Using and-join 65
4.3 Rule Conditions Using Sequence 65
4.4 Rule Conditions Using Negation 66
4.5 Rule Conditions Using Set Semantics 67
4.6 Rule Conditions Using any n Semantics 68

5 Embedding the Oracle Rules Manager Example Scenario
into the ECA Framework 70
5.1 The Semantic Web . 70
5.2 ECA Framework . 72

10

5.3 Domain Broker . 73

6 Conclusions 75
6.1 Drawbacks . 75

6.1.1 Inflexibility of the Event Structure 75
6.1.2 Missing DML Events 76
6.1.3 Lacking Query Part 76

6.2 Final Comments . 76

A SQL/Oracle Syntax of the Airline Scenario 77

Bibliography 96

11

Chapter 1

Introduction

1.1 Motivation

The Semantic Web as it has been envisioned by Tim Berners-Lee in the
mid-90s [26] is slowly becoming reality [39].1 The inventor of the World
Wide Web expressed his idea of the Semantic Web as “a web of data, in
some ways like a global database” [14] [15] [16]. Documents and resources
of the World Wide Web shall be extended by metadata that bestow them
with a well-defined meaning. In this way, more and more of what previously
was only human-readable becomes machine-understandable. Vocabularies
of metadata, referred to as ontologies, are developed in order to provide
foundations for communication and reasoning.

But the Web of today is still far away from being query-able like a global
database. In reality there exists a multitude of data formats, languages,
schemas and ontologies, and the Semantic Web is composed of innumerable
heterogeneous nodes that provide different resources and different behaviour.
For the actualisation of Tim Berners-Lee’s vision, the gap torn apart by the
heterogeneity needs to be bridged. For this purpose, “A General Framework
for Evolution and Reactivity in the Semantic Web” was designed and pre-
sented in [1]. This framework is based on Event-Condition-Action (ECA)
rules which enable nodes to provide behaviour and reactivity, and to prop-
agate knowledge.

With the release of version 10g Oracle has enhanced its database soft-
ware by adding a Rules Manager package that allows the user to define and
manage ECA rules. In this thesis, the features of the Oracle Rules Manager
are examined and it is analysed how and to what extent the Rules Manager
can function as a domain node in the ECA Framework for the Semantic
Web. Hence, the motivation for this thesis is to provide a little mosaic piece
on the road towards the Semantic Web.

1For instance, the German Government decided in December 2006 to promote a project
for the development of a semantic search engine called Theseus [40].

12

1.2 Structure of the Thesis

The next chapter starts with a general consideration of Event-Condition-
Action rules and continues with a thorough investigation of how the com-
ponents of ECA rules are implemented by the Rules Manager. The features
and possible options for specifying simple and complex event structures, rule
conditions and rule actions are explored.

In Chapter 3, we undertake an elaborate inspection of the Rules Man-
ager’s internal representation within the relational database. For this pur-
pose, two scenarios containing all basic ingredients of ECA rules, that have
to be mapped onto SQL tables, objects and triggers, are simulated.

The focus of Chapter 4 is laid on the condition part of ECA rules. An
example scenario of a conceived airline is designed and all major cases of
rule condition specifications are perused.

Chapter 5 begins with a concise introduction to the origins and basic
principles of the Semantic Web, followed by an outline of the ECA Frame-
work for Evolution and Reactivity. Afterwards, we resume with the airline
scenario that was developed in Chapter 4 and incorporate it into the ECA
Framework. This aim is realised by designing a wrapper software that con-
nects a node based on the Oracle Rules Manager with a domain broker
introduced in [12].

Finally, this thesis conludes with an outlook and suggestions for improve-
ment of the Rules Manager.

13

Chapter 2

Event-Condition-Action
Rules

In this chapter, we begin with a general description of ECA rules. Next, we
survey how event structures can be specified in Oracle, what properties they
can have and how they are managed. Then, we scrutinise the possibilities
of defining rule conditions and rule actions.

2.1 Fundamentals of ECA Rules

In general, Event-Condition-Action rules have the following form:

ON <event>

IF <condition>

THEN <action>

An event instance occurs at a certain point in time and conveys some pieces
of information. The event properties are accessed in the condition part and
the condition evaluates either to true or to false. If the condition is complied
with, then a predefined action is executed. Alternatively, if the condition
evaluates to false, then no action is taken.

In the ECA Framework (cf. Section 5.2), the rule condition consists of
two components: a query part and a testing part. The query part obtains
additional static information e.g. from a local database and the subsequent
testing part includes information both from the event properties and the
queries for checking the condition and evaluating to true or to false.

Emphasising this query part, the general form of Event-Condition-Action
rules can be described as follows:

ON <event>

AND <query additional information>

14

IF <condition>

THEN <action>

Although the query part is only a component of ECA rules in the ECA
Framework [1] and not a component of all ECA rules in general, an imple-
mentation of this part suggests itself for a relational database like the Oracle
software. The Rules Manager is lacking this feature in its current release.

Now we regard a concrete example of an ECA rule. For instance, the
event could be the booking of a flight and have properties like a start air-
port and a destination airport among others. An airline could have rules
that trigger the sending of additional information and promotional offers
depending on the flight destination. For example, one rule condition could
check whether the destination equals “Oslo” and if so, the action might be
to offer a Norwegian language course and to send information about famous
sights in Oslo to the customer who booked the flight.

ON flight booking event
IF destination airport = ’Oslo’
THEN offer a Norwegian language course and

send information about the famous
Vigeland Sculpture Park in Oslo

In the next section, we study the possibilities and limitations of defining
event structures for the Rules Manager and subsequently we explore how
event instances are managed.

2.2 Events in Oracle

Before being able to deal with events, Oracle has to learn about the structure
of a potentially occurring event. This structure of an event corresponds to
the concept of a ”class” in object-oriented programming while a concrete
event corresponds to the concept of an ”instance”. Before we concern with
the details of defining event structures in the next section, we aim to gain
an overview of the concepts of the Rules Manager.

ECA rules are managed in groups or sets of resembling rules. Such a set
of similar rules is called a rule class. There are two essential commonalities
of all rules of a rule class. First, they are applied to event instances of the
same event structure and secondly, they share the same user-defined action.
On the other hand, they distinguish itself from each other in the condition
part and each rule can pass different rule-specific values to the action, so
that the same action adopts a different behaviour depending on which rule
triggers the action. In Section 2.3 we will discuss this in detail.

15

Event instances, e.g. originating from applications or other internet nodes,
are processed by calling DBMS RLMGR.PROCESS RULES. This function pro-
cesses one event instance for one rule class. If an event instance shall be
processed by multiple rule classes, the function has to be called multiple
times. Processing means that the event instance is sequently applied to all
rules of the rule class until it is consumed. Details about the consumption
and the order in which rules are matched follow in Section 2.4.

2.2.1 Primitive Events

The structure of a simple or primitive event1 is defined by a set of attributes
that describe the specific features of this event class.

There are two ways in which a structure for a simple event can be defined.
One possibility is given by defining an Oracle object type and the other is
by using an existing database table and mapping it to an event structure.
The following example illustrates the first way.

Primitive Events Defined by Object Types

CREATE TYPE AddAirportEvent AS OBJECT (
ICAOcode VARCHAR2(4),
IATAcode VARCHAR2(3),
name VARCHAR2(50),
city VARCHAR2(35),
province VARCHAR2(32),
country VARCHAR2(4));
);

The name of the event structure, AddAirportEvent, can later be refer-
enced for defining rule classes and rules. While some properties are self-
explanatory, it should be mentioned that the codes of ICAO (International
Civil Aviation Organization, an agency of the United Nations) [3] and IATA
(International Air Transport Association) [4] uniquely identify an airport.
In the following example, we create an instance of this object type by using
its constructor function. This object type instance represents a concrete
event.

AddAirportEvent (’EDDF’, ’FRA’,
’Frankfurt International Airport’,

1We consider “primitive event”, “simple event” and “atomic event” as equivalent terms
in this thesis.

16

’Frankfurt am Main’, ’Hessen’, ’D’
);

Assuming that this event instance is processed by a rule class with name
observeAirports, then the call of DBMS RLMGR.PROCESS RULES has the fol-
lowing form:

BEGIN

DBMS_RLMGR.PROCESS_RULES (
rule_class => ’observeAirports’,
event_inst => AddAirportEvent.getVarchar(

’EDDF’, ’FRA’,
’Frankfurt International Airport’,
’Frankfurt am Main’, ’Hessen’, ’D’),

event_type => ’AddAirportEvent’
);

END;

Alternatively, AnyData.convertObject can be used and the following is
equivalent to the previous call.

BEGIN

DBMS_RLMGR.PROCESS_RULES (
rule_class => ’observeAirports’,
event_inst => AnyData.convertObject(

AddAirportEvent.getVarchar(
’EDDF’, ’FRA’,
’Frankfurt International Airport’,
’Frankfurt am Main’, ’Hessen’, ’D’))

);

END;

Obviously, the structure of a primitive event instance starts with the name
of the event structure, followed by the values of the properties which indi-
vidually are in quotation marks and all values together are in parentheses,
and it closes with a semicolon. The sequence of the values correlates with

17

the sequence of the properties in the definition of the event structures, so
that “EDDF” is the ICAO code of the airport, “FRA” is the IATA code and
so on.

DML Events

The second possibility of defining an event structure is to use an already ex-
isting table. The event structure obtains the same set of attributes from the
table. Data Modification Language (DML) events are automatically raised
whenever a DML operation is executed on the referenced table. Release 10g
supports only INSERT operations. UPDATE and DELETE operations will
probably2 be supported in future releases. Rule classes that use DML events
have to be taught this behaviour by setting the rule class property
<simple dmlevents=”I”/> as described in Section 2.3 which discusses rule
classes. Implicitly, for a rule class which use DML events, a trigger is created
that raises an according event for each INSERT operation.

For providing an example, we begin with defining a table. Here, a table
for storing flights is used.

CREATE TABLE flights (
customerID NUMBER(10),
airline VARCHAR2(20),
departureCity VARCHAR2(30),
arrivalCity VARCHAR2(30),
departureDate DATE,
arrivalDate DATE

);

In the next step, we execute a PL/SQL block that creates a primitive event
structure with the name AddFlight and then maps the attributes of our
previously defined table flights onto this structure. This mapping is de-
manded by the line tab alias => exf$table alias(’flights’). The at-
tribute name f could later play a role for the specification of the rule condi-
tion, if this primitive DML event is part of a composite event. In that case,
properties like the customer ID can be referenced via f.customerID.

BEGIN

2Comments in the installation scripts indicate that the support of UPDATE and
DELETE operations for generating DML events is planned.

18

DBMS_RLMGR.CREATE_EVENT_STRUCT (
event_struct => ’AddFlight’
);
DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (
event_struct => ’AddFlight’,
attr_name => ’f’,
tab_alias => exf$table_alias(’flights’)
);

END;

Now, we can generate a DML event by inserting a data record into the
table flights. As we will see in Chapter 3 which investigates the internal
representation of the Rules Manager, a database trigger watches out for
INSERT operations and raises the according events.

INSERT INTO flights (customerID, airline,
departureCity, arrivalCity,
departureDate, arrivalDate)

VALUES (12345, ’ABC Air’,
’London’, ’Madrid’,
’23-May-2007 14:30:00’, ’23-May-2007 15:20:00’);

The example above spawns a DML event that has all six attribute values of
the INSERT statement. From the rule class’ point of view, this is equivalent
to the following primitive event instance defined by using an object type3.

CREATE TYPE AddFlightEvent AS OBJECT (
customerID NUMBER(10),
airline VARCHAR2(20),
departureCity VARCHAR2(30),
arrivalCity VARCHAR2(30),
departureDate DATE,
arrivalDate DATE

);

AddFlightEvent (12345, ’ABC Air’, ’London’, ’Madrid’,
’23-May-2007 14:30:00’,

3The name ’AddFlightEvent’ instead of ’flights’ was only chosen for reasons of consis-
tency.

19

’23-May-2007 15:20:00’
);

Both event instances described above have the same name, the same at-
tributes, and the attributes have the same values. Being processed by a
rule class, they would have exactly the same effect regardless whether the
instance was generated using an object type or as a DML event. Having
regarded these two ways of defining and producing primitive events, we will
now consider a special kind of primitive events, XML events.

XML Events

As XML events we consider primitive events with at least one attribute
of Oracle’s XMLType. The primitive event can have other non-XMLType
attributes or just consist of one single XMLType attribute.

CREATE or REPLACE TYPE XMLEvent AS OBJECT (
doc sys.XMLType

);

An XML event seems to be conspicuously different from a normal primitive
event since the latter has a fixed nature, because the structure of a primitive
event has to be defined before the creation of rule classes, whereas the XML
event can possibly have any conceivable shape. But this seemingly vast
flexibility of XML events reaches its boundaries when we come to the rule
condition part. Because the rules (including the condition part) are speci-
fied before the occurrence of XML events, and for being able to formulate
reasonable conditions on XML events it is necessary to have information
about the XML structure in advance. In this way XML events forfeit a
major possible advantage in comparison to standard primitive events.

For the illustration of an XML event instance, we converted the ac-
quainted example of a flight booking.

XMLBookingEvent (
sys.XMLType(’<bookingEvent>

<customerID>12345</customerID>
<airline>ABC Air</airline>
<depCity>London</depCity>
<arrCity>Madrid</arrCity>
<depDate>23-May-2007 14:30:00</depDate>
<arrDate>23-May-2007 15:20:00</arrDate>

20

</bookingEvent>’)
);

In Section 2.3.1, we will resume this discussion when we survey rule con-
ditions for XML events. Next, we address the constitution of composite
events.

2.2.2 Composite Events

The aforementioned primitive event structures can be combined in order to
define structures for composite events. A composite event structure consists
of two or more already defined primitive event structures. The Rules Man-
ager fulfils the task of collecting the individual primitive events that will
usually occur at different points in time and joins them together so that
they can be processed as one composite event. In the following example, we
combine a flight booking event and a hotel booking event. A possible join
condition for both events could be an equality of the customerID. First, we
define two primitive event structures using Oracle’s object type and then we
compose both to one new structure.

CREATE or REPLACE TYPE flightBookingEvent AS OBJECT (
bookingID NUMBER(10) PRIMARY KEY,
flightID VARCHAR2(6),
customerID NUMBER(10),
price NUMBER(6,2),
class VARCHAR2(20)

);

CREATE or REPLACE TYPE hotelBookingEvent AS OBJECT (
customerID NUMBER(10),
hotelID NUMBER(10),
checkOut DATE,
checkIn DATE,
price NUMBER(6,2),
options VARCHAR2(100)

);

These two primitive event structures are composed in the next step. The
definition of a composite event structure is a plain enumeration of two or
more primitive event structures. Already defined composite event structures
cannot be integrated into the definition of a new composite event structure,
so that nesting is not allowed by the Rules Manager.

