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Abstract

This thesis proposes an approach to combine the abilities of Description Logic reasoning
with the expressiveness of F-Logic rules.

Description Logics (DL) play a key role in ontology modeling for the Semantic Web, most no-
tably as the underlying logic of OWL DL. However, their expressiveness is limited, in partic-
ular in conjunction with efficient reasoning. Furthermore, the logic programming paradigms
such as F-Logic have been researched extensively in the past and powerful tools and systems
are available. The approach developed in this thesis utilizes a DL reasoner (Pellet) and an
F-Logic system (Florid) for an alternating reasoning process with an OWL DL ontology
backed by the Jena Semantic Web Framework. The DL reasoner and a set of F-Logic rules
are applied iteratively to the ontology in order to combine the advantages of both worlds. For
this process, the ontology has to be exchanged between both systems. Hence, the translation
of a subset of an OWL DL ontology into F-Logic and reverse is provided. Furthermore, the
system is prototypically implemented as part of this thesis. Moreover, the benefits of the
combination are shown by some examples.
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1 Introduction

1 Introduction

The Semantic Web is envisioned as an extension of the World Wide Web (WWW) in which
knowledge is described in such a way that computer can process and understand it. This
way, computer would be able to draw conclusions from the given knowledge using processes
similar to human reasoning and inference. At present, some of the enabling technologies of
the Semantic Web have reached a certain degree of maturity with W3C recommendations
such as RDF and OWL. In particular, the Web Ontology Language (OWL) adds considerable
expressive power by providing means to create ontologies which define the vocabulary needed
for the semantic mark-up. Besides this benefits, OWL has expressive limitations. Among
others, it does not support composition constructors which would allow, for example, to
define an uncle relationship via the composition of the brother and the parent relationship.
Furthermore, only a subset of OWL is used in order to retain decidability of key inference
problems. In fact, the need for an extension of OWL by rules has been known since the
beginning. Hence, the current research focuses on rules an its integration with the ontology
languages.

Therefore, an approach to extend the abilities of OWL DL, in terms of Description Logic
reasoning, with the expressiveness of F-Logic rules is proposed in this thesis. For such
a combination, an translation of the facts between both systems is needed. This thesis
provides such a translation. Hence, the translation of a subset of an OWL DL ontology
into F-Logic and reverse is provided. Moreover, the approach is implemented as part of this
thesis.

This thesis is structured as follows. In the next chapter, the basic concepts on which this
thesis is based are presented. Based on these basic principles, a general outline of the Jena
Semantic Web framework and a review of the provided functionalities are given in Chapter 3.
Afterwards, Chapter 4 introduces the F-Logic implementation Florid. How this F-Logic
system can be used for a combination of F-Logic rules and Description Logic reasoning is
explained in Chapter 5. The prototypical implementation of this approach is described in
Chapter 6 and an evaluation is given in Chapter 7. Subsequently, Chapter 8 presents some
related approaches and denotes the main topics for further extensions. Finally, the thesis is
concluded in Chapter 9.

1



2 Basics

2 Basics

For the understanding of this thesis a common conception of the basic principles is necessary.
As a consequence, this chapter gives a short overview of the essential concepts and used
technologies. For more details the study of the given references is recommended.

2.1 Semantic Web

At present, the World Wide Web contains an enormous and growing amount of information
distributed over nodes which are forming a heterogeneous network. Most of the content of
this nodes is marked up in the Hypertext Markup Language (HTML) and is almost solely
designed for humans to read and to understand. Therefore, computers have no reliable
way to manipulate the content meaningfully and to process the semantics (see [BLHL01]).
More precisely, humans are capable of using the World Wide Web to carry out tasks, such
as finding and making a reservation for the latest book of Tim Berners-Lee in the nearest
library. By contrast, computers can only complete small and segregated parts like searching
for the latest book or for the nearest library (cf. [BLH01]).

This shortcoming in combination with the exponential growth of the World Wide Web leads
to the need for a Semantic Web, which was described by Tim Berners-Lee as follows:

“I have a dream for the Web [in which computers] become capable of analyzing
all the data on the Web — the content, links, and transactions between people
and computers. A “Semantic Web”, which should make this possible, has yet to
emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy and
our daily lives will be handled by machines talking to machines. The “intelligent
agents” people have touted for ages will finally materialize.” [BLF99]

More precisely Tim Berners-Lee defines the term Semantic Web as follows:

“The Semantic Web is an extension of the current web in which information
is given well-defined meaning, better enabling computers and people to work in
cooperation.” [BLHL01]

2



2 Basics

The Semantic Web is envisioned to extend principles of the Web from documents to data.
This extension should be usable as an universal medium for data, information and knowledge
exchange and be processable by both automatic tools and humans (see [BLHL01]).

According to Tim Berners-Lee the Semantic Web depends on a layered, functional architec-
ture, also known as the “Layer Cake” (cf. Figure 2.1).

Figure 2.1: Semantic Web Architecture (“Layer Cake”) [BL00]

The architecture consists of a range of either established or quite recent technologies. The
core layers that are of significant importance for this thesis are subject of the subsequent
sections.

For more details see [BL98b, SH01]. The World Wide Web Consortium (W3C) [W3Ca]
standardizes and specifies new technologies in the field of the World Wide Web and related
areas. For a general survey of current activities of the W3C around the Semantic Web see
[W3C01b].

2.2 Ontology

The term ontology originally originates from philosophy and deals with theories of being and
existence. It was introduced into computer science in the context of Artificial Intelligence
research and gained popularity within the field of the Semantic Web (cf. [GG95] and [Gua98]).
A widely used definition was given by Thomas R. Gruber:

“An ontology is a formal specification of a shared conceptualization of a domain
of interest.” [Gru93]

3



2 Basics

In this context, a conceptualization is an abstract, simplified model of a part of the real
world (domain) that shall be represented (cf. [GG95]). Furthermore the ontology should
be machine-processable (“formal specification”) and should reflect consensual knowledge
(“shared”).

Ontologies are used as a form of knowledge representation and generally describe:

• Classes (concepts): abstract groups, sets, or collections of objects.

• Individuals (instances): the basic or “ground level” objects.

• Attributes: objects in the ontology can be described by assigning attributes, which
have at least a name and a value, to them.

• Relations: describe the relationships between objects in the ontology and are typically
stated as a property whose value is another object.

In order to make an ontology computer-readable and the meaning computer-understandable,
more technologies are needed which will be introduced briefly in the next sections.

2.3 URI

The Uniform Resource Identifiers (URIs) are an addressing standard of the W3C that is
used for identifying a resource unambiguously. Therefore, a character string is used that has
the following structure: <scheme name> : <scheme specific part> (cf. [BLFM98]).

The scope of what might be a resource is not limited and resources are not necessarily
accessible via the Internet: e.g. books in a library. Even abstract concepts, such as the types
of a relationship, can be resources (see [BLFM98]).

The well-known Uniform Resource Locators (URLs) are a subclass of URIs, which can be
used to locate a resource, e.g. a website. For more details see [W3C93] and [W3C07b].

2.4 XML and Related Concepts

XML. The Extensible Markup Language (XML) is an open, flexible and simple text-based
standard for the representation of (semistructured) data. It is a simplified subset of the
Standard Generalized Markup Language (SGML), and is designed to be human-readable
and understandable (see [W3C06a]).

Basically, XML defines a set of syntactic rules which enables a tree-based representation of
the document. XML-documents that obey these rules are called well-formed. The created

4



2 Basics

trees consist of nested sets of named elements which may have several attribute-value pairs.
Each element starts and ends with a tag, which must have the same name.

The main purpose is to facilitate the sharing and exchange of data between different infor-
mation systems, particularly systems connected via the Internet. Since XML can define the
syntax of arbitrary markups, which means to create a markup language, XML is called a
meta language.

XML Namespaces. The same name for elements and attributes can be declared in dif-
ferent contexts which may lead to ambiguities. The XML Namespace (XMLNS) speci-
fication has been developed to avoid conflicts between names from different applications
(see [BHL99]). For that, each name can be prefixed with a namespace, which must be
declared beforehand in one of the superelements, e.g. the root element. In a namespace
declaration a URI reference is assigned to a shortcut (the namespace prefix). Example 2.3
makes use of namespaces: for instance, the prefix “rdf” is assigned to the namespace URI
“http://www.w3.org/1999/02/22-rdf-syntax-ns”. This shortcut is expanded with the
namespace URI when the XML document is parsed.

XML Schema Languages. As explained above, XML can represent documents as trees.
But many applications need to restrict the structure in order to make use of them. For that,
the structure of an XML document has to be specified, e.g. the set of allowed tags and the
way they can be nested. This can be done by a Document Type Definition (DTD) or in a
more powerful way by a XML Schema Definition (XSD).1

A brief example of a well-formed XML document is given in Example 2.1, while the corre-
sponding tree structure is depicted in Figure 2.2:

<library >

<book isbn="012345" signature="FMAG 2003 XYZ">

<title>

Weaving the Web

</title>

<author id="tbl">

<name>Tim Berners -Lee</name>

</author >

<author id="mf">

<name>Mark Fischetti </name>

</author >

1XML Schema is more powerful because it supports the derivation of element types, allows nested definitions,
and provides atomic data types. However, XML Schema is also more complex than DTDs (see for example
[LC00]).
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<year>1999</year>

...

</library >

Example 2.1: XML Example

Figure 2.2: XML Tree

XQuery. The XML Query Language (XQuery) is a query language designed to query across
all kinds of XML data, whether physically stored in XML or viewed as XML via middleware.
XPath expressions are used to address parts of an XML document. Furthermore, XQuery
uses SQL-like “FLWOR” expressions which are composed from five clauses: FOR, LET, WHERE,
ORDER BY, RETURN. More details can be found in [W3C01c].

2.5 RDF and RDF Schema

RDF. The Resource Description Framework (RDF) has been developed by the W3C and is
a language for representing information about resources in the World Wide Web (WWW), in
particular for modeling metadata about Web resources. The main purpose is for situations
in which information needs to be processed and exchanged between applications without loss
of meaning [W3C00].

RDF bases on the idea that resources can be described by making statements about them.
Resources are any type of data which can be described by RDF expressions and identified by
a URI. A statement is also called a triple and has the following form: subject-predicate-object.
The three parts are:

• subject: The subject denotes the resource that the statement specifies.

6
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• predicate: The predicate identifies the property or characteristic of the subject and
expresses the relationship between the subject and the object.

• object: The object identifies the value of the property. This can either be a literal,
e.g. a string, or another resource.

In general, RDF uses URIs (see Section 2.3) to identify subjects, predicates, and objects
in statements.2 An unnamed resource, i.e. a resource that is not directly identifiable (for
example by a URI) nor a literal, is called an anonymous resource3. Since nodes with identical
URIs are considered as being identical, it is feasible to merge data from different RDF
sources.

An RDF model is a collection of statements which encode a labeled directed graph4. A
statement thereby denotes an edge with the subject as the initial node, the object as the
end node and the predicate as the label (cf. [KC04]). An exemplary graph is illustrated in
Figure 2.3.

Furthermore, the RDF model is serialization-independent and can be represented in many
different ways, though the proposed standard serialization is an XML markup called
RDF/XML [W3C04d]. An introductory example for RDF and in particular for the different
representation forms is given below.5

Statements in common English:

Tim Berners-Lee is the author of the book “Weaving the Web”.
It was published in 1999.

As N-Triples6 with arbitrary URIs:

<http://foo.org/w-t-w> <http://foo.org/author > "Tim Berners -Lee" .

<http://foo.org/w-t-w> <http://foo.org/title> "Weaving the Web" .

<http://foo.org/w-t-w> <http://foo.org/date> "1999" .

Example 2.2: N-Triples

2To be more precisely, RDF uses URI references. A URI reference is a URI with an optional suffixing
fragment identifier which is separated by a # (see [KC04]).

3The terms blank node and bNode are used synonymously.
4In RDF, the terms model and graph are used synonymously.
5Note that the co-author Mark Fischetti is omitted purposely.
6N-Triples is a line-based, plain text format for RDF, where one line contains one statement. Among others,

URIs are enclosed in angle brackets and literals in quotation marks. See [W3C01a] for details.
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In RDF/XML:

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#"

xmlns:dc="http://purl.org/dc/elements /1.1/">

<rdf:Description rdf:about="http://foo.org/w-t-w">

<dc:creator >Tim Berners -Lee</dc:creator >

<dc:title >Weaving the Web</dc:title >

<dc:year >1999</dc:year >

</rdf:Description >

</rdf:RDF >

Example 2.3: RDF/XML

The corresponding graph7:

Figure 2.3: RDF Graph

For further features of RDF, like reification (making statements about statements), please
refer to [Hay03, W3C04c] or [W3C00].

RDF Schema. As mentioned above, RDF provides the means to express statements about
resources. However, RDF defines the syntax but lacks the ability to describe the used vocab-
ularies8. Though a description is essential for the interpretation and common understanding
of such statements. For this reason, the RDF Vocabulary Description Language (RDFS),
also known as RDF Schema, was developed. RDFS is a semantic extension of RDF and
is published as a W3C recommendation [W3C04c]. It is written in RDF and describes the
structure of an RDF instance, i.e. the structure of the underlying RDF graph and not the
structure of the RDF/XML file (or any other representation).

7This graphical visualization was created with the W3C RDF Validation Service [W3Cc].
8A common example is the Dublin Core Metadata Initiative, which is widely used to describe digital material

and which can be found as a RDFS Schema here: http://purl.org/dc/elements/1.1/.
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The basic idea of RDFS is to combine individual RDF resources into classes, set these in
relation with other classes, and finally to describe individual resources as manifestations
(instances) of their original classes. Here, terms from RDFS are marked with the pre-
fix rdfs: and terms from RDF with the prefix rdf:.9 Classes (rdfs:Class) and properties
(rdf:Property) can be organized in a hierarchical way by using the rdfs:subClassOf prop-
erty or the rdfs:subPropertyOf property, respectively.

An other important part of RDFS is the declaration of global domain (rdfs:domain) and
range (rdfs:range) assertions for properties. The range restriction indicates that the values
of the property are instances of a designated class while the domain restriction specifies that
the property applies to a designated class.

RDFS can be used for lightweight ontologies, although the W3C prefers the term
vocabularies. Moreover, RDFS allows to reason about the given data, for example, type in-
heritance through rdfs:subClassOf or type inference through rdfs:range and rdfs:domain

assertions. More details can be found in [W3C04c].

As stated in this section, RDFS provides some basic means for describing vocabularies. But
the possibilities are still restricted. For example, neither property characteristics (inverse,
transitive, etc.) nor the disjointness of classes can be expressed. Hence a more powerful
language is needed, which is described in the following section (cf. [W3C03]).

2.6 OWL and Description Logic

This section gives first an introduction into the ontology language OWL, followed by the
basics of the underlying Description Logic and finally an insight into Description Logic
reasoning.

2.6.1 OWL

The Web Ontology Language was introduced 2003 in [DCv+02] as a layer on top of RDFS
(see Figure 2.1). In 2004 it was published as a W3C Recommendation [BvH+]. The ba-
sic fact-stating ability of RDF and the class- and property-structuring capabilities of RDFS
(Section 2.5) are extended in several ways. OWL adds more vocabulary for describing proper-
ties and classes: relations between classes (e.g. disjointness), cardinality (e.g. “exactly one”),
equality, characteristics of properties (e.g. symmetry), and enumerated classes (e.g. “one of”)
(see [W3C04b]). The design of OWL was influenced by several pre-existing languages, in
particular by DAML+OIL [CvH+].

9For a description of namespaces see Section 2.4.
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The W3C chose Description Logics (DL) as a logical base for the Web Ontology Language
which is introduced in Section 2.6.2. Hence, the different variants of OWL can be regarded
as particular Description Logics (cf. [HPS03]).

As full ontology-based applications are hard to implement and to run, three OWL layers
were defined to reflect compromises between expressiveness and complexity. Thereby, OWL
comes in the following three layers with decreasing level of complexity and expressiveness:

• OWL Full: All OWL and RDFS elements are allowed in arbitrary combinations, which
leads to maximum expressiveness, but no computational guarantees. In particular, the
fact that a class can also be an individual is problematic.

• OWL DL: This is the maximal subset of OWL Full for which the reasoning is complete
(all entailments are guaranteed to be computed) and decidable (all computations will
finish in finite time). OWL DL makes several restrictions on OWL Full, e.g., the sets
of identifiers of classes, properties, and individuals must be disjoint.

