
Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZAI-MSC-2012-05

Masterarbeit
im Studiengang "Angewandte Informatik"

Process-based Data Extraction from
Web Sources

Benjamin Dake

Arbeitsgruppe für

Datenbanken & Informationssysteme

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen

25. September 2012



Georg-August-Universität Göttingen
Zentrum für Informatik

Goldschmidtstraße 7
37077 Göttingen
Germany

Tel. +49 (5 51) 39-17 42010
Fax +49 (5 51) 39-1 44 15
Email office@informatik.uni-goettingen.de
WWW www.informatik.uni-goettingen.de



Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den 25. September 2012





Master’s Thesis

Process-based Data Extraction from
Web Sources

Benjamin Dake

September 25, 2012

Supervised by Prof. Dr. Wolfgang May
Databases and Information Systems Group

Georg-August-Universität Göttingen





Abstract

The World Wide Web holds a large amount of information in unstructured form. The
Web Data Extraction is concerned with the extraction of such data into a structured form
that is proper for a further processing. This Thesis develops an extendible process for the
extraction of linked geographic data from Wikipedia. It uses a classifier in order to map a
Web Page into a category and then applies an appropriate wrapper for the data extraction.





Contents

1 Introduction 1

2 Foundations 3
2.1 Wikipedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Design 12
3.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Category Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 First Sentence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Title Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.4 Class Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.5 Administrative Divisions . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Data Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Result Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Extraction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Outgoing Link Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Link Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Implementation 28
4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 MARS Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

I



Contents

4.1.3 Data Extraction Service . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.4 MARS Data Extraction Process . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Service Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Used Frameworks and Java Libraries . . . . . . . . . . . . . . . . . . 37
4.2.2 Class Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 Class Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.4 Service Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Evaluation 45
5.1 Result Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Classifier Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Reference Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Related Work 48

7 Conclusion 50

Bibliography 51

II



List of Figures

1.1 Outline of the Data Extraction Process . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Wikipedia Page Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Category Hierarchy Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Infobox Template Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Wikipedia Redirect Notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 XML Example Snippet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Penn Treebank Part-Of-Speech Tags . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Penn Treebank Chunk Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Data Extraction Process Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Hierarchy of the "Cities in Lower Saxony" Category . . . . . . . . . . . . . . 14
3.3 Category Matching Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 First Sentence Matching Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Classification Rating of the Göttingen Article . . . . . . . . . . . . . . . . . . 19
3.6 Infobox of the River Rhine Article . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Extracted Class Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 RDF Graph of Result Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9 RDF Triples of Result Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10 Infobox Instantiation of the Göttingen Article . . . . . . . . . . . . . . . . . . 24
3.11 Extracted Raw Data of the Göttingen Article . . . . . . . . . . . . . . . . . . 25
3.12 Final Result Triples of the Göttingen Article . . . . . . . . . . . . . . . . . . . 26

4.1 MARS CCS Process Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 MARS Data Extraction Process Architecture . . . . . . . . . . . . . . . . . . . 30
4.3 Query Broker LSR Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 CCS Data Extraction Control Process . . . . . . . . . . . . . . . . . . . . . . . 36

III



List of Figures

4.5 CCS Reference Analysis Process . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 UML Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.8 Classifier and Data Extractor Configuration File . . . . . . . . . . . . . . . . 43
4.9 Reference Analyzer Configuration File . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Data Extraction Process Test Results . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Classifier Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

IV





1 Introduction

The World Wide Web enjoys a great popularity and has grown to a major source of infor-
mation. Unfortunately, a large amount of the information is only available in unstructured
or semi-structured form, and thus cannot be used by applications that require information
in a specific structured format. The Web Data Extraction is concerned with the transforma-
tion of available web data into a structured format that is proper for the further processing.

An example of a Web Source is Wikipedia. Considering the large amount of informa-
tion that is present in Wikipedia, it is an attractive source for the data extraction. Several
attempts were made to extract data from Wikipedia. The probably most famous project is
DBpedia [4]. While it focuses on the extraction of infobox data from Wikipedia in a large
scale, it lacks in the extraction of annotated relations between entities from the article text.

The goal of this Thesis is to extract geographical data from Wikipedia. An advantage
over DBpedia is the extension of the extracted data by annotated relations. As part of the
data extraction, it classifies articles into specific geographical classes. For this, a process
that crawls through Wikipedia and extracts data has been designed. As shown in Figure
1.1, it consists of three basic steps. At first, a classifier associates an article with a classes.

Classification Data Extraction Follow Outgoing Links

RDF 
Result Data

Figure 1.1: Outline of the Data Extraction Process

Depending on the classification, a wrapper that extracts information from the infobox is

1



1 Introduction

then applied to the article page. In doing so, it not blindly extracts all infobox data, but it
focuses on the extraction of specific properties and the mapping to a predefined ontology.
The last step is to follow the outgoing links to other articles. In addition to the just men-
tioned data extraction process, the links between Wikipedia articles are analysed in order
to extend the result data with additional annotated relations. The result is a set of linked
data in RDF format.

Structure of the Thesis

Chapter 2 introduces the necessary foundations that are required for the understanding
of the Thesis. Chapter 3 describes the design of the data extraction process. An overview
of the implementation is presented in the subsequent Chapter 4. Chapter 5 evaluates the
quality of the implemented approach. An overview of related work is given in Chapter 6.
The Thesis is concluded with a short summary and outlook.

2



2 Foundations

This chapter introduces some basics that are required for the further understanding of the
Thesis. At first, a brief overview of Wikipedia is given, followed by an introduction of
the Extensible Markup Language (XML), the Resource Description Framework (RDF) and
some Natural Language Processing (NLP) techniques.

2.1 Wikipedia

Wikipedia [22] is a free-content online encyclopaedia which was founded in 2001. Up to
now, volunteers have written about 4 million articles for the English Wikipedia. Besides
the English Wikipedia, there also exist editions in 285 other languages. Wikipedia articles
are written using a special markup language, the so-called Wiki markup or Wikitext.

Article Structure

The parts of a Wikipedia article page that are relevant for this Thesis are labeled in Figure
2.1. Namely, these are

• Title. A unique article title.

• Lead Section. The lead section contains a brief summary of the article and serves as
an introduction for the reader.

• Article Text. A Wikipedia article is a mixture of text, graphics and tables.

• Infobox. An optional infobox summarizes some characteristic information.

• Categories. An article belongs to categories that group associated articles.

3



2 Foundations

Figure 2.1: Wikipedia Page Structure

Categories

Categories are used to organize groups of articles with a similar subject. A category makes
it easy to find articles of a certain topic. A Wikipedia article can belong to several categories
and should be part of at least one category. The category information is located at the
bottom of the article page.

For example, consider the Wikipedia Weser article. It belongs to the following Cate-
gories.

• Weser drainage basin

• Rivers of Lower Saxony

4



2 Foundations

• Rivers of Bremen (state)

• North Sea

• Weser

• Federal waterways in Germany

The categories are organized in a hierarchy. Like demonstrated in Figure 2.2, a category
can have multiple subcategories. Since a category can also have multiple parents, the cat-
egory hierarchy is not a tree. An article should be placed in the most specific categories it
belongs to.

Countries Cities

CityStates Capitals

Geography

Rivers

Figure 2.2: Category Hierarchy Sample

Infobox

An infobox summarizes characteristic information of an article in a table. It is displayed in
the upper right corner of an article page. Articles of the same type share the same infobox
template to provide a consistent presentation of some important type-specific facts.

An infobox template is a pattern for an infobox that makes it possible to instantiate the
same infobox in different articles. It defines the layout of an infobox and a set of parame-
ters. An article can then declare values for the parameters and thus instantiate the infobox
template. In doing so, several articles of the same type can instantiate the same infobox
with different values.

An example of the river Rhine article is shown in Figure 2.3. The left part of the Figure
shows an excerpt of the parameter declaration in Wikitext. The resulting infobox is shown
on the right hand side. It contains information like the length, the source and the countries
the river flows through.

5



2 Foundations

Figure 2.3: Infobox Template Instantiation

Redirect Pages

A redirect page is an article without content that automatically redirects to another article.
The purpose is to redirect the user to the right article, e.g if something has alternative
names, alternative spellings or shortcuts. An example is Berlin (Germany), which redirects
to Berlin. A redirect page appears like a normal article, but has a notice at the top of the
page like shown in Figure 2.4.

Figure 2.4: Wikipedia Redirect Notice

6



2 Foundations

2.2 XML

The Extensible Markup Language (XML) [23] is a specification of the W3C with the intention
to build a human-readable markup language that supports a wide range of applications
and is well suited for the use over the internet.

A sample of an XML document that contains data about countries is given in Figure 2.5.