21

A composite event structure can be regarded as a set of primitive event
structures which are not connected in a Boolean way. The formulation
of connections via Boolean operators takes place in the definition of rule
conditions which we discuss in Section 2.3.1

CREATE or REPLACE TYPE compositeBookingEvent AS OBJECT (
f flightBookingEvent,
h hotelBookingEvent

);

The Oracle Rules Manager collects all occurring primitive events and stores
them as long as they are not consumed and their duration is not expired.
For example, first a flight booking event might occur. The customer with
the ID 12345 books a ticket for the flight with the ID 5582. The seat costs
¤129.95 and is in the economy class.

flightBookingEvent (4733, 5582, 12345, 129.95, ’economy’);

This event instance will be stored and some time later, a hotel booking event
generated by the same customer could occur. The following instance of a
hotelBookingEvent assumes the booking of a single room with breakfast
for ¤149.95 in the hotel with the ID 553 from May 23rd to May 25th 2007.

hotelBookingEvent (12345, 553, ’23-May-2007 9:00:00’,
’25-May-2007 9:00:00’, 149.95,
’single room, breakfast inclusive’

);

If the instance of hotelBookingEvent is processed by a rule class that uses
the above defined composite event structure compositeBookingEvent, and
the rule class has previously processed and stored the instance of
flightBookingEvent, then the Rules Manager detects that both together
build an instance of compositeBookingEvent and attempts to match the
rules of the rule class. The sequence in which the primitive events occur is
irrelevant for building the composite event.

In the succeeding section about rules, we will examine in which ways
conditions can be specified accessing the event properties. Generally, if a new
primitive event arises and is processed by a rule class using composite events,
then the new event instance is combined with the already stored primitive

22

events in order to build a composite event that can be matched against the
rules of the rule class until it is consumed. If the newly added primitive event
remains unconsumed and no rule was triggered during the attempt to match
the rule conditions, then the next combination of building a composite event
with the newly added primitive event and the stored primitive events will
be tried. This process continues until the event is consumed or all possible
combinations of joining the existing primitive events to a composite event
have been tried. In the latter case the new primitive event will be stored
taking into account the specified duration. The sequence in which primitive
events are used for building composite events on the one hand, and the
sequence in which the rules are matched on the other hand can be defined for
a rule class as described in Section 2.4 which analyses the event management
of the Rules Manager.

2.3 Rules in Oracle

Oracle manages rules in groups of similar rules. Such a group of rules is
called a rule class. As described at the beginning, the Oracle Rules Man-
ager is able to handle rules that can be specified in Event-Condition-Action
(ECA) rule semantics and accordingly the definition of a rule in Oracle
requires three parts: An event part, a condition part and an action part.

All rules of a rule class automatically have the same event part and the
same action part, but each rule is characterised by a different condition
part1.

The event part of a rule class definition refers to an already defined
event structure for primitive or composite events. In the following example
we define a structure for a simple booking event and afterwards we create
a rule class that uses this event structure. This is done by the procedure
DBMS RLMGR.CREATE RULE CLASS. The parameter rule class sets the name
of the rule class and has to be unique because a table with that name is cre-
ated. event struct references to an already existing event structure, e.g.
an appropriate type, and action cbk defines the name of the action proce-
dure. These three parameters are required for all rule classes. Additional
optional parameters are:

• actprf spec enables the specification of action preferences. If a rule
condition is matched, then the triggered action can access these rule-
specific parameters. In the example below, each rule has a different

1It is not forbidden to have two rules with the same condition part in one rule class, but
in general it presumably is not desired because in case of exclusive event consumption, one
of the two rules will never be matched. The decision which rule might be matched by an
event and which one will always be ignored is made by the conflict resolution criterion as
described in Section 2.4 about event management. In case of shared event consumption,
the action will not be triggered or it will be triggered twice.

23

destinationLanguage. One or more action preferences can be speci-
fied and in the created rule class table, each parameter is represented
by one column. The values of these parameters are individually spec-
ified for each rule at the time the rule is added to the rule class.

• rlst viewnm creates a result view that shows matching events and
rules of a session.

• rlcls prop can be used for specifying properties of the rule class.
Oracle provides a simple XML syntax for this purpose. A detailed
examination of the possible options ensues in Section 2.4 about event
management. An XML Schema definition can be found in [2]. This
parameter has the default value <simple/> and for rule classes that
deal with composite events at least rlcls prop => ’<composite/> ’
has to be declared.

CREATE TYPE bookingEvent AS OBJECT (
customerID NUMBER(10),
startCity VARCHAR2(50),
destinationCity VARCHAR2(50),
departure DATE,
arrival DATE
);

BEGIN

DBMS_RLMGR.CREATE_RULE_CLASS (
rule_class => ’courseOfferClass’,
event_struct => ’bookingEvent’,
action_cbk => ’courseOfferAction’,
actprf_spec => ’destinationLanguage VARCHAR2(20)’

);

END;

The above-named command DBMS RLMGR.CREATE RULE CLASS creates a rela-
tional table that has the same name as the rule class, here courseOfferClass,
in which rules can be inserted, and it creates a skeleton procedure with the
name courseOfferAction that has the following shape at this time:

24

PROCEDURE courseOfferAction (rlm$event bookingEvent,
rlm$rule courseOfferClass%ROWTYPE)

IS

BEGIN
null;

END;

This template can now be replaced with the intended procedure. In the
succeeding example we imagine that the airline wants to offer all customers
a language course that fly to a country where a language is spoken that
is different from the customer’s native tongue. We assume that the first
language of the customer is stored in the table customers and that the
actual posting of the offer is done by a function offerLanguageCourse(cid
NUMBER(10), lang VARCHAR2(20)) which takes the customer ID and the
destination language as parameters.

The following procedure courseOfferAction is called with two argu-
ments. rlm$event bookingEvent is an instance of the event structure
bookingEvent and all event properties (customerID, startCity,
destinationCity, departure, arrival and rlm$crttime) can be
accessed by the procedure. rlm$rule courseOfferClass%ROWTYPE is one
row of rule class table courseOfferClass and represents that rule which
triggered the action. The row consists of rlm$ruleid, rlm$rulecond,
rlm$ruledesc and in our example, the additional parameter for action pref-
erences, destinationLanguage.

CREATE OR REPLACE PROCEDURE courseOfferAction
(rlm$event bookingEvent,
rlm$rule courseOfferClass%ROWTYPE)

IS

BEGIN

DECLARE
cid NUMBER(10);
lang1 VARCHAR2(20);
lang2 VARCHAR2(20);

BEGIN

cid := bookingEvent.customerID;

25

lang1 := rlm$rule.destinationLanguage;
SELECT language
INTO lang2
FROM customers
WHERE customerID=cid;

IF lang1 != lang2 THEN

offerLanguageCourse(cid, lang1);

END IF;

END;

END;

Now we generate a few example rules and add them to the rule class.
There are two ways in which rules can be specified. One is to use the
procedure DBMS RLMGR.ADD RULE and the other is to directly insert the new
rule into the rule class table which we address afterwards. The procedure
DBMS RLMGR.ADD RULE requires at least the three parameters: rule class
indicates to which rule class the rule is added, rule id which has to be
unique, and rule cond which describes the rule condition. This condition
is specified in XML. The root element is <condition> which can be omit-
ted for rule classes using primitive events. A detailed description follows in
Section 2.3.1 and additional examples can be found in Chapter 4. The XML
Schema definition is given in [2].

The idea of the first rule in the following example is to offer somebody,
who books a flight to Oslo, a language course for Norwegian, if he or she
does not speak Norwegian as native language, which is checked in the action
part.

BEGIN

DBMS_RLMGR.ADD_RULE (
rule_class => ’courseOfferClass’,
rule_id => ’RULE0001’,
rule_cond => ’<condition>

destinationCity=’’Oslo’’
</condition>’,

actprf_nml => ’destinationLanguage’,
actprf_vall => ’Norwegian’

26

);

END;

In the example above, actprf nml is a list of action preference names for
which values will be assigned through the actprf vall argument [10].

BEGIN

DBMS_RLMGR.ADD_RULE (
rule_class => ’courseOfferClass’,
rule_id => ’RULE0002’,
rule_cond => ’<condition>

destinationCity=’’Helsinki’’
</condition>’,

actprf_nml => ’destinationLanguage’,
actprf_vall => ’Finnish’
);

DBMS_RLMGR.ADD_RULE (
rule_class => ’courseOfferClass’,
rule_id => ’RULE0003’,
rule_cond => ’<condition>

destinationCity=’’Stockholm’’
</condition>’,

actprf_nml => ’destinationLanguage’,
actprf_vall => ’Swedish’
);

END;

Instead of using DBMS RLMGR.ADD RULE it is possible to directly insert rules
into the rule class table. This has exactly the same effect as the above-
mentioned statements.

INSERT INTO courseOfferClass (rlm$ruleid, rlm$rulecond,
destinationLanguage)

VALUES (’RULE0001’,
’<condition>destinationCity=’’Oslo’’</condition>’,
’Norwegian’

27

);

INSERT INTO courseOfferClass (rlm$ruleid, rlm$rulecond,
destinationLanguage)

VALUES (’RULE0002’,
’<condition>destinationCity=’’Helsinki’’</condition>’,
’Finnish’

);

INSERT INTO courseOfferClass (rlm$ruleid, rlm$rulecond,
destinationLanguage)

VALUES (’RULE0003’,
’<condition>destinationCity=’’Stockholm’’</condition>’,
’Swedish’

);

With this knowledge of how rule classes are created and how rules are man-
aged by the Rules Manager in background, next we scrutinize Oracle’s im-
plementation of the second component of ECA rules: the rule condition.

2.3.1 Rule Conditions

The rule condition part is an expression that accesses attributes of the event
instance and then evaluates either to true or to false. This evaluation of
the whole rule condition proceeds by evaluating Boolean values for each
attribute that is accessed and then typically combining them to a complex
Boolean expression which is constructed using the equivalents of the Boolean
operators AND, OR and NOT.

Rule Conditions for Primitive Events

Rule conditions for primitive events usually access some attributes of the
event and compare them to predefined values. Comparison operators are
equal “=” and not equal “!=”, less than “<” and more than “’>”, less or
equal than “<=” and more or equal than “>=”, and “IS NULL” and “IS NOT
NULL”. These atomic comparison elements consisting of a predefined value,
a comparison operator and an event attribute can be combined with the
above-mentioned Boolean operators. The following are two simple condition
examples applied to our standard event example of a flight booking. The
first condition evaluates to true for all flight bookings from Frankfurt to
London, the second for all flight bookings from or to Oslo.

CREATE TYPE bookingEvent AS OBJECT (

28

customerID NUMBER(10),
startCity VARCHAR2(50),
destinationCity VARCHAR2(50),
departure DATE,
arrival DATE

);

The following two examples illustrate possible rule conditions (rlm$rulecond)
that access the properties of a bookingEvent.

<condition>
startCity = ’’Frankfurt’’ AND destinationCity = ’’London’’

</condition>

<condition>
startCity = ’’Oslo’’ OR destinationCity = ’’Oslo’’

</condition>

Rule Conditions for Composite Events

Rule conditions for composite events can use all aforementioned comparison
operations and Boolean operators that combine these comparison elements.
Moreover, Oracle provides a simple XML syntax for setting the individual
primitive events into relation with each other and formulating conditions
on these relations. Primitive events can be joined by an and element which
corresponds to the Boolean operator AND, they can be connected by an
any element which corresponds to the Boolean operator OR, and they can
be endued with a not element which is a logical negation. Furthermore the
Rules Manager syntax supplies a notany element, which combines the not
and any elements and evaluates to true in case of the non-existence of all
primitive events specified within.

The following is a simple example of a rule condition on a composite
event structure using the and element.

CREATE or REPLACE TYPE flightBookingEvent AS OBJECT (
bookingID NUMBER(10) PRIMARY KEY,
flightID VARCHAR2(6),
customerID NUMBER(10),
price NUMBER(6,2),
class VARCHAR2(20)

29

);

CREATE or REPLACE TYPE hotelBookingEvent AS OBJECT (
customerID NUMBER(10),
hotelID NUMBER(10),
checkOut DATE,
checkIn DATE,
price NUMBER(6,2),
options VARCHAR2(100)

);

CREATE or REPLACE TYPE compositeBookingEvent AS OBJECT (
f flightBookingEvent,
h hotelBookingEvent

);

<condition>
<and join="f.customerID = h.customerID">
<object name="flightBookingEvent"/>
<object name="hotelBookingEvent"/>

</and>
</condition>

Detailed examples for all these logical connectives and their possible combi-
nations will follow in Chapter 4 which discusses an example scenario of an
airline.

Rule Conditions for XML Events

As described in Section 2.2.1 about the event structure, an XML event has at
least one attribute of Oracle’s XMLType. In Oracle, there are two functions
for accessing the XML document that can be used within the rule condition,
EXISTSNODE and EXTRACT, and both of them use XPath [41] expressions.

The XML Path Language (XPath) is the standard language for address-
ing and selecting parts of XML documents. XPath is based on the UNIX
directory notation and it regards an XML document as a tree that can be
navigated. There are basically four kinds of data types that can be returned
if an XPath expression is applied to an XML document.

• A node or a set of nodes.

• A string, if a string function is used.

• A number, if the function sum() is used.

30

• A boolean value.

EXISTSNODE and EXTRACT are the two functions which are available for the
specification of rule conditions. EXISTSNODE returns 1, if the applied XPath
expression has one or more result nodes, and 0, if not. EXTRACT returns
these result nodes for the XPath expression as an XMLType fragment, or it
returns NULL, if the application does not result in any nodes.

Obviously all XPath expressions have to be specified at the time when
the rule is added to the rule class, which consequently means that pieces
of the structure of a possibly occurring XML event have to be known in
advance.

In the following example, we assume that an XML event is generated
every time a customer books a flight. First, we define the primitive event
structure consisting of one XMLType property. Next, we create the rule
class that uses this XML event structure. Then, we replace the template
procedure with our own procedure which outputs a line if it is executed.
Subsequently, we insert a rule into the rule class table whose condition part
checks whether the fragment /bookingEvent/destinationCity exists in
the XML document and if the string value is equal to “Oslo”.

Regarding the specification of the strings like rlm$rulecond, we have to
take into consideration that we need two single quotes in order to represent
an apostrophe within a string. Two single quotes are different from a double
quote which we need later for defining the value of an XML element attribute
[9].