• OWL Lite: This layer is designed to provide a minimal useful subset of OWL DL, that
can be easily implemented. Primarily intended for a classification hierarchy and simple
constraint features. OWL Lite is created by imposing some restrictions on OWL DL,
e.g. the value of a cardinality restriction is limited to 0 or 1.

The relation between these three layers is depicted in Figure 2.4 and can be written as:

OWL Lite ⊂ OWL DL ⊂ OWL Full

Figure 2.4: OWL Hierarchy

In general, OWL makes an open world assumption: A statement cannot be assumed false
on the basis of a failure to prove it. Furthermore, OWL does not follow the unique name as-
sumption: For two resources with different names (URIs), it may still be derived by inference
that they must be the same. More details can be found in [HPSvH03], and [W3C04a]. An
extension of OWL DL, called OWL 1.1, is currently under development [W3C07a]. Please
refer to Example A.1 in the appendix for an exemplary OWL DL ontology. This example is
explained in more detail in Chapter 5 and it is visualized in Figure 5.1.
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Since OWL DL and OWL Lite are based on Description Logic, a short introduction into this
form of logic is given next.

2.6.2 Description Logic

Description Logics, previously called terminological logics, are logical formalisms used in
knowledge-based systems to represent and reason about terminological knowledge of a prob-
lem domain. They were developed as an extension to object-centric formalisms like semantic
networks and frame systems. More precisely, Description Logics add well-defined formal and
declarative semantics (cf. [BCM+03]).

Extensive research in this field of knowledge representation resulted in a wide range of De-
scription Logics which can be distinguished from each other by the available constructors
and axioms. In particular, the research is concerned with the expressiveness and compu-
tational properties of the various DLs. In general, Description Logics are constructed in
such a way that inferencing is decidable. Hence, Description Logics can be considered as a
decidable subset of First-Order Logic (FOL) (see [Bor96]).10 However, the expressiveness
of DL is limited seriously, for example by the absence of variables. However, this limited
expressiveness ensures decidability, improves tractability, and allows efficient reasoning.

DLs are based on the description of classes11 and properties12. Classes are described im-
plicitly by the properties that objects must satisfy in order to belong to the class, while
a property relates pairs of objects with each other. More precisely, classes correspond to
unary predicates of FOL, e.g. C(a) states that a is an instance of C. Furthermore, prop-
erties correspond to binary predicates of FOL (cf. [Bor96]). For example, P(a, b) denotes
the property P. Hence, ontology languages like OWL DL may be called predicate-based
(cf. [BH06]). A more detailed description of the correspondence between DL and FOL can
be found in [BH06] and [Bor96]. The set of available operators to build complex class and
property constructs characterizes a particular Description Logic (see Table 2.1). Normally, a
DL is based on the logic AL [SSS91] or on ALC. AL is a basic language and allows atomic
negation, concept intersection, universal restrictions, and limited existential quantification
whereas ALC allows additionally more complex concept negation (cf. [SSS91]).

OWL DL is based on the expressive Description Logic SHOIN (D). As mentioned above,
OWL Lite is restricted in several ways, which result in the less expressive Description Logic

10Since there is no algorithm that for any formula in FOL returns its validity, First-Order Logic is not
decidable. Most DLs are less complex than the decidable Logic L2, i.e FOL with only two (reusable)
variable symbols (cf. [Bor96]).

11Here, the term class is used instead of the term concept as it is commonly used in the Semantic Web
context.

12Like before, the term property is used instead of role as it is commonly used in this context.
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Name Symbol
AL Attribute Language
ALC Attribute Language with Complement
S ALC with transitive properties
H Property hierarchy (subproperties)
O Nominals
I Inverse properties
N Cardinality restrictions (“number restrictions”)
Q Qualified property restrictions
(D) Data types, e.g. integers
F Functional properties

Table 2.1: Description Logic Expressiveness

SHIF (D). The expressiveness of OWL DL leads to a NExpTime complexity for key
inference problems whereas key inference in OWL Lite can be computed in exponential time
(ExpTime) (cf. [HPS03]).

In general, a DL knowledge base consists of the following two components:

1. A terminological box or TBox, which contains definitions and assertions about classes
and properties. More precisely, it formalizes subsumption and equivalence relations.
Subsumption is typically written as C v D which means that D subsumes C, i.e. the
class (property) D is considered as being more general than the class (property) C.
Whereas equivalence is denoted as C ≡ D and is often used to define left-hand side
classes. For example, Woman ≡ Person u Female defines a woman as a female person
(see [BCM+03]).

2. An assertional box or ABox, which contains the facts about the instances (individuals)
in terms of basic classes, properties and intensional classes. For example,
Person(ADAM) states that the instance ADAM is a person.

2.6.3 Reasoning

An inference engine, also known as a reasoner, allows to derive implicit knowledge from what
has been explicitly stated. DL reasoning can be split in TBox reasoning and ABox reasoning.
An inference service which considers only the TBox is the calculation of the subsumption
hierarchy. Whereas instance checking, i.e. determining, whether an individual is an instance
of a certain class, is part of the ABox reasoning.13

13Since instance checking depends on the results from TBox reasoning, ABox reasoning is usually activated
after the TBox reasoning.
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Pellet. Pellet is an open-source OWL DL reasoner written in Java which was introduced
in [PS04]. The full expressiveness of OWL DL and all the features proposed in OWL 1.1,
with the exception of n-ary datatypes, are supported by Pellet (cf. [Mar]). Thus, the
expressiveness of Description Logics that are supported by Pellet is SROIQ(D) (cf. [Mar]).
This DL extends the well-known DL SHOIN (D) which underlies OWL DL. For more
details see [HKS06].

Up to now, the basic concepts in the context of the Semantic Web that are relevant in this
thesis have been introduced. The next chapter presents a framework which makes use of
these concepts.
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3 The Jena Semantic Web Framework

Jena [jen] is a leading open-source framework for developing Semantic Web applications
with Java based on W3C recommendations for RDF and OWL (see Sections 2.5 and 2.6).
An essential part of Jena was developed in the Hewlett Packard Labs Semantic Web Pro-
gramme [hps]. The Jena framework offers a convenient way for working with ontologies and
in particular for integrating ontologies into applications.

The current version of Jena is 2.5.2, which is used in this thesis14. A brief introduction of
the Jena components that are relevant for this thesis is given in the following sections.

3.1 Architecture Overview

The Jena architecture consists of the following layers: the Graph layer, the EnhGraph layer
and the Model layer(see Figure 3.1). Though, only the Model layer is used by the application
programmers, while the Graph layer and the EnhGraph layer are solely used within the Jena
framework and hidden from the user. These three layers are explained consecutively in the
following paragraphs.

Graph Layer. The core of the Jena architecture is the RDF graph (see Section 2.5 or
[KC04]), which is represented via the Graph layer. This layer defines an interface to create
and manipulate these graphs. Generally, triples are used as the universal data structure.
The Graph layer offers several ways to store these triples, either in memory or in persistent
storage backed by a database (see Section 3.4).

Model Layer. The Model Layer is the primary abstraction layer of the RDF graph used
by the application programmer. It offers two Application Programming Interfaces (APIs)
for operating on the graph itself and on the nodes within the graph. The first one is the
Model API, which allows access to all parts of the underlying RDF graph. The second one is
the Ontology API, which can be used to deal with ontology languages, like RDFS or OWL.
Both APIs are explained in more detail in Section 3.2.

14In some publications [CDD+04] the term Jena2 is used to distinguish from older versions (1.*). However,
here the term Jena is used continuously as an synonym for the prevailing version.
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Additionally, the Model layer offers means for the input and output of RDF-models, re-
spectively of RDF-graphs. For instance, Jena supports RDF/XML, N-Triple, and N315.
Furthermore, an RDF/XML-Parser16 is used to validate the syntax of models in RDF/XML
format.

Figure 3.1: Jena2 Archicture [CDD+04]

EnhGraph Layer. The EnhGraph17 layer is an intermediate layer between the Model layer
and the Graph layer. According to the different used languages, e.g. OWL or RDFS, this
layer provides multiple views of graphs and of nodes within a graph which can be used
simultaneously. For example, the functionality offered by the EnhGraph layer is used to
implement the Model API and the Ontology API (see Section 3.2).

15N3 is a compact and readable alternative to RDF/XML syntax which is often used for introductions into
key principles of the Semantic Web [W3Cb].

16Jena uses the open-source Xerces Java parser [Prob].
17Enhanced Graph.
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3.2 APIs

Jena provides several APIs, which are introduced briefly in the following sections. The heart
of Jena is the Model API, which supports the creation, manipulation, and querying of RDF
graphs (see [McB02]). Among others, it is accomplished by the Ontology API, the Inference
API and the Query API.

3.2.1 Model API

As pointed out in Section 2.5, RDF uses statements consisting of a subject, a predicate and
an object, to describe arbitrary resources. Altogether, these statements form the RDF graph
with subjects and objects as nodes and predicates as arcs. In Jena, a graph is called a model
and is represented by the Model interface. This Model interface allows to create, to access
and to manipulates the elements of a model which are represented by the corresponding
interfaces, e.g., Statement, Property or Resource. The precise use of the Model API is
explained by the means of a short example, which is based on Example 2.3.18

String bookTitle = "Weaving the Web";

String bookAuthor = "Tim Berners -Lee";

String bookUri = "http :// someurl.org/tbl";

// create an empty Model

Model model = ModelFactory.createDefaultModel ();

// create a resource

Resource wtwBook = model.createResource(bookUri);

// add some properties

wtwBook.addProperty(DC.title , bookTitle);

wtwBook.addProperty(DC.creator , bookAuthor);

...

//print some properties of weaving the web

System.out.println(wtwBook.getProperty(DC.title).getString ());

System.out.println(wtwBook.getProperty(DC.creator).getString ());

Example 3.1: Example

Each call of addProperty in the example above added another statement to the Model. A
statement is represented by the Statement interface, which provides access to the subject,
predicate and object. Jena offers some convenient list-methods to obtain subjects, predi-
cates, objects, and statements matching certain conditions. However, these methods support
only simple queries and the more powerful query facilities of SPARQL Protocol and RDF
Query Language (SPARQL) are described in section 3.3.

18Corresponding to Example 2.3, the Dublin Core metadata is used. It is represented in Jena by the DC class.
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Furthermore, the Model API offers methods for reading and writing RDF as RDF/XML (or
any other supported format). These methods can be used to save an RDF model to a file and
later read it back in again. Additionally, the common set operations of union, intersection
and difference, known from mathematical set theory, can be used to manipulate models as
a whole.

3.2.2 Ontology API

Since Jena is based on RDF, only ontology languages built on top of RDF are supported.
More precisely, RDFS, the three types of OWL, and DAML+OIL can be used with Jena.

Due to the fact that the names of the classes and interfaces are independent from the under-
lying ontology language, the Jena Ontology API is called language-neutral. Each ontology
language has a profile (OntModelSpec), which contains all permitted constructs and the
URIs of corresponding classes and properties.

The profile is bound to an ontology model (OntModel), which extends the Model from the
Model API by adding support for the ontology-specific classes (in a class hierarchy), prop-
erties (in a property hierarchy) and individuals. The most important additional interfaces
are:

• OntResource: extends the Resource interface and is a common super-class in the
Ontology API. OntResource defines some methods, for example, to find out how many
values a resource has for a given property (getCardinality(Property prop)), or to
remove the resource from the ontology model (remove()). Furthermore, OntResource
provides methods for listing, getting and setting the RDF types of a resource.

• OntClass: represents a class in an ontology and offers methods, for instance, to list
subclasses, super-classes, equivalent classes, disjoint classes and all instances of this
class.

• OntProperty: is an extension of the Property interface and acts as a super-class for
the ontology properties. OntPropery offers some methods, for example, to access the
domain (getDomain()) or the range (getRange()) of a property.

• Individual: represents an individual. Typically used to reflect individuals that are
instances of user-defined classes.19

These are the basic interfaces, a more complete list can be found in [jen].

19In OWL Full and DAML+OIL any value can be an indivdual.
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3.2.3 Inference API / Reasoner API

The Inference API was developed to be able to use a range of inference engines or reasoners
(see Section 3.5 for details on these engines and reasoning in general). Each available reasoner
is represented by a factory object which is an instance of the ReasonerFactory. These
factories can be used to create the corresponding reasoner instances. Such an instance
can then be bound to an RDF graph, which results in an InfGraph20. An InfGraph is a
specialization of the standard Graph interface that contains all triples from the base graph
and additionally, the inferred “virtual” triples. Thus, the Model and the Ontology APIs can
use this InfGraph like a normal graph. This is depicted in Figure 3.2.

Figure 3.2: Inference Subsystem

3.3 Query language SPARQL

SPARQL is a recursive acronym standing for SPARQL Protocol and RDF Query Language.
As the name implies, SPARQL is a protocol [W3C06b] and a query language [W3C04e] for
RDF data, but mostly the acronym SPARQL is used for the query language. It builds on
previous RDF query languages such as rdfDB [Guh] and RDQL [Sea04].

As mentioned before, RDF is built on triples consisting of a subject, a predicate, and an
object. The SPARQL query language is based on matching graph patterns, which contain
triple patterns. A triple pattern also consists of a subject, predicate and object, but any
or all of the elements may be replaced by variables. Variables are prefixed by a ? or as
an alternative by a $. A query returns each variable assignment that complies with the
constraints specified by the graph patterns.

20Inference Graph
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The SPARQL syntax is similar to the SELECT...FROM...WHERE style of the SQL syntax.21

Thus, a simple query has the following structure:

PREFIX declaration of prefixes (optional)

SELECT requested variables

FROM specification of data sources (optional)

WHERE

{

list of conditions , each formulated as triple and/or FILTER

expression .

}

Example 3.2: Generic SPARQL Query

A PREFIX is basically the SPARQL equivalent of an XML namespace: It associates a short
label with a specific URI and keeps the query slightly terser. The result of a query can
either be accessed directly by the Jena API or be serialized into XML [W3C04f] or an RDF
graph.

The Jena framework supports SPARQL through the ARQ query engine, which can process
additionally RDQL queries and queries in its own language ARQ. Since the query engine is
provided as an API, the functionalities can be embedded into Java code. For more details
see [W3C04e] and [jen].

3.4 Persistence

Jena possesses a database subsystem which supports persistent storage of RDF data in
relational databases, like MySQL, PostgreSQL, Oracle or Microsoft SQL Server. Therefore,
the same interfaces such as Model, Resource and Query, are used to access and manipulate
the stored RDF data. The database is not directly accessed by the application: All database-
related tasks, like creating the necessary tables, are done transparently by Jena. By default,
each model is stored in separate tables, whereas URIs are used to identify the models.22

Jena trades off space for time and uses a denormalized schema in which literals and resource
URIs are stored directly in statement (triple) tables. More details can be found in [jen].

21Note that there is no equivalent of the SQL INSERT, UPDATE, or DELETE statements.
22Currently, any string can be used, but the use of URIs is encouraged.
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3.5 Reasoning and Inference

Ontology languages like RDFS or OWL allow additional facts to be inferred from some base
data together with ontology information and the associated axioms and rules. Thus, inference
engines (reasoners) are needed to make these entailments. As described in Section 3.2.3, Jena
provides the Inference API for this purpose. The reasoners vary in their domain and their
functional range and they can be either a part of the Jena framework or be external. First,
the built-in reasoners are described, followed by the external reasoners.

3.5.1 Built-In Reasoners

Currently, Jena contains the following built-in reasoners:

• Transitive reasoner: This reasoner provides support for storing and traversing
class and property hierarchies. Solely the transitive and symmetric properties of
rdfs:subPropertyOf and rdfs:subClassOf are implemented.

• Generic rule reasoner: A rule-based reasoner which supports user defined rules.
Furthermore, this reasoner is used to implement both the RDFS and OWL reasoners
by instantiating the generic rule-based reasoner with a predefined set of rules. For-
ward chaining, tabled backward chaining and hybrid execution strategies are supported
(see [jen] for details ).

• RDFS reasoner: Implements a (configurable) subset of the RDFS entailments. Thereby,
almost all of the RDFS entailments described in [Hay03] are supported.

• OWL reasoner: Provides a set of useful but incomplete implementations of the OWL
Lite subset of the OWL Full language (see Section 2.6). A default OWL reasoner and
two small/faster configurations are included. Each of the configurations is intended to
be a sound implementation of a subset of OWL Full semantics but none of them is
complete (in the technical sense).

• DAML micro reasoner: Enables legacy support for the DARPA Agent Markup
Language (DAML). Essentially, the RDFS reasoner is augmented by axioms declaring
the equivalence between the DAML constructs and their RDFS aliases.