<?xml vers ion ="1 .0 " encoding ="UTF�8" ?>
<count r ies >

<count ry name="Germany">
< c a p i t a l >Ber l i n </ c a p i t a l >
<area >357021</area >
<popula t ion >81799600</ popula t ion >

</ country >
<count ry name=" China">

< c a p i t a l > Be i j i ng </ c a p i t a l >
<area >9640821</area >
<popula t ion >1339724852</ popula t ion >

</ country >
. . .

</ count r ies >

Figure 2.5: XML Example Snippet

An XML document contains of a set of elements that are arranged in a tree. An element
has a type (e.g. country), is started with a start tag (<country>) and is closed by a matching
end tag (</country>). An element can contain text and other elements. Elements without
content are called empty elements and can be written as <elementname />. An element
that is nested inside another element is called child element of this element (country is a
child element of countries). An element can have attributes, which are listed inside its start
element (country has the attribute name).

DTD

Application-specific languages based on XML can be specified by the use of Document
Type Definitions (DTD). A DTD defines a set of elements, their attributes and how the
elements can be nested. An example of a language for writing web pages that is specified
by a DTD is the Extensible HyperText Markup Language (XHTML) [11].

7



2 Foundations

XPath

With XPath [24], parts of an XML document can be addressed. An XPath expression is
a sequence of navigation steps. The following XPath expression applied to the example
given above selects the capitals of all countries.

/ coun t r i es / count ry / c a p i t a l

Conditions can be stated using square brackets. The following expression selects the cap-
ital of the country that has an attribute name with the value Germany. The @ is used to
address an attribute.

/ coun t r i es / count ry [@name="Germany " ] / c a p i t a l

XQuery

XML documents can be queried by using the XML Query Language (XQuery) [13]. XQuery
uses XPath for the node selection. The basic structure of XQuery is the FLWOR (for, let,
where, order by, return) expression. XQuery is demonstrated with an example.

f o r $country i n / coun t r i es / count ry
l e t $popu la t ion := $country / popu la t ion
where $popu la t ion >= 500000000
r e t u r n
<b igcount ry >

<name>{ s t r i n g ( $country /@name) } < /name>
< c a p i t a l >{ $country / c a p i t a l / t e x t ( ) } < / c a p i t a l >

</ b igcount ry >

The for-clause iterates over all countries. For each country, the population is bound to
the variable $population. If the country has at least 500 million inhabitants, then the name
and capital of the country are returned. The query returns results of the following form:

<bigcount ry >
<name>China </name>
< c a p i t a l > Be i j i ng </ c a p i t a l >

</ b igcount ry >

8



2 Foundations

2.3 RDF

The goal of the Semantic Web is to enhance the World Wide Web with computer under-
standable semantics. The Resource Description Framework (RDF) [17] is a data model of
the Semantic Web. The idea of RDF is to represent data as a set of statements about re-
sources. A resource may be any object like a book, a web page or a country. A resource is
identified by a Unified Resource Identifier (URI). The country Germany, for example, is a
resource and can be identified by the URI http://example.org/countries/germany.

A statement about a resource has the the form subject predicate object. The subject is
the resource the statement is made about, the predicate defines a property of the subject
and the object is the value of that property. Germany has a population of 81799600 can be
expressed by the triple

< h t t p : / / www. example . org / coun t r i es / germany>
< h t t p : / / www. example . org / popula t ion >
81799600.

An RDF document is a set of triples that form a labeled directed graph, in which subjects
and objects are nodes and predicates are edges. The Turtle [12] syntax is a serialization
format for RDF graphs. URIs are surrounded by angle brackets, strings are enclosed in
quotation marks. Triples are separated using periods. Triples about the same subject can
be summarized by using a semicolon as a separator. Triples with the same subject and
predicate can be listed with comma-separated objects.

@prefix ex : < h t t p : / / www. example . org / >
< h t t p : / / www. example . org / coun t r i es / germany>

ex : name "Germany " ;
ex : hasCi ty < h t t p : / / www. example . org / c i t y / b e r l i n > ,

< h t t p : / / www. example . org / c i t y / goet t ingen >.

Note the prefix definition in the first line. It defines a so called namespace prefix that
enables to use ex: as an abbreviation for http://www.example.org/ in URIs.

2.4 Natural Language Processing

Natural Language Processing (NLP) is a field of computer science that is concerned with
the computational analysis and processing of natural languages. The part of speech tag-

9



2 Foundations

ging and parsing are two tasks in the NLP.

Part Of Speech Tagging

Part-of-speech (POS) tagging is the process that labels the words of a sentence according
to their part of speech, such as noun, verb, adjective. A program that performs the part-
of-speech tagging is called a POS Tagger. To give an example, a POS Tagger applied to the
sentence "Germany is a country." returns

Germany /NNP is /VBZ a /DT country /NN

The part of speech tagging of the example sentence uses the Penn Treebank Tag Set [16] as
POS labels. The tags contained in the example are described in Figure 2.6.

Tag Description
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
DT Determiner

Figure 2.6: Penn Treebank Part-Of-Speech Tags

Parsing

A natural language parser analyses the grammatical structure of a sentence. Chunk Pars-
ing, also called Shallow Parsing, is a form of parsing, that, in contrast to full parsing, does
not specify the relations of the constituents of a sentence, but separates a sentence into

10



2 Foundations

so-called chunks. The performance of a chunk parser compared to a full parser is much
higher.

Reconsider the example sentence. The output of a chunk parser may look like the fol-
lowing.

[NP Germany ] [VP is ] [NP a country ]

The example sentence is split in 3 chunks. Like the example shows, a chunk consists of
one or more words, but does not contain any information about the structure inside the
chunk. Like the output of a POS Tagger, each chunk is labeled with a Penn Treebank Tag.
The chunk tags are explained in the Figure 2.7.

Tag Description
NP Noun Phrase
PP Prepositional Phrase
VP Verb Phrase
ADVP Adverb Phrase
ADJP Adjective Phrase

Figure 2.7: Penn Treebank Chunk Tags

11



3 Design

The goal of the Thesis is to extract a set of geographic data from Wikipedia. This section
deals with the design of the data extraction process. The Data Extraction Process is shown
in Figure 4.4. It is designed in a recursive manner and consists of the following steps.

yes

no
Stop

Start with a 
given URL

Classification

Data class?

Data Extraction

Link Extraction

Figure 3.1: Data Extraction Process Flow Chart

1. Classification. The classification assigns a class to an article. There are several classes
like river, lake or city. The full list of classes is given in the subsequent Section 3.1. If
the assigned class is relevant for the data extraction, then the next step is performed.

12



3 Design

2. Data Extraction This step extracts the relevant data of an article dependent of its
class. As an example, the data extracted of a city among others contains the country
it is located in, its population and its area.

3. Follow Links The last step extracts the outgoing links of the article. The process is
then recursively called for each extracted link.

The result of the data extraction process is, on the one hand, a list of classified Wikipedia
articles, and a set of extracted data on the other hand. The different steps of the data
extraction process are now described in detail.

3.1 Classification

To apply a suitable wrapper for the data extraction, the Wikipedia articles need to be clas-
sified. This is done by a classifier that is presented in this section. It classifies an article into
one of the following classes.

At first, the important classes that are used for the data extraction are listed.

• city

• country

• admDiv (First level administrative subdivision of a country (state, province, ...))

• island

• lake

• river

• mountain

• mountainRange

• airport

Aditionally, there are some other classes that are not yet used for the data extraction, but
nevertheless are classified. These classes may be used by a future version.

• person

• organization

13



3 Design

• company

• misc (All articles that cannot be classified into another class.)

The classification is based on a multiple criteria approach. This includes the analysis of
the Wikipedia categories that are associated with an article, its introduction text and its
title. After the three mentioned criteria have been analysed separately, a rating algorithm
combines the results to a final classification. The classification of administrative divisions
is a special case. It is described in Section 3.5.

3.1.1 Category Analysis

Like already mentioned in Section 2.1, Wikipedia articles belong to categories. These cat-
egories are used for the classification. As an example consider the article about the city
Göttingen. This article belongs to the category "Cities in Lower Saxony", which is a subcat-
egory of Cities (See Figure 3.2). At the first glance, it seems to be a good idea to classify
an article as a city, if it belongs to a subcategory of the Cities category. But due to the fact
that also categories like "Sport in Germany by city" or "Books about New York City" are sub-
categories of Cities, this would result in a multitude of misclassifications. Another problem
may be cycles in the category graph.

Cities

Cities by Country

Cities in Germany

Cities in Lower Saxony

Figure 3.2: Hierarchy of the "Cities in Lower Saxony" Category

Instead of evaluating the category graph, a pattern matching of the category names is
applied. For the most classes, there are characteristic categories that are proper for a pattern

14



3 Design

matching. A city, for instance, often belongs to a category like "Cities in Lower Saxony".
Thus, the categories can be matched with the expression "Cities in ⇤" in order to identify
cities.