CREATE or REPLACE TYPE bookingEventXML AS OBJECT (
doc sys.XMLType

);

BEGIN

DBMS_RLMGR.CREATE_RULE_CLASS (
rule_class => ’christmasSpecialClass’,
event_struct => ’bookingEventXML’,
action_cbk => ’sendChristmasSpecial’

);

END;

CREATE OR REPLACE PROCEDURE sendChristmasSpecial (
rlm$event bookingEventXML,
rlm$rule christmasSpecialClass%ROWTYPE)

31

IS

BEGIN

DBMS_OUTPUT.PUT_LINE(’Christmas Action triggered.’);

END;

INSERT INTO christmasSpecialClass (rlm$ruleid, rlm$rulecond)
VALUES (’RULE0001’,

’<condition>
EXISTSNODE(doc,
’’/bookingEvent/destinationCity’’) = 1

AND EXTRACT(doc,
’’/bookingEvent/destinationCity/text()=Oslo’’)

IS NOT NULL
</condition>’

);

Now everything is prepared for processing events. For testing purposes, we
generate two event instances. The first event instance does not fulfill the
rule condition, wheras the second event instance meets the requirements
and triggers the action. The function PROCESS RULES takes a name of a rule
class and an event instance as arguments, and matches the event against the
rules until the event instance is consumed. Details about this process follow
in Section 2.4 about event management and the sequence of rule matching.

BEGIN

DBMS_RLMGR.PROCESS_RULES (
rule_class => ’christmasSpecialClass’,
event_inst => AnyData.convertObject(

bookingEventXML(
XMLType(

’<bookingEvent>
<customerID>12345</customerID>
<startCity>Madrid</startCity>
<destinationCity>London</destinationCity>
<departure>31-Jan-2007 10:15:00</departure>
<arrival>31-Jan-2007 12:00:00</arrival>
</bookingEvent>

32

’))));

DBMS_RLMGR.PROCESS_RULES (
rule_class => ’christmasSpecialClass’,
event_inst => AnyData.convertObject(

bookingEventXML(
XMLType(

’<bookingEvent>
<customerID>12345</customerID>
<startCity>Berlin</startCity>
<destinationCity>Oslo</destinationCity>
<departure>23-Dec-2006 14:30:00</departure>
<arrival>23-Dec-2006 16:15:00</arrival>
</bookingEvent>

’))));

END;

In the next section, we survey an example of specifying rule conditions with
spatial attributes.

Rule Conditions with Spatial Attributes

If an event has at least one attribute of the MDSYS.SDO GEOMETRY
type, then spatial predicates can be specified within the rule condition. All
functions in the MDSYS.SDO GEOM package are available for this purpose.

For example in case of a customer inquiry event, SDO NN(geometry1,
geometry2, param [, number]) could be used in order to find the three nearest
airports for a customer in relation to her or his residence, and the booking
engine of the airline could automatically suggest these as favoured departure
airports.

Another example application could be a rule class that sends out infor-
mation about historic sites and other places of interest for sightseeing. One
rule in this rule class might post information about the city of Göttingen and
its landmark, the Gänseliesel fountain, if a passenger arrives at an airport
within a 100 mile radius. The city of Göttingen has the geo coordinates 51
32’ North and 9 56’ East [7]. The following rule condition accesses a special
booking event that has at least two attributes: the customer ID and the
location of arrival in the form of Oracle’s SDO GEOMETRY. Each rule could
have the tourist feature as an action preference. If an event matches a rule
condition and triggers an action, then the action procedure could retrieve
the email address from the customer table using the customer ID and send

33

out the appropriate information according to the action preference. Below
are the necessary event parts and the rule condition. The value “2001”
as SDO GTYPE indicates a point and the value “8307” as SDO SRID specifies
the so called “Longitude / Latitude (WGS 84)” coordinate system which
denominates the World Geodetic System from 1984 [8].

CREATE or REPLACE TYPE bookingEvent AS OBJECT (
CustId NUMBER,
destinationLocation MDSYS.SDO_GEOMETRY
);

<condition>
SDO_WITHIN_DISTANCE (destinationLocation,
SDO_GEOMETRY(2001, 8307,
SDO_POINT_TYPE(51.533333, -9.933333, NULL), NULL, NULL),

’distance=100 units=mile’) = ’TRUE’
</condition>

For further information on spatial predicates please refer to the “Spatial
User’s Guide and Reference 10g Release 2 (B14255)” [6].

2.3.2 Rule Action

If an event instance satisfies the condition of a rule, then the procedure
associated with the rule class is triggered. This user-defined procedure is
coded in PL/SQL and can potentially spawn rule actions of all kinds. Below
you will find a list of some possible options for rule actions. Please note
that all combinations and quantities of executions of PL/SQL commands
are conceivable.

• The rule action could simply be the output of a message using
DBMS OUTPUT.PUT LINE().

• It is self-evident that an Oracle procedure can execute every thinkable
SQL query and consequently all sorts of data retrieval, data manipu-
lation or even data definition activities. Any deeds of inserting data
may automatically raise further DML events and in future releases this
might also be true for update and delete operations.

• The function DBMS PIPE can be used in order to pass data to operating-
system commands.

• UTL FILE enables reading and writing in files.

34

• With UTL HTTP the procedure can send or retrieve data via the http
protocol.

• The function UTL SMTP allows the programmer of the rule action to
directly send mails.

• The action can raise new events and apply them to other rule classes
by using the functions DBMS RLMGR.ADD EVENT or
DBMS RLMGR.PROCESS RULES. This behaviour can be regarded as an
Event-Condition-Event chain instead of a standard ECA rule.

A detailed description of all additional possibilities of rule actions can be
found in the Oracle document “PL/SQL User’s Guide and Reference” [9].

2.4 Event Management

2.4.1 Consumption of Events

Each rule class has a consumption property which determines whether an
event can be used again for other rules of the rule class or it is accounted as
consumed and has to be removed once it matches a rule. The default policy
is “shared” which means that the event can be reapplied to all other rules of
the same rule class. If the consumption property is set to “exclusive”, then
an event can only be applied to one rule and it is removed afterwards.

Partial Consumption

If a composite event is consumed by a rule of a rule class with an “ex-
clusive” consumption property, then all primitive events that formed the
composite event are consumed. Instead of a complete consumption, it is
possible to fine-tune a partial consumption. Using the previous example of
a composite event, we can define a consumption property that removes only
the hotelBookingEvent from the system, while the flightBookingEvent
remains in the storage. As announced in Section 2.3, the rule class adopts
this behaviour by setting the parameter rlcls prop at the time of the rule
class creation.

...
rlcls_prop => ’<composite consumption="shared">

<object type="flightBookingEvent"
consumption="shared">

<object type="hotelBookingEvent"
consumption="exclusive">

</composite>’

35

...

Rule Based Consumption

Rule classes using composite events can have a third option as consumption
property: “rule”. This option enables the user to postpone the decision
which primitive events remain or are removed into the rule action part. It is
possible to consume only one of the primitive events that build the compos-
ite event, or a few, or all of them. This decision can be made dynamically.
The primitive events are removed by using the function
DBMS RLMGR.CONSUME PRIM EVENTS which returns 1 if all events are success-
fully consumed and 0, if one or more primitive events could not be removed.
Oracle suggests to depend the user-initiated action on the return value of
the CONSUME PRIM EVENTS call.

2.4.2 Ordering and Conflict Resolution

Dealing with rule classes that have a partial or overall “exclusive” consump-
tion policy, it might be very important in which order an event is applied
to a rule, and in case of composite events in which order existing primi-
tive events are used in order to merge to a composite event. For example,
if there are already two flightBookingEvents in the system and a new
hotelBookingEvent occurs, we can not predict which flightBookingEvent
is chosen to build the compositeBookingEvent together with the
hotelBookingEvent. Without the specification of a conflict resolution crite-
rion one of the two available flightBookingEvent is chosen at random from
the programmer’s point of view. The same question emerges if an event, re-
gardless whether primitive or composite, is processed by a rule class that
contains more than one rule. If there is no criterion which rule to choose,
a decision is made haphazardly. Therefore, if a deterministic behaviour is
required, an ordering criterion has to be specified. Potential criteria for as-
sembling composite events are the attributes of the primitive events. Besides
the user-defined attributes or the attributes that DML events inherit from
a table, every primitive event has a creation time attribute which can be
referenced as rlm$CrtTime. With the creation time attribute it is feasible
to start with the oldest or the newest available primitive event in order to
build a composite event. If a rule class has two or more rules, it appears to
be reasonable to use the rule ID as ordering criterion which rule is executed
first. The following example resumes with the above mentioned composite
event consisting of a flight and a hotel booking event.

...
rlcls_prop => ’<composite ordering="f.rlm$CrtTime,

36

h.rlm$CrtTime,
rlm$rule.rlm$ruleid"/>’

...

2.4.3 Duration of Events

In a rule class using a primitive event structure, all occurring event instances
are consumed immediately after processing regardless whether an event in-
stance triggered a rule action or not. Thus, the specification of a duration
concerns only primitive events which are part of a composite event structure,
and it relates only to the scope of the rule class that uses this structure. The
life cycle of such a primitive event instance begins at the time of its creation
and lasts for the specified duration, if it remains unconsumed. There are
several ways in which the lifetime of a primitive event can be stipulated.

• Firstly, the shortest life span is call duration. In this case a primitive
event or a subset of primitive events in a composite event exists only
during the processing of this call. Once the call of PROCESS RULES
or ADD EVENT is worked up, the one primitive event or the subset of
primitive events with call duration is deleted irrespective if any rule
condition was matched.

• Secondly, the event lifetime can take as long as a database transaction.
Unconsumed primitive events with transaction lifetime that did not
trigger a rule during the transaction are removed from the system so
that they can not be part of composite events after the transaction.

• Thirdly, the life span of a primitive event can be as long as a database
session. Primitive events with session lifetime can only match rules or
form composite events until the DISCONNECT takes place. Afterwards
unconsumed primitive events are deleted. Session duration and the
above mentioned transaction duration can only be specified for com-
posite events, not at the level of primitive events. If one of these two
options is used, then it cannot be overridden by specifications at the
primitive event level.

• Fourthly, a lifetime can be specified as a number of minutes, hours or
days. This period of time is added to the creation date and the result
indicates the point in time when the primitive event will be deleted.

• Lastly, if no duration is explicitly specified, then an event has an infi-
nite lifetime. The drawback of this option is that some primitive events
may never be part of a composite event that triggers a rule, but they
use up resources for storage and attempts of integrating these primitive
events into composite events.

37

Here are syntax examples for all aforementioned cases. Like in Section 2.4.1
about consumption and in Section 2.4.2 about ordering, these are possible
values of the rlcls prop parameter.

<composite duration="call"/>

<composite duration="session"/>

<composite duration="transaction"/>

<composite duration="5 minutes"/>

<composite duration="10 hours"/>

<composite duration="30 days"/>

<composite/> -- no duration specified, infinite event lifetime

Composite events can also have a differentiated duration policy. In this case
the duration specified for the composite event is the default duration for all
primitive events and it can be overridden by specifications for each primitive
event. An exception is a transaction or session duration for the composite
event which cannot be overridden.

The composite event in the next example has a default duration of
30 days. This policy is overridden at the primitive event level by set-
ting the lifetime for the flightBookingEvent to 8 hours and giving the
hotelBookingEvent a call duration. Assuming the composite event con-
sists of more than these two primitive events, all other here not explicitly
mentioned primitive events have a lifetime of 30 days.

<composite duration="30 days">
<object type="flightBookingEvent" duration="8 hours"/>
<object type="hotelBookingEvent" duration="call"/>
</composite>

In the following section we begin with a general consideration of rules in
Oracle and the Rules Manager’s method of operation by going through all
essential steps of defining and processing rules. After this introduction the
chapter closes with two sections that focus on the last two components
of ECA rules: the rule condition and the rule action. We examine the
possibilities of specifying these parts in the syntax of the Rules Manager.

38

Chapter 3

Internal Representation of
the Rules Manager

In the first section of this chapter, we scrutinize the fundamental structure
of the Rules Manager in the relational database. We pursue this target by
tracing back the installation process and analysing the installation scripts of
the Rules Manager. Knowing the basic structure, we successively simulate
two example scenarios, one scenario with primitive events and a second
scenario using a composite event structure. After each step, we examine the
effects of our actions, what changes are produced in the relational database.

3.1 Fundamental Structure

As the fundamental structure of the Rules Manager we regard those tables
that are created during the installation process of the database software.
These tables build the foundation for concrete rule classes and event struc-
tures. For instance they serve as dictionaries that store names of database
objects. In order to examine how the Rules Manager is internally repre-
sented in the Oracle database, it is very insightful to analyse the installation
scripts.

They can be found in the directory $ORACLE HOME/rdbms/admin and the
principal script that controls the installation process of the Rules Manager
is called catrul.sql which contains statements that execute some other
scripts:

--- Create object types required for the Rules Manager
@@rultyp.sql

--- Create Rules Manager Dictionary/Static tables
@@rultab.sql

39

--- Create Rules Manager Public PL/SQL package specification
@@rulpbs.sql

--- Create Rules Manager Catalog views
@@rulview.sql

(i) The first script, rultyp.sql, creates a few types and grants execution
rights for these types to public. It also creates rlm$table alias as a synonym
for exfsys.exf$table alias. The table alias is used for defining DML events,
i.e. events that are raised by INSERT statements, or in future releases of
the database software, also by UPDATE or DELETE statements.

(ii) The second script, rultab.sql, creates eighteen tables that store meta
information about rules and rule sets. They serve as the dictionary of the
Rules Manager. We will take a closer look at the most important of these
tables.

rlm$eventstruct is a fundamental table for primitive events. It consists
of three columns and two keys. Each event structure of the Rules Manager is
a row in this table. An event structure has an owner, a name and a number
of properties. The combination of owner and name functions as primary
key and as foreign key which connects rlm$eventstruct with the table
exf$attrset of the Expression Filter package. This means that the actual
attributes are stored in the table exf$attrset with one row per attribute.
More details can be found in the script exftab.sql. This is a good example
of how close the Rules Manager and the Expression Filter are interwoven
with each other.

Rule classes that operate with composite events require the table
rlm$rsprimevents. There is one row in this table for each primitive event
that is part of the composite event. Even if a composite event consists of
two or more primitive events of the same type, every primitive event has an
entry of its own.

The table rlm$primevttypemap stores information about properties of
primitive event types and in this way it connects the event structures with
rule classes. The same event structure can be used as a primitive event struc-
ture by different rule classes or for building one or more different composite
event structures that can be used by other rule classes. The properties that
rlm$primevttypemap stores for each rule class include information about
the consumption policy and duration of the primitive event.

DML events are automatically generated whenever data of an observed
table is modified which means at this point in time that an INSERT state-
ment is executed. Oracle copes with this task by using triggers and these
triggers are associated with the corresponding rule classes via the table
rlm$dmlevttrigs.

40

The two tables rlm4j$evtstructs and rlm4j$ruleset manage event
structures and rule classes that are created by the Oracle JDeveloper 10g
and relates them to the according java packages and java classes.