3.5.2 External Reasoners

For complete OWL DL reasoning an external reasoner is needed. Due to the open archi-
tecture of Jena and in particular of the inference subsystem, external inference engines can
easily be integrated.
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DIG-Interface. The DIG-Interface is specified by the DL Implementation Group (DIG) and
provides uniform access to DL reasoners. Therefore, the interface defines a simple HTTP-
based protocol and offers a minimal set of operations (cf. [dig]). Jena uses this interface and
therewith provides a transparent gateway between the ontology models and the external
reasoners. At this time, available DIG reasoners are: Racer [Rac], FaCT [Hor] and Pellet.

Pellet. Pellet has been already introduced in Section 2.6.3. There are two different ways to
use Pellet in Jena. Firstly, Pellet supports the DIG interface and can be accessed this way.
Secondly, the Pellet interface can be integrated directly into Jena. The latter way is highly
recommended because it is much more efficient and provides more inferences.23 Thus, the
Pellet interface is used in this thesis.

3.6 Summary

The essential concepts of the Semantic Web have been briefly introduced in Chapter 2. Based
on these concepts, the Jena Semantic Web Framework has been presented in this chapter.
Accordingly, Jena provides a wide range of functions to deal with ontologies. Additionally,
the Pellet reasoner can be in combination with Jena to infer new facts from OWL DL
ontologies.

Due to the fact that OWL DL is based on a (decidable) Description Logic, it shares its
benefits and limitations. Hence, OWL DL is well suited for structuring knowledge by classes
and properties. Furthermore, it provides means to reason about the explicit information.
However, OWL does have a limited expressiveness, particularly in conjunction with prop-
erties (see [HPS04]). For example, it cannot express property-chaining rules like “an uncle
is precisely a parent’s brother” (see [HPSvH03]) and furthermore, it does not support de-
fault values, respectively non-monotonic inheritance.24 For more information on further
limitations please refer to [HPSvH03] and the given references.

Several research initiatives focus on these limitations and approaches for an integration
of rules within the Web Ontology Languages have been proposed. An overview of some
related approaches will be presented in Section 8. Since this thesis deals with a combination
of DL reasoning and F-Logic rules the focus of the next chapter will be F-Logic and an
implementation called Florid.

23The DIG interface lacks datatype support and the general expressiveness of DIG is not sufficient for OWL
DL ontologies (cf. [Mar]).

24Non-monotonic inheritance is explained in more detail in Section 4.2.2. Here it is enough to know that
non-monotonic inheritance allows to override inherited properties.
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Frame Logic (F-Logic) is a deductive, object-oriented language which can be used to repre-
sent ontologies (see Section 2.2) and other forms of Semantic Web reasoning (see [Kif05]).
The main reference is [KLW95] while the underlying concepts where already presented in
[KL89].

F-Logic integrates the paradigms of logic programming with the declarative semantics and
expressiveness of deductive database languages. Furthermore it accounts for rich data model-
ing capabilities of object-oriented concepts and structural aspects of frame-based languages.
The salient features include complex objects, non-monotonic multiple inheritance, polymor-
phism, class-hierarchies, signatures, uniform handling of data and metadata, query methods,
and encapsulation (see [KLW95, FHK+97]).

Several implementations of F-Logic are available, for example, FLORA-2 [Sto], Ontobro-
ker [Ont], and Florid. The latter implementation was initially presented in [FHK+97] and is
used within this thesis.

Florid. F-Logic Reasoning in Databases (Florid) is a C++-implementation of F-Logic that
implements all essential features. Additionally, it provides some extensions like path ex-
pressions which facilitate object navigation (see Section 4.4). Florid was developed by the
Databases and Information Systems group at Freiburg University and was released in ver-
sion 1.0 in 1996. Currently, version 4.0 is available which can be found on the Florid home-
page [Dat]. For further information the study of the user manual [May00a] and the tutorial
[May00b] is recommended.

The fundamental concepts and features of Florid and F-Logic are introduced by examples
in the following sections.

4.1 Basic Syntax

An excerpt from the family tree of Abraham, depicted in Figure 4.1, is used in the subsequent
sections to visualize and to exemplify the given explanations.
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Figure 4.1: Biblical Family Tree

4.1.1 Objects

As previously mentioned, F-Logic integrates object-oriented paradigms and accordingly, ob-
jects build the basic concepts of F-Logic. They can be accessed by their object names while
they are internally represented by object identifiers (OIDs). Object names always begin with
a lowercase letter, whereas variables always begin with an uppercase letter or an underscore
followed by an uppercase letter. Object names and variable names are also called id-terms
and are the basic syntactical elements of F-Logic. Examples for object names are abraham,
woman or son, for variables are Xy or _xy. Two special types of object names exist: integers
and strings. Strings are enclosed by quotation marks and may be used as object names, as
well as positive or negative integers.

4.1.2 Methods

Following the object-oriented paradigm, methods are used to represent relationships between
objects. They are expressed by data-F-atoms consisting of a host object, a method object,
and a result object. Id-terms are used to denote the objects and all objects are allowed
to occur in any place of a data-F-atom. A method which results in at most one object is
defined as a functional method and is represented by a single-headed arrow “->“. Methods
that may result in more than one object are called multi-valued methods and are indicated
by a double-headed arrow “->>”. This leads to the following syntactical representation:
“host[method ->> result].”

An exemplary functional method atom is: “isaac[father->abraham].” which expresses
that abraham (result) is the father (method) of isaac (host). A similar example for a
multi-valued method atom would be: “abraham[son->>isaac].” which states that isaac is
a son of abraham and people in general may have additional sons.
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Methods with Parameters. On various occasions the result of a method does not depend
solely on the host object, but on some additional objects. These objects are embraced in
F-Logic as parameters. Such parameters are always included in parentheses and separated
by the symbol “@” from the method object. For example the atom
“abraham[son@(sarah)->>isaac].” states that abraham has a son isaac who was born by
sarah.

4.1.3 Class Membership and Subclass Relationship

Since F-Logic makes use of object-oriented concepts, objects can be categorized into classes.
The class membership of an object is expressed by an Isa-F-atom which is denoted by a
single colon “:”. Furthermore, classes can be arranged in a class hierarchy by using subclass
relationships. A subclass relation is expressed by subclass-F-atoms which are syntactically
defined by a double colon “::”. F-Logic permits that an object is an instance of several
classes that are incomparable by the subclass relationship. Since classes are objects, Isa-F-
atoms as well as subclass-F-atoms use id-terms to denote the objects and classes. Hence, it
is possible to define methods on a class which is an instance of another class.

The atom “man::person.” defines that the class man is a subclass of the class person.
Whereas the atom “abraham:man.” denotes that abraham is an instance of the class man.
Because of the subclass-relationship between man and person it is possible to infer that
abraham is also an instance of the class person.

4.1.4 Signatures

F-Logic provides signature-F-atoms to define which methods are applicable on the instances
of certain classes. For this purpose, a signature-F-atom declares a method on a class and
gives type restrictions for parameters and results. Similar to data-F-atoms, functional and
multi-valued methods are denoted by “=>” respectively “=>>”. Furthermore, it is possible to
use a list of result classes (enclosed by parentheses) so that the result objects have to be in
all listed classes.

For the given example (see Figure 4.1) it is reasonable to restrict the method father in such
a way that the result object must belong to the class man and that the method is applicable
for every person. The corresponding signature-F-atom is “person[father=>man].”.

24



4 Florid - F-Logic Reasoning in Databases

4.1.5 Miscellaneous

F-molecules. Moreover, it is possible and particularly convenient to collect several F-atoms
into a single, more complex F-molecule. Example 4.1 contains all necessary facts about the
family tree of Figure 4.1 in a fairly dense representation.

% signatures & sublcass relations

man:: person.

woman:: person.

person[father=>man].

person[mother=>woman].

% facts

isaac:man[father ->abraham:man; mother ->sarah:woman].

ishmael:man[father ->abraham; mother ->hagar:woman].

jacob:man[father ->isaac; mother ->rebekah:woman].

esau:man[father ->isaac; mother ->rebekah:woman].

Example 4.1: Family Tree as F-Molecules

Negation-As-Failure. F-Logic supports the closed world assumption: everything which is
not explicitly known, is assumed to be false. This is also related to negation-as-failure which
can be expressed as: “¬ P can be inferred if every possible proof of P fails” [Cla78]. Thus,
drawn conclusions may become invalid if new information are added. This kind of reasoning
is called non-monotonic (see Section 4.2.2).

4.2 Inheritance

F-Logic supports structural and behavioral inheritance. The former deals with inheritance
of type restrictions for methods from superclasses to their subclasses and the latter refers
to propagation of results of a method application from a superclass to its instances and
subclasses.

4.2.1 Structural Inheritance

As mentioned above structural inheritance refers to the propagation of a type restriction
from a superclass to its subclasses. In general, inheritability of a type restriction is depicted
in F-Logic with a star attached to the appropriate arrow. This results in “*=>” for functional
and“*=>>” for multi-valued methods. Florid omits the star and does not distinguish between
inheritable and non-inheritable methods. Consider Example 4.2 which shows that type
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restrictions accumulate: the person, a staff member reports to, must be a staff member and
a manager.

staff:: employee.

manager :: employee.

employee[reports_to => staff].

staff[reports_to => manager ].

% derived by inference:

employee[reports_to => employee ].

employee[reports_to => manager ].

% same as a combined F-molecule:

employee[reports_to => (employee ,manager)].

Example 4.2: Structural Inheritance

4.2.2 Behavioral Inheritance

Inheritable methods are used to express behavioral inheritance. They are indicated by a pre-
fixed star which leads to “*->” for inheritable functional methods and “*->>” for inheritable
multi-valued methods. If an inheritable method is applied to a certain class, this method
application and the corresponding result are inherited by all instances and subclasses of this
class unless it is overridden. An inheritable method is overridden when it is specified by a
more specific class. Example 4.3 depicts how a method can be inherited and be overriden. In
general, birds are animals and can fly. However, tweety is a penguin and penguins cannot
fly. Therefore, the method “can_fly” is overriden for penguins since the class penguin is the
more specific class.

bird:: animal.

penguin ::bird.

bird[can_fly*->yes].

penguin[can_fly*->no].

tweety:penguin. % instance

% derived by inference:

tweety : animal.

tweety : bird.

tweety[can_fly ->no].

Example 4.3: Non-monotonic Inheritance
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This kind of inheritance is called non-monotonic inheritance and is a part of non-monotonic
reasoning25. More precisely, the inheritance defines a default which can be overriden or even
canceled by a more specific class. Hence, it is also called default inheritance. Note that an
inheritable method becomes non-inheritable when it is inherited by instances but remains
inheritable when it is passed to subclasses.

4.3 Predicate Symbols

Predicate symbols can be used in the same way as in predicate logic, e.g. in Datalog26. So
called P-atoms are used to express information using a predicate. A P-atom consists of a
predicate symbol followed by one or more id-terms separated by commas and included in
parentheses. An example is “father(isaac,abraham)”. Usually the information of a binary
p-atom can can also be expressed by F-atoms, e.g. the information of the last example can
be expressed as “isaac[father->abraham]”.

Florid provides some built-in predicates that are very useful, e.g. the equality predicate and
several comparison predicates.

Equality. An equality predicate is used to indicate that two object names are equal, i.e.
they refer to the same object.27 It is denoted with the “=” symbol and it is used in infix
notation, e.g. “abram = abraham.”. The equality predicate may be used in rule heads, rule
bodies, facts, queries, and furthermore in combination with variables.

Comparison. Florid provides comparison predicates which are defined on objects denoting
integer numbers. More precisely the predicates “<”, “<=”, “>”, and “>=” may be used within a
query or a rule body to compare integer numbers. Like the equality predicate, the comparison
predicates are used in infix notation.

4.4 Path Expressions

So far, objects are accessed directly by their object names (see Section 4.1.1). In addition,
it is possible to navigate to them along method invocations on other objects using so-called

25By contrast, monotonic reasoning does not allow that a new piece of knowledge reduces the set of what is
known. Here, the fact “tweety is a penguin” invalidates the presumption that tweety can fly.

26Datalog is a query and rule language for deductive databases which is mainly used for research purposes.
For further reading see [CGT90].

27Note that an object name refers to exactly one object, whereas an object may have more than one object
name.
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path expressions. Hence, a path expression describes how to navigate to the specific object.
Path expressions generalise the dot-notation of object-oriented programming languages like
Java.

In F-Logic a functional path expression is indicated with one dot between the object name
and the method name, for example, the path expression “isaac.father” can be used to
access the father of abraham. Consequently multi-valued path expressions are denoted with
two dots, e.g. “abraham..son” accesses the sons of abraham. Moreover path expressions can
be chained up by successively applying methods. For instance the antecedent expressions can
be chained up to“isaac.father..son”to access the sons of the father of isaac. In addition,
methods with parameters can be used in path expressions, e.g. “abraham..son@(leah)” can
be used to access the sons of abraham who were born by leah.

Path expressions can be used at any position instead of an id-term. Additionally, it is
possible to nest path expressions within F-molecules which leads to more concise molecules.
Even an object for which no id-term is known can be denoted with a path expressions. This
results in the creation of a new object, which can be especially useful in rule heads (see
Section 4.5.1).

4.5 Rules and Queries

Besides the use of atoms and molecules, rules and queries can be utilized. Both are explained
below.

4.5.1 Rules

One key feature of F-Logic is the usage of rules to derive new information from a given object
base, i.e. to extend the object base intensionally. A rule consists of a rule head and a rule
body. Both parts are separated by the symbol “:-” and a rule ends with a dot followed by a
whitespace. When the preconditions of a rule (rule body) are satisfied then the conclusion
(rule head) applies. The rule body consists of a conjunction of possibly negated molecules
(so called subgoals), whereas the rule head is formed by a conjunction of molecules which
are not negated.

As stated initially, variables begin with an uppercase letter or with an underscore followed by
an uppercase letter. The latter kind of variables have a special meaning which is explained
in more detail in the subsequent paragraph. Variables are used to pass information between
subgoals and to the rule head.28

28Note, that the same variable in different subgoals of a rule defines a join condition.
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Consider the following rules which extend Example 4.1.

X[descendant ->>{Y}] :- Y[father ->X].

X[descendant ->>{Y}] :- Y[mother ->X].

X[descendant ->>{Z}] :- X[descendant ->>{_Y}], _Y[descendant ->>{Z}].

Example 4.4: F-Logic Rules

These rules define the transitive closure for the descendant method. The first rule, for
instance, can be interpreted as “if a person Y has a father X, then is Y a descendant of
X ”. Accordingly, the third rule defines the transitivity: “if a person X has a descendant

Y and Y has a descendant Z, then X has the descendant Z as well”. The following
new information can be derived with these rules:

abraham [descendant ->> {isaac ,ishmael ,jacob }].

sarah [descendant ->> {isaac ,jacob ,esau }].

isaac[descendant ->> {jacob ,esau }].

hagar [descendant ->> {ishmael }].

rebekah [descendant ->> {jacob ,esau }].

Example 4.5: Derived Facts from Rules

Furthermore it is possible to use negation within the rule body. A negated subgoal is denoted
with a “not” prefix, for instance see Example 4.7.29

4.5.2 Queries

In addition to defining facts and applying rules it is essential to be able to explore the object
base. For this purpose, F-Logic supports queries. They provide simple and natural means
for exploring the object base both on schema-level and on instance-level.

A query is prefixed with the symbol “?-” and can be considered as a rule with an empty rule
head. Variables are put in the syntactic positions which are of interest. Hence, the result
of a query is returned as variable bindings such that the rule body is satisfied. Occasionally
variables are used for intermediate results which should not appear in the answer set. For
this purpose, don’t care variables can be used which are variables starting with an underscore
followed by an uppercase letter. They cannot be used in the rule head because such a variable
is not propagated to the head.

For instance, the siblings of jacob could be queried with the following query:.

29Note, that every variable in a negated subgoal has to be limited by other positive subgoals. For more
details on negation in Florid, e.g. negation of complex molecules, please refer to [May00b] or [KP88].
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?- X[father ->_Y;mother ->_Z],jacob[father ->_Y;mother ->_Z].

% result:

X/jacob

X/esau

Example 4.6: Simple Query

The results are listed below the query. They contain jacob because he satisfies the conditions.
In order to exclude him it is necessary to use negation:

?- X[father ->_Y;mother ->_Z],jacob[father ->_Y;mother ->_Z],not X=jacob.

% result:

X/esau

Example 4.7: Simple query with Negation

4.6 Summary

In this chapter, the basic concepts of F-Logic and the use of Florid as an implementation
have been introduced. As aforementioned, F-Logic is very well suited to represent and to
describe ontologies. Furthermore F-Logic provides an efficient inference engine which can
be used to reason about instances and also about classes and their relations (cf. [AL04]).
Nevertheless, Description Logics provide in some aspects more flexibility. For example,
F-Logic does not support disjunctive information directly but only with significant weaker
statements (cf. [Kif05]).