To stay with the city example, there also exists a variety of other category names like
"Port cities in Africa", "Cities and towns in Molise" or "Mediterranean port cities and towns in
Spain". To handle this diversity, the matching pattern for city categories has been simplified
to look for categories that contain the word cities.

It has turned out to be an appropriate classification approach to match specific words in
the category names. The full list of used patterns is given in Figure 3.3. Only whole words
are matched, so rivers will not match the category "Formula One Drivers". The matching is
done case-insensitive.

Class Pattern
city cities, towns, capitals, villages
country countries
river rivers, streams, branches
lake lakes
mountain mountains
mountain range mountain ranges
airport airports
island islands
organization organizations
person living people, deaths, births

Figure 3.3: Category Matching Patterns

Note that an article may match the categories of different classes and one class may
match more than one category. This is handled by the rating algorithm presented in Section
3.1.4.

3.1.2 First Sentence Analysis

The first sentence of the lead section of an article normally specifies what the article is
about. Consider the first sentence of the Wikipedia article about the Weser:

15



3 Design

"The Weser is a river in north-western Germany."

Many articles follow the subject is class structure of the example sentence. This is exploited
for the classification. Therefore, the subject-predicate-object-triple is extracted from the
first sentence.

NLP-Based Triplet Extraction

A POS Tagger and a shallow parser are applied to the first sentence in order to break it into
tagged chunks. Then, the subject-predicate-object triple is extracted from the first sentence.
The algorithm is based on the idea presented in [9] and works as follows.

Consider the output of the chunk parser for the example sentence.

[NP The Weser ] [VP is ] [NP a river ] [PP in ]

[NP north-western Germany ]

The first NP chunk contains the subject. The following VP chunk contains the verb of the
sentence. The object is contained in the NP chunk that follows to the VP chunk.

Now consider another example sentence

"The Orinoco is one of the longest rivers in South America."

and the corresponding chunking result.

[NP The Orinoco] [VP is] [NP one] [PP of] [NP the longest rivers]
[PP in] [NP South America]

Here, the first noun phrase after the verb is one. In cases like one of, sort of, kind of and type of
the second noun phrase chunk after the verb phrase chunk is extracted as the object. Thus,
the longest rivers is extracted in the example.

So far, only the chunks have been extracted. The verb is determined from the VP chunk
by extracting the words tagged with a VB* tag. For the object, the words annotated with a
noun tag (NN*) are extracted form the object tag.

Summarized, the algorithm works as follows:

16



3 Design

subjectChunk := f i r s t NP chunk
predicateChunk := f i r s t VP chunk
IF : f i r s t NP chunk a f t e r the predicateChunk ends wi th kind , type , s o r t or one

THEN: objectChunk := second NP chunk a f t e r predicateChunk .
ELSE: objectChunk := f i r s t NP chunk a f t e r predicateChunk .

p red ica te := VB⇤ tagged words o f predicateChunk
ob jec t := NN⇤ tagged words o f objectChunk

Note that the algorithm only works for sentences that follow the above mentioned struc-
ture. However, the algorithm has proven to work for the most articles.

Predicate Analyzation

Once the triple has been extracted, the predicate is analyzed. If the predicate is not a form
of to be, then the algorithm "breaks".

Next, the tense of the predicate is checked. Consider the first sentence of the former
European country Yugoslavia.

"Yugoslavia was a country in the western part of the Balkans during most
of the 20th century."

The classifier recognises that the verb to be is in past tense and thus will not classify Yu-
goslavia as a country.

Object to Class Mapping

The next step is to map the identified object to the corresponding class. Therefore, an
object-to-class mapping has been manually defined under consideration of synonyms. The
full mapping is shown in Figure 3.4. For example, city, capital, town and village are mapped
to the class city. For the sake of clarity, the table only contains the nouns in singular form,
but also the plural forms are mapped (reconsider the above mentioned example: "The
Orinoco is one of the longest rivers in South America" ). Note that homonyms may cause false
results.

If the object is a compound noun, then only the tail is compared. For instance, consider
the two following mappings (Object => Class)

(1) mountain => mountain

17



3 Design

Class Words
city city, town, capital, village
country country, state, nation, republic
river river, tributary, stream, branch
lake lake, loch
mountain mountain, summit, peek
mountain range mountain range, mountain range system, mountain system
airport airport
island island
organization organization
person -

Figure 3.4: First Sentence Matching Patterns

(2) mountain range => mountain range

and the object mountain range. For mapping (1), range is compared to mountain and thus
does not match. For (2), mountain range is compared to mountain range. Thus, the class
mountain range is determined. Another example is volcanic mountain. Here, mapping (1)
would match.

3.1.3 Title Analysis

Some keywords in the titles often point to a particular class. For example consider the class
airport. The word airport is often included in the article titles of airports, like in the article
about the Frankfurt Airport. The classification algorithm makes use of this.

3.1.4 Class Selection

So far, three different classification approaches based on the category, first sentence and
title have been presented. All three criteria have the advantage that they are present in
every article. The classification algorithm used in this Thesis is a combination of those and
thus also applicable for article stubs. It basically works as follows. At first, each of the
three classification approaches is applied separately. Then, a rating is calculated for each
class. Finally, a class is determined by means of the rating.

18



3 Design

The algorithm is now demonstrated in detail with the help of an example. Consider the
Wikipedia article about Göttingen.

1) Apply the three different classification approaches

The first sentence of the Göttingen article is:

"Göttingen is a university town in Lower Saxony, Germany."

The algorithm extracts Göttingen (subject) is (predicate) university town (object). By use
of Figure 3.4, university town is mapped to the class city.

The article belongs to the following categories:
1) Cities in Lower Saxony

2) Göttingen

3) Göttingen (district)

4) University towns in Germany
Reconsider the table 3.3. The city class matches category 1 (cities) and category 4 (towns).
Neither category 2, nor category 3 has a match.

The title check yields no result.

2) Rating

A rating is calculated for each class. Each title, category and first sentence match adds
one point. The rating is the sum of the points. Figure 3.5 shows the rating of the Göttingen
article for the class city. Note that the city class matches 2 categories and thus adds 2 points.

Class city
Categories 2
First Sentence 1
Title 0
Rating 3

Figure 3.5: Classification Rating of the Göttingen Article

19



3 Design

3) Class selection

Now the final classification is done. On the one hand, the algorithm should be robust
against individual misclassifications of the different classification approaches. On the other
hand, also articles with only a few matches should be classified correctly. To cope with
this, a required minimum rating has been defined. In several runs it has turned out that a
minimum rating of 2 provides the best results. The classification selects the class with the
highest rating that has at least 2 points. In the running example, this is the class city.

To verify the selected class, a wrapper check is performed. For the data extraction al-
gorithm that will be presented in the following Section 3.2, a set of properties that are ex-
tracted from the Infoboxes have been specified for each class. For example, the IATA-Code
is a property that is extracted from airport articles. If not at least 50 percent of the specified
properties of the selected class can be extracted, then a misclassification is assumed. Note
that this means that an article of a city without an infobox will not be classified as a city, but
in this case there is no data to extract from this article anyway. For some classes (person,
organization, company) there is no wrapper, since they are not used for the data extraction.
In this case, the wrapper check is skipped.

3.1.5 Administrative Divisions

A major problem in the article classification concerns the administrative divisions class.
Originally, it was tried to classify the first level divisions of a country (e.g. federal states in
germany) by the use of the presented classification approach. The problem with this is that
the names of the first level divisions differ from country to country (region, state, province,
county, ...). Besides the different names of the first level subdivision, the names have also
different meanings depending on the county. For example, Switzerland is divided in 26
cantons, whereas a canton in France is a subdivision of arrondissements and départements.
This makes it hard to recognize the first level divions of a country. Because of this, another
approach is used for the classification of administrative divisions .

The ISO 3166-2 [1] standard defines codes for the subdivisions of countries. The tables
in the Wikipedia articles that contain the mapping between the codes and the subdivision
articles have been wrapped in order to get a list of the first level subdivisions articles.

20



3 Design

3.2 Data Extraction

This section is concerned with the data extraction from Wikipedia articles. The focus lies
on the extraction of geographic data. Like mentioned in Section 2.1, a Wikipedia article can
contain an infobox that provides the important information about the article. In principle,
an infobox presents characteristic data of a class in form of property-value pairs. Like the
article about the river Rhine, whose infobox is shown in Figure 3.6, especially geographical
articles often contain infoboxes. The data extraction algorithm that is presented in this
chapter takes advantage of this and uses the infoboxes for the data extraction.