The principal dictionary table regarding rule classes is called
rlm$ruleset. For each rule class it keeps track of all the important meta
information: rlm$ruleset stores among other things the names of dictio-
naries for event structures and action procedures that are associated with
a rule class, it stores the names of the tables in which primitive event ob-
jects, expressions and results are collected for a rule class, and it stores rule
class properties like consumption policy of events, whether the sequence of
primitive events matters or not, and so forth.

(iii) The third sub-script, rulpbs.sql, defines and declares all procedures
that build the Rule Manager package and the Rule Manager for Java (rlm4j)
package. It also states the XML schema for rule class properties and the
syntax of rule conditions.

(iv) The fourth sub-script, rulview.sql, creates catalog views that al-
low the user to behold the event structures and rule classes stored in the
database, as well as some information on status and privileges. The script
accomplishes this by creating views that show information from protected
tables and then granting SELECT rights on these views to public. For exam-
ple, the first view is called USER RLMGR EVENT STRUCTS and shows data from
the table rlm$eventstruct. The view lists the event structure names and the
two properties “has timestamp (YES/NO)” and “is primitive (YES/NO)”
for all those event structures that are owned by the user who is executing the
SELECT statement. All views beginning with “USER” display those pieces
of information that belongs to the username that executed the “SELECT *
FROM view name” command. Here is a complete list of all views that are
generated by the script.

USER RLMGR EVENT STRUCTS
ALL RLMGR EVENT STRUCTS
ADM RLMGR EVENT STRUCTS
USER RLMGR RULE CLASSES
ALL RLMGR RULE CLASSES
ADM RLMGR RULE CLASSES
USER RLMGR RULE CLASS STATUS
ALL RLMGR RULE CLASS STATUS
ADM RLMGR RULE CLASS STATUS
USER RLMGR PRIVILEGES
ADM RLMGR PRIVILEGES
USER RLMGR COMPRCLS PROPERTIES
ALL RLMGR COMPRCLS PROPERTIES

41

ADM RLMGR COMPRCLS PROPERTIES
USER RLMGR ACTION ERRORS
ALL RLMGR ACTION ERRORS
ADM RLMGR ACTION ERRORS
USER RLM4J EVENT STRUCTS
USER RLM4J RULE CLASSES
USER RLM4J ATTRIBUTE ALIASES

Now we will do a step by step run through of two complete example sce-
narios. One example features the definition and application of a primitive
event structure and the other example avails a composite event structure.
After each single step we will examine all SQL tables of the Rules Manager
and seek for changes made by INSERTs, UPDATEs or DELETEs, and we
will search for new tables, procedures, triggers or objects that might have
been created as a result of our recent step.

3.2 Structure of a Scenario with Primitive Events

Step 1: Creating a Primitive Event Structure

First of all, we have to define the structure of a potentially occurring event.
Let us assume that in our scenario news can emerge from different sources
and they shall be distributed to various target groups of the airline like e.g.
customers, administrative personnel, flight personnel, pilots or all personnel.
The delivery of these messages shall be prioritised from 1 = high to 3 = low.
This information will be represented by events of a specific type:

CREATE OR REPLACE TYPE newsEvent AS OBJECT (
msg VARCHAR2(1000),
priority NUMBER,
target VARCHAR2(24)
);

This first step only creates a new object type with three attributes. There
are no changes in the tables belonging to the Rules Manager.

Step 2: Creating a Rule Class

Next, we create a rule class that uses the above specified event structure.
As an action preference we define the variable smtpServer, so that in our
example, each rule of the rule class decides which SMTP server is used in

42

Table 3.1: Entry of newsRuleClass in the table rlm$ruleset
RSET OWNER VARCHAR2(32) AIRLINE
RSET NAME VARCHAR2(32) NEWSRULECLASS
RSET PACK VARCHAR2(75) RLM$RULECLS PACK 91539
RSET EVENTST VARCHAR2(75) NEWSEVENT
ACTION CBK VARCHAR2(75) NEWSACTION
RSET RSLTVW VARCHAR2(32) RLM$SESSRSLTVIEW 91539
RSET RSLTTAB VARCHAR2(32) RLM$SESSRSLTTTAB 91539
RSET PRMEXPT VARCHAR2(32)
RSET PRMOBJT VARCHAR2(32)
RSET PRMRSLT VARCHAR2(32)
RSET STATUS NUMBER 0
RSET PROP NUMBER 1
RSET DURMIN NUMBER
RSET DURTCL VARCHAR2(100) N/A
RSET ORDRCL VARCHAR2(4000)
RSET REWOCL VARCHAR2(4000)
RSET STGCLS VARCHAR2(4000)
RSET EQCLS VARCHAR2(1000)
RSET OBJNM NUMBER 91539

order to distribute the message, depending on the combination of the priority
and the target group.

BEGIN

DBMS_RLMGR.CREATE_RULE_CLASS (
rule_class => ’newsRuleClass’,
event_struct => ’newsEvent’,
action_cbk => ’newsAction’,
actprf_spec => ’smtpServer VARCHAR2(50)’

);

END;

This second step has a number of consequences which can be conjectured
alone by reason of the time consumed for the execution of this command in
comparison to other commands. First, we examine the major table for rule

43

classes, rlm$ruleset. The query

SELECT * FROM EXFSYS.RLM$RULESET

leads to our new entry which is shown in the Table 3.1. The first column
states the column name in the rlm$ruleset table, the second column shows
the data type and the third one displays the value.
The sequence in which all further objects connected with this rule class are
created can be anticipated by the content of the table rlm$rulesetstcode.
It describes the meaning of the status code during the creation process.

RSET STCODE RSET STDESC RSET STNEXT
0 VALID

Creating Event
1 DICTIONARY SETUP

Structure Objects
EVENT STRUCTURE Creating and Configuring

2
CREATED Rule Class Repository
RULE CLASS TABLE(S) Configuring Incremental

3
CREATED Results tables
INCREMENTAL RESULTS Creating Action

4
TABLES CREATED Callback Procedure
ACTION CALLBACK Creating Rule Set

5
PROCEDURE CREATED Access Package(s)
RULE SET ACCESS Creating Expression Filter

6
PACKAGES CREATED Indexes for Rule Conditions
EXPRESSION FILTER

7
INDEXE(S) CREATED

When the creation process is completed, RSET STATUS in the rlm$ruleset
table is set to 0 (= VALID).

Now, we examine the creation of the event structure. The object type
newsEvent which we defined in step one with three attributes was altered
by our second step. It received an additional timestamp attribute called
RLM$CRTTIME and six new methods. Now it looks like this in detail:

Attributes
Name Null? Type
MSG VARCHAR2(1000)
PRIORITY NUMBER
TARGET VARCHAR2(24)
RLM$CRTTIME TIMESTAMP(6)

The new methods are the following:

44

METHOD
STATIC FUNCTION
GETTIMESTAMPCOMP RETURNS TIMESTAMP
Argument Name Type In/Out Default?
EXF$TSFORM VARCHAR2 IN
MSG VARCHAR2 IN
PRIORITY NUMBER IN
TARGET VARCHAR2 IN
RLM$CRTTIME TIMESTAMP IN DEFAULT

METHOD
FINAL CONSTRUCTOR FUNCTION
NEWSEVENT RETURNS SELF AS RESULT
Argument Name Type In/Out Default?
MSG VARCHAR2 IN
PRIORITY NUMBER IN
TARGET VARCHAR2 IN
RLM$CRTTIME TIMESTAMP IN DEFAULT

METHOD
STATIC FUNCTION
GETVARCHAR RETURNS VARCHAR2
Argument Name Type In/Out Default?
MSG VARCHAR2 IN
PRIORITY NUMBER IN
TARGET VARCHAR2 IN
RLM$CRTTIME TIMESTAMP IN DEFAULT

METHOD
MEMBER FUNCTION
GETVARCHAR RETURNS VARCHAR2
METHOD STATIC FUNCTION
GETEQUIVQUERY RETURNS VARCHAR2
Argument Name Type In/Out Default?
EXF$EXPR VARCHAR2 IN

45

METHOD
STATIC PROCEDURE
DYNAMICEVAL
Argument Name Type In/Out Default?
EXF$SPEVAL NUMBER IN/OUT
EXF$RID UNDEFINED IN
EXF$SPRED VARCHAR2 IN
MSG VARCHAR2 IN
PRIORITY NUMBER IN
TARGET VARCHAR2 IN
RLM$CRTTIME TIMESTAMP IN DEFAULT

METHOD
STATIC PROCEDURE
DYNAMICEVAL
Argument Name Type In/Out Default?
EXF$SPEVAL NUMBER IN/OUT
EXF$RID UNDEFINED IN
EXF$SPRED VARCHAR2 IN
EXF$ANYD ANYDATA IN

The implementation of these methods is only in binary format available
which is not human readable, so that unfortunately we cannot retrace further
details of the implementation.

The function GETTIMESTAMPCOMP is used by the constructor function
which creates and returns an event instance with a timestamp of the creation
time.

The methods GETVARCHAR and DYNAMICEVAL, both with two different sig-
natures, represent the three ways in which a rule class can process an event
instance: firstly, by calling DBMS RLMGR.PROCESS RULES and
EventName.GETVARCHAR which converts the event instance attributes to a
string of name-value pairs, secondly, by calling DBMS RLMGR.ADD EVENT which
uses the DYNAMICEVAL procedure with all event attributes in its signature,
and thirdly, by calling DBMS RLMGR.PROCESS RULES in combination with
AnyData.convertObject which is handled by the other DYNAMICEVAL pro-
cedure.

As stated in the general description above, another consequence of pro-
moting the object type newsEvent to an event structure is the insertion of
a row in table rlm$eventstruct, which stores all event structures of the
Rules Manager.

46

EVST OWNER VARCHAR2(32) AIRLINE
EVST NAME VARCHAR2(32) NEWSEVENT
EVST PROP NUMBER 3

The event structure property encodes the information that it has a creation
timestamp attribute (1) and (+) it can only be primitive (2), so that the
value is 1 + 2 = 3. This bitmap encodes only these two attributes and the
explanation is stated in the script rultab.sql. The combination of owner
and name acts both as primary key of the table and as foreign key referenc-
ing to the table exf$attrset which stores a complete list of attribute sets
for Expression Filter, with one row per set.

ATSOWNER VARCHAR2(32) AIRLINE
ATSNAME VARCHAR2(32) NEWSEVENT
ATSTABTYP VARCHAR2(75) EXF$NTT 91507
ATSFLAGS NUMBER 1

The name exf$ntt 91507 indicates that we are dealing with a nested ta-
ble type which handles an unordered set of elements. exf$ntt 91507 is a
multicolumn table and has one column for each attribute.

These changes have been made regarding the event structure. For the
storage of rules, a table called newsRuleClass was created with the follow-
ing colums:

Name Null? Type
RLM$RULEID NOT NULL VARCHAR2(100)
SMTPSERVER VARCHAR2(50)
RLM$RULECOND VARCHAR2(4000)
RLM$RULEDESC VARCHAR2(1000)

With the execution of DBMS RLMGR.CREATE RULE CLASS, Oracle generated
a dummy procedure called newsAction that does nothing at the moment
(action body = “null;”) and it shall be replaced by a user-defined action
which will happen in the next step.

The third row of Table 3.2 refers to the rule class package
rlm$rulecls pack 91539 which is a collection of eight methods for manag-
ing rules and events: the two procedures ADD RULE and DELETE RULE can be
used instead of directly inserting rows into or deleting rows from the rule
class table. RESET SESSION makes a clean sweep and resets the current ses-
sion. A consequence of calling RESET SESSION would be the removal of all
primitive events with a session lifetime in a composite event scenario. The

47

two procedures ADD EVENT and EXEC RULES both take an event instance as
argument and both are available with two different signatures: VARCHAR2, if
the event instance is converted to a long string with name-value pairs of all
attributes, or ANYDATA. The last function, CONSUME EVENT returns a number
that indicates whether the consumption was successful or not.

Step 3: Defining the Action

In step three we replace the dummy procedure with a user-defined action. A
simple output suffices our testing purposes, so that we can see if the action
was duly triggered.

CREATE OR REPLACE PROCEDURE newsAction (rlm$event newsEvent,
rlm$rule newsRuleClass%ROWTYPE) is

BEGIN

DBMS_OUTPUT.PUT_LINE(’News Action triggered.’);
-- Action implementation or forward the task
-- by calling an appropriate function like:
-- sendNews(rlm$event.msg, rlm$event.target,
-- rlm$rule.smtpServer);

END;

Step 4: Adding Rules

We merely add a rule and the only alteration in the database is one new
row in the newsRuleClass table. This direct method with INSERT INTO is
equivalent to the usage of the procedure DBMS RLMGR.ADD RULE.

INSERT INTO newsRuleClass (rlm$ruleid, rlm$rulecond,
smtpServer)

VALUES (
’RULE01’,
’<condition>priority=1 AND target=’’pilots’’</condition>’,
’mail42.abcair.com’
);

48

Step 5: Processing Events

Now we process an adequate event instance that matches the condition of
our test rule.

BEGIN

DBMS_RLMGR.PROCESS_RULES (
rule_class => ’newsRuleClass’,
event_inst => newsEvent.getVarchar(’Christmas bonus doubled.’,

1, ’pilots’)
);

END;

The output shows that the action is triggered as expected.
rlm$sessrsltttab 91539 and rlm$sessrsltview 91539 are empty. There
are no stored events because a rule class using a primitive event structure
consumes all event instances immediately, irrespective of whether the event
instance fulfilled a condition and triggered an action or not.

Now we move on to a more elaborate scenario with composite events in
which the rule class has to store primitive events that potentially might be
part of future composite events matching a rule.

3.3 Structure of a Scenario with Composite Events

In our second example, we will discuss only those details of the internal
structure that have not been already examined in the first scenario. This
especially concerns the storage of unconsumed primitive events for a future
processing.

Let us image a simple scenario of flight scheduling. A flight is unambigu-
ously characterised by a flight ID. An aeroplaneEvent assigns an aircraft to
the flight. This event also contains two pieces of information: Which licence
is at least required by the pilot and the copilot and how many stewardesses
and stewards are needed for operating the flight. This number shall be two,
three or four in our example. Besides, we claim that each flight requires
one pilot and one copilot. Each pilotEvent or serviceStaffEvents corre-
sponds to attempted assignment of one person to the flight. The scheduling
of a flight shall be complete if all requirements are met (rule number 3, 4
and 5 below), and the according action shall be carried out. In reality that
would be the actual assignment, in our example it is the insertion of a log
entry into a table.

49

Step 1: Creating a Composite Event Structure

First, we define three different structures of primitive events using Oracle’s
object types, and based on these primitive event structures we then define
our composite event structure which represents a flight scheduling.