By now, the possibilities and limitations of Jena/OWL DL as well as of Florid/F-Logic
have been briefly presented. To be able to overcome some of these limitations and to make
use both of Description Logics and of F-Logic a combination is needed. An approach to
combine Description Logic reasoning with F-Logic rules will therefore be the focus in the
next chapter.
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5 Combining Description Logic Reasoning with F-Logic

Rules

This chapter focuses on the central subject of this thesis: the combination of DL reasoning
with F-Logic rules.

As stated in Section 3.6, Description Logics are appropriate for structuring knowledge in
terms of classes and relationships, but the expressiveness is limited in many respects, most
notably with regard to reasoning about properties. Whereas, F-Logic offers powerful rules
and some advanced features, like non-monotonic inheritance (see Section 4.6). Both worlds
have their own benefits and drawbacks and allow for different usage scenarios. Large groups
of researchers from various backgrounds are working on different approaches to bring both
worlds together in order to take advantage of the best characteristics from both paradigms.
Moreover, an integration of rule languages as a rule layer on top of OWL has already been
envisioned by Tim Berners-Lee in his Semantic Web layer cake (cf. Figure 2.1).30 The most
prominent approaches that are related to this thesis will briefly be introduced in Chapter 8.
The approach presented in this thesis is a combination of Description Logic reasoning with
F-Logic rules. This approach is called DL-Florid and will be described in the subsequent
sections.

Family Genealogy. For a better understanding, an exemplary ontology about a family
genealogy is used throughout this chapter. This ontology describes the classes a family
member (individuals) may belong to and the relationships (properties) within the fam-
ily. Among others, the classes Person, Man, Woman, Parent, Child, Sibling, Brother,
Sister, Father, Mother, Aunt, Uncle, Ancestor, and Descendant are defined. The corre-
sponding relationships between the family members are hasChild, hasParent, hasFather,
hasMother, hasSibling, hasBrother, hasSister, hasAunt, hasUncle, hasAncestor, and
hasDescendant. The relationships are interdependent: The hasChild relation is the inverse
of hasParent and an uncle (hasUncle) of a person is the brother (hasBrother) of a parent
(hasParent). Furthermore, the hasAncestor and the hasDescendant relations are transi-
tive, i.e. if A has an ancestor B and B has an ancestor C, then A has the ancestor C as well.

30This layering on top of OWL is subject of discussions and a weaker version of the layer cake, with rules
and ontologies sitting side by side, has been proposed (cf. [HPPSH05, MHRS06].
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The family consists of four generations; a graphical visualization of the family members and
the genealogy is depicted in Figure 5.1. The complete ontology can be found in Example A.1
in the appendix. More details of this example will be explained in the subsequent sections,
especially in Section 5.5.

Figure 5.1: Family Genealogy

This chapter is structured as follows: At first, the DL-Florid system is introduced in general,
followed by a description of the architecture. After that, the underlying relationships between
Description Logics and F-Logic will be analyzed and the translation of facts and rules will
be explained. Finally, the application of the presented approach on the family example will
be described.

5.1 The DL-Florid Approach

DL-Florid is mainly based on the ontology language OWL DL in combination with a powerful
DL reasoner. This “DL world” is augmented with the “F-Logic world” consisting of F-Logic
rules. Special about this combination is the master-slave relation between both worlds: the
OWL ontology acts as a master, which uses the F-Logic slave as a kind of a supporting tool.
The general process can be described as follows. First of all, the DL reasoner is used to
derive new information from knowledge already present. Afterwards, the F-Logic rules are
applied to an exported subset of the ontology. If this inference leads to new information then
this new information is added to the original ontology and the process restarts, with the now
extended ontology. The details of the evolution strategy will be explained in Section 5.2.

At this point, it is important to stress that the ontology is the leading part in the whole
process. More precisely, the ontology evolves step-by-step by adding newly derived informa-
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tion from both the DL reasoner and the F-Logic rules. This means that the F-Logic system
uses an one-way knowledge-base, i.e. the system receives the exported facts along with the
defined rules in each iteration. Hence, it is necessary to define as much knowledge as possible
within ontology and to exchange only the needed facts. The F-Logic rules should only be
used for reasoning tasks that could not be done with OWL DL directly. A prototypical
implementation of DL-Florid has been developed as part of this thesis and will be presented
in Chapter 6.

5.2 Architecture

As aforementioned, the general evolution strategy of this approach is an iterative process
which uses alternately a Description Logic reasoner and F-Logic rules in order to infer new
facts. The general architecture therefore consists of two parts: An OWL DL part and an
F-Logic part. Moreover, the newly derived facts are added to the existing facts. These new
facts are used in combination with the“old” facts in the next iteration. These again may lead
to additional new facts. This architecture is depicted together with the evolution strategy in
Figure 5.2 which will be explained in more detail in the subsequent sections. The DL-Florid
Wrapper holds the rules and coordinates the entire process. At first, the input components
of DL-Florid will be introduced followed by the reasoning process itself.

Figure 5.2: Architecture and Evolution Strategy
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5.2.1 Input Components

In accordance with the described architecture, the input of DL-Florid consists of the following
two components:

1. Ontology: An OWL DL ontology which can be encoded in any format that is sup-
ported by Jena. Such an ontology should already contain the definitions of all classes
and properties that may be inferred by the F-Logic rules, even if these classes and
properties are not used in the initial ontology. This modeling guideline reflects the
master-slave relationship between Description Logic reasoning and F-Logic reasoning
since the focus is on the ontology. Consequently, as much as possible should be defined
directly in the ontology. Applied to the family example, this means that all possible
properties (e.g. hasUncle) and classes (e.g. Aunt) are defined initially.

2. Rules: A set of F-Logic rules is specified in order to derive new facts. The underlying
details of F-Logic rules have been explained in Section 4.5.1. Moreover, these rules
are encoded in an XML markup. They are translated into F-Logic by the DL-Florid
system. More details on the markup and the translation will be given in Section 5.4.

These input components are now used in the iterative reasoning process which is explained
next.

5.2.2 Evaluation Strategy

A graphical representation of the iterative reasoning process is depicted in Figure 5.2. In
this regard, the alternating process is divided into the steps listed below. These steps are
indicated in the figure by their numbers and they are explained in more detail below.

1. As mentioned before, the input is composed of two parts: A set of F-Logic rules and
an OWL ontology. Both components are loaded into the DL-Florid Wrapper.

2. Next, the Jena framework uses the given ontology to construct a model which is bound
to an OWL DL reasoner (Pellet). Furthermore, the rules are converted from XML into
normal F-Logic syntax.

3. The DL reasoner is used to derive new information from the constructed model. After-
wards, these new facts become part of the ontology and can be used again as “initial”
facts (see Section 3.5). If no further information can be derived by the reasoner, i.e. a
fixpoint is reached, the process continues with the next step.

4. A subset of the available facts (initial and inferred) is exported and converted into
F-Logic (see Section 5.3.2). These translated facts are submitted to the F-Logic system
along with the F-Logic rules subsequently.
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5. The F-Logic system applies the defined F-Logic rules to the knowledge base in order
to infer new information.

6. Afterwards, the F-Logic knowledge base is submitted to the DL-Florid Wrapper and
translated back into an OWL compatible syntax (see Section 5.3.3). This converted
knowledge base is used to build a new (temporary) ontology.

7. Now, the Jena framework is used to examine whether all information of the new on-
tology was already defined in the old ontology or whether some information is new. In
the latter case, both ontologies are merged together, i.e. the new information is added
to the old ontology and the process restarts with the extended ontology at Step 3. The
process terminates if all information derived by Florid is already part of the ontology
and no further information can be found.

The described process yields an evolving ontology. Each iteration adds new information,
which can result in the inference of even more information in the next iteration. In the
end, neither the DL reasoner nor the F-Logic system can discover new information. Both
constructed models, the ontology as well as the exported subset, are complete and stable.
However, the definition of new rules or the addition of new facts may necessitate additional
iterations until a new stable state is reached.

5.3 Translation of Facts

It is essential for the proposed combination of DL reasoning and F-Logic rules that the facts
can be translated and exchanged between both systems. This translation is presented as
follows: First of all, the general relation between F-Logic and Description Logics is described.
This is followed by the translation from OWL DL to F-Logic and vice versa. Moreover, the
family example will be used to clarify the translation process.

5.3.1 The Relation between F-Logic and Description Logics

As stated in Section 2.6.2, some Description Logics form a decidable subset of First-Order
Logic. Moreover, F-Logic is an extension of FOL with explicit support for object-oriented
modeling (see Section 4 and [BH06] for general information). Therefore, it is obvious that
F-Logic can be used to define a Description Logic subset which has been done in [Bal95]. In
other words, F-Logic subsumes Description Logics (see [Kif05]). Apparently, this result can
be used to translate (a subset of) an OWL DL ontology into F-Logic by using FOL as an
intermediate step. Such a translation has been initially presented in [Bal95, Bor96]. In fact,
a less expressive DL has been translated in these publications. However, the same principles
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apply here as only a subset of OWL DL is considered. A translation of the basic constructs
is denoted in the first two columns of Table 5.1. Note that C and D refer to classes whereas
P and Q denote properties. Furthermore, the symbol > specifies the universal class which
is often called Thing.

DL FOL F-Logic
(1) a : C C(a) a : C.
(2) 〈a, b〉 : P P(a, b) a[P � b].
(3) C v D ∀x.C(x)→ D(x) C :: D.
(4) C ≡ D ∀x.C(x)⇔ D(x) C = D.
(5) > v≤ 1P ∀x, y, z.(P(x, y)) ∧ P(x, z))→ y = z (see text)
(6) > v ∀P.C ∀y.(P(x, y))→ C(y) x[P⇒ C].

Table 5.1: Partial Translation from DL to FOL to F-Logic (cf. [GHVD03, VDO03, BH06])

These intermediate results can now be used for the translation from FOL to F-Logic which
is given in the last column of Table 5.1. It must be pointed out that the translation of
a property (2) into F-Logic depends on its, i.e. a single-valued property, also known as a
functional property, is denoted with a“→”, whereas multi-valued properties are depicted with
a “�”. This is directly related to (5) which states that a property is functional. Therefore,
no sole translation of statement (5) from OWL DL into F-Logic is needed.

Basically, only a small subset of the available DL constructs and axioms is translated into
F-Logic. Assuming that more than these constructs are used for ontology modeling, only a
subset of the ontology is exchanged between the DL and the F-Logic system. However, this
is a fundamental principle of the approach presented in this thesis: the knowledge is mainly
defined in the ontology (master) and the F-Logic rules (slave) are solely used for problems
that are not solvable in DL. More precisely, F-Logic rules are defined in such a way that
they make use of the exported subset and can infer new information.

5.3.2 From OWL DL to F-Logic

The described relation between Description Logics and F-Logic can now be applied to the
precise constructs of OWL DL. As mentioned in Section 2.5, RDF and so RDFS and OWL
base on statements (triples) which comprise a subject, a predicate, and an object. As a
consequence, an OWL ontology consists of a list of statements.

The following list contains some central statements along with either the corresponding
F-Logic translation or the explanation why it is not necessary to translate this statement.31

31Note that the used syntax for statements is similar to N3-Triple with prefixes (see [BL98a]).
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Similar to the notation in Table 5.1, C and D refer to classes, I and J represent instances,
and P denotes a property.

Classes:

1. C rdf:type owl:Class: Classes are defined via the categorization of objects. That is
why sole definitions of classes without instances is not possible. However, a possibility
to avoid this is to use the universal concept, i.e. the superclass owl:Thing. As in reality,
everything is a thing and thus every individual is a member of the class owl:Thing and
each class is therefore a subclass of owl:Thing. Here, "owl:Thing"32 is used as the
as the F-Logic equivalent of the universal concept. This leads to the following F-Logic
atom:

C :: "owl:Thing".

According to the stated principle that F-Logic rules are used solely as a supporting
tool, it is questionable whether empty classes are needed within the F-Logic system.

2. I rdf:type C: Under the assumption that C is a class, this statement denotes a class-
instance. An Isa-F-atom is used for the corresponding translation in F-Logic:

I : C.

3. C rdfs:subClassOf D: Such a subclass definition can be translated directly into the
following subclass-F-atom:

C :: D.

Some exemplary translations are stated below in Example 5.1. This example depicts some
basic constructs of the family genealogy (Figure 5.1).33

% Class hierarchy % Person
family:Man rdf:type owl:Class . % / \
family:Man rdfs:subClassOf family:Person . % Man Woman
% translation
% "http ://foo.org/dummy#Man" :: "http ://foo.org/dummy#Person ".

family:Woman rdf:type owl:Class .
family:Woman rdfs:subClassOf family:Person .
% translation
% "http ://foo.org/dummy#Woman" :: "http ://foo.org/dummy#Person ".

Example 5.1: Translation of Class Hierarchy

32Florid supports strings and provides the class url as a special subclass of the class string. Section 6.5
will explain why and how the class url is used as a substitute for URIs. Here it is enough to know that
strings as well as urls are enclosed in quotation marks.

33Note that the F-Logic translation uses full URIs due to the lack of direct support for namespaces in Florid.
Furthermore, the prefix definitions for N3-Triple are omitted.
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Properties:

1. P rdf:type rdf:Property: In F-Logic, properties are expressed by applying methods
on objects. More precisely, data-F-atoms are used which consist of a host, a method,
and a result object. Hence, the definition of properties which are not used in statements
is not directly supported. Methods can be divided into functional and multi-valued
methods. Consequently, the translation into F-Logic depends on the existence of the
following statement.34

2. P rdf:type rdf:FunctionalProperty: As aforementioned, a single-head arrow de-
notes a functional property and a double-head arrow a multi-valued property. A prop-
erty is considered to be multi-valued if the functional property statement is absent.
However, the translation into F-Logic depends on the resource (individual) on which
the property is applied. Such an application is given in the following statement (3).

3. I P J: Depending on statements (1) and (2), this statement can either be translated
into

I [ P -> J ].

for a functional property or into

I [ P ->> {J} ].

for a multi-valued property.

4. P rdfs:range C: Such a statement asserts that the range of property P is of class
C. This is translated into F-Logic using a signature-F-atom and an equivalence of
the universal concept. Similar to the previous statement, the translation depends on
cardinality of the property:

"owl:Thing"[ P => C ].

translates the range assertions for a functional property and

"owl:Thing"[ P =>> (C) ].

for a multi-valued property.

Again, some examples for the translation of properties and instances of the family genealogy
are shown in Example 5.2.

% Range assertions

family:hasFather rdf:type owl:FunctionalProperty .

family:hasMother rdfs:range family:Woman .

% translation "owl:Thing "[" http ://foo.org/dummy#Mother"

% =>"http ://foo.org/dummy#Woman "].

34Note that rdf:FunctionalProperty as well as owl:ObjectProperty and owl:DatatypeProperty are sub-
classes of rdf:Property (see Section 2.6).
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% (functional)

family:hasSibling rdfs:range family:Person .

% translation "owl:Thing "[" http ://foo.org/dummy#hasSibling"

% =>>"http ://foo.org/dummy#Person "].

% Instance

family:Becky rdf:type family:Person

% translation "http ://foo.org/dummy#Becky"

% : "http ://foo.org/dummy#Person ".

% Properties

family:Becky family:hasSex family:FemaleSex

% translation "http ://foo.org/dummy#Becky"

% ["http ://foo.org/dummy#hasSex"

% -> "http ://foo.org/dummy#FemaleSex "].

% (hasSex is functional)

family:Becky family:hasParent family:Abel

% translation "http ://foo.org/dummy#Becky"

% ["http ://foo.org/dummy#hasParent"

% ->>"http ://foo.org/dummy#Abel "].

Example 5.2: Translation of Properties and Instances

The given translations use the basic atoms and molecules of F-Logic. More translations of
OWL DL constructs are possible with the help of F-Logic rules. For example, a symmetric
property (P rdf:type owl:symmetricProperty) may be translated into the rule:35

X [ P ->> {Y}] :- Y [ P ->> {X}].

However, such translations are not needed since this knowledge can be defined in the ontology
and furthermore, the DL reasoner may use this information for inferring new information.
Moreover, the F-Logic rules should make use of the translated classes, instances, properties
and the class hierarchy.