Figure 3.6: Infobox of the River Rhine Article

21



3 Design

The use of infoboxes as a basis for the data extraction has several advantages. The
property-value-design of the infoboxes makes it easy to select the right data. Since arti-
cles of the same class normally instantiate the same infobox template, it is possible to use
the same wrapper for all articles of one class. Another advantage of infoboxes is that they
can be easily transferred from one language into another. Thus, many stub articles contain
only sparse text but provide infoboxes that have been transferred from other languages.

3.2.1 Data Overview

For each class a set of properties for the data extraction has been selected. These are pre-
sented in Figure 3.7. Most of the properties are normally present in the infoboxes of the
corresponding class. However, there is no guarantee that an infobox contains all the de-
sired information.

Class Properties
city name, country, area, elevation, population, coordinates
country name, official name, ISO code, capital, area, population
river name, catchment area, length, countries, estuary, estuary coordi-

nates, source elevation, source coordinates, cities
lake name, width, length, depth, elevation, surface area, basin coun-

tries, location, coordinates
island name, area, country, elevation, coordinates
mountain elevation, range, location, coordinates
mountain range name, elevation, country, coordinates
airport name, elevation, IATA code, coordinates, serves, location
admDiv name, country, area, population

Figure 3.7: Extracted Class Properties

3.2.2 Result Format

The goal of the data extraction process is not only to extract properties of different geo-
graphic classes, but also to extract references between entities. Due to the highly linked
articles, Wikipedia provides a good basis for the extraction of linked data. For example
consider the capital property of a country. Instead of extracting the capital name, the URI

22



3 Design

of the referenced Wikipedia article is extracted. In doing so, a set of interlinked data like
shown in Figure 3.8 is extracted.The result format of the extraction process is a set of triples.
The RDF offers the proper format to store such data. The triples of the above example are
given in Figure 3.9.

357021

wiki:Germany

area

81799600

population

wiki:Berlin

wiki:Spree

Country

City

River

a

capital

locatedIn
flowsThrough

400

length

Federal Republic 
of Germany

name

3510032

population

Spree 

name

34

Berlin

name

a

aelevation

Figure 3.8: RDF Graph of Result Data

< h t t p : / / en . w ik iped ia . org / w i k i / Germany> a m: Country ;
m: name " Federal Republ ic o f Germany " ;
m: popu la t ion "81799600";
m: area "357021";
m: c a p i t a l < h t t p : / / en . w ik iped ia . org / w i k i / Be r l i n >.

< h t t p : / / en . w ik iped ia . org / w i k i / Spree> a m: River .
m: name " Spree " ;
m: leng th "400 " ;
m: l oca ted In < h t t p : / / en . w ik iped ia . org / w i k i / Germany>.

< h t t p : / / en . w ik iped ia . org / w i k i / Be r l i n > a m: C i t y .
m: name " B e r l i n " ;
m: e l e v a t i o n " 3 4 " ;
m: popu la t ion "3507004";
m: loca tedAt < h t t p : / / en . w ik iped ia . org / w i k i / Spree >.

Figure 3.9: RDF Triples of Result Data

23



3 Design

3.2.3 Extraction Algorithm

As already mentioned, the Wikipedia infoboxes are used for the data extraction. In theory,
an infobox template should be used by all instances of the same class. However, in prac-
tice, different templates are used for the same class. For example, several infobox templates
like Infobox settlement, Infobox Russian city or Infobox German location are used by cities. Fur-
thermore, some of these templates are transferred from other language Wikipedia versions
into the English Wikipedia. This results in foreign-language property names in the article
definitions. During the HTML parsing, these templates are mapped to English infoboxes.
For example, consider the article about the German city Göttingen. It uses the Infobox Ger-
man location template. The left part of Figure 3.10 shows the Wikitext infobox declaration,
which uses German property names. The resulting infobox that is displayed in the HTML
version is shown in the right part of the Figure.

Figure 3.10: Infobox Instantiation of the Göttingen Article

Even if a class uses different infobox templates, the resulting infoboxes that are displayed
in the final HTML version broadly share the same properties presented in a similar layout.

24



3 Design

This is the reason why the HTML versions of the infoboxes, and not the property value
definitions in Wikitext, are used for the data extraction.

Since the Wikipedia pages are in XHTML markup, and thus XML documents, an XML
query language has been chosen. The data extraction from the infoboxes is done by the
use of XQuery wrappers. A snippet of the wrapper for cities that extracts the elevation is
shown in the listing below. It looks for a table row in the infobox that has a first column
with the text Elevation and binds the value of the second column to the variable $elevation.

l e t $ in fobox := $document / / html : t ab l e [ conta ins ( @class , " in fobox " ) ] [ 1 ]
l e t $e leva t i on := $ in fobox / / html : t r [ . / ⇤ [ 1 ] / s t r i n g ( ) = " E leva t ion " ] / ⇤ [ 2 ] / s t r i n g ( )

The city wrapper applied to the Göttingen article extracts the information shown in Fig-
ure 3.11.

Property Value
name Göttingen
country http://en.wikipedia.org/wiki/Germany
population 121364
area 140.27 km2 (54.16 sq mi)
elevation 150 m (492 ft)
longitude 51.53389
latitude 9.93556

Figure 3.11: Extracted Raw Data of the Göttingen Article

Once the values have been extracted, they are processed depending on the datatype of
the property.

Numbers and Units. Infoboxes often contain numeric values in different units. For
example, consider the area property in Figure 3.11. The area is stated in square kilometres
and square miles. A fixed unit has been declared for each dimension, values in other units
are converted to this dimension.

URLs. Like mentioned above, the goal is to extract interlinked data. A city infobox,
for example, normally references the country where the city is located in. However, some
infoboxes only contain the name of the country without a link. In this case, a link with
a link text that is equal to the specified name is searched within the article text, where
it normally can be found. Redirects have been introduced in Section 2.1. The redirect

25



3 Design

resolving is also part of the URL processing. If an extracted URL is a redirect, it is resolved
and replaced by the URL it redirects to, in order to create triples that point to the actual
URL.

The final triples that are extracted from the Göttingen article are shown in Figure 3.12.

< h t t p : / / en . w ik iped ia . org / w i k i / Goett ingen > a m: C i t y .
m: name "Gö t t i n g e n " ;
m: e l e v a t i o n 150;
m: popu la t ion 121364;
m: area 140.27;
m: l ong i t ude 51.53389;
m: l a t i t u d e 9.93556;
m: count ry < h t t p : / / en . w ik iped ia . org / w i k i / Germany>.

Figure 3.12: Final Result Triples of the Göttingen Article

3.3 Outgoing Link Extraction

The third step in the crawler process, after an article has been classified and its data has
been extracted, is to follow its outgoing links. For this, the HTML links are extracted from
the article body. Since the data extraction process currently focuses on Wikipedia articles,
it only follows links that reference other Wikipedia articles. But it would be conceivable to
include external pages in the data extraction process.

3.4 Link Analysis

Some relations, like the country where a city is located in, or the country a river flows
through, can be extracted directly from the infoboxes. In the following, an approach that
tries to extend the extracted data with additional relations that are not present in the in-
foboxes is described.

The outgoing links of an article are used to extend the extracted data. Therefore, it is
tried to conclude relations between articles on the basis of the links in the article text. For
example, if a river article links to a city article, it could be assumed that the river flows
through that city. By defining a set of relations between pairs of classes this information
can be automatically derived using the classification results.

26



3 Design

As an example, consider the Wikipedia article about the river Leine. The article text
contains the following sentence.

Important towns upstream to down along its course are Göttingen, Einbeck,
Alfeld and Gronau, before the river enters Hanover, the largest city on its
banks.

Links to other Wikipedia articles are printed bold. By using the classifier results, it is
known that the links point to city articles. Thus, the result data is extended by follow-
ing triples

< h t t p : / / en . w ik iped ia . org / w i k i / Leine > m: f lowsThrough
< h t t p : / / en . w ik iped ia . org / w i k i /Gö t t i ngen > ,
< h t t p : / / en . w ik iped ia . org / w i k i / Einbeck > ,
< h t t p : / / en . w ik iped ia . org / w i k i / A l f e l d > ,
< h t t p : / / en . w ik iped ia . org / w i k i / Gronau , _Lower_Saxony > ,
< h t t p : / / en . w ik iped ia . org / w i k i / Hanover >.

A problem of this approach is, that is does not consider the context in that a link occurs.
Consider the following sentence of the river Oder article.

Further downstream the river is free flowing, passing the towns of Eisenhüt-
tenstadt (where the Oder–Spree Canal connects the river to the Spree in Berlin)
and Frankfurt upon Oder.

The wrong statement that the Oder flows through Berlin is derived from this sentence.
A further idea is to also check backlinks, so that not only a river has to link the city,

but also the city has to link the river. Though, this will not guarantee that the relations
are correct. A problem would be that some relations will very rarely have a backlink. For
example, consider a relation between a city and a country. A country usually only links its
most important cities.