CREATE OR REPLACE TYPE aeroplaneEvent AS OBJECT (
flightID NUMBER,
planeType VARCHAR2(50),
requiredPilotLicenceClass NUMBER,
requiredServicePersonnel NUMBER
);

CREATE OR REPLACE TYPE pilotEvent AS OBJECT (
flightID NUMBER,
staffID NUMBER,
pilotLicenceClass NUMBER,
name VARCHAR2(50),
position VARCHAR2(7) -- ’pilot’ or ’copilot’
);

CREATE OR REPLACE TYPE serviceStaffEvent AS OBJECT (
flightID NUMBER,
staffID NUMBER,
name VARCHAR2(50)
);

CREATE OR REPLACE TYPE FSEvent AS OBJECT (
plane aeroplaneEvent,
pilot pilotEvent,
copilot pilotEvent,
service1 serviceStaffEvent,
service2 serviceStaffEvent,
service3 serviceStaffEvent,
service4 serviceStaffEvent
);

Step 2: Creating a Rule Class

In the following definition, we endow our rule class with an exclusive con-
sumption policy as default value, whereas the aeroplaneEvent is specified
with a shared consumption, so that even if pilotEvents with an insufficient

50

licence class occur, the aeroplaneEvent is stored in the system, whereas the
improper pilotEvent is consumed. Initially the following rule class defini-
tion contained the name “FlightSchedulingEvent” instead of “FSEvent”.
This lead to the error message:

ORA-38417: attribute set AIRLINE.FLIGHTSCHEDULINGEVENT
does not exist

The attribute set existed, but it turned out that the name was too long.
After renaming the composite event structure to FSEvent everything worked
fine, and the rule class can be created:

BEGIN

DBMS_RLMGR.CREATE_RULE_CLASS (
rule_class => ’flightSchedulingRuleClass’,
event_struct => ’FSEvent’,
action_cbk => ’flightSchedulingAction’,
rslt_viewnm => ’flightSchedulingResultView’,
actprf_spec => ’msg VARCHAR2(100),

code NUMBER’, -- 0=ok, 1=error
rlcls_prop =>
’<composite consumption="exclusive"

ordering="plane.rlm$CrtTime,
rlm$rule.rlm$ruleid DESC"

duration="7 days">
<object type="pilotEvent" duration="5 days"/>
<object type="serviceStaffEvent" duration="3 days"

consumption="shared"/>
<object type="aeroplaneEvent" consumption="shared"/>
</composite>’

);

END;

In comparison to the first example, the new row in the table rlm$ruleset
has some extra attributes: the order clause for the sequence of rule matching,
the duration as a string and in minutes, as well as the names of three tables
for managing primitive events. The value of RSET PROP, 61, is added up by
different properties of the rule class. It is indexed (1), it uses composite

51

events (4), sequence is enabled (8), autocommit after each add rule, process
rule or delete rule operation is activated (16) and the default consumption
is exclusive (32). All these properties (1 + 4 + 8 + 16 + 32) sum up to 61.
This bitmap is explained in the comments of the script rultab.sql.

RSET OWNER VARCHAR2(32) AIRLINE

RSET NAME VARCHAR2(32) FLIGHTSCHEDULINGRULECLASS

RSET PACK VARCHAR2(75) RLM$RULECLS PACK 93045

RSET EVENTST VARCHAR2(75) FSEVENT

ACTION CBK VARCHAR2(75) FLIGHTSCHEDULINGACTION

RSET RSLTVW VARCHAR2(32) RLM$SESSRSLTVIEW 93045

RSET RSLTTAB VARCHAR2(32) RLM$SESSRSLTTTAB 93045

RSET PRMEXPT VARCHAR2(32) RLM$PRMEXPRT 93045

RSET PRMOBJT VARCHAR2(32) RLM$PRMEVENTS 93045

RSET PRMRSLT VARCHAR2(32) RLM$PRMINCRSLT 93045

RSET STATUS NUMBER 0

RSET PROP NUMBER 61

RSET DURMIN NUMBER 10080

RSET DURTCL VARCHAR2(100) 7 DAYS

plane.rlm$CrtTime,
RSET ORDRCL VARCHAR2(4000)

rlm$rule.rlm$ruleid DESC

RSET REWOCL VARCHAR2(4000)

RSET STGCLS VARCHAR2(4000)

RSET EQCLS VARCHAR2(1000)

RSET OBJNM NUMBER 93045

Another consequence of creating a rule class with composite events is the
addition of all primitive events to the table rlm$rsprimevents. The two
columns RSET OWNER and RSET NAME which have the values
“AIRLINE” and “FLIGHTSCHEDULINGRULECLASS” are left out for
lack of space.

PRIM ATTR PRIM ATTRPOS PRIM ATTRALS PRIM ASETNM
PLANE 1 RLM$PRMEVT 1 AEROPLANEEVENT
PILOT 2 RLM$PRMEVT 2 PILOTEVENT
COPILOT 3 RLM$PRMEVT 3 PILOTEVENT
SERVICE1 4 RLM$PRMEVT 4 SERVICESTAFFEVENT
SERVICE2 5 RLM$PRMEVT 5 SERVICESTAFFEVENT
SERVICE3 6 RLM$PRMEVT 6 SERVICESTAFFEVENT
SERVICE4 7 RLM$PRMEVT 7 SERVICESTAFFEVENT

52

Step 3: Defining the Action

Our action is the simple adding of a log entry into the table FSActionlog
with timestamp, so that we can keep track of which rule triggers the action
and when this does take place.

CREATE TABLE FSActionLog(
msg VARCHAR2(100),
code NUMBER,
ts TIMESTAMP

);

CREATE OR REPLACE PROCEDURE flightSchedulingAction (
plane aeroplaneEvent,
pilot pilotEvent,
copilot pilotEvent,
service1 serviceStaffEvent,
service2 serviceStaffEvent,
service3 serviceStaffEvent,
service4 serviceStaffEvent,
rlm$rule flightSchedulingRuleClass%ROWTYPE

) is

BEGIN

INSERT INTO FSActionLog (msg,code,ts)
VALUES (rlm$rule.msg, rlm$rule.code, SYSDATE);

END;

Step 4: Adding Rules

The task of the first two rules is to check whether the pilot and the copilot
have the required licence class for operating the aircraft. If the licence is
insufficient, the pilot or copilot event is consumed and an entry is added
to the log table, whereas the aeroplaneEvent stays in the system. Rule
number three, four and five audit whether the required number of service
personnel is assigned to the flight. It would be desirable being able to
specify this condition in just one rule with a syntax like <any count="3
+ plane.requiredServicePersonnel" ...> , but this is not possible, be-
cause the attribute “count” accepts only a number as value and not a string

53

like ”3 + plane.requiredServicePersonnel” that has to be computed to
a number. Therefore we have to phrase three rules in our example in order
to cover all possible cases and it is easy to imagine other scenarios in which
hundreds or thousands of rules have to be specified because of this limita-
tion. The fifth rule uses the and element instead of the any element due to
the fact that the value of count can be a number that is smaller than the
cardinality of the whole set which is seven in our example.

RULE01

INSERT INTO flightSchedulingRuleClass (rlm$ruleid,
rlm$rulecond,
msg, code)

VALUES (
’RULE01’,
’<condition>

<and join="plane.flightID = pilot.flightID and
plane.requiredPilotLicenceClass
> pilot.pilotLicenceClass"

sequence="yes">
<object name="plane"/>
<object name="pilot">position = ’’pilot’’</object>
</and>

</condition>’,
’Error: Pilot license insufficient.’,
1
);

Firstly, the condition demands that the flightIDs of the both primitive
events shall be equal, secondly that the licence class of the pilot shall be
smaller than the one required by the aircraft and thirdly, the sequence at-
tribute postulates that the aeroplaneEvent occurs before the pilotEvent.
The occurrence of an aeroplaneEvent and a pilotEvent is required by the
rule, the other primitive events of the composite event structure can be NULL.

RULE02

INSERT INTO flightSchedulingRuleClass (rlm$ruleid,
rlm$rulecond,
msg, code)

54

VALUES (
’RULE02’,
’<condition>
<and join="plane.flightID = copilot.flightID and

plane.requiredPilotLicenceClass
> copilot.pilotLicenceClass"

sequence="yes">
<object name="plane"/>
<object name="copilot">position = ’’copilot’’</object>
</and>

</condition>’,
’Error: Copilot license insufficient.’,
1

);

The second rule is very similar to the first rule. The condition checks
whether the licence class is lower than the one required for operating the
plane. If so, it evaluates to true.

RULE03

INSERT INTO flightSchedulingRuleClass (rlm$ruleid,
rlm$rulecond,
msg, code)

VALUES (
’RULE03’,
’<condition>
<any count="5"
equal="plane.flightID, pilot.flightID, copilot.flightID,

service1.flightID, service2.flightID,
service3.flightID, service4.flightID"

join="plane IS NOT NULL and pilot IS NOT NULL
and copilot IS NOT NULL
and plane.requiredServicePersonnel=2">

<object name="plane"/>
<object name="pilot"/>
<object name="copilot"/>
<object name="service1"/>
<object name="service2"/>
<object name="service3"/>
<object name="service4"/>

55

</any>
</condition>’,

’Flight scheduling ok. (Rule 3)’,
0
);

The condition of the third rule uses an any element in its specification.
count="5" demands that at least five out of the seven primitive events that
build the composite event have to occur. Ergo, two primitive events can be
NULL. The join attribute ensures that plane, pilot and copilot are not
NULL.

RULE04

INSERT INTO flightSchedulingRuleClass (rlm$ruleid,
rlm$rulecond,
msg, code)

VALUES (
’RULE04’,
’<condition>

<any count="6"
equal="plane.flightID, pilot.flightID, copilot.flightID,

service1.flightID, service2.flightID,
service3.flightID, service4.flightID"

join="plane IS NOT NULL and pilot IS NOT NULL
and copilot IS NOT NULL
and plane.requiredServicePersonnel=3">

<object name="plane"/>
<object name="pilot"/>
<object name="copilot"/>
<object name="service1"/>
<object name="service2"/>
<object name="service3"/>
<object name="service4"/>
</any>

</condition>’,
’Flight scheduling ok. (Rule 4)’,
0
);

56

The condition of rule four is similar to the previous one. Here, the oc-
currence of at least six out of seven primitive events is required.

RULE05

INSERT INTO flightSchedulingRuleClass (rlm$ruleid,
rlm$rulecond,
msg, code)

VALUES (
’RULE05’,
’<condition>
<and equal="plane.flightID, pilot.flightID, copilot.flightID,

service1.flightID, service2.flightID,
service3.flightID, service4.flightID"

join="plane.requiredServicePersonnel=4">
<object name="plane"/>
<object name="pilot"/>
<object name="copilot"/>
<object name="service1"/>
<object name="service2"/>
<object name="service3"/>
<object name="service4"/>
</and>

</condition>’,
’Flight scheduling ok. (Rule 5)’,
0

);

The and element postulates that all seven primitive events have to occur.
The equal attribute ensures that all flightIDs are equal and the join
attribute garantees that this condition evaluates to true only for a plane
that requires four crew members for the service.

Step 5: Processing Events

Now we can process primitive events with our rule class and observe how
they are stored until they are consumed and how the compositing process
is prepared within the database.

BEGIN

57

DBMS_RLMGR.PROCESS_RULES (
rule_class => ’flightSchedulingRuleClass’,
event_inst => AnyData.ConvertObject(

aeroplaneEvent(4344, ’Airbus A320’, 3, 2))
);

END;

The table rlm$prmevents 93045 stores all unconsumed primitive events for
the flightSchedulingRuleClass. It has four columns. The first is
RLM$DELTIME and the value indicates the point in time when the primi-
tive event will be removed from the system. This date is simply calculated
by adding the lifetime of the primitive event to the date of creation. For
our rule class we defined a default lifetime of seven days, so that the aero-
planeEvent will be kept in this table for exactly one week.

RLM$ RLM$ RLM$ RLM$

DELTIME PRMEVST 1 EVT(PRMEVST 2 EVT(PRMEVST 3 EVT(

FLIGHTID, FLIGHTID, FLIGHTID,

PLANETYPE, STAFFID, STAFFID,

REQUIRED- PILOTLICENCECLASS, NAME,

PILOTLICENCECLASS, NAME, RLM$CRTTIME)

REQUIRED- POSITION,

SERVICEPERSONNEL, RLM$CRTTIME)

RLM$CRTTIME)

23-NOV-06 AEROPLANEEVENT(

10.54.50 4344,

PM ’Airbus A320’,

3,

2,

’16-NOV-06

10.54.50.465383 PM’)

After the execution of DBMS RLMGR.PROCESS RULES, there are five new rows
in the table rlm$prmexprt 93045 that stores primitive event expressions,
one row for each rule the primitive has been applied to.

RULE01
The first row has the ID “AAAWt1AAEAAAAaOAAF” as a unique identi-
fier (RLM$RULEROWID) and the join predicate (RLM$JOINPRED):

(plane.flightID = pilot.flightID and
plane.requiredPilotLicenceClass > pilot.pilotLicenceClass)
and

58

exfsys.rlm$seqchk(
exfsys.rlm$dateval(PLANE.rlm$crttime , PILOT.rlm$crttime),0)

= 1

This is the translation of the first rule in our flightSchedulingRuleClass.
We demanded that the flightIDs of both primitive events shall be equal, that
the licence class of the pilot shall be smaller than the one required by the air-
craft and thirdly, the sequence attribute postulates that the aeroplaneEvent
occurs before the pilotEvent. Entries in the columns
RLM$PRMEVT 1 EXP and RLM$PRMEVT 2 EXP indicate that the first
rule requires an aeroplaneEvent and pilotEvent, whereas the other primi-
tive events are irrelevant for this rule. The value of RLM$PRMEVT 1 EXP
is “1 = 1” because we only demand the existence of this primitive event with-
out further conditions. RLM$PRMEVT 2 EXP has the value “position =
’pilot’” for the first rule. The attribute “position” distinguishes pilots from
copilots who share the same event structure.

RULE02
The second row looks very similar. The only difference is the usage of copi-
lot instead of a pilot.

RULE03
The condition of the third rule uses an any element in its specification. This
is translated into a sum using the function decode as an existence operator.
decode(PLANE,null,0,1) compares PLANE with null. If PLANE is null,
then 0 is returned, otherwise decode returns 1. In rule three we demanded
that the count of all objects within the any element shall be five. This is
realised by the first part “(decode(...)+...+decode(...) >= 5)”.

((decode(PLANE,null,0,1)
+decode(PILOT,null,0,1)
+decode(COPILOT,null,0,1)
+decode(SERVICE1,null,0,1)
+decode(SERVICE2,null,0,1)
+decode(SERVICE3,null,0,1)
+decode(SERVICE4,null,0,1) >= 5) and

exfsys.rlm$eqlchk(
exfsys.rlm$keyval(PLANE.FLIGHTID,PILOT.FLIGHTID,

COPILOT.FLIGHTID,SERVICE1.FLIGHTID,
SERVICE2.FLIGHTID,SERVICE3.FLIGHTID,
SERVICE4.FLIGHTID))=1) and

59

(plane IS NOT NULL and
pilot IS NOT NULL and
copilot IS NOT NULL
and plane.requiredServicePersonnel=2)

RULE04
The fourth row is likewise. Both conditions possibly involve all of the seven
primitive events, but for rule three the occurence of five primitive events
would be sufficient, for rule four there have to be six primitive events.