5.3.3 From F-Logic to OWL DL

Based on the results of the previous section, the translation in the opposite direction, i.e. from
F-Logic into OWL DL, can be done in a more straightforward way. The translations are de-

35Here, X and Y are variables whereas P stands for the property that is defined to be symmetric.
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picted in Table 5.2. In accordance with the translation and the explanations of Section 5.3.2,
one F-Logic atom/molecule may result in more than one OWL DL statement.

F-Logic Statement

I : C C rdf:type owl:Class
C :: D D rdf:type owl:Class

I [ P -> J ] P rdf:type owl:FunctionalProperty
I P J

I [ P ->> {J}] I P J

Table 5.2: From F-Logic to OWL DL

This translation from F-Logic to OWL DL is kept minimalistic purposely, because a more
comprehensive translation would result in redundant statements. For example, the first
F-Logic atom in Table 5.2 can be translated into the following statements:

I rdf:type C

C rdf:type owl:Class

Although the first statement is not needed, since the DL reasoner infers automatically that
C is an owl:Class on the basis of the second statement. Thus, the first statement would be
redundant and is omitted.

Besides the described translation of facts, a translation of F-Logic rules from XML syntax
into F-Logic syntax is needed. This translation is presented in the following section.

5.4 Translation of Rules

This section describes the XML markup which is used in this thesis to define F-Logic rules.
Furthermore, the translation of such rules into “normal” F-Logic rules is explained.

5.4.1 XML Rule Markup

A simple and fairly dense XML markup is used to denote F-Logic rules. The basic XML
markup is depicted in Example 5.3. Note that rules are defined for a specific ontology and
that is why an independent translation is not supported.
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<?xml version="1.0"?>
<rules>

<rule>
<!-- Definition of variables -->

<var id="X" />
<var id="Y" />
...
<!-- Rule head -->
<head>

<statement >
<subject resource="#X" />
<property resource="http://foo.org/dummy#property" />
<object resource="#Y" />

</statement >
<predicate >

<symbol resource="c" />
<argument resource="#X" />
<argument resource="#Y" />

</predicate >
...

</head>
<!-- Rule body !-->
<body>

<statement negated="true" default="false" signature="false">
<subject resource="#X" />
<property resource="http://foo.org/dummy#property" />
<object resource="#Y" />

</statement >
...

</body>
</rule>
...

</rules>

Example 5.3: Generic F-Logic Rule in XML

Basically, the root element of the rule definition is <rules>. This node has several child
nodes (<rule>), where each of these nodes represents an F-Logic rule. As described in
Section 4.5.1, a rule consists of a head and a body and both parts may contain variables.
For this reason, a rule definition embodies some variables (<var>), that define the existence
of a variable, a rule head (<head>) and a rule body (<body>). Moreover, the basic constructs
in the head and in the body are statements (<statement>) and predicates (<predicate>).

Statement. On the basis of an RDF statement, a statement consists of a subject, a prop-
erty, and an object. Each of these elements denotes either a variable or a resource of the
ontology identified by its URI. Moreover, a statement can be negated (negated="true"),
can denote a signature, (signature="true") or an inheritable property (default="true").
Note that negated statements may only be used in the rule body.
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Florid predicate XML identifier
= florid:equalOp
< florid:lessOp
<= florid:lessEqOp
> florid:greaterOp
>= florid:greaterEqOp

Table 5.3: Built-in Comparison Predicates

Predicate. A predicate consists of a predicate symbol (<symbol>) and some arguments
(<argument>). The predicate symbol can either be a self-defined predicate or a built-in
comparison predicate (cf. 4.3).36 The built-in predicates of Florid are tagged in the XML
markup with specific identifiers which are depicted in Table 5.3. Furthermore, a predicate
may be negated in the rule body by using the negated="true" attribute.

The described means can now be used for an XML representation of the following “hasAunt”
rule:

hasAunt(x, y)← hasParent(x, z) ∧ hasSister(z, y)

Example 5.4 denotes the corresponding rule in XML:

<rule>

<var id="X" />

<var id="Y" />

<var id="Z" />

<head>

<statement >

<subject resource="#X" />

<property resource="http://foo.org/dummy#hasAunt" />

<object resource="#Y" />

</statement >

</head>

<body>

<statement >

<subject resource="#X" />

<property resource="http://foo.org/dummy#hasParent" />

<object resource="#Z" />

</statement >

<statement >

<subject resource="#Z" />

<property resource="http://foo.org/dummy#hasSister" />

36Note that the built-in predicates require two arguments.
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<object resource="#Y" />

</statement >

</body>

</rule>

Example 5.4: Exemplary F-Logic rule in XML

5.4.2 Translation

The translation of rules from XML into F-Logic is closely related to the translation of facts,
which has been explained in Section 5.3.2. In particular, the translation of a rule statement
is comparable to the translation of an OWL DL statement into F-Logic. Furthermore, the
translation process depends on the ontology on which the rules should be applied. Firstly,
subject, property, and object of a rule statement can refer to resources in the ontology by
using URIs, or denote variables, or even create new resources. Secondly, some properties are
defined to be functional and this definition is part of the ontology. As a consequence, this
information is needed to translate a rule statement with a functional property into F-Logic.
Predicates are translated in straightforward way into F-Logic by using either the F-Logic
equivalent for built-in predicates from Table 5.3 or the given predicate.

For example, the statement in the head of Example 5.4 is translated into:

X["http ://foo.org/dummy#hasAunt" ->> Y]

Example 5.5: Translated Statement

All statements and predicates are translated and afterwards these translations are used to
form the rule. In accordance with this translation process, the rule from Example 5.4 would
be translated into the following F-Logic rule:

X["http ://foo.org/dummy#hasAunt" ->>Y]

:- X["http ://foo.org/dummy#hasParent"->>Z],

Z["http ://foo.org/dummy#hasSister"->>Y] .

Example 5.6: Translated Rule

5.5 Genealogy Example

The evaluation strategy, which was explained in Section 5.2.2, is now applied to the family
genealogy, that was introduced in the beginning of this chapter (see Figure 5.1). First of
all, the input components will be described, followed by the results of the iterative and
alternating reasoning process.
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5.5.1 Ontology

Initially, only the properties hasParent, hasSibling, and hasSex are used in combination
with the class Person. Part a) of Figure 5.3 denotes the most important properties which
describe the relationships between family members. All initially used properties are depicted
with black points. Moreover, all properties and all classes are defined in the ontology even
if they are not used at this point, e.g. the class Aunt is defined, despite the fact that no
instance exists. An excerpt of the complete ontology can be found in Example 5.7 .

Figure 5.3: Genealogy Example

@prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix : <http://foo.org/dummy#> .

:Becky :hasSibling :Benedict .

:Becky :hasParent :Agnes .

:Becky :hasParent :Abel .

:Becky :hasSex :FemaleSex .

:Becky rdf:type :Person .

Example 5.7: Excerpt of the Family Ontology

This small excerpt describes a person named “Becky”, her sex, her sibling, and her parents.
The complete ontology is available in Section A.1. Note that the names of the persons reflect
the generation: names beginning with an “A” denote the first generation, “B” the second, et
cetera.

5.5.2 F-Logic Rules

A set of F-Logic rules is used to infer relationships, which could not be inferred by the DL
reasoner, for example, the hasAunt and hasUncle relations. Due to the extensive overhead
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of XML, only the F-Logic equivalents are depicted in Example 5.8.

% siblings

X["family#hasSister" ->>Y] :- Y:"family#Woman"["family#hasSibling"->>

X].

X["family#hasBrother" ->>Y] :- Y:"family#Man"["family#hasSibling"->>X

].

% father & mother

X["family#hasFather" ->>Y] :- Y:"family#Man"["family#hasChild"->>X].

X["family#hasMother" ->>Y] :- Y:"family#Woman"["family#hasChild"->>X

].

% uncle & aunt

X["family#hasAunt" ->>Y] :- X["family#hasParent"->>Z] , Z["family#

hasSister"->>Y].

X["family#hasUncle" ->>Y] :- X["family#hasParent"->>Z] , Z["family#

hasBrother"->>Y].

% niece & nephew

X["family#hasNiece" ->>Y] :- Y:"family#Woman"["family#hasAunt"->>X].

X["family#hasNiece" ->>Y] :- Y:"family#Woman"["family#hasUncle"->>X].

X["family#hasNephew" ->>Y] :- Y:"family#Man"["family#hasAunt"->>X].

X["family#hasNephew" ->>Y] :- Y:"family#Man"["family#hasUncle"->>X].

Example 5.8: F-Logic Rules for the Family Genealogy

The ontology and the rules are now used as the starting point for the reasoning process
which is described next.

5.5.3 Reasoning

The reasoning process consists of the alternating application of the DL reasoner and the
F-Logic rules. Each application and the resulting new information is described below.

1. DL Reasoner. First of all, the DL reasoner is applied to the ontology. The instances
are classified in accordance with the class definitions, e.g. a male person is a Man or a
person with a child is a Parent. Furthermore, the DL reasoner uses the known facts
about the properties. As a result, the hasChild relations are inferred as the inverse of
hasParent and the transitivity of hasAncestor and hasDescendant is derived. The
new situation is depicted in part b) of Figure 5.3. The newly inferred properties are
marked as DL reasoner. After that, a subset of the model is exported to F-Logic and
submitted to the F-Logic system.

2. F-Logic Rules. The F-Logic rules are applied to the exported subset by the F-Logic
system. These rules lead to a wide range of derived information. The new relationships
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within the family are marked as F-Logic in part b) of Figure 5.3. After that, the
knowledge base is converted and exported back into OWL DL.

3. Merging. Now, the exported knowledge base is used to create a new ontology, which
is used to check whether F-Logic could derive new information. Since new information
was inferred, the newly created ontology can be merged with the old ontology. This
results in an addition of the new facts to the original ontology.

4. DL Reasoner (2nd time). As before, the DL reasoner is applied to the ontology.
The new information from the F-Logic system result in a range of new classifications,
e.g. a Man who has a nephew (hasNephew) is an Uncle. After that, the ontology is
exported into F-Logic.

5. F-Logic (2nd time). Again, the rules are applied to the exported knowledge. But at
this point no new information can be derived. However, the knowledge base is exported
back into OWL DL.

6. End. The exported facts from the F-Logic system are already part of the ontology.
Therefore, the F-Logic rules did not infer any new information and the process termi-
nates.

The newly derived facts about Becky from each step of the described reasoning process are
depicted in Example 5.9.

@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix : <http ://foo.org/dummy#> .

% initial facts:

:Becky :hasSex :FemaleSex .

:Becky :hasParent :Abel .

:Becky :hasParent :Agnes .

:Becky :hasSibling :Benedict .

:Becky rdf:type :Person .

% DL reasoner(first time) .

:Becky :hasChild :Chelsea .

:Becky :hasChild :Charlene .

:Becky :hasAncestor :Abel .

:Becky :hasAncestor :Agnes .

:Becky :hasDescendant :Deby

:Becky :hasDescendant :Chelsea.

:Becky :hasDescendant :Charlene .

:Becky :hasDescendant :Daniel .

:Becky rdf:type :OffSpring .

:Becky rdf:type :Sibling .

:Becky rdf:type :Woman .
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:Becky rdf:type :Parent .

:Becky rdf:type :Sister .

:Becky rdf:type :Daughter .

:Becky rdf:type :Mother .

:Becky rdf:type :Ancestor .

:Becky rdf:type :Descendant .

% F-Logic rules

:Becky :hasAunt :Agatha .

:Becky :hasAunt :Alexandra .

:Becky :hasBrother :Benedict .

:Becky :hasMother :Agnes .

:Becky :hasFather :Abel .

% DL reasoner (second time)

:Becky rdf:type :Niece .

Example 5.9: Reasoning Results for Becky

After the presentation of the DL-Florid approach, the next chapter describes the prototypical
implementation.

47



6 Implementation

6 Implementation

This chapter describes the prototypical implementation of DL-Florid, which is based on
the theoretical concepts from Chapter 5. The chapter is organized as follows. At first, a
brief overview of the employed technologies is given, followed by a description of the general
architecture. Afterwards, the integration of Florid and of Jena will be explained in detail.
Finally, the web interface will be presented.

6.1 Employed Technologies

The developed prototype and most of its components are implemented in Java. The Jena
Semantic Web Framework plays a prominent role for working with OWL DL ontologies.
Jena has been presented in detail in Section 3. Furthermore, the F-Logic rules are evaluated
by Florid, which has been described in Section 4. The communication with Florid is realized
as a Web Service. An insight to the used technologies is given next.

Java. Java is an object-oriented programming language, which has been invented and de-
veloped by Sun Microsystems. A Java application is typically compiled to bytecode, which
makes the application executable on different operating systems as well as on different hard-
ware. This platform independence is the main reason for the wide-spread use in software
development, particularly for server-side applications. For this reason, Java is used for the
implementation of DL-Florid. For more information on Java please refer to [Suna].

Java Servlets and Java Server Pages. Java servlets [Sunb] are server-side Java programs
which provide a simple and consistent mechanism for extending the functionality of a web
server and for accessing other systems. For this purpose, servlets receive requests and gen-
erate responses based on these requests. Arbitrary Java code can be executed to fulfill the
request, e.g. a database can be accessed in order to retrieve data. Hence, the response to
the user is dynamic. Java Server Pages (JSP) [Sunc] dynamically generate HTML, XML,
or other types of documents in response to a web client’s request. They are often used in
combination with servlets. More details on servlets and JSP can be found in [BSB04].
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First, the architecture and implementation of DL-Florid will be described on an abstract
level followed by more detailed explanations in the subsequent sections.

6.2 General Architecture

The DL-Florid prototype loosely follows the Model-View-Controlloer (MVC) design pattern
which is depicted in Figure 6.1. Basically, the MVC pattern decouples data access and
business logic (model) from data representation (view) by using an intermediate component:
The controller. For more information see, for example, [FFB04].

Figure 6.1: Model-View-Controller Pattern

• Model: The model contains the core functionalities of DL-Florid. It handles the iter-
ative reasoning process and in particular the interaction with the Florid system. This
interaction is realized with a Web Service so that the Florid Server itself is separated
from the other parts. Moreover, the model is backed by a database as a persistent
storage mechanism for ontologies and the corresponding F-Logic rules. The model
encapsulates all relevant information into Java Beans37 and makes them available to
the view.

• View: The view consists of Java Server Pages which utilize the provided beans to
access the requested information in order to display this information to the client.

• Controller: The controller is a servlet which receives and processes all requests that
change the state of an user’s interaction with the application. It determines the overall
flow of the application. More precisely, the controller updates the model in a way
appropriate to the user’s action and the submitted data, for instance, an ontology or

37JavaBeans are used to encapsulate many objects into a single object (the bean), so that the bean can be
passed around rather than the individual objects. For this purpose, the bean provides getter and setter
methods.
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a set of F-Logic rules. Moreover, the controller updates the view by specifying which
particular Java Server Page is to be displayed to the client.

Essentially, the whole reasoning process of DL-Florid is part of the model. Whereas, the view
and the controller build the web interface which provides means to work with the system.

In accordance with the MVC pattern and the specific structure of the reasoning process, the
DL-Florid prototype is subdivided into the following packages.

• org.semwebtech.dlflorid: This is the base package of the DL-Florid prototype. It
contains the DLFloridServer class which provides the core functionalities prototype
and controls the alternating reasoning process. More details will be given in Section 6.3.

• org.semwebtech.dlflorid.ontology: All classes used for the work with ontologies
and particularly for the translation of an ontology into F-Logic are within this package.
A detailed description will be given in Section 6.4.

• org.semwebtech.dlflorid.florid: All classes related to Florid, in particular to the
Florid web service, can be found in this package. Section 6.5 provides more details.

• org.semwebtech.dlflorid.util: Classes which are used by several other classes, e.g.,
a shared class which provides access to a database, and all utility classes can be found
in this package. The precise classes are denoted in Section 6.6.

• org.semwebtech.dlflorid.bean: The JavaBeans used for the transfer of information
from the model to the view are part of this package.

• org.semwebtech.dlflorid.controller: As the name implies, this is the package for
the controller servlets which handle the interaction with the client. Together with the
beans and the Java Server Pages, these servlets form the web interface which provides
access to the DL-Florid system. The provided functions of this client are explained in
Section 6.7.

Besides these packages, a set of Java Server Pages is used, which is not part of the package
structure. These JSP consist of static HTML with some Java parts, for example, to access
dynamic content in terms of JavaBeans. These JSP are part of the view of the DL-Florid
prototype. They are utilized in the web client in Section 6.7.