A more complex approach, that also considers the text context in that the links occurs is
currently under development as part of another project work.

27



4 Implementation

Instead of implementing the data extractor in form of a hard-coded program, a process-
based approach using the MARS Framework has been chosen as a basis for the imple-
mentation. A service that provides several tasks like the classification of a URL and the
extraction of infobox data for a given URL has been implemented. A MARS process is
used to control the data extraction. In principle, it requests tasks of the service and decides
the next steps depending on the results. In doing so, the data extraction process is very
flexible, it can be easily extended with new tasks of other services and the integration of
the different services is handled by the MARS Framework.

The implementation of the data extraction process is described in this chapter. At first,
the design of a MARS service for the data extraction and its integration into the MARS
Framework is presented. The implementation of the service is described in the second part
of this chapter.

4.1 System Architecture

After the introduction of the MARS Framework, an overview of how it is used for the data
extraction is given, followed by the detailed description of a service that offers tasks like
the classification and the data extraction. Then, a MARS process that uses the service is
presented.

4.1.1 MARS Framework

The MARS (Modular Active Rules for the Semantic Web) Framework [5], developed by
the DBIS group of Göttingen University, is a general framework for implementing Event
Condition Action (ECA) Rules and for processes. It is an open framework that allows to
embed arbitrary languages.

28



4 Implementation

This Thesis uses the MARS Framework to execute CCS processes. In principle, such a
process is a sequence of service calls that take variable bindings as input, do some pro-
cessing and return new variable bindings as output. Consider the example CCS process in
Figure 4.1.

1 <execute >
2 <subjec t > h t t p : / / www. semwebtech . org / mars / example </ sub ject >
3 <owner> h t t p : / / www. semwebtech . org / mars / persons / bdake </ owner>
4 <ccs : Sequence
5 xmlns : ccs =" h t t p : / / www. semwebtech . org / languages /2006/ ccs #"
6 xmlns : eca=" h t t p : / / www. semwebtech . org / languages /2006/ eca�ml #"
7 xmlns : re ldb =" h t t p : / / www. semwebtech . org / languages /2010/ re ldb #">
8 <ccs : Query eca : bind�to�v a r i a b l e ="COUNTRY">
9 <eca : Opaque eca : language =" h t t p : / / www.w3 . org / XPath">

10 "D"
11 </eca : Opaque>
12 </ ccs : Query>
13 <ccs : Query>
14 <re ldb : Query>
15 <ccs : has�i nput�v a r i a b l e name="COUNTRY"/ >
16 <re ldb : tablename useValue ="CITY " / >
17 </ re ldb : Query>
18 </ ccs : Query>
19 <re ldb : Store >
20 <ccs : has�i nput�v a r i a b l e name="CITY " / >
21 <ccs : has�i nput�v a r i a b l e name="POPULATION"/ >
22 <re ldb : tablename useValue =" germanc i t ies " / >
23 </ re ldb : Store >
24 </ ccs : Sequence>
25 </ execute >

Figure 4.1: MARS CCS Process Example

In line 8-12, the value "D" is bound to the variable COUNTRY. This results in a single
tuple that contains the variable COUNTRY bound to the value "D". The RELDB service of-
fers tasks to access a relational database. For example, it can be used to query tables and to
insert data into tables. In line 13-18, a table that contains city data (city, population, coun-
try) is queried. It uses the COUNTRY variable as input. The existing variable binding is
sent to the RELDB service, which selects the city data of Germany thereupon. The returned
answer is a set of tuples of the form

{CITY/"x", POPULATION/"y", COUNTRY/"D"}
where x and y are the values bound to the variables CITY and POPULATION like

29



4 Implementation

{{COUNTRY/"D", CITY/"Berlin", POPULATION/3400000} ,
{COUNTRY/"D", CITY/"Munich", POPULATION/1348650} ,...} .

In the last step, line 19-23, the tuples are sent to a service that stores the CITY and POPU-
LATION variable bindings in the table germancities.

4.1.2 Components

Figure 4.2 gives an overview of the architecture. This includes the following components.

MARS
Framework

Wikipedia Data Extractor
Service

Data Storage Service

Repository

Data Extraction  
Control Process

…
(uri) <- getNextUri()
(uri, class) <- classify(uri)
if(class != 'unclassified') {
   (s,p,o) <- extractInfoboxData(uri, class)
   storeData(s, p, o);
}
...

Figure 4.2: MARS Data Extraction Process Architecture

Data Extraction Control Process. The process that controls the data extraction by arrang-
ing tasks of different services.

MARS Framework. The MARS Framework is used for the execution of the data extraction
control process and handles the communication with the services.

Data Extraction Service. A MARS service that performs the actual data extraction work.
It provides a set of tasks like classify(url) or extractInfoboxData(url), which are re-
quested by the Data Extraction Control Process. The supported tasks are presented
in detail in the subsequent Section 4.1.3.

Storage Service. For the storage of the extracted data, an RDF Storage component is used.
It stores the extracted triples of the data extraction service.

30



4 Implementation

Repository. The service maintains a repository separately from the RDF storage service
where the classification results are stored. It includes a base table that stores the URL,
the HTML document of that URL and a timestamp that states the creation time of the
entry. The classifications are stored in a separate table, since a URI can potentially
have more than one class. A third table stores the outgoing links for the reference
analysis. Other services may access the repository to perform further tasks.

4.1.3 Data Extraction Service

The languages and services that are available in the MARS Framework are managed using
a Language Service Registry (LSR). Further information about the LSR can be found in
[6]. The LSR Entry of the data extraction service is shown in Figure 4.3. It specifies a
language for the data extraction process with the tasks evaluate-query and execute-action
and analyze-vartiables.

31



4 Implementation

1 <mars : QueryLanguage
2 r d f : about =" h t t p : / / www. semwebtech . org / languages /2012/wde#">
3 <mars : name>Web Data Ex t rac to r </ mars : name>
4 <mars : shortname>wde</ mars : shortname>
5 <mars : i sa r d f : resource ="&mars ;# ActionLanguage " / >
6 <mars : is�implemented�by>
7 <mars : Serv ice
8 r d f : about="&wde�host ; / se rv ices /2012/wde"
9 xml : base="&wde�host ; / se rv ices /2012/wde/" >

10 <mars : i sa r d f : resource ="&mars ;# QueryService " / >
11 <mars : i sa r d f : resource ="&mars ;# Act ionServ ice " / >
12 &wde�db ;
13 <has�task�desc r i p t i on >
14 <TaskDescr ip t ion >
15 <descr ibes�task r d f : resource ="&mars ; / query�engine#evaluate�query " / >
16 <provided�at r d f : resource =" eval�query " / >
17 <Reply�To>body </ Reply�To>
18 <Subject >body </ Subject >
19 < input >element request </ input >
20 <var iab les >⇤</ va r iab les >
21 <mode>asynchronous </mode>
22 </ TaskDescr ipt ion >
23 </has�task�desc r i p t i on >
24 <has�task�desc r i p t i on >
25 <TaskDescr ip t ion >
26 <descr ibes�task r d f : resource ="&mars ; / query�engine#analyze�v a r i a b l e s " / >
27 <provided�at r d f : resource =" analyze�v a r i a b l e s " / >
28 <Reply�To>n . a . < / Reply�To>
29 <Subject >n . a . < / Subject >
30 < input >item </ input >
31 <var iab les >n . a . < / va r iab les >
32 </ TaskDescr ipt ion >
33 </has�task�desc r i p t i on >
34 <has�task�desc r i p t i on >
35 <TaskDescr ip t ion >
36 <descr ibes�task r d f : resource ="&mars ; / ac t ion�serv i ce #execute�ac t i on " / >
37 <provided�at r d f : resource =" execute�ac t i on " / >
38 <Reply�To>body </ Reply�To>
39 <Subject >body </ Subject >
40 < input >element execute </ input >
41 <var iab les >⇤</ va r iab les >
42 </ TaskDescr ipt ion >
43 </has�task�desc r i p t i on >
44 </mars : Service >
45 </mars : is�implemented�by>
46 </mars : QueryLanguage>

Figure 4.3: Query Broker LSR Entry

32



4 Implementation

The Service provides the following tasks:

classify(url) -> (class)

This task classifies an URL and creates a corresponding entry in the repository.

<wde : Query wde : name=" C l a s s i f y " / >
Input�Var iab les : ( u r l )
Output�Var iab les : ( u r l , c lass )

extractInfoboxData(url) -> (s,p,o)

As the name suggests, this task extracts the infobox data of a given URL and returns the
extracted triples.