RULE05
The join predicate of the fifth row translates an and element, not an any
element like the last two rows, so that our last condition postulates that the
plane requires four stewardesses and stewards, and that all seven primitive
events do actually occur and that all have the same flightID.

(exfsys.rlm$eqlchk(
exfsys.rlm$keyval(PLANE.FLIGHTID, PILOT.FLIGHTID,

COPILOT.FLIGHTID, SERVICE1.FLIGHTID,
SERVICE2.FLIGHTID, SERVICE3.FLIGHTID,
SERVICE4.FLIGHTID))=1)

and (plane.requiredServicePersonnel=4)

Now we process the second primitive event by trying to assign a pilot with
an insufficient licence class to our flight.

BEGIN

DBMS_RLMGR.PROCESS_RULES (
rule_class => ’flightSchedulingRuleClass’,
event_inst => AnyData.ConvertObject(

pilotEvent(4344, 55, 2, ’John’, ’pilot’))
);

END;

The primitive event is accounted for in the rlm$prmevents 93045 table as
deleted immediately after processing. It was consumed by our first rule as
expected and a new log entry in FSActionlog says “Error: Pilot license

60

insufficient.”. According to the timestamp in FSActionlog, the action was
executed within the same second the primitive event was created.

The aeroplaneEvent was given a shared consumption policy and it is
still stored in the database for building future composite events. Next we
add pilot and copilot assignment events with appropriate values and then
service staff events, so that eventually the condition of rule three will be
satisfied and the according action will be triggered.

BEGIN

DBMS_RLMGR.PROCESS_RULES (
rule_class => ’flightSchedulingRuleClass’,
event_inst => AnyData.ConvertObject(

pilotEvent(4344, 56, 3, ’Milton’, ’pilot’))
);

END;

The pilotEvent is stored in rlm$prmevents 93045. The previous primi-
tive event with a deletion time in the past has been removed. It appears
that the table is cleaned up at regular intervals. No changes are made in
rlm$prmexprt 93045.

BEGIN

DBMS_RLMGR.PROCESS_RULES (
rule_class => ’flightSchedulingRuleClass’,
event_inst => AnyData.ConvertObject(

pilotEvent(4344, 57, 3, ’Richard’, ’copilot’))
);

END;

Like before, the primitive event is stored in rlm$prmevents 93045 and noth-
ing else happened.

BEGIN

DBMS_RLMGR.PROCESS_RULES (

61

rule_class => ’flightSchedulingRuleClass’,
event_inst => AnyData.ConvertObject(

serviceStaffEvent(4344, 324, ’Christina’))
);

END;

Again the primitive event was preserved for later composition, but no rule
matched.

BEGIN

DBMS_RLMGR.PROCESS_RULES (
rule_class => ’flightSchedulingRuleClass’,
event_inst => AnyData.ConvertObject(

serviceStaffEvent(4344, 325, ’Robert’))
);

END;

This last primitive event and all stored primitive events together build a
composite event that satisfies the condition of rule three and triggers the
action. The log shows “Flight scheduling ok. (Rule 3)”. The pilotEvents
and serviceStaffEvents are consumed.

62

Chapter 4

Example Scenario: An
Airline

In this chapter, we will look at a practical application of the Oracle Rules
Manager. We will design an example scenario of a conceived airline and
peruse different cases in order to detect which rule conditions can be han-
dled by the Rules Manager, and what are the limitations of specifying rule
conditions. A complete listing of all tables, events, rules and actions in
SQL/Oracle syntax can be found at the end of this document in Appendix
A.

In the following examples, we will especially make use of the table
bookings. If a customer of ABC Air books a flight, this will result in insert-
ing a row in the table bookings. Additionally, we map the table bookings
to an event structure, so that each INSERT will raise a DML event of a
booking.

CREATE TABLE bookings (
bookingID NUMBER(10) PRIMARY KEY,
flightID VARCHAR2(6),
customerID NUMBER(10),
departureTime DATE,
departureAirport VARCHAR2(4),
arrivalTime DATE,
arrivalAirport VARCHAR2(4),
price NUMBER(6,2) CHECK (price > 0),
class VARCHAR2(20) CHECK (class IN (’Economy’,’Business’)),
FOREIGN KEY (flightID) REFERENCES flights (flightID),
FOREIGN KEY (customerID) REFERENCES customers (customerID),
FOREIGN KEY (departureAirport) REFERENCES airports (ICAOcode),

63

FOREIGN KEY (arrivalAirport) REFERENCES airports (ICAOcode)
);

BEGIN

DBMS_RLMGR.CREATE_EVENT_STRUCT(
event_struct => ’bookingEvent’

);
DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (

event_struct => ’bookingEvent’,
attr_name => ’bEvt’,
tab_alias => exf$table_alias(’bookings’)

);

END;

Using these booking events we simulate our example scenario. At the same
time, we focus on the rule condition part which is formulated in XML syntax.
In Section 2.2, we examined the possibilities of specifying event structures
and the options what rule actions can perform. Now in this chapter, we
scrutinize the rule condition part.

4.1 Simple Rule Conditions

The following condition evaluates true for all flight bookings from
Hanover/Langenhagen International Airport (EDDV) to Munich Interna-
tional Airport (EDDM). The airports are referenced to by their ICAO code
[3]. Details like the international name of the airport and the location can
be found in the table airports1. A primitive event structure suffices for
this example.

<condition>
departureAirport = ’EDDV’ and arrivalAirport = ’EDDM’
</condition>

1The location of an airport is determined by the combination of the triple city VAR-
CHAR2(35), province VARCHAR2(32) and country VARCHAR2(4) which reference to
the MONDIAL database [5].

64

4.2 Rule Conditions Using and-join

Whereas the previous example worked with a simple event structure, for
more sophisticated examples composite event structures are needed which
consist of two or more simple events.

In the next case, two booking events are joined on the condition that they
have the same customerID. That means the same customer has booked both
flights. The first flight travels from London Heathrow (EGLL) to Hanover
(EDDV) from where the second flight heads to Munich (EDDM).

<condition>
<and join="bookingEvent1.customerID

= bookingEvent2.customerID">
<object name="bookingEvent1">
departureAirport = ’EGLL’ and arrivalAirport = ’EDDV’

</object>
<object name="bookingEvent2">
departureAirport = ’EDDV’ and arrivalAirport = ’EDDM’

</object>
</and>

</condition>

4.3 Rule Conditions Using Sequence

In the following condition, the Rules Manager checks if the events occur in
the specified order. This is demanded by the attribute sequence="Yes" in
the and element. Assuming that our airline generates an opening event when
a flight is ready for check-in and a closing event when no more check-ins are
accepted and the plane will be prepared for take-off, then this condition
ensures that a check-in event of a passenger occurs after the opening event
and before the closing event. The join="..." condition assures that all
events relate to the same flight by requiring equality of the flightIDs.

<condition>
<and join="openFlightForCheckInEvent.flightID

= CheckInEvent.flightID
and
CheckInEvent.flightID
= closeForCheckInFlightEvent.flightID"
sequence="Yes">

65

<object name="openFlightForCheckInEvent"/>
<object name="CheckInEvent"/>
<object name="closeFlightForCheckInEvent"/>

</and>
</condition>

4.4 Rule Conditions Using Negation

Negations in rule conditions are represented by the not and the notany el-
ements. There is only one negation permitted per rule condition. Negation
signifies the non-occurrence of the event that is surrounded by the not ele-
ment within a certain time slot. This time slot is usually defined as a delay
in comparison to another event that is part of the composite event. Within
the not element can only be one event and the not element itself has to
be part of an and element. The primitive event whose non-occurrence is
postulated, has to be part of the composite event structure.

For example, let us assume that ABC Air usually sends a confirmation
immediately after a flight booking. The following condition checks whether
a confirmation was sent within one day after the booking. If it did not
happen on time, a possible rule action could be a retry or alerting the
service personnel. The code segment by="bookingEvent.rlm$CrtTime+1"
specifies the time slot which begins at the creation time of the bookingEvent
and ends one day later.

<condition>
<and join="bookingEvent.customerID

= sendConfirmationEvent.customerID and
bookingEvent.flightID
= sendConfirmationEvent.flightID">

<object name="bookingEvent"/>
<not by="bookingEvent.rlm$CrtTime+1">
<object name="sendConfirmationEvent"/>

</not>
</and>
</condition>

The notany element can be used for constructing a condition that checks
the non-occurrence of two or more elements. For example, if a flight booking
has neither been confirmed by mail nor by phone within one day, then this
condition will evaluate to true:

66

<condition>
<and equal="bookingEvent.customerID,

confirmByMailEvent.customerID,
confirmByPhoneEvent.customerID">

<object name="bookingEvent"/>
<notany count="1" by="bookingEvent.rlm$CrtTime+1"

join="bookingEvent.flightID
= confirmByMailEvent.flightID and
bookingEvent.flightID
= confirmByPhoneEvent.flightID">

<object name="confirmByMailEvent"/>
<object name="confirmByPhoneEvent"/>

</notany>
</and>

</condition>

This example takes into account that Oracle suggests in the documentation
of the Rules Manager that “the primitive events appearing within the not or
notany elements should not be referenced in the join attribute specification
of the and element. However, they (primitive events) can be used within the
EQUAL property specifications. If there is a need to specify a join condition
(other than those already captured by the EQUAL property specifications),
the join attribute for the not element can be used. The conditional expres-
sion specified for this join attribute can reference all the primitive events
that appear in the rule condition, including those appearing within the not
element” [2].

4.5 Rule Conditions Using Set Semantics

A set is a collection of objects. These objects are simple events in our case.
The following condition checks whether a customer has booked three or
more flights with seats in the business class. A possible action could be the
invitation to a bonus programme.

<condition>
<and equal="bookingEvent1.customerID, bookingEvent2.customerID

bookingEvent3.customerID">
<object name="bookingEvent1">class = Business</object>
<object name="bookingEvent2">class = Business</object>
<object name="bookingEvent3">class = Business</object>

67

</and>
</condition>

4.6 Rule Conditions Using any n Semantics

The any element allows us to construct rule conditions that require only a
certain subset of simple events in order to evaluate to true. For instance if
we have a composite event that consists of the three simple events flight-
BookingEvent, rentCarEvent and hotelBookingEvent, then this condition
will be true, if at least one of the three simple events occur. The other two
can be NULL. The objects within the any element are logically connected
with non-exclusive OR.

<condition>
<any>
<object name="flightBookingEvent"/>
<object name="rentCarEvent"/>
<object name="hotelBookingEvent"/>

</any>
</condition>

In the case that at least two simple events have to occur, then the attribute
count can be used to specify the minimum number of simple event objects
that are needed to fulfil the condition. If count is not specified, it has the
default value 1.

<condition>
<any count="2">
<object name="flightBookingEvent"/>
<object name="rentCarEvent"/>
<object name="hotelBookingEvent"/>

</any>
</condition>

The attributes join, equal and sequence can be utilised in the same way
as in the and element. For example, if additionally to the previous condition
the occurrence of the object flightBookingEvent is required, this can be
expressed as follows. This is equivalent to the logical "flightBookingEvent
AND (rentCarEvent OR hotelBookingEvent)".

68

<condition>
<any count="2" join="flightBookingEvent IS NOT NULL">
<object name="flightBookingEvent"/>
<object name="rentCarEvent"/>
<object name="hotelBookingEvent"/>
</any>

</condition>

69

Chapter 5

Embedding the Oracle Rules
Manager Example Scenario
into the ECA Framework

In this chapter, we will start with an outline of the Semantic Web as it is
today. The description of the concepts and the important components of
the Semantic Web aims at giving the reader an impression of the current
heterogeneity.

In the concluding section, “A General Framework for Evolution and Re-
activity in the Semantic Web” [1] is described that was designed for bridging
this heterogeneity. This framework is based on ECA rules which provide the
aspect of reactivity.

In the final section of this chapter, we will incorporate our airline scenario
into this ECA Framework for the Semantic Web. For this purpose we sketch
out a wrapper software that mediates between the Oracle Rules Manager
and a domain broker developed in [12]. The Rules Manager builds together
with the wrapper software a fully functional domain node, and the domain
broker acts as a gateway for this bundle, and connects the node to the
Semantic Web.

5.1 The Semantic Web

The Semantic Web augments the current World Wide Web (WWW) with
meta information that endow the existing data with a well-defined meaning
and makes them computer-processable.

For example, if somebody queries a search engine of the WWW for the
keyword “Oracle”, then the search engine does not know, whether the person
is looking for (1) a source of prophetic foreseeing like the Delphic Sibyl, (2)
a novel by Edwin O’Connor, (3) a shopping mall in Reading, England, (4)

70

a comic book superhero, (5) a database software or maybe something else
[25]. In the Semantic Web, the word might be accompanied with meta
information clarifying that a database software is meant. A search engine
for the Semantic Web could in a certain sense “understand” what is searched
for and accordingly select only those hits that fit in that context.

The WWW was designed for linking human-readable documents and it
is essentially based on three standards that were introduced by Tim Berners-
Lee: the HyperText Markup Language (HTML) [20], the Hypertext Transfer
Protocol (HTTP) [19] and Uniform Resource Locators (URLs)1 [22].

The substantial components and standards of the Semantic Web are
XML, XML Schema, RDF, RDF Schema and OWL. Below ensues a short
description of their function and interaction among themselves and other
languages that all together draw the picture of heterogeneity.

For a start, the Semantic Web needs a model that enables the formulation
of semantic assertions. In order to allow a mapping of any conceivable
application onto this model, it has to be as general as possible. The Resource
Description Framework (RDF) was introduced for this purpose. RDF uses
the Extensible Markup Language (XML) [28] for the formulation of these
statements about resources. An RDF statement consists of three parts called
RDF triple: subject, predicate and object. The subject is a resource which
has to be uniquely identified. It could be a web page identified by a URL or
a book identified by a Uniform Resource Name (URN) [29]. The predicate
describes an aspect or a trait of resource in the subject part and the object
associates a value to this predicate.

In the context of the Oracle database it appears worthy to mention
that there is a direct mapping between RDF and relational databases. A
relational database consists of tables and each table consists of columns and
rows. An RDF node corresponds to a row entry, the columns correspond to
the properties and the content of a table cell corresponds to the value of the
property [27].

A compact and better human-readable alternative to RDF’s XML syntax
is Notation 3 (N3) which was also designed by Tim Berners-Lee [30]. The
triples in N3 are presented in a way that resembles the natural language.