6.3 The DLFlorid Server

As mentioned before, the DL-Florid server is the central component which handles and
controls the alternating reasoning process between the Florid system and the DL reasoner.
The DLFloridServer class and all related classes the server depends on are depicted in
Figure 6.2. The reasoning process can either iterate autonomously or the user can interact
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with the system and check the intermediate results. For this purpose, either the auto method
is used for the autonomously iterating process or the provided methods, which correspond
to the described reasoning strategy in Section 5.2.2, are used subsequently to track the
reasoning process step-by-step. Accordingly, the following methods are provided.

Figure 6.2: Class Diagram for the core DLFlorid Classes

• init: First of all, the system has to be initialized. Therefore, several methods for
different usage scenarios are provided. The default init method expects a serialized
ontology and a set of F-Logic rules, either in XML or in plain text. The ModelHelper

class from the jena package is used in conjunction with the given facts to create the
main ontology (a OntModel), which evolves during the reasoning process. In addition,
this ontology is bound to the Pellet reasoner, which uses the given facts to infer new
information and to complete the ontology.38 Furthermore, all rules in XML are trans-
lated into plain F-Logic rules with the help of the FloridRuleParser. Both the rules

38Note that the reasoning of the Pellet reasoner is not initiated explicitly. In fact, Pellet processes the initial
model as soon as it is bound to the model. Any further modifications to the model usually result in a
restart of the reasoning.
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and the ontology are kept in the DLFloridServer during the process.

• auto: This method starts the process which iterates autonomously until no new facts
can be inferred. Finally, this method returns all facts which were inferred during the
reasoning process.

• dumpForFlorid: The DL-Florid server utilizes the ModelConverter class to convert
the ontology into F-Logic. More details on this class are given below.

• sendFactsToFlorid: The translated facts are submitted along with the rules to the
Florid Server by using an instance of the FloridWrapper. This wrapper is also used
to retrieve the facts from Florid and to translate them into N-Triples.

• addFactsFromFlorid: The retrieved facts are checked whether they are new. This is
done by creating a new ontology from these facts with the help of the ModelHelper

and by checking if this new ontology is a part of the initial ontology. More precisely,
it is checked whether the difference between the new and the old ontology is empty.
If the difference is not empty, the new ontology is added to the old ontology and the
reasoning process restarts. Furthermore, a similar approach is used to identify all new
facts which are inferred by Pellet on account of the newly added facts from Florid.
In this case, the facts from Florid are added to a copy of the main ontology which is
not bound to a reasoner. Besides this, the original ontology is amended with the facts
from Florid so that Pellet can reason about these new facts. The differences between
the copy and this ontology denote the facts which have been inferred by Pellet.

Persistence. Additionally, the used ontology and the corresponding rules can be saved in a
database. For this purpose, the DBConnector class is utilized to gain access to the database.
Moreover, details on the storage of an ontology are handled by Jena. Whereas the rules are
stored directly in a separate table. A modelName is used to identify both, the ontology and
the corresponding rules.

6.4 Ontology

In general, the Jena framework is used to work with ontologies. This section describes the
most important functionalities in terms of ontologies which are implemented in this thesis.

6.4.1 Translation of Ontologies

The theoretical concepts of the translation of an OWL DL ontology into F-Logic have been
given in detail in Section 5.3.2. On implementation level, this translation process is imple-
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Figure 6.3: The ModelConverter Class

mented in the class ModelConverter. More precisely, the method convertModel translates
the relevant subset of a given ontology into Florid-compatible F-Logic atoms and returns
the translations. The class is depicted in Figure 6.3.

Translation of Statements. As mentioned before, a Florid atom can be the equivalent of
more than one RDF statement (see Section 5.3.2). For this reason, the following translation
strategy is used:

1. Get all defined classes from the ontology.

2. For each class get all direct subclasses and create the corresponding subclass-F-atoms.

3. Get the instances of every class and create the corresponding Isa-F-atom.

4. For each instance, the defined properties and the resulting data-F-atoms are created,
either functional or multi-valued.

5. All (global) defined range assertions are retrieved and the corresponding signature-F-
atoms are created.

The resources of a statement have to be translated as well, in order to comply with the
F-Logic syntax. This translation is triggered as soon as a resource is considered which has
not been translated before.

Translation of Resources. Florid does not support namespaces or URIs directly. Hence,
the provided built-in class url is used as a replacement for real URIs. Since Florid encloses
urls in quotation marks, every resource has to be enclosed in these as well. Furthermore,
every resource has to be an instance of the url class. For example, a resource with the
URI

http://foo.org#Person
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is translated into

"http://foo.org#Person" : url.

Anonymous resources are translated in a similar way using the unique ID which Jena assigns
to them. The translation of literals follows the notation of N-Triple. For example,

"10.2"^^<http://www.w3.org/2001/XMLSchema#decimal>

is translated into

"10.2^^http://www.w3.org/2001/XMLSchema#decimal".

Moreover, Florid does support integers directly. Thus, they are not translated but treated as
normal numbers. Therefore, rules can be defined which utilizes these integers, for example,
in conjunction with the duration of train connections (see Example 7.1). The translated
ontology can now be submitted to the Florid server.

6.4.2 Ontology Handling

The class ModelHelper provides methods for the handling of ontologies. For example, to
query an ontology, load an ontology from the database or to write an ontology to a string.
Furthermore, several methods are implemented to create new ontologies from a given fact
base, either with or without a reasoner.

Most of these methods strictly use the functionalities provided by the Jena APIs. In this
context, Jena ensures that the ID (AnondId) of an anonymous resource remains unique within
the whole system. Accordingly, the ID of an anonymous resource is changed, for example,
when a new ontology is created from given facts and the ID of such a fact is already present,
even if this resource is in another ontology. Applied to the reasoning process and particularly
to the addition of facts from Florid to the main ontology, this would lead to false results:
If an anonymous resource is submitted to Florid and then retrieved, a new (temporary)
ontology is created on the basis of the retrieved facts. This new ontology would contain
different IDs than the initial ontology. The identity of the anonymous resource in the new
ontology with the resource in the initial ontology would be destroyed. As a consequence,
this anonymous resource and all statements about this resource would be wrongly classified
as newly inferred from Florid. Hence, the way Jena creates an ontology from given facts
has been altered for this specific purpose. Since the FloridWrapper returns fact in N-Triple
formatt, the NTripleReader has been modified. The altered reader (NTripleReaderCustom)
strictly uses the IDs from the triples for the anonymous resources, even if these IDs already
exist.
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Figure 6.4: Class Diagram for the ModelHelper

6.5 Florid

The integration of Florid is implemented by means of a FloridWrapper around the Florid
web service client (FloridWSClient).39 Furthermore, a parser for the F-Logic rules in XML
is provided.

Florid Wrapper. The Florid Wrapper is responsible for the integration of the Florid Server.
Hence, the web service client is used to submit the fact base along with the rules to the
server, evaluate the data and query the server in order to retrieve the facts. For example,
the query X : Y. retrieves all instances and the corresponding classes. In accordance with
the described translation process from Section 5.3.3, the Wrapper translates the retrieved
facts into the N-Triple format. As mentioned before, all resources are enclosed in quotation
marks. The class diagram for the FloridWrapper class is given in Figure 6.5.

Translation of Rules. The XML markup for rules and the theoretical translation into
F-Logic rules have been described in 5.4. For this purpose, the FloridRuleParser class

39The web service client and the Florid Server have been implemented at the University of Freiburg. They
are available on request from [Dat].
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provides the translateRules method. This method uses the DOM-API to traverse the XML
document in order to construct equivalent F-Logic rules. See Figure 6.2 for the corresponding
class diagram.

Figure 6.5: Class Diagram of the FloridWrapper

6.6 Other Classes

All classes that provide utility functionalities which are used by multiple components are
kept below the subpackage util. Most notably classes for the handling of input forms
(FormHelper) and for the handling of a database connection (DBConnector). The former
class extracts the submitted form fields, their value and the content of any submitted file
from the request and provides these data in terms of a InputDataBean. The latter class is
realized as a singleton class, which means that only one instance exists at the same time.
This class handles the connection to the underlying database for both the Jena framework
and the DL-Florid specific tasks.

Two more JavaBeans are used within the DL-Florid prototype: ModelBeans and a QueryBeans.
Both are kept in the session of the user. The ModelBean is instantiated by the DL-Florid
server and contains the current ontology along with the name, the rules, the number of
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already completed iterations, and a flag which denotes whether further iterations are neces-
sary. This information is displayed to the user. The QueryBean is used to return an answer
to a SPARQL query to the user. See for Figure 6.2 for the class diagrams of both beans.

6.7 Web Interface

The prototypical implementation of DL-Florid provides a client by means of a web interface.
This web interface is mainly backed by the FrontController servlet, which processes the
requests from the users and triggers the corresponding actions on the DL-Florid server. For
example, a user submits an ontology and a set of rules to the server. This data is part of
the request which is processed by the FronController.40 However, Java Server Pages are
used for the graphical representation. The functions provided by the client can mainly be
summarized by the following parts:

Figure 6.6: Using the Web Client for the Initialization of the System

• The client allows for the initialization of the system in one of the following ways:

40To be more precisely, the controller utilizes the FormHelper to retrieve the data from the request.
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– A new ontology can be created, either from an uploaded file or an input field.
Furthermore, a set of F-Logic rules can be defined. Again, by processing an
uploaded file or an input field. The ontology can be marked up in RDF/XML,
N3, or N-Triple. Whereas, the rules can be either defined in XML or as plain
text. Figure 6.6 depicts a newly initialized ontology along with the corresponding
F-Logic rules.

– As an alternative, an ontology and a set of corresponding rules can be loaded
from the database.

– Additionally, some exemplary ontologies along with the corresponding rules are
provided which can be used as the starting point.

• Once the system is initialized, the user can modify the ontology by adding new facts,
altering defined rules, or by even adding new rules.

• The reasoning process can either be initiated to run autonomously or step-by-step.
In the latter case, the intermediate results are displayed to the client and the system
waits for the next action whereas in the former case the system only displays the final
results. Refer to Figure 6.7 for a visualization of the the final ontology along with the
additions from Florid as well as from Pellet.

Figure 6.7: Viewing the final Ontology and Additions with the Web Client
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• The user can query the ontology by means of SPARQL. For this purpose, the name-
spaces defined in the ontology are retrieved and processed to build a query template.
The user can use this template as the scaffolding for the intended query. Figure 6.8
depicts an exemplary query and the returned results.

• As stated initially, all additions from either Florid or from Pellet are logged to a file.
These additions can be viewed using the web client. Some exemplary additions are
presented in Figure 6.9.

Figure 6.8: Sending SPARQL Queries and Viewing the Results with the Web Client

• Furthermore, the user can add new facts to the used ontology and edit the rules. As a
consequence, the reasoning process has to restart because the new facts could lead to
new results.

Note that all actions related to the ontology and to the rules are only allowed if the system
is initialized. This is the case if a valid ModelBean can be found in the session of the user.
Otherwise the relevant actions are disabled.
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Figure 6.9: Viewing the Additions Log with the Web Client
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7 Evaluation

An approach to augment Description Logic reasoning with F-Logic rules has been presented
in the previous chapters. This chapter provides an evaluation of the presented approach.
First of all, the benefits are described with the help of some examples in Section 7.1. Finally,
the performance of DL-Florid is considered in Section 7.2.

7.1 Benefits

One of the main strength of the DL-Florid approach is that it provides support for OWL DL
ontologies combined with F-Logic rules. The proposed combination uses an alternating
reasoning process which results in an evolving ontology, i.e. the newly inferred facts from
one system, either DL reasoner or F-Logic system, are added to the ontology. Hence, these
facts are available for the other system in the next iteration. Moreover, the DL-Florid
approach utilizes existing tools, namely Jena, Pellet and Florid, which are well-established
and are being used in various existing applications.

An overview of the precise benefits of DL-Florid in terms of expressiveness is given below.

7.1.1 Property Chaining and Rules

As explained in Section 5.5, DL-Florid allows to chain properties, i.e. to use composition
constructors to define, for example, the uncle relationship via the composition of the brother
and the parent relationship (see Example 5.6).

Even more general, DL-Florid supports (almost) the full power of F-Logic rules, e.g., for
transfer of properties. Furthermore, the built-in predicates of Florid can be used within
rules. Consider the following example which derives train connections from a given set of
sections.41 The complete ontology can be found in Example A.2 in the appendix.

A section connects a startPoint with an endPoint, for example, the section #Augsburg-

Wuerzburg starts in Augsburg and ends in Wuerzburg. Furthermore, a section has a du-

ration and a section is the smallest part, which means that no further stop between the

41Note that a section from A to B is not the same as a section from B to A.
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startPoint and the endPoint exists. These sections are used to construct connections. A
connection interlinks two cities by means of several sections. For example, the connection
#Augsburg_Muenchen_Parsing connects Augsburg with Muenchen Parsing via Wuerzburg.
Thus, two sections are used to form this connection. Accordingly, the duration of a connec-
tion depends on the durations of the underlying sections.

The following rules can be used to derive the connections and their duration.
% (1) A section is also a connection , transfer the property values from

% the section to the connection.

c(A,B):"http :// localhost/test.rdf#Connection"[

"http :// localhost/test.rdf#startPoint" ->> A;

"http :// localhost/test.rdf#endPoint" ->> B;

"http :// localhost/test.rdf#duration" ->> D]

:- _Y:"http :// localhost/test.rdf#Section"[

"http :// localhost/test.rdf#startPoint"->> A;

"http :// localhost/test.rdf#endPoint"->> B;

"http :// localhost/test.rdf#duration" ->> D].

% (2) A connection can be a section combined with a connection.

% The duration of a new connection is the total of the duration of

% underlying connection and section. The connection between two

% cities is constructed this way only once.

c(A,C):"http :// localhost/test.rdf#Connection"[

"http :// localhost/test.rdf#startPoint" ->> A;

"http :// localhost/test.rdf#endPoint" ->> C;

"http :// localhost/test.rdf#duration" ->> D]

:-c(A,_B):"http :// localhost/test.rdf#Connection"[

"http :// localhost/test.rdf#startPoint" ->> A;

"http :// localhost/test.rdf#endPoint" ->> _B;

"http :// localhost/test.rdf#duration" ->> E],

X:"http :// localhost/test.rdf#Section"[

"http :// localhost/test.rdf#startPoint"->>_B;

"http :// localhost/test.rdf#endPoint"->>C;

"http :// localhost/test.rdf#duration" ->> F],

D=E+F,

not c(A,C):"http :// localhost/test.rdf#Connection".

% (3) If more than one connection between two cities is possible , the

% connection with the shortest duration is prefered.

c(A,C):"http :// localhost/test.rdf#Connection"[

"http :// localhost/test.rdf#startPoint" ->> A;

"http :// localhost/test.rdf#endPoint" ->> C;

"http :// localhost/test.rdf#duration" ->> D]

:- c(A,_B):"http :// localhost/test.rdf#Connection"[

"http :// localhost/test.rdf#startPoint" ->> A;

"http :// localhost/test.rdf#endPoint" ->> _B;

"http :// localhost/test.rdf#duration" ->> E],

X:"http :// localhost/test.rdf#Section"[

"http :// localhost/test.rdf#startPoint"->>_B;

"http :// localhost/test.rdf#endPoint"->>C;

"http :// localhost/test.rdf#duration" ->> F],

c(A,C):"http :// localhost/test.rdf#Connection"[

"http :// localhost/test.rdf#duration" ->>T], D=E+F, D<T.

Example 7.1: Rules to derive Train Connections
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These rules are evaluated and the derived facts are added to the ontology. Note that in
this case, the F-Logic rules create new resources, namely the connections, using c(A,B).
The resulting ontology can now be queried using SPARQL. For example, the following query
retrieves all connections starting in Goettingen and the corresponding durations:

PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX : <http :// localhost/test.rdf#>

PREFIX owl: <http ://www.w3.org /2002/07/ owl#>

SELECT ?Connection ?Duration

WHERE {

{? Connection rdf:type :Connection}

{? Connection :duration ?Duration}

{? Connection :startPoint :Goettingen}

}

Example 7.2: SPARQL Query

This query results in the following answer:

<result >

<var name="Connection">c(_http: // localhost/test.rdf#Goettingen_ ,

_http: // localhost/test.rdf#Berlin_Ostbahnhof_)</var>

<var name="Duration">150^^ http://www.w3.org /2001/ XMLSchema#integer <

/var>

</result >

<result >

<var name="Connection">c(_http: // localhost/test.rdf#Goettingen_ ,

_http: // localhost/test.rdf#Munich_Hbf_)</var>

<var name="Duration">239^^ http://www.w3.org /2001/ XMLSchema#integer <

/var>

</result >

<result >

<var name="Connection">c(_http: // localhost/test.rdf#Goettingen_ ,

_http: // localhost/test.rdf#Hamburg_Hbf_)</var>

<var name="Duration">118^^ http://www.w3.org /2001/ XMLSchema#integer <

/var>

</result >

...