<wde : Query wde : name=" Ext rac t In foboxData " / >
Input�Var iab les : ( u r l )
Output�Var iab les : ( u r l , s , p , o )

ExtractOutgoingLinks(url)

Extracts the outgoing links of a URL. Redirects are resolved. The links are not returned, but
added to an internal to-do-list of the service, which can be accessed by the next task. The
to-do-list is a queue for URLs in first-in-first-out order. Each URL is only returned once
by the getNext function of the to-do-list. The intention of the to-do-list is to prevent that
a URL is used more than once in the data extraction process. For example, if two articles
have the same outgoing link, it will only be analyzed once. Another problem that is solved
by the to-do-list is the synchronization of parallel running extraction processes.

<wde : Act ion wde : name=" Ext rac tOutgo ingL inks " / >
Input�Var iab les : ( u r l )

GetNextOutgoingLinks() -> (url)

Returns the next #quantity links from the to-do-list. If quantity is set to "all", then the
complete content of the to-do-list is returnd.

33



4 Implementation

<wde : Query wde : name=" GetNextOutgoingLinks " wde : q u a n t i t y ="10" / >
Input�Var iab les : ( )
Output�Var iab les : ( u r l )

RemoveFromCache(url)

This task signals to the service that it can remove cached data for that URL.

<wde : Act ion wde : name="RemoveFromCache" / >
Input�Var iab les : ( u r l )

AnalyzeReferences()

As described in Section 3.4, the links between articles are used to derive additional rela-
tions. After the data extraction process is completed, this task can be called to extend the
extracted data with additional reference properties. Since this task is based on the classifi-
cation results, it should be called if all relevant articles have been classified. It returns the
set of triples with the derived relations.

<wde : Query wde : name=" AnalyzeReferences ( ) " wde : q u a n t i t y =" a l l " / >
Input�Var iab les : ( )
Output�Var iab les : ( s , p , o )

4.1.4 MARS Data Extraction Process

So far, the tasks provided by the data extraction service have been introduced. Now a
combination of the tasks to a data extraction process is presented. The definition of the
recursive process is shown in Figure 4.4.

Line 6-8 The next 1000 URLs are requested from the to-do-list.

Line 9-11 The URLs are classified.

Line 12 The process forks (A and B) depending on the class. The URLs that are classified
as data classes (A) are used for the data extraction and outgoing link extraction. The
non data class URLs (B) are not considered any further.

34



4 Implementation

Line 22 (A) The outgoing links are added to the to-do-list.

Line 23-25 (A) The infobox data is extracted.

Line 26-30 (A) The infobox data triples are stored using the RDF storage component.

Line 31 (A) The URLs are removed from the cache.

Line 41 (B) The URLs are removed from the cache.

Line 44-47 The existing variable bindings are cleared and the process recursively calls it-
self.

After the process has finished, the link analysis can be called using the process shown in
Figure 4.5.

Line 8-10 The links are analyzed.

Line 12-16 The derived relations are stored using the RDF storage component.

35



4 Implementation

1 <ccs : P rocessDe f i n i t i on ccs : name=" foo : process# w i k i c r a w l e r "
2 xmlns : ccs =" h t t p : / / www. semwebtech . org / languages /2006/ ccs #"
3 xmlns : wde=" h t t p : / / www. semwebtech . org / languages /2012/wde#"
4 xmlns : rd f s to rage =" h t t p : / / www. semwebtech . org / languages /2012/ rd f s to rage #">
5 <ccs : Sequence>
6 <ccs : Query>
7 <wde : Query wde : name=" GetNextOutgoingLinks " wde : q u a n t i t y ="1000" / >
8 </ ccs : Query>
9 <ccs : Query eca : bind�to�v a r i a b l e =" c lass ">

10 <wde : Query wde : name=" C l a s s i f y " / >
11 </ ccs : Query>
12 <ccs : A l t e r n a t i v e >
13 <ccs : Sequence>
14 <ccs : Test >
15 <eca : Opaque eca : language =" h t t p : / / www.w3 . org / XPath">
16 <eca : has�i nput�v a r i a b l e eca : name=" c lass " / >
17 < ! [CDATA[ $class = " r i v e r " or $c lass = " c i t y " or $c lass = " count ry " or
18 $class = " i s l a n d " or $c lass = " mountain " or $c lass = " mountainRange " or
19 $class = " lake " or $c lass = " a i r p o r t " or $c lass = " admDiv " ] ] >
20 </eca : Opaque>
21 </ ccs : Test >
22 <wde : Act ion wde : name=" Ext rac tOutgo ingL inks " / >
23 <ccs : Query>
24 <wde : Query wde : name=" Ext rac t In foboxData " / >
25 </ ccs : Query>
26 < rd f s to rage : s tore >
27 <ccs : has�i nput�v a r i a b l e name="s " / >
28 <ccs : has�i nput�v a r i a b l e name="p " / >
29 <ccs : has�i nput�v a r i a b l e name="o " / >
30 </ rd f s to rage : s tore >
31 <wde : Act ion wde : name="RemoveFromCache" / >
32 </ ccs : Sequence>
33 <ccs : Sequence>
34 <ccs : Test >
35 <eca : Opaque eca : language =" h t t p : / / www.w3 . org / XPath">
36 <eca : has�i nput�v a r i a b l e eca : name=" c lass " / >
37 < ! [CDATA[ $class = " misc " or $c lass = " person " or $c lass = " o rgan i za t i on "
38 or $c lass = " company " ] ] >
39 </eca : Opaque>
40 </ ccs : Test >
41 <wde : Act ion wde : name="RemoveFromCache" / >
42 </ ccs : Sequence>
43 </ ccs : A l t e r n a t i v e >
44 <ccs : Pro jec t i on >
45 <ccs : keep�v a r i a b l e name=" " / >
46 </ ccs : P ro jec t i on >
47 <ccs : Cal lProcess ccs : name=" foo : process# w i k i c r a w l e r " / >
48 </ ccs : Sequence>
49 </ ccs : ProcessDef in i t i on >

Figure 4.4: CCS Data Extraction Control Process

36



4 Implementation

1 <execute >
2 <subjec t > h t t p : / / www. semwebtech . org / mars / webdataext ract ion </ sub ject >
3 <owner> h t t p : / / www. semwebtech . org / mars / persons / bdake </ owner>
4 <ccs : Sequence xmlns : ccs =" h t t p : / / www. semwebtech . org / languages /2006/ ccs #"
5 xmlns : rd f s to rage =" h t t p : / / www. semwebtech . org / languages /2012/ rd f s to rage #"
6 xmlns : wde=" h t t p : / / www. semwebtech . org / languages /2012/wde#">
7
8 <ccs : Query>
9 <wde : Query wde : name=" AnalyzeReferences " wde : q u a n t i t y =" a l l " / >

10 </ ccs : Query>
11
12 < rd f s to rage : s tore >
13 <ccs : has�i nput�v a r i a b l e name="s " / >
14 <ccs : has�i nput�v a r i a b l e name="p " / >
15 <ccs : has�i nput�v a r i a b l e name="o " / >
16 </ rd f s to rage : s tore >
17 </ ccs : Sequence>
18 </ execute >

Figure 4.5: CCS Reference Analysis Process

4.2 Service Implementation

Now the implementation of the service is presented. The implementation has been done
in the object-oriented programming language Java.

At first, an overview of Java libraries that are used for the implementation is given,
followed by an overview of the class architecture. How the service can be configured is
described in the last subsection.

4.2.1 Used Frameworks and Java Libraries

This section gives an overview of the frameworks respectively libraries that are used for
the implementation of the Thesis.

JDom

JDom [7] is an open source library that provides a Java representation of XML documents.
It can be used to read, manipulate and write XML documents.

37



4 Implementation

Saxon-HE

Saxon-HE [25] is an open source XSLT, XPath and XQuery processor implemented in Java.
It is used to evaluate XQuery queries against the XHTML Wikipedia pages.

jsoup

The open source Java library jsoup [8] provides an API for working with real-world HTML
documents. It can be used to parse, manipulate and query HTML documents. A strength
of jsoup is the ability to handle invalid HTML documents and transform these into valid
XHTML documents.

Apache OpenNLP

Apache OpenNLP [15] is a machine learning-based Java library for the natural language
processing. Among other things, it supports the segmentation of text into sentences, part-
of-speech tagging and chunk parsing.

4.2.2 Class Architecture

Figure 4.6 shows the main classes of the service implementation.

WebDataExtractor
Servlet

ToDoList
WebDataExtractor

Engine

Repository
Reference
Analyzer

WikipediaArticle
Processor

WikipediaEngine

ResultCache

Figure 4.6: UML Class Diagram

WebDataExtractorServlet

The servlet handles the HTTP communication with the MARS Framework and passes the
requests to the engine. Reconsider the LSR Entry that is given in Figure 4.3, it is accessible

38



4 Implementation

under the following URLs:

http://service-url/eval-query Processes a query and returns the answer (Classify, Extract-
InfoboxData, ...).

http://service-url/execute-action Executes an action (RemoveFromCache, ExtractOutgo-
ingLinks).

http://service-url/analyze-variables Provides the analyze variables functionality.

http://service-url/reset Resets the complete Service. This includes the Repository, the ToDoList
and the ResultCache.