For accessing data in RDF a number of query languages are being de-
veloped [31]. Among these SPARQL seems to be the most promising. In an
interview in May 2006 Tim Berners-Lee stated “SPARQL will make a huge
difference” [32].
Since ontologies in computer science originate from the field of artificial intel-

1URLs are a subset of Uniform Resource Identifiers (URIs) [21]. Originally the U
stood for “Universal” instead of “Uniform” in order to “indicate the importance to the
Web architecture of the single universal information space” [24], but Tim Berners-Lee
complied with a group at IETF that preferred the term “Uniform”.

71

ligence, several ontology languages have been developed before the existence
of the Semantic Web. KIF, F-logic, LOOM, CycL to name a few.

RDF Schema (RDFS) is RDF’s vocabulary description language and
provides together with the aforementioned RDF the basic elements for the
defining an ontology. Please refer to [38] for details.

DAML+OIL (DARPA Agent Markup Language + Ontology Inference
Layer) is another ontology language. It is based on RDF and XML.

The Web Ontology Language (OWL) can be regarded as a successor of
DAML+OIL. It was developed under the guidance of the World Wide Web
Consortium (W3C) and is also based on XML, RDF and RDF Schema1.
OWL currently consists of three sublanguages: OWL Lite, OWL DL and
OWL Full.

OWL Lite supports the phrasing of a classification hierarchy and simple
constraint features.

OWL DL2 provides more expressiveness than OWL Lite, but has some
restrictions that guarantee decidability which means that all computations
will finish in finite time [37].

OWL Full provides maximum expressiveness and the syntactic freedom
of RDF but no computational guarantees [37].

Having delivered specifications, use cases and many related works con-
cerning the Semantic Web standards RDF and OWL, the Web-Ontology
Working Group [36] was closed in May 2004.

5.2 ECA Framework

The Semantic Web in Tim Berners-Lee’s vision is a ’web of data, in some
ways like a global database’. In reality there exists a multitude of data
formats, languages, schemas and ontologies, and the Semantic Web is com-
posed of innumerable heterogeneous nodes that provide different resources
and different behaviour. For the actualisation of Tim Berners-Lee’s vision
and for being able to query the whole Semantic Web like a global database,
the gap torn apart by the heterogeneity needs to be bridged.

’A General Framework for Evolution and Reactivity in the Semantic
Web’ was designed for this purpose and has been presented in [1]. In this
context, reactivity of nodes in the Semantic Web is understood as their
ability to react to events. This behaviour is provided by software that im-
plements Event-Condition-Action rules like e.g. the Oracle Rules Manager.
Events and ECA rules can facilitate the communication between individual

1OWL extends RDF Schema and for example allows the specification of complex rela-
tions between different RDFS classes [35].

2The name OWL DL alludes to Description Logics, a field of research which deals with
a decidable fragment of first order logic [37].

72

nodes and knowledge can be propagated via events. From a greater per-
spective, these local changes in nodes appear as an evolution of the whole
Semantic Web.

5.3 Domain Broker

In this section, we will describe the embedding of our airline example sce-
nario into the general ECA Framework for the Semantic Web. Therefore
we design a wrapper software along general lines that connects our Oracle
Rules Manager to the domain broker that was introduced in [12].

The domain broker stages several services of communication from the
perspective of a node. The domain broker simultaneously performs as an
event broker, an action broker and a query broker. Our wrapper will call
upon the first two offers of service. The event broker takes events from event
producing nodes of its domain like e.g. our airline node in the travel domain,
and passes them on to event consuming nodes that previously registered at
the event broker. The action broker takes actions and forwards them to the
appropiate nodes for execution.

Firstly, our wrapper registers on behalf of the airline as an event pro-
ducer at an event broker for the travel domain. The registration contains
a URI of the domain, because the event broker possibly handles more than
one domain, and information about the structure of a potentially occurring
event. A simple event could for instance be the status change of a flight.
A flight might be delayed, rescheduled or canceled and the airline wishes to
communicate this efficiently to all who are interested in this information.
So this primitive event structure would be registered for the travel domain
by the wrapper. On the other side, there are approximately 13000 travel
agencies in Germany that could register at the same event broker as event
consumers. If a flight of our airline changes its schedule, an event instance
will be raised and turned over to the event broker who delivers it to all
registered consumers. The nodes of the travel agencies could check whether
they have customers who booked that particular flight and if so, send them
an update about the new schedule.

As described in [12], another group of event consuming nodes are atomic2

event matchers (AEM). They also register at the event broker and deliver
the atomic events to composite event detection services (CED) that in turn
have previously registered at the AEM. CEDs like the SNOOP engine collect
atomic events for building composite events. Please refer to [12] for further
details.

Regarding action brokering, there are two possibilities available at the

2The term ’atomic event’ is equivalent to terms ’primitive event’ and ’simple event’ we
used so far.

73

domain broker level: Action forwarding via broadcast which means that an
action is forwarded by the broker to all known nodes that support the action,
and secondly, the decision to which nodes the action will be forwarded can
be made depending on data that comes along with the action.

Recapitulatory, the tasks of the wrapper are:

• To register, and if necessary to deregister structures of events to be
propagated.

• To forward event instances generated by the Rules Manager to the
domain broker.

• To register as an event consumer if desired.

• To pass on incoming event instances from domain brokers to the Rules
Manager.

• To forward actions from the Rules Manager to the domain broker.

• To accept incoming actions if desired.

74

Chapter 6

Conclusions

In this chapter, we first discuss some drawbacks and limitations of the cur-
rent release of the Rules Manager that emerged during the examination, and
we make some suggestions for improvement that might be incorporated into
future releases. Finally, we conclude this thesis with some final comments.

6.1 Drawbacks

6.1.1 Inflexibility of the Event Structure

A main drawback of the way the Oracle Rules Manager handles events is
the fixed nature of composite events. As described in Section 2.3 about rule
classes, the structure of events has to be precisely defined before the creation
of a rule class that uses this structure. In case of a composite event structure,
this definition consists of a finite number of primitive event structures, and
this number is fixed at the time of definition.

In the reality of everyday life there are examples of use in which the
number of possibly occurring primitive events is uncertain at the time the
rule is specified. In Snoop [42], these kinds of events are called cumulative
events. For example a composite event structure that reproduces a regis-
tration process could consist of an opening event, an unknown number of
registration events and a closing event. This scenario cannot be dealt with
as one composite event unless some maximum number of registration events
is assumed. But that might result in an inflated, inelegant composite event
structure that allows many of the registration events to be NULL, or it
will lead to inconsistencies and errors, if the actual number of registration
events was bigger than the assumed maximum number because in case of a
shared consumption of the registration events, they will be processed mul-
tiple times, and in case of exclusive consumption, some registration events
will remain unprocessed.

An appropriate solution to this problem would be to allow a range of

75

occurrences of a primitive event instead of a fixed number. The syntax for
describing the range could be based on regular expression, like for example:

”1-4” for at least one and maximum four occurrences,
”5+” for five or more occurrences,
”2,4,6” for exactly two, four or six occurrences and
”*” for any number from zero to many occurrences.

6.1.2 Missing DML Events

In the current release of the Oracle Rules Mangager, DML events are only
raised by INSERT operations. It would be preferable if UPDATE and
DELETE operations could also generate DML events.

Comments in the installation scripts indicate that this feature shall be
implemented in the future.

6.1.3 Lacking Query Part

From the viewpoint of the ECA Framework [1], an ECA rule consists of
two components: a query part and a testing part. The query part obtains
additional information from a local database. Although an implementation
of the query part suggests itself for a relational database like the Oracle
software, the Rules Manager is lacking this part.

Since this feature can be easily implemented and it would improve the
possibilities of specifying rule conditions exceedingly, it is very desirable to
install this feature into the next release of the Rules Manager.

6.2 Final Comments

Despite the aforementioned drawbacks, we come to the conclusion that the
Oracle Rules Manager provides full functionality for defining and managing
ECA rules.

Together with a wrapper software as outlined in the prior chapter, the
Oracle Rules Manager can function as a domain node in the Semantic Web
ECA Framework.

Since enormous amounts of information are stored in relational databases
nowadays, Oracle provides with the Rules Manager package an important
possibility for the changeover towards the Semantic Web.

76

Appendix A

SQL/Oracle Syntax of the
Airline Scenario

-- This listing consists of the following parts
--
-- 1. Defining the tables
-- 2. Defining Event Structures
-- 3. Running through All Examples of the Airline Scenario.
-- For each example we do the following steps:
-- 3.1. Defining the rule class
-- 3.2. Replacing the action
-- 3.3. Adding rules
-- 4. Processing Event Instances

-- Part 1. Defining the Tables

CREATE TABLE airports (
ICAOcode VARCHAR2(4) PRIMARY KEY,
IATAcode VARCHAR2(3),
internationalName VARCHAR2(50),
localName VARCHAR2(50),
city VARCHAR2(35),
province VARCHAR2(32),
country VARCHAR2(4));

CREATE TABLE airportCity (
ICAOcode VARCHAR2(4),
city VARCHAR2(35),

77

province VARCHAR2(32),
country VARCHAR2(4),
PRIMARY KEY(ICAOcode, city, province, country));

CREATE TABLE aircrafts (
aircraftID NUMBER(4) PRIMARY KEY,
name VARCHAR2(50),
range NUMBER(6),
economySeats NUMBER(4),
businessSeats NUMBER(4),
cargo NUMBER(10),
maxPayload NUMBER(10),
fuel NUMBER(10));

CREATE TABLE staff (
staffID NUMBER(10) PRIMARY KEY,
position VARCHAR2(20) CHECK (
position IN (’pilot’,’co-pilot’,

’steward’,’stewardess’)),
salary NUMBER(6),
lastname VARCHAR2(50),
firstname VARCHAR2(50),
street VARCHAR2(50),
city VARCHAR2(50),
country VARCHAR2(50),
mail VARCHAR2(50),
phone VARCHAR2(50));

CREATE TABLE flights (
flightID VARCHAR2(6) PRIMARY KEY,
aircraftType NUMBER(4),
departureTime DATE,
departureAirport VARCHAR2(4),
arrivalTime DATE,
arrivalAirport VARCHAR2(4),
economyPrice NUMBER(6,2),
businessPrice NUMBER (6,2),
FOREIGN KEY (departureAirport) REFERENCES airports (ICAOcode),
FOREIGN KEY (arrivalAirport) REFERENCES airports (ICAOcode),
FOREIGN KEY (aircraftType) REFERENCES aircrafts (id));

CREATE TABLE customers (

78

customerID NUMBER(10) PRIMARY KEY,
lastname VARCHAR2(50),
firstname VARCHAR2(50),
street VARCHAR2(50),
city VARCHAR2(50),
country VARCHAR2(50),
mail VARCHAR2(50),
phone VARCHAR2(50));

CREATE TABLE bookings (
bookingID NUMBER(10) PRIMARY KEY,
flightID VARCHAR2(6),
customerID NUMBER(10),
price NUMBER(6,2) CHECK (price > 0),
class VARCHAR2(20) CHECK (class IN (’Economy’,’Business’)),
FOREIGN KEY (flightID) REFERENCES flights (flightID),
FOREIGN KEY (customerID) REFERENCES customers (customerID),
FOREIGN KEY (departureAirport) REFERENCES airports (ICAOcode),
FOREIGN KEY (arrivalAirport) REFERENCES airports (ICAOcode)

);

-- The tables above are connected with each other
-- in order to provide referential integrity.
-- A booking has a unique bookingID,
-- relates to the customers table via the customerID
-- and to the flights table via the flightID.
-- The flights table relates to the aircrafts table
-- using aircraftType and to the table airports
-- via departureAirport and arrivalAirport.
-- The table airports should have the foreign keys
-- city, province and country to the MONDIAL database
-- in a complete implementation.
-- For the purpose of giving a practical example
-- that can easily be played through,
-- the structure has been simplified to the following table
-- which is the basis of our DML events.
-- Airports are here equivalent to the cities,
-- That wrongly assumes each city has only one airport,
-- but it is better to comprehend than the cryptic ICAO code.

CREATE TABLE simpleBookings (
customerID NUMBER(5),

79

departureTime DATE,
departureAirport VARCHAR2(20),
arrivalTime DATE,
arrivalAirport VARCHAR2(20)

);

-- All rule actions will insert a row into the following log table,
-- so that it can be easily retraced which rule of which rule class
-- was triggered at what time, and which was not triggered.

CREATE TABLE log (
ts TIMESTAMP,
msg VARCHAR2(255)

);

-- Part 2. Defining Event Structures

BEGIN

DBMS_RLMGR.CREATE_EVENT_STRUCT(event_struct => ’bkEvent’);
DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (
event_struct => ’bkEvent’,
attr_name => ’bk’,
tab_alias => exf$table_alias(’simpleBookings’)
);

END;

BEGIN

DBMS_RLMGR.CREATE_EVENT_STRUCT(event_struct => ’bk2Event’);
DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (
event_struct => ’bk2Event’,
attr_name => ’booking1’,
tab_alias => exf$table_alias(’simpleBookings’)
);
DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (
event_struct => ’bk2Event’,
attr_name => ’booking2’,
tab_alias => exf$table_alias(’simpleBookings’)
);

80

END;

BEGIN

DBMS_RLMGR.CREATE_EVENT_STRUCT(event_struct => ’bk3Event’);
DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (

event_struct => ’bk3Event’,
attr_name => ’booking1’,
tab_alias => exf$table_alias(’simpleBookings’)
);
DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (

event_struct => ’bk3Event’,
attr_name => ’booking2’,
tab_alias => exf$table_alias(’simpleBookings’)
);
DBMS_RLMGR.ADD_ELEMENTARY_ATTRIBUTE (

event_struct => ’bk3Event’,
attr_name => ’booking3’,
tab_alias => exf$table_alias(’simpleBookings’)
);

END;

CREATE or REPLACE TYPE openFlightForCheckInEvent AS OBJECT (
flightID VARCHAR2(6)

);

CREATE or REPLACE TYPE checkInEvent AS OBJECT (
customerID NUMBER(10),
flightID VARCHAR2(6)

);

CREATE or REPLACE TYPE closeFlightForCheckInEvent AS OBJECT (
flightID VARCHAR2(6)

);

CREATE or REPLACE TYPE compCheckEvt AS OBJECT (
open openFlightForCheckInEvent,

81

checkin checkInEvent,
close closeFlightForCheckInEvent

);

-- Part 3. Running through all examples of the airline scenario.
--
-- For each example, the following steps are performed:
-- 3.1. Defining the rule class
-- 3.2. Replacing the action
-- 3.3. Adding rules
-- 3.4. Processing event instances

-- Example 1: ’Simple Rule Condition’