Example 7.3: Query Result

These rules go far beyond the expressiveness of OWL DL and thus, they provide an insight
into the possibilities of DL-Florid.
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7.1.2 Closed-World Reasoning and Defaults

As mentioned before, the Web Ontology Language follows the open world assumption. In
general, this assumption is reasonable on the huge and only partially known World Wide
Web. Nevertheless, in some cases the opposite assumption, the close world assumption, is
needed. For example, it should be possible to define that in general, a bird can fly. Whereas
a penguin is a bird but cannot fly. More precisely, a bird can fly by default, unless it is
stated explicitly that the bird is a “non flier”, for example, a penguin. Consider the Tweety
example from Section 4.2.2. The following ontology denotes the basic facts and particularly
the class hierarchy along with the instances.

<?xml version="1.0" encoding="ISO -8859 -1"?>
<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org /2002/07/ owl#">
<!ENTITY xsd "http://www.w3.org /2001/ XMLSchema#">

]>
<rdf:RDF

xmlns:owl="http: //www.w3.org /2002/07/ owl#"
xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns:rdfs="http://www.w3.org /2000/01/rdf -schema#"
xmlns:xsd="http: //www.w3.org /2001/ XMLSchema#"
xmlns="http:// tweety#"
xml:base="http:// tweety">

<owl:Class rdf:ID="Bird" />
<owl:Class rdf:ID="Flier" />
<owl:Class rdf:ID="NonFlier">

<owl:complementOf rdf:resource="#Flier" />
</owl:Class >

<owl:Class rdf:ID="Penguin">
<rdfs:subClassOf rdf:resource="#Bird" />
<rdfs:subClassOf rdf:resource="#NonFlier" />

</owl:Class >

<Penguin rdf:ID="Tweety"/>
<Bird rdf:ID="Foo"/>
<!-- This is needed because

unused properties are not translated into F-Logic !-->
<owl:FunctionalProperty rdf:ID="flies">

<rdfs:range rdf:resource="&owl;Thing"/>
</owl:FunctionalProperty >

<owl:FunctionalProperty rdf:ID="notFlies">
<rdfs:range rdf:resource="&owl;Thing"/>

</owl:FunctionalProperty >

</rdf:RDF >

Example 7.4: Tweety Ontology
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Accordingly, the following F-Logic rules provide the described default values.

"http :// tweety#Yes" : url.
"http :// tweety#No" : url.
% By default , a bird flies , if it is not a non -flier
X["http :// tweety#flies" -> "http :// tweety#Yes"]

:- X:"http :// tweety#Bird", not X:"http :// tweety#NonFlier".

% non flier does not fly
X["http :// tweety#flies" -> "http :// tweety#No"]

:- X:"http :// tweety#NonFlier".

Example 7.5: Rules for Birds and Penguins

As a consequence, such F-Logic rules can be used for the closed world assumption (“a bird
can fly until it is known that it is a penguin”) and thus, DL-Florid provides means for non-
monotonic inheritance.

7.1.3 Queries

In general, the SPARQL query language is used for querying RDF graphs. However,
SPARQL provides only limited means for more advanced queries and moreover, poor per-
formance on large data sets. As a solution, the DL-Florid system can be used for complex
queries. For this purpose, the F-Logic rules utilize a new (temporary) class to classify all
facts which comply with the query into this class. As the facts are added to the main on-
tology, a simple SPARQL query retrieves the facts. For example, the Mondial database
contains a large amount of data about countries, cities, organizations, et cetra. Please refer
to [May99] for further details. Due to the large amount of data and the way SPARQL queries
are evaluated, the performance is poor. The following F-Logic rule classifies all countries
(country) which have a city with a population over 100,000 into the class result.

"http ://www.semwebtech.de/mondial /10/ meta#result":url.

X:"http ://www.semwebtech.de/mondial /10/ meta#result"

:- X:"http ://www.semwebtech.de/mondial /10/ meta#Country",

Y:"http ://www.semwebtech.de/mondial /10/ meta#City",

Y["http ://www.semwebtech.de/mondial /10/ meta#cityIn" ->> X],

Y["http ://www.semwebtech.de/mondial /10/ meta#population" ->> P],

P > 100000.

Example 7.6: F-Logic Rule for Mondial

The classified city can now easily be queried with SPARQL. This use of F-Logic rules is
similar to defining views in a relational database. Furthermore, the view is stored in the
ontology and can be easily reused.
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The previous sections gave an insight into the expressiveness of F-Logic rules in conjunction
with Description Logic reasoning. The subsequent section deals with the performance of
DL-Florid and particularly of the developed prototype.

7.2 Performance

In general, the performance of DL-Florid prototype has been entirely satisfactory. However,
two major bottlenecks were identified: First, the integration of Florid by using a web service
is for sure not the best solution for large amounts of data. Second, the used Description
Logic reasoner Pellet is considerably slow for some ontologies, depending on the complexity
of the used constructs.

In addition, the rules must be defined in accordance with the ontology. To be more precisely,
the considered classes and properties should be defined in the ontology and the rules should
refer to these resources using the corresponding URIs. Thereby, the ontology and the rules
must fit together: The user has to take care not to define cyclic combinations. Otherwise,
the reasoning does not reach a fixpoint and the ontology is extended in every iteration. For
example, the train example from Section 7.1.1 can easily be modified to a cyclic reasoning
process. For such a cyclic problem, the definition of the startPoint property has to be
altered. The new definition is depicted in Example 7.7.

<owl:ObjectProperty rdf:ID="startPoint">

<!-- This leads to cycles !-->

<rdfs:range rdf:resource="#Section" />

<rdfs:subPropertyOf rdf:resource="#routePoint"/>

</owl:ObjectProperty >

Example 7.7: Exemplary Rule for Cycles

As stated before, the F-Logic rules utilize the defined section to create new connections.
Similar to sections, these connections have a startpoint and an endpoint. When these
new connection are added to the ontology, the Pellet reasoner classifies these connections
as sections because of the range assertions of the startpoint property. As a consequence,
Florid would infer new connections on account of these new sections. These new (and wrong)
connection are added to the ontology, classified as sections, and the reasoning restarts. There-
fore, the definition of rules and of ontologies must be carefully coordinated. Moreover, the
proposed combination is undecidable. This can be proved by showing that it is possible to en-
code a known undecidable problem with the means provided by DL-Florid (cf. [HPSBT05]).
An often used example is the undecidable domino problem.42 However, the lack of decidabil-

42This problem is also known as the Wang Tiles. For more details please refer to [CSHD03].
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ity is accepted since the DL-Florid system terminates in most of the cases and the provided
functionalities overweight this disadvantages.

The following chapter describes some related approaches and denotes further work.
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8 Further and Related Work

First, this chapter gives an overview over some approaches which are related to this thesis.
Afterwards, the next steps in the development of the DL-Florid approach are described.

8.1 Related Approaches

A wide range of languages and standards have been emerged around the integration of rules
in the field of the Semantic Web. Similar to the presented DL-Florid approach, several
proposal for the combination of rule languages with ontology languages have been made.
For a general survey see [ADG+05]. These approaches range from homogeneous approaches,
in which rules and ontologies are combined and integrated seamlessly, to hybrid approaches
which keep rules and ontologies separate. Examples of the former approach are the Semantic
Web Rules Language (SWRL) and Description Logic Programs (DLP) which are explained
below. Whereas, AL-Log and Carin are examples of the latter approach (cf. [ADG+05]).
They are presented afterwards.

SWRL. The Semantic Web Rules Language has been proposed in [HPSB+04, HPS04] as
the basic rule language for the Semantic Web. It is based on a combination of OWL DL and
OWL Lite with the Unary/Binary Datalog sublanguage of RuleML [The]. Basically, the Rule
Markup Language (RuleML) is a markup language for publishing and sharing rules using a
standard XML encoding. The considered Datalog sublanguage restricts a relation to be unary
or binary whereas a relation in the RuleML Datalog kernel can be n-ary. Please refer to the
RuleML Tutorial [BGT05] for more information on RuleML and the used sublanguage. The
SWRL proposal extends the set of OWL axioms with Horn-like43 rules which can be used to
reason about OWL individuals and to infer new knowledge about the individuals. Roughly
speaking, the SWRL is the union of Horn logic and OWL DL. The main strength of SWRL is
the tight integration with OWL DL since SWRL is being defined as a syntactic and semantic
extension of OWL DL. Furthermore, Horn clauses are fairly simple and understandable.
At present, SWRL neither supports disjunction nor provides non-monotonic features like

43Horn logic consists of so called Horn clauses. A Horn clause is a clause (a disjunction of literals) with
at most one positive literal. Moreover, Horn clauses form a decidable subset of FOL. Note, that in this
context the terms “rules” and “clauses” are often used synonymously.
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defaults or negation-as-failure. Moreover, SWRL is more expressive than OWL DL and Horn
clauses separate but this increased expressiveness leads to undecidability (cf. [HPSBT05]).
An implementation of SWRL has been presented in [Gol04] which is based on existing
technologies such as Protégé OWL [Proa], RACER [Rac] and Jess [FH]. However, OWL
and SWRL were criticized and an alternative ontology language called OWL-Flight, based
entirely on logic programming (F-Logic), was proposed in [BPLF05]. More precisely, they
propose that OWL and rules should exist side-by-side. This new approach was criticized in
[HPPSH05] because the separation of OWL and rules would create two Semantic Webs with
little or no semantic interoperability.

DLP. Description Logic Programs have been initially presented in [GHVD03]. In this pro-
posal, Description Logic Programs are defined as a new intermediate knowledge represen-
tation which is contained within the intersection of Description Logics and Logic Programs
(LP). More precisely, the Horn fragment of FOL that contains no function symbols is used
as the considered logic subset. Moreover, a translation from the DLP fragment of DL to
LP and from the DLP fragment of LP to DL is provided. Therefore, the information can
be exchanged between both fragments and enables to build rules on top of ontologies. In
other words, DLP is the intersection of Horn logic and OWL in contrast to SWRL which
bases on the union of Horn logic and OWL. However, the DLP approach denotes a rule and
ontology language with very restrictive expressiveness, e.g., they are restricted to universal
quantification and lack basic negation (cf. [MSS04]).44 More information can be found in
[VMHG03] and in [Vol04]. Furthermore, the description of an early implementation can be
found in [VDO03].

The DLP fragment as a decidable but unexpressive proposal on the one side and the expres-
sive yet undecidable SWRL approach on the other side mark two extremes of a wide range of
possible approaches. In between, several proposals have been made to extend expressiveness
while still retaining decidability (cf. [EIP+06]). One of the first approaches is AL-Log.

AL-Log. AL-Log has been proposed in [DLNS98]. This approach extends the description
logic AL by Horn rules which are restricted in such a way that each variable in a rule must
appear in at least one non-DL-atom in the rule body. This restriction retains decidability
and such rules are called DL-safe. However, this restriction makes rules only applicable
to explicitly named objects, i.e. to known individuals. Furthermore, AL-Log does not in-
clude negation. An extension of this approach to the more expressive DL SHIQ has been
presented in [MSS04] which brings the whole approach closer to OWL.

44Note that it was possible to show for a wide range of ontologies that they are inside the used intersection
(cf. [GHVD03]).
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CARIN. CARIN has been presented in [LR96] as a family of languages intended to integrate
Datalog with different Description Logics. Contrary to AL-Log and other approaches on the
basis of DL-save rules, CARIN does not restrict each variable from the rule head to appear
in at least one non-DL-atoms in the rule body. Thus CARIN extends AL-Log with more
expressive DL and more general rules which results in undecidability. However, decidable
subset of CARIN can be obtained by either restricting rules to be non-recursive or by role-
safety, according to which at least one variable from a literal with a role predicate must also
occur in a non-DL body atom.

OWL 1.1. Additionally to the approaches presented before, an extended version of the Web
Ontology Language is under development [W3C07a]. This new version is called OWL 1.1
and provides more Description Logic expressiveness by moving from the SHOIN Descrip-
tion Logic of OWL DL to the more expressive SROIQ Description Logic [HKS06]. This
DL is still decidable and allows for more expressiveness around properties. Moreover, it
provides some syntactic sugar and user-defined datatypes. However, at present the OWL 1.1
specification is a W3C Member Submission and accordingly, some essential parts are not
implemented yet.

The DL-Florid developed in this thesis proposes a hybrid approach. The F-Logic rules are
kept separately and a subset of an ontology is exchanged between both systems. This pro-
vides greater flexibility and expressiveness than the homogeneous approaches. However, the
resulting system is not decidable. But currently, no decidable systems have been presented
which provide a similar expressiveness and which integrate into the existing technologies
seamlessly like the DL-Florid approach.

8.2 Further Tasks

After the presentation of some approaches related to the DL-Florid approach, this section
denotes the next step for the development of the DL-Florid prototype.

Up to now, the implemented prototype has been used separately from other frameworks.
Therefore, the next step is the integration into already existing frameworks like the MARS
Framework. MARS stands for Modular Active Rules in the Semantic Web and initially, this
framework has been presented in [AAB+05]. The DL-Florid approach could be used, for
example, to reason about rules (see [AAB+07]).

Furthermore, the prototype can be improved and extend in several ways. Possible areas of
further development are:
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• The change of the rule markup from the specific XML markup to more established
markups would allow for interchanging rules with other frameworks.

• As mentioned before, a direct integration of Florid into DL-Florid would increase the
performance significantly. At present, a Java extension to Florid is under development.

• At present, the prototype is focused on the web interface. For an integration into other
framework, a more sophisticated technology, like web services, is needed.
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9 Conclusion

In this thesis, a combination of Description Logic reasoning with F-Logic rules has been
proposed. First, the basic concepts of the Semantic Web have been presented. To work with
these concepts, particularly with OWL DL, the Jena Semantic Web framework has been
introduced. This was followed by the presentation of Florid as an F-Logic system.

These concepts and frameworks have been utilized to develop the proposed combination on
a theoretical level as well as on an implementation level in terms of a prototype. For this
purpose, an exchangeable subset of OWL DL has been identified and the translation from
OWL DL into F-Logic and vice versa has been given.

The use of state-of-the-art technologies (Jena, Pellet, Web Services) for the alternating rea-
soning process ensures that the DL-Florid system can easily be integrated into existing
systems in order to utilize the reasoning capabilities of DL-Florid. The implemented web
interface of the prototype has been used for some examples which show the benefits of the
DL-Florid combination. For example, DL-Florid combines the abilities of OWL DL to de-
fine and to reason about class hierarchies with the power of F-Logic rules about properties.
The expressiveness and the abilities of this proposal are way beyond of the functionalities
provided by OWL DL. Finally some related approaches have been presented and the further
steps in the development of DL-Florid have been denoted.