Additionally, a web interface that can be used to query the database tables of the service is
available under the service url.

WebDataExtractorEngine

The engine handles the MARS specific tasks. It has a method for each of the three main
tasks analyze variables, execute query and perform action. It unwraps the request, extracts
the variable bindings, and calls the functions depending on the request and wraps the
results as variable bindings.

TodoList

Like already mentioned above, the ToDoList implements a queue of URLs. It provides a
method to add a new URL and to get the next URLs. The data is stored in a database.

Repository

The Repository class handles the database communication with the repository. It provides
functions to add new entries, update existing entries and to query the repository.

WikipediaEngine

The WikipediaEngine handles the Wikipedia-specific tasks. Since the fetching of an HTML
page and its XML parsing requires much runtime, the data extractor tries to do this only

39



4 Implementation

once. For this, it maintains a cache that is used to cache infobox data and outgoing links of
classified articles.

ResultCache

A cache that keeps infobox data and outgoing links of an article. It buffers the data in the
memory and swaps to a database at a certain size.

WikipediaArticleProcessor

This class performs the actual processing of the Wikipedia article pages. It has methods for
the classification, the infobox data extraction and the extraction of the outgoing links.

ReferenceAnalyzer

The ReferenceAnalyzer derives additional relations from the classified article links. For
this, it accesses the repository in order to get the classification results and the outgoing
article links.

4.2.3 Class Interaction

To get a better understanding of how the interaction of the classes works, it is now demon-
strated with the help of an example.

Consider Figure 4.7. The WebData ExtractorServlet receives an HTTP request that re-
quests the classify task of the service. It then calls the corresponding function of the Web-
DataExtractorEngine to handle that task. The engine unwraps the MARS-Message and ex-
tracts the input variables, which contain the URLs to be classified. It then calls the classify
method of the WikipediaEngine and passes the URLs. Thereupon, the WikipediaEngine
checks the Repository if the URL has already been classified. If not, then the URL is ac-
cessed and the document is loaded and parsed. The document is then handed to the clas-
sify method of the WikipediaArticle Processor. Since the fetching and parsing of the HTML
document is very expensive, the parsed document is also used to extract the infobox data
and the outgoing links in advance. The results are kept in the ResultCache and a Repos-
itory entry for the analyzed URLs is created. After this, it returns the classification to the

40



4 Implementation

WebDataExtractorEngine. The Engine then sends a MARS-Response that contains the (url,
class) tuples as answer bindings.

WebData
ExtractorServlet

WebData
ExtractorEngine

Repository
WikipediaArticle

Processor
Wikipedia

Engine
ResultCache

answerQuery(MARS Request)

classify(url)

classify(url)

classification

extractData(url, class)

dataTriples

extractLinks(url)

outgoingLinks

newEntry(url, ...)

insert(url, data, links)

containsUrl(url)

false

classification

MARS Response

HTTP 
Request

Figure 4.7: Sequence Diagram

4.2.4 Service Configuration

In the following, a short description of how the service can be configured is given. For this,
XML configuration files that are located in the WEB-INF directory of the servlet are used.

41



4 Implementation

Basic Configuration

The web.xml specifies the URL under that the service is accessible, the JDBC access infor-
mation and the database table names that are used by the service.

Class Configuration

The class XML configuration file specifies the classifier classes, their properties and the
wrapper for the data extraction. An excerpt of the XML file that specifies the city class is
shown in Figure 4.8 .

The category elements specify the patterns that are used for the matching with the
Wikipedia categories.

The fspattern elements specify the patterns that are used for the first sentence matching.
Note that the example only includes fspattern in singular. The plural forms, which are
required for cases like "Uslar is one of the cities in Germany." are automatically added when
the file is loaded.

The properties that are extracted from the data extraction algorithm are specified by the
property elements. The check attribute defines whether or not a property is considered by
the wrapper check. For example, a mountain has the property range. But since a mountain
is not necessarily part of a mountain range, the property is not considered for the wrapper
check. The datatype and dimension attributes are required for the datatype-dependent
value parsing.

The XQuery wrapper that handles the data extraction from the different infobox tem-
plates is contained in a CDATA section that is enclosed in the wrapper element.

42



4 Implementation

1 <?xml vers ion ="1 .0 " encoding ="UTF�8"?>
2 <wik iped ia�ex t rac to r�conf ig >
3 <c lass name=" c i t y ">
4 <categor ies >
5 <category > c i t i e s </ category >
6 <category >towns </ category >
7 <category > c a p i t a l s </ category >
8 <category >populated places </ category >
9 <category > v i l l a g e s </ category >

10 </ categor ies >
11 < f i r s t s e n t e n c e >
12 < fspa t t e rn > c a p i t a l < / f spa t t e rn >
13 < fspa t t e rn > c i t y </ f spa t t e rn >
14 < fspa t t e rn >town </ f spa t t e rn >
15 < fspa t t e rn > v i l l a g e </ f spa t t e rn >
16 </ f i r s t s e n t e n c e >
17 <proper t i es >
18 <proper ty name="name" check =" f a l s e "
19 datatype =" h t t p : / / www.w3 . org /2001/XMLSchema# s t r i n g " / >
20 <proper ty name=" count ry " check =" t r ue "
21 datatype =" h t t p : / / www.w3 . org /2001/XMLSchema#anyURI " / >
22 <proper ty name=" area " check =" t r ue "
23 datatype =" h t t p : / / www.w3 . org /2001/XMLSchema#decimal "
24 dimension =" h t t p : / / www. semwebtech . org / mars / dimensions#area " / >
25 <proper ty name=" e l e va t i o n " check =" t r ue "
26 datatype =" h t t p : / / www.w3 . org /2001/XMLSchema#decimal "
27 dimension =" h t t p : / / www. semwebtech . org / mars / dimensions# leng th " / >
28 <proper ty name=" popu la t ion " check =" t r ue "
29 datatype =" h t t p : / / www.w3 . org /2001/XMLSchema#decimal " / >
30 <proper ty name=" long i t ude " check =" t r ue "
31 datatype =" h t t p : / / www.w3 . org /2001/XMLSchema#decimal " / >
32 <proper ty name=" l a t i t u d e " check =" t r ue "
33 datatype =" h t t p : / / www.w3 . org /2001/XMLSchema#decimal " / >
34 </ p roper t i es >
35 <wrapper>
36 < ! [CDATA[
37 l e t in f obox :=document / / html : t ab l e [ conta ins ( @class , " in fobox " ) ] [ 1 ]
38 . . .
39 ] ] >
40 </ wrapper>
41 </ class >
42 . . .
43 </ wik iped ia�ex t rac to r�conf ig >

Figure 4.8: Classifier and Data Extractor Configuration File

43



4 Implementation

Reference Analyzer Configuration

The reference analyzer has a separate configuration file. Like presented in Figure 4.9, the
relations to be derived are specifies as relation elements. Consider the first relation element.
If a river article has an outgoing link to a city article, then the property flowsThrough is
derived. The inverse flag specifies whether the referencing article or the referenced article
is the the subject of derived triple. The checkBacklink attribute specifies if backlinks are
required to derive the relation.

1 <?xml vers ion ="1 .0 " encoding ="UTF�8"?>
2 < r e l a t i o n s >
3 < r e l a t i o n from =" r i v e r " to =" c i t y "
4 proper ty =" f lowsThrough " inverse =" f a l s e " checkBackl ink =" t r ue " / >
5 < r e l a t i o n from =" a i r p o r t " to =" a i r p o r t "
6 proper ty ="hasRouteTo " inverse =" f a l s e " checkBackl ink =" f a l s e " / >
7 . . .
8 </ r e l a t i o n s >

Figure 4.9: Reference Analyzer Configuration File

44



5 Evaluation

In this Chapter, the implemented Web Data Extraction Process is evaluated.

5.1 Result Overview

Starting from the Berlin article, 100,000 articles have been analyzed in a test run.

• 89,554 data triples have been extracted

• 24,113 additional relations have been derived by the link analysis

• The extracted data contains a total number of 39,531 links between entities.

The number of classified articles per class is shown in Figure 5.1.

Class Articles
misc 72,103

person 11,426
city 9,251

admDiv 2,512
company 1,389

airport 784
organization 602

island 536
river 440

mountain 420
country 231

lake 202
mountainRange 104

Figure 5.1: Data Extraction Process Test Results

45



5 Evaluation

It can be seen that the number of articles belonging to geographic classes is very high.
This is because the process follows geographic articles, which often reference many other
geographic articles.