-- Step 1: Defining the rule class

BEGIN

DBMS_RLMGR.CREATE_RULE_CLASS (
rule_class => ’example1Class’,
event_struct => ’bkEvent’,
action_cbk => ’example1Action’,
rlcls_prop => ’<simple dmlevents="I"/>’

);

END;

-- Step 2: Replacing the action

CREATE OR REPLACE PROCEDURE example1Action
(booking bkEvent,
rlm$rule example1Class%ROWTYPE)

IS

BEGIN

INSERT INTO log (ts, msg)
VALUES (SYSDATE, ’Example 1: Action triggered.’);

82

END;

-- Step 3: Adding rules

INSERT INTO example1Class (rlm$ruleid, rlm$rulecond)
VALUES (’RULE01’,

’<condition>
departureAirport = ’’Frankfurt’’
and arrivalAirport = ’’London’’

</condition>’
);

-- Example 2: ’Rule Conditions Using and-join’

-- Step 1: Defining the rule class

BEGIN

DBMS_RLMGR.CREATE_RULE_CLASS (
rule_class => ’example2Class’,
event_struct => ’bk2Event’,
action_cbk => ’example2Action’,
rlcls_prop => ’<composite dmlevents="I"/>’
);

END;

-- Step 2: Replacing the action

CREATE OR REPLACE PROCEDURE example2Action
(booking1 ROWID,
booking2 ROWID,
rlm$rule example2Class%ROWTYPE)

IS

BEGIN

INSERT INTO log (ts, msg)
VALUES (SYSDATE, ’Example 2: Action triggered.’);

END;

83

-- Step 3: Adding rules

INSERT INTO example2Class (rlm$ruleid, rlm$rulecond)
VALUES (’RULE01’,

’<condition>
<and join="booking1.customerID

= booking2.customerID">
<object name="booking1">
departureAirport = ’’Hanover’’
and arrivalAirport = ’’Frankfurt’’

</object>
<object name="booking2">
departureAirport = ’’Frankfurt’’
and arrivalAirport = ’’New York’’

</object>
</and>

</condition>’
);

-- Example 3: ’Rule Conditions Using Sequence’

-- Step 1: Defining the rule class

BEGIN

DBMS_RLMGR.CREATE_RULE_CLASS (
rule_class => ’example3Class’,
event_struct => ’compCheckEvt’,
action_cbk => ’example3Action’,
rlcls_prop => ’<composite/>’

);

END;

-- Step 2: Replacing the action

CREATE OR REPLACE PROCEDURE example3Action
(open openFlightForCheckInEvent,
checkin checkInEvent,
close closeFlightForCheckInEvent,

84

rlm$rule example3Class%ROWTYPE)
IS

BEGIN

INSERT INTO log (ts, msg)
VALUES (SYSDATE, ’Example 3: Action triggered.’);

END;

-- Step 3: Adding rules

INSERT INTO example3Class (rlm$ruleid, rlm$rulecond)
VALUES (’RULE01’,

’<condition>
<and join="open.flightID

= checkin.flightID
and close.flightID
= checkin.flightID"

sequence="Yes">
<object name="open"/>
<object name="checkin"/>
<object name="close"/>
</and>

</condition>’
);

-- Example 4: ’Rule Conditions Using Negation’
-- ’The not Element’

-- Step 1: Defining the rule class

BEGIN

DBMS_RLMGR.CREATE_RULE_CLASS (
rule_class => ’example4Class’,
event_struct => ’bk2Event’,
action_cbk => ’example4Action’,
rlcls_prop => ’<composite dmlevents="I"/>’
);

85

END;

-- Step 2: Replacing the action

CREATE OR REPLACE PROCEDURE example4Action
(booking1 ROWID,
booking2 ROWID
rlm$rule example4Class%ROWTYPE)

IS

BEGIN

INSERT INTO log (ts, msg)
VALUES (SYSDATE, ’Example 4: Action triggered.’);

END;

-- Step 3: Adding rules

INSERT INTO example4Class (rlm$ruleid, rlm$rulecond)
VALUES (’RULE01’,

’<condition>
<and join="booking1.customerID
= booking2.customerID">

<object name="booking1"/>
<not by="booking1.rlm$CrtTime+1">
<object name="booking2"/>

</not>
</and>

</condition>’
);

-- Example 5: ’Rule Conditions Using Negation’
-- ’The notany Element’

-- Step 1: Defining the rule class

BEGIN

DBMS_RLMGR.CREATE_RULE_CLASS (
rule_class => ’example5Class’,

86

event_struct => ’bk3Event’,
action_cbk => ’example5Action’,
rlcls_prop => ’<composite dmlevents="I"/>’
);

END;

-- Step 2: Replacing the action

CREATE OR REPLACE PROCEDURE example5Action
(booking1 ROWID,
booking2 ROWID,
booking3 ROWID,
rlm$rule example5Class%ROWTYPE)

IS

BEGIN

INSERT INTO log (ts, msg)
VALUES (SYSDATE, ’Example 5: Action triggered.’);

END;

-- Step 3: Adding rules

INSERT INTO example5Class (rlm$ruleid, rlm$rulecond)
VALUES (’RULE01’,

’<condition>
<and equal="booking1.customerID,

booking2.customerID,
booking3.customerID">

<object name="booking1">
arrivalAirport = ’’Madrid’’

</object>
<notany count="1" by="booking1.rlm$CrtTime+1">
<object name="booking2">
departureAirport = ’’Madrid’’
and arrivalAirport = ’’London’’
</object>
<object name="booking3">
departureAirport = ’’Madrid’’
and arrivalAirport = ’’Paris’’

87

</object>
</notany>
</and>

</condition>’
);

-- Example 6: ’Rule Conditions Using Set Semantics’

-- Step 1: Defining the rule class

BEGIN

DBMS_RLMGR.CREATE_RULE_CLASS (
rule_class => ’example6Class’,
event_struct => ’bk3Event’,
action_cbk => ’example6Action’,
rlcls_prop => ’<composite dmlevents="I"

consumption="exclusive"/>’
);

END;

-- Step 2: Replacing the action

CREATE OR REPLACE PROCEDURE example6Action
(booking1 ROWID,
booking2 ROWID,
booking3 ROWID,
rlm$rule example6Class%ROWTYPE)

IS

BEGIN

INSERT INTO log (ts, msg)
VALUES (SYSDATE, ’Example 6: Action triggered.’);

END;

-- Step 3: Adding rules

88

INSERT INTO example6Class (rlm$ruleid, rlm$rulecond)
VALUES (’RULE01’,

’<condition>
<and equal="booking1.customerID,

booking2.customerID,
booking3.customerID">

<object name="booking1">
departureAirport = ’’Rome’’

</object>
<object name="booking2">
departureAirport = ’’Rome’’

</object>
<object name="booking3">
departureAirport = ’’Rome’’

</object>
</and>

</condition>’
);

-- Example 7: ’Rule Conditions Using any n Semantics’

-- Step 1: Defining the rule class

BEGIN

DBMS_RLMGR.CREATE_RULE_CLASS (
rule_class => ’example7Class’,
event_struct => ’bk3Event’,
action_cbk => ’example7Action’,
rlcls_prop => ’<composite dmlevents="I"/>’
);

END;

-- Step 2: Replacing the action

CREATE OR REPLACE PROCEDURE example7Action
(booking1 ROWID,
booking2 ROWID,
booking3 ROWID,

89

rlm$rule example7Class%ROWTYPE)
IS

BEGIN

INSERT INTO log (ts, msg)
VALUES (SYSDATE, ’Example 7: Action triggered.’);

END;

-- Step 3: Adding rules

INSERT INTO example7Class (rlm$ruleid, rlm$rulecond)
VALUES (’RULE01’,

’<condition>
<any count="2">
<object name="booking1"/>
<object name="booking2"/>
<object name="booking3"/>
</any>

</condition>’
);

-- Part 4. Processing event instances

SELECT * FROM log;

-- For example 3: ’Rule Conditions Using Sequence’

BEGIN

DBMS_RLMGR.ADD_EVENT (
rule_class => ’example3Class’,
event_inst => openFlightForCheckInEvent.getVarchar(’AB4223’),
event_type => ’openFlightForCheckInEvent’

);

END;

SELECT * FROM log;

BEGIN

90

DBMS_RLMGR.PROCESS_RULES (
rule_class => ’example3Class’,
event_inst => checkInEvent.getVarchar(1234, ’AB4223’),
event_type => ’checkInEvent’
);

END;

SELECT * FROM log;

BEGIN

DBMS_RLMGR.PROCESS_RULES (
rule_class => ’example3Class’,
event_inst => closeFlightForCheckInEvent.getVarchar(’AB4223’),
event_type => ’closeFlightForCheckInEvent’
);

END;

SELECT * FROM log;

-- For example 1: ’Simple Rule Condition’

INSERT INTO simpleBookings (
customerID, departureTime, departureAirport,
arrivalTime, arrivalAirport)

VALUES (
4567,
TO_DATE(’31-Jan-2007 10:05’,’DD-MON-YYYY HH24:MI’),
’Frankfurt’,
TO_DATE(’31-Jan-2007 11:55’,’DD-MON-YYYY HH24:MI’),
’London’

);

SELECT * FROM log;

-- For example 2: ’Rule Conditions Using and-join’

INSERT INTO simpleBookings (
customerID, departureTime, departureAirport,

91

arrivalTime, arrivalAirport)
VALUES (
4567,
TO_DATE(’31-Jan-2007 12:00’,’DD-MON-YYYY HH24:MI’),
’Hanover’,
TO_DATE(’31-Jan-2007 12:30’,’DD-MON-YYYY HH24:MI’),
’Frankfurt’

);

SELECT * FROM log;

INSERT INTO simpleBookings (
customerID, departureTime, departureAirport,
arrivalTime, arrivalAirport)

VALUES (
4567,
TO_DATE(’31-Jan-2007 15:00’,’DD-MON-YYYY HH24:MI’),
’Frankfurt’,
TO_DATE(’31-Jan-2007 23:00’,’DD-MON-YYYY HH24:MI’),
’New York’

);

SELECT * FROM log;

-- For example 6: ’Rule Conditions Using Set Semantics’

INSERT INTO simpleBookings (
customerID, departureTime, departureAirport,
arrivalTime, arrivalAirport)

VALUES (
4567,
TO_DATE(’01-Jan-2007 12:00’,’DD-MON-YYYY HH24:MI’),
’Rome’,
TO_DATE(’01-Jan-2007 14:00’,’DD-MON-YYYY HH24:MI’),
’Paris’

);

SELECT * FROM log;

INSERT INTO simpleBookings (
customerID, departureTime, departureAirport,
arrivalTime, arrivalAirport)

92

VALUES (
4567,
TO_DATE(’01-Jan-2007 12:00’,’DD-MON-YYYY HH24:MI’),
’Rome’,
TO_DATE(’01-Jan-2007 14:00’,’DD-MON-YYYY HH24:MI’),
’Paris’

);

SELECT * FROM log;

INSERT INTO simpleBookings (
customerID, departureTime, departureAirport,
arrivalTime, arrivalAirport)

VALUES (
4567,
TO_DATE(’15-Jan-2007 18:15’,’DD-MON-YYYY HH24:MI’),
’Rome’,
TO_DATE(’15-Jan-2007 21:00’,’DD-MON-YYYY HH24:MI’),
’Oslo’

);

SELECT * FROM log;

93

Bibliography

[1] A General Framework for Evolution and Reactivity in the Semantic Web.
December 2006

[2] Oracle Database: Application Developer’s Guide - Rules Manager and
Expression Filter 10g Release 2 (10.2) B14288-01

[3] http://en.wikipedia.org/wiki/List of airports by ICAO code

[4] http://en.wikipedia.org/wiki/IATA

[5] http://www.dbis.informatik.uni-goettingen.de/Mondial/

[6] Oracle Database: Spatial User’s Guide and Reference 10g Release 2
(10.2) Part Number B14255-01

[7] http://en.wikipedia.org/wiki/G%C3%B6ttingen

[8] http://en.wikipedia.org/wiki/World Geodetic System

[9] Oracle Database: PL/SQL User’s Guide and Reference 10g Release 2
(10.2) Part Number B14261-01

[10] Oracle Database: PL/SQL Packages and Types Reference 10g Release
2 (10.2) Part Number B14258-01

[11] Oracle Database: SQL Reference 10g Release 2 (10.2) Part Number
B14200-02

[12] Tobias Knabke: Development and Implementation of a Domain Broker
for the Semantic Web

[13] Oracle’s SQL Scripts: catrul.sql, rultyp.sql, rultab.sql, rulpbs.sql and
rulview.sql

[14] Tim Berners-Lee: Semantic Web Road map. September 1998

[15] Tim Berners-Lee, Mark Fischetti: Weaving the Web. HarperCollins
Publishers. 1999

94

[16] Tim Berners-Lee, James Hendler and Ora Lassila: The Semantic Web
A new form of Web content that is meaningful to computers will unleash
a revolution of new possibilities. May 2001

[17] http://www.w3.org/Proposal.html

[18] http://www.w3.org/People/Berners-Lee/WorldWideWeb

[19] ftp://ftp.rfc-editor.org/in-notes/rfc1945.txt

[20] ftp://ftp.rfc-editor.org/in-notes/rfc1866.txt

[21] ftp://ftp.rfc-editor.org/in-notes/rfc1630.txt

[22] ftp://ftp.rfc-editor.org/in-notes/rfc1738.txt

[23] ftp://ftp.rfc-editor.org/in-notes/rfc3986.txt

[24] http://www.w3.org/DesignIssues/Architecture.html

[25] http://en.wikipedia.org/wiki/Oracle %28disambiguation%29

[26] Tim Berners-Lee, Wendy Hall and Nigel Shadbolt: The Semantic Web
Revisited. 2006

[27] Tim Berners-Lee: What the Semantic Web can represent.
http://www.w3.org/DesignIssues/RDFnot.html

[28] http://www.w3.org/XML/

[29] ftp://ftp.rfc-editor.org/in-notes/rfc2141.txt

[30] http://www.w3.org/DesignIssues/Notation3.html

[31] http://www.w3.org/2001/11/13-RDF-Query-Rules/

[32] http://en.wikipedia.org/wiki/SPARQL

[33] http://en.wikipedia.org/wiki/Ontology %28computer science%29

[34] John Davies, Rudi Studer, Paul Warren: Semantic Web Technologies.
2006

[35] http://www.w3.org/2003/08/owlfaq.html.en

[36] http://www.w3.org/2001/sw/WebOnt/

[37] http://www.w3.org/TR/owl-guide/

[38] http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

95

[39] http://www.heise.de/newsticker/meldung/81747

[40] http://www.heise.de/newsticker/meldung/82708

[41] http://www.w3.org/TR/xpath20/

[42] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Com-
posite events for active databases: Semantics, contexts and detection. In
Proceedings of the 20th VLDB, pages 606 to 617, 1994.

96