5.2 Classifier Accuracy

In order to evaluate the accuracy of the classifier, 100 articles of each classified class have
been chosen randomly. They were manually classified and then compared to the automatic
classifications. The result in given in Figure 5.2. A row contains a class, the number of
articles that have been classified as this class but belong to another class (false positive)
and the number of articles that belong to this class but have been classified into another
class (false negative).

It can be seen, that the classification of the classes that use a wrapper check works accu-
rate. The false positives of the classes that use a wrapper check can be explained by the fact
that some classes widely share the same properties and thus can pass the wrapper check
of a false class (e.g. mountain vs. mountain range). On the other side, the classes without
a wrapper check, especially organizations, are more error-prone.

Class False Positive False Negative
city 2 2

country 1 0
river 0 0
lake 0 1

mountain 4 0
mountainRange 0 4

airport 0 0
island 3 1

organization 9 1
person 0 0

company 4 2
admDiv 0 0

Figure 5.2: Classifier Test Results

46



5 Evaluation

5.3 Reference Analysis

The analysis of the outgoing links that is described in Section 3.4 has derived 24,113 addi-
tional relations from the article text. Like already mentioned, the current approach does
not pay attention to the context in that a link occurs and thus is error-prone. A check of 100
randomly selected relations has been done and shows 16 wrong relations.

5.4 Runtime

The data extraction process makes a lot of blocking database requests (mars database
variables, repository, cache). Thus, the runtime highly depends on the connection to the
database. Another main influence of the runtime is the connection to the Wikipedia servers
and their workload. In practice, the average processing time per article lies between 0.5
seconds (good connections) and 2 seconds (bad connections).

47



6 Related Work

Due to the large number of articles, Wikipedia is an attractive target for researchers. This
chapter presents some work that is related to this Thesis.

Information extraction from Wikipedia in a large scale is done by the DBpedia [4] [2]
project. It extracts structured information from Wikipedia and makes it available in the
Web. DBpedia focuses on the extraction of information like the article name, infoboxes,
categories and coordinates of an article rather than on the actual article text. Extracted
entities are classified using different classification schemata. Besides the use of Wikipedia
categories, the entities are also classified using the YAGO Classification. But since the
YAGO Classification is derived from the Wikipedia categories using WordNet, its quality
depends on the Wikipedia categories. A third classification based on the infobox templates
is available. In contrast to this Thesis that uses the HTML version for the data extraction,
DBPedia works with the Wikitext template declarations. Thus, it extracts German property
names like bundesland and not the English name state from the Göttingen infobox like done
in this Thesis.

[21] implements a self-supervised information extraction system for Wikipedia. It uses
pages with similar infoboxes to learn about their attributes and to use this for the automatic
creation of extractors in order to create new infoboxes and to complete other infoboxes.

A technique to extend Wikipedia with machine-readable semantic annotations is pre-
sented by [10]. The extension called Semantic MediaWiki of the Wikipedia engine enhances
the wiki markup and enables to annotate links and to declare properties of an article by
annotating values.

For the classification of Wikipedia articles into classes of named entities several attempts
were made. [20] uses a combination of Wikipedia and WordNet [14] for automatically
building gazetteers for the Named Entity Recognition. It determines the entity class a
Wikipedia article it belongs to based on the nouns in the first sentence of the article and

48



6 Related Work

a noun hierarchy of WordNet. A similar approach that also uses the first sentence of an
article page for the named entity recognition is presented by [9]. In contrast to [20], they
focus on the first noun phrase after the verb "to be" and use it as a category label.

[3] deals with the extraction of named entities and synonyms from Wikipedia. It uses a
pattern matching of the Wikipedia categories to recognize articles about companies, orga-
nizations and people.

An approach to identify Wikipedia articles about persons, locations and organizations
is presented in [18]. The classification is done by a Support Vector Machine that is trained
among others with infobox data, text tokens and category links in multiple languages using
the Wikipedia article cross language links.

A classification method for classifying Wikipedia articles into a set of 15 named entity
classes is proposed by [19]. It first uses a binary classifier to distinguish between articles
about named entities and other articles. Then, the named entity articles are classified using
a support vector machine. It is trained with Wikipedia features like categories, templates
and infoboxes and uses a bag-of-words of the first paragraph of an article page.

49



7 Conclusion

A process for the web data extraction that uses Wikipedia to extract geographic data has
been implemented in this Thesis. The use of a classifier that assigns a class to an article
in combination with class-specific infobox wrappers has turned out to be an appropriate
approach.

A challenge was the design of the classification algorithm, that, in contrast to the most
existing Wikipedia classification approaches that use rather general classes, classifies arti-
cles into specific geographical classes. The developed classification algorithm works prop-
erly for most classes, but especially the classification of administrative divisions could be
improved.

The adaptation of the data extraction wrapper to different infobox templates could be
coped by using flexible XQuery wrappers. By using the links that are present in the article
text and in the infoboxes, the extracted data exhibits a large amount of annotated relations
between entities that are not included in DBpedia.

Further Work

Like already mentioned in Section 3.4, the analysis of the outgoing links of an article pro-
vides potential for improvements. A more complex approach is currently under develop-
ment.

Due to the use of a MARS process for the control of the data extraction, the data extrac-
tion process could also be easily extended with new functionality. Even if only Wikipedia
is used for the data extraction by the approach implemented in this Thesis, it could also
be applied to other Web pages by adapting the classification algorithm and data extraction
wrapper.

50



Bibliography

[1] ISO 3166. http://www.iso.org/iso/country_codes.html. 2012.

[2] C. Bizera, J. Lehmann, G. Kobilarova, S. Auerb, C. Beckera, R. Beckera, and S. Hell-
mann. DBpedia - a crystallization point for the Web of Data. In Web Semantics: Sci-
ence, Services and Agents on the World Wide Web Volume 7 Issue 3, pages 154–165, 2009.

[3] C. Bohn and K. Norvag. Extracting Named Entities and Synonyms from Wikipedia.
In 24th IEEE International Conference on Advanced Information Networking and Applica-
tions, pages 1300–1307, 2010.

[4] DBpedia. http://dbpedia.org/. 2012.

[5] MARS Framework. http://www.dbis.informatik.uni-goettingen.de/mars/. 2012.

[6] O. Fritzen, W. May, and F. Schenk. Markup and component interoperability for ac-
tive rules. In The Second International Conference on Web Reasoning and Rule Systems,
pages 197–204, 2008.

[7] Jdom. http://www.jdom.org/. 2012.

[8] jsoup. http://jsoup.org/. 2012.

[9] J. Kazama and K. Torisawa. Exploiting Wikipedia as External Knowledge for Named
Entity Recognition. In Joint Conference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning, pages 698–707, 2007.

[10] M. Krötzsch, D. Vrandecic, M. Völkel, H. Haller, and R. Studer. Semantic Wikipedia.
In Journal of Web Semantics, pages 251–261, 2007.

[11] The Extensible HyperText Markup Language. http://www.w3.org/tr/xhtml1/.
2002.

51



Bibliography

[12] Turtle - Terse RDF Triple Language. http://www.w3.org/teamsubmission/turtle/.
2011.

[13] XQuery 1.0: An XML Query Language. http://www.w3.org/tr/xquery/. 2010.

[14] WordNet - A lexical database for English. http://wordnet.princeton.edu. 2012.

[15] Apache OpenNLP library. http://opennlp.apache.org/. 2012.

[16] The Penn Treebank Project. http://www.cis.upenn.edu/ treebank/. 2012.

[17] Resource Description Framework (RDF). http://www.w3.org/rdf/. 2004.

[18] I. Saleh, A. Fahmy, and K. Darwish. Classifying Wikipedia Articles into NE’s using
SVM’s with Threshold. In Proceedings of the 2010 Named Entities Workshop, pages 85–
92, 2010.

[19] M. Tkachenko, A. Ulanov, and A. Simanovsky. Fine Grained Classification of Named
Entities In Wikipedia. In HP Laboratories Technical Report - HPL-2010-166, 2010.

[20] A. Toral and R. Munoz. A proposal to automatically build and maintain gazetteers
for Named Entity Recognition by using Wikipedia. In EACL 2006, 2006.

[21] D. Weld, R. Hoffmann, and F. Wu. Using Wikipedia to bootstrap open information
extraction. In ACM SIGMOD Record Volume 37 Issue 4, pages 62–68, 2009.

[22] Wikipedia. http://http://www.wikipedia.org/. 2012.

[23] Extensible Markup Language (XML). http://www.w3.org/tr/rec-xml/. 2008.

[24] XML Path Language (XPath). http://www.w3.org/tr/xpath/. 1999.

[25] Saxon XSLT and XQuery Processor. http://saxon.sourceforge.net/. 2012.

52