This thesis represents only the first step for the development of DL-Florid. Further steps
will include the integration into existing frameworks as a firm foundation for reasoning, e.g.
about rules.
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A Examples

A.1 Family Genealogy

<?xml version="1.0"?>

<rdf:RDF xmlns="http://foo.org/dummy#"

xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#"

xmlns:xsd="http://www.w3.org /2001/ XMLSchema#"

xmlns:rdfs="http://www.w3.org /2000/01/ rdf -schema#"

xmlns:owl="http://www.w3.org /2002/07/ owl#"

xml:base="http://foo.org/dummy">

<owl:Ontology rdf:about="">

<owl:versionInfo

rdf:datatype="http://www.w3.org /2001/ XMLSchema#string">

An example ontology created by Matthew Horridge , modified by

Heiko Kattenstroth: derived classes are used and some

classes and properties were added

</owl:versionInfo >

</owl:Ontology >

<owl:Class rdf:ID="Person" />

<owl:Class rdf:ID="MaleSex">

<owl:disjointWith rdf:resource="#FemaleSex" />

</owl:Class >

<owl:Class rdf:ID="FemaleSex" />

<owl:Class rdf:ID="Parent">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person" />

<owl:Restriction >

<owl:someValuesFrom rdf:resource="#Person" />

<owl:onProperty >

<owl:ObjectProperty rdf:ID="hasChild" />

</owl:onProperty >

</owl:Restriction >

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Father">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Parent" />

<owl:Class rdf:about="#Man" />
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</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Mother">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Parent" />

<owl:Class rdf:about="#Woman" />

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="GrandParent">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person" />

<owl:Restriction >

<owl:onProperty >

<owl:ObjectProperty rdf:about="#hasChild" />

</owl:onProperty >

<owl:someValuesFrom rdf:resource="#Parent" />

</owl:Restriction >

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<!--

<owl:Class rdf:ID="GrandFather">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#GrandParent" />

<owl:Class rdf:about="#Man" />

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="GrandMother">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#GrandParent" />

<owl:Class rdf:about="#Woman" />

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

-->

<owl:Class rdf:ID="Man">

<owl:equivalentClass >

<owl:Class >
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<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person" />

<owl:Restriction >

<owl:onProperty >

<owl:FunctionalProperty rdf:about="#hasSex" />

</owl:onProperty >

<owl:hasValue rdf:resource="#MaleSex" />

</owl:Restriction >

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

<rdfs:subClassOf >

<owl:Class rdf:about="#Person" />

</rdfs:subClassOf >

</owl:Class >

<owl:Class rdf:ID="Woman">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person" />

<owl:Restriction >

<owl:onProperty >

<owl:FunctionalProperty rdf:about="#hasSex" />

</owl:onProperty >

<owl:hasValue rdf:resource="#FemaleSex" />

</owl:Restriction >

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

<rdfs:subClassOf >

<owl:Class rdf:about="#Person" />

</rdfs:subClassOf >

</owl:Class >

<owl:Class rdf:ID="OffSpring">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person" />

<owl:Restriction >

<owl:someValuesFrom rdf:resource="#Person" />

<owl:onProperty >

<owl:ObjectProperty rdf:about="#hasParent" />

</owl:onProperty >

</owl:Restriction >

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Daughter">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#OffSpring" />

<owl:Class rdf:about="#Woman" />
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</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Son">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#OffSpring" />

<owl:Class rdf:about="#Man" />

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Sex">

<owl:equivalentClass >

<owl:Class >

<owl:oneOf rdf:parseType="Collection">

<owl:Class rdf:about="#MaleSex" />

<owl:Class rdf:about="#FemaleSex" />

</owl:oneOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Sibling">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person" />

<owl:Restriction >

<owl:someValuesFrom rdf:resource="#Person" />

<owl:onProperty >

<owl:SymmetricProperty

rdf:about="#hasSibling" />

</owl:onProperty >

</owl:Restriction >

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Brother">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Man" />

<owl:Restriction >

<owl:someValuesFrom rdf:resource="#Person" />

<owl:onProperty >

<owl:SymmetricProperty

rdf:about="#hasSibling" />

</owl:onProperty >

</owl:Restriction >

</owl:intersectionOf >
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</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Sister">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Woman" />

<owl:Restriction >

<owl:someValuesFrom rdf:resource="#Person" />

<owl:onProperty >

<owl:SymmetricProperty rdf:ID="hasSibling" />

</owl:onProperty >

</owl:Restriction >

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Uncle">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Man" />

<owl:Class >

<owl:unionOf rdf:parseType="Collection">

<owl:Restriction >

<owl:someValuesFrom

rdf:resource="#Person" />

<owl:onProperty >

<owl:ObjectProperty

rdf:about="#hasNephew" />

</owl:onProperty >

</owl:Restriction >

<owl:Restriction >

<owl:someValuesFrom

rdf:resource="#Person" />

<owl:onProperty >

<owl:ObjectProperty

rdf:about="#hasNiece" />

</owl:onProperty >

</owl:Restriction >

</owl:unionOf >

</owl:Class >

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Aunt">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Woman" />

<owl:Class >

<owl:unionOf rdf:parseType="Collection">
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<owl:Restriction >

<owl:someValuesFrom

rdf:resource="#Person" />

<owl:onProperty >

<owl:ObjectProperty

rdf:about="#hasNephew" />

</owl:onProperty >

</owl:Restriction >

<owl:Restriction >

<owl:someValuesFrom

rdf:resource="#Person" />

<owl:onProperty >

<owl:ObjectProperty

rdf:about="#hasNiece" />

</owl:onProperty >

</owl:Restriction >

</owl:unionOf >

</owl:Class >

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Niece">

<owl:disjointWith rdf:resource="#Nephew" />

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class >

<owl:unionOf rdf:parseType="Collection">

<owl:Restriction >

<owl:someValuesFrom

rdf:resource="#Person" />

<owl:onProperty >

<owl:ObjectProperty

rdf:about="#hasUncle" />

</owl:onProperty >

</owl:Restriction >

<owl:Restriction >

<owl:onProperty >

<owl:ObjectProperty

rdf:about="#hasAunt" />

</owl:onProperty >

<owl:someValuesFrom

rdf:resource="#Person" />

</owl:Restriction >

</owl:unionOf >

</owl:Class >

<owl:Class rdf:about="#Woman" />

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Nephew">

<owl:equivalentClass >

<owl:Class >
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<owl:intersectionOf rdf:parseType="Collection">

<owl:Class >

<owl:unionOf rdf:parseType="Collection">

<owl:Restriction >

<owl:onProperty >

<owl:ObjectProperty

rdf:ID="hasUncle" />

</owl:onProperty >

<owl:someValuesFrom

rdf:resource="#Person" />

</owl:Restriction >

<owl:Restriction >

<owl:onProperty >

<owl:ObjectProperty

rdf:ID="hasAunt" />

</owl:onProperty >

<owl:someValuesFrom

rdf:resource="#Person" />

</owl:Restriction >

</owl:unionOf >

</owl:Class >

<owl:Class rdf:about="#Man" />

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

<owl:disjointWith >

<owl:Class rdf:about="#Niece" />

</owl:disjointWith >

</owl:Class >

<owl:Class rdf:ID="Ancestor">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person" />

<owl:Restriction >

<owl:someValuesFrom rdf:resource="#Person" />

<owl:onProperty >

<owl:ObjectProperty rdf:about="#hasDescendant" />

</owl:onProperty >

</owl:Restriction >

</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<owl:Class rdf:ID="Descendant">

<owl:equivalentClass >

<owl:Class >

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Person" />

<owl:Restriction >

<owl:someValuesFrom rdf:resource="#Person" />

<owl:onProperty >

<owl:ObjectProperty rdf:about="#hasAncestor" />

</owl:onProperty >

</owl:Restriction >
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</owl:intersectionOf >

</owl:Class >

</owl:equivalentClass >

</owl:Class >

<!-- Properties -->

<owl:TransitiveProperty rdf:ID="hasAncestor">

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Person" />

</owl:TransitiveProperty >

<owl:TransitiveProperty rdf:ID="hasDescendant">

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Person" />

</owl:TransitiveProperty >

<owl:ObjectProperty rdf:about="#hasNephew">

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Man" />

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#hasNiece">

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Woman" />

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#hasAunt">

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Woman" />

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#hasUncle">

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Man" />

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#hasParent">

<rdfs:subPropertyOf rdf:resource="#hasAncestor" />

<owl:inverseOf >

<owl:ObjectProperty rdf:about="#hasChild" />

</owl:inverseOf >

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Person" />

</owl:ObjectProperty >

<owl:FunctionalProperty rdf:about="#hasFather">

<rdf:type

rdf:resource="http://www.w3.org /2002/07/ owl#ObjectProperty" />

<rdfs:subPropertyOf rdf:resource="#hasParent" />

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Man" />

</owl:FunctionalProperty >

<owl:FunctionalProperty rdf:about="#hasMother">

<rdfs:subPropertyOf rdf:resource="#hasParent" />
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<rdf:type

rdf:resource="http://www.w3.org /2002/07/ owl#ObjectProperty" />

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Woman" />

</owl:FunctionalProperty >

<owl:ObjectProperty rdf:about="#hasSibling">

<rdf:type

rdf:resource="http://www.w3.org /2002/07/ owl#SymmetricProperty" />

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Person" />

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#hasBrother">

<rdfs:subPropertyOf rdf:resource="#hasSibling" />

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Man" />

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#hasSister">

<rdfs:subPropertyOf rdf:resource="#hasSibling" />

<rdfs:range rdf:resource="#Woman" />

<rdfs:domain rdf:resource="#Person" />

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#hasChild">

<rdfs:subPropertyOf rdf:resource="#hasDescendant" />

<owl:inverseOf >

<owl:ObjectProperty rdf:about="#hasParent" />

</owl:inverseOf >

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Person" />

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#hasSon">

<rdfs:subPropertyOf rdf:resource="#hasChild" />

<rdfs:range rdf:resource="#Man" />

<rdfs:domain rdf:resource="#Person" />

</owl:ObjectProperty >

<owl:ObjectProperty rdf:about="#hasDaughter">

<rdfs:subPropertyOf rdf:resource="#hasChild" />

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="#Woman" />

</owl:ObjectProperty >

<owl:FunctionalProperty rdf:about="#hasSex">

<rdfs:range rdf:resource="#Sex" />

<rdf:type

rdf:resource="http://www.w3.org /2002/07/ owl#ObjectProperty" />

</owl:FunctionalProperty >

<!-- Individuals -->

<!-- first generation -->

<Person rdf:ID="Agnes">

<hasSex rdf:resource="#FemaleSex" />
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<hasSibling rdf:resource="#Agatha" />

<hasSibling rdf:resource="#Alexandra" />

</Person >

<Person rdf:ID="Abel">

<hasSex rdf:resource="#MaleSex" />

</Person >

<Person rdf:ID="Agatha">

<hasSex rdf:resource="#FemaleSex" />

</Person >

<Person rdf:ID="Alexandra">

<hasSex rdf:resource="#FemaleSex" />

</Person >

<!-- second generation !-->

<Person rdf:ID="Becky">

<hasSex rdf:resource="#FemaleSex" />

<hasParent rdf:resource="#Abel" />

<hasParent rdf:resource="#Agnes" />

<hasSibling rdf:resource="#Benedict" />

</Person >

<Person rdf:ID="Benedict">

<hasSex rdf:resource="#MaleSex" />

<hasParent rdf:resource="#Abel" />

<hasParent rdf:resource="#Agnes" />

</Person >

<Person rdf:ID="Benjamin">

<hasSex rdf:resource="#MaleSex" />

</Person >

<!-- third generation !-->

<Person rdf:ID="Charlene">

<hasSex rdf:resource="#FemaleSex" />

<hasParent rdf:resource="#Becky" />

<hasParent rdf:resource="#Benjamin" />

<hasSibling rdf:resource="#Chelsea" />

</Person >

<Person rdf:ID="Chelsea">

<hasSex rdf:resource="#FemaleSex" />

<hasParent rdf:resource="#Becky" />

<hasParent rdf:resource="#Benjamin" />

</Person >

<!-- fourth generation -->

<Person rdf:ID="Deby">

<hasSex rdf:resource="#FemaleSex" />

<hasParent rdf:resource="#Charles" />

<hasParent rdf:resource="#Charlene" />

<hasSibling rdf:resource="#Daniel" />

</Person >

<Person rdf:ID="Daniel">
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<hasSex rdf:resource="#MaleSex" />

<hasParent rdf:resource="#Charles" />

<hasParent rdf:resource="#Charlene" />

</Person >

</rdf:RDF >

Example A.1: Genealogy Ontology

% siblings

X["http :// foo.org/dummy#hasSister" ->>Y] :- Y:"http ://foo.org/dummy#Woman

"["http :// foo.org/dummy#hasSibling"->>X] .

X["http :// foo.org/dummy#hasBrother" ->>Y] :- Y:"http ://foo.org/dummy#Man"[

"http ://foo.org/dummy#hasSibling"->>X] .

% father & mother

X["http :// foo.org/dummy#hasMother" ->>Y] :- Y:"http ://foo.org/dummy#Woman

"["http :// foo.org/dummy#hasChild"->>X] .

X["http :// foo.org/dummy#hasFather" ->>Y] :- Y:"http ://foo.org/dummy#Man"[

"http ://foo.org/dummy#hasChild"->>X] .

% uncle & aunt

X["http :// foo.org/dummy#hasAunt" ->>Y] :- X["http ://foo.org/dummy#

hasParent"->>Z] , Z["http ://foo.org/dummy#hasSister"->>Y] .

X["http :// foo.org/dummy#hasUncle" ->>Y] :- X["http ://foo.org/dummy#

hasParent"->>Z] , Z["http ://foo.org/dummy#hasBrother"->>Y] .

% niece & nephew

X["http :// foo.org/dummy#hasNiece" ->>Y] :- Y:"http ://foo.org/dummy#Woman

"["http :// foo.org/dummy#hasAunt"->>X] .

X["http :// foo.org/dummy#hasNiece" ->>Y] :- Y:"http ://foo.org/dummy#Woman

"["http :// foo.org/dummy#hasUncle"->>X] .

X["http :// foo.org/dummy#hasNephew" ->>Y] :- Y:"http ://foo.org/dummy#Man"[

"http ://foo.org/dummy#hasAunt"->>X] .

X["http :// foo.org/dummy#hasNephew" ->>Y] :- Y:"http ://foo.org/dummy#Man"[

"http ://foo.org/dummy#hasUncle"->>X] .

Example A.2: Genealogy Rules

A.2 Train Connections

<?xml version=’1.0’ encoding=’ISO -8859 -1’?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org /2002/07/ owl#">

<!ENTITY xsd "http://www.w3.org /2001/ XMLSchema#">

]>

<rdf:RDF

xmlns:rdf ="http://www.w3.org /1999/02/22 -rdf -syntax -ns#"

xmlns:rdfs ="http://www.w3.org /2000/01/rdf -schema#"

xmlns:owl= "http://www.w3.org /2002/07/ owl#"

xmlns:bahn ="http:// localhost/test.rdf#"

xml:base ="http:// localhost/test.rdf#"

xmlns ="http:// localhost/test.rdf#"

>

<owl:Class rdf:ID="Schedule"/>
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<owl:Class rdf:ID="Connection"/>

<owl:Class rdf:ID="Section" />

<owl:Class rdf:ID="Station"/>

<owl:Class rdf:ID="Train"/>

<owl:ObjectProperty rdf:ID="has_Schedule">

<rdfs:domain rdf:resource="#Train"/>

<rdfs:range rdf:resource="#Schedule"/>

</owl:ObjectProperty >

<owl:ObjectProperty rdf:ID="hasSection">

<rdf:type rdf:resource="&owl;TransitiveProperty"/>

<rdfs:domain rdf:resource="#Schedule"/>

<rdfs:range rdf:resource="#Section"/>

</owl:ObjectProperty >

<owl:ObjectProperty rdf:ID="routePoint"/>

<owl:ObjectProperty rdf:ID="startPoint">

<rdfs:subPropertyOf rdf:resource="#routePoint"/>

</owl:ObjectProperty >

<owl:ObjectProperty rdf:ID="endPoint">

<rdfs:subPropertyOf rdf:resource="#routePoint"/>

</owl:ObjectProperty >

<owl:ObjectProperty rdf:ID="Trainnumber">

<rdfs:domain rdf:resource="#Train"/>

</owl:ObjectProperty >

<owl:ObjectProperty rdf:ID="departure_place">

<rdfs:domain rdf:resource="#Train"/>

<rdfs:range rdf:resource="#Station"/>

</owl:ObjectProperty >

<owl:DatatypeProperty rdf:ID="departure_time">

<rdfs:domain rdf:resource="#Train"/>

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="distance">

<rdfs:domain rdf:resource="#Section"/>

</owl:DatatypeProperty >

<owl:DatatypeProperty rdf:ID="duration">

<rdfs:domain rdf:resource="#Section"/>

</owl:DatatypeProperty >

<bahn:Train rdf:ID="ICE680">

<bahn:has_Schedule rdf:resource="#routemap_M -HH"/>

<bahn:departure_time >0855</bahn:departure_time >

<bahn:departure_place rdf:resource="#Munich_Hbf"/>

</bahn:Train >

<bahn:Train rdf:ID="ICE108">

<bahn:has_Schedule rdf:resource="#routemap_S -B"/>

<bahn:departure_time >1251</bahn:departure_time >
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<bahn:departure_place rdf:resource="#Stuttgart"/>

</bahn:Train >

<bahn:Train rdf:ID="ICE1516">

<bahn:has_Schedule rdf:resource="#routemap_B -HH"/>

<bahn:departure_time >1930</bahn:departure_time >

<bahn:departure_place rdf:resource="#Berlin_Ostbahnhof"/>

</bahn:Train >

<rdf:Description rdf:about="#routemap_M -HH">

<rdf:type rdf:resource="#Schedule"/>

<bahn:hasSection rdf:resource="#Munich_Hbf -Munich_Pasing"/>

<bahn:hasSection rdf:resource="#Munich_Pasing -Augsburg"/>

<bahn:hasSection rdf:resource="#Augsburg -Wuerzburg"/>

<bahn:hasSection rdf:resource="#Wuerzburg -Fulda"/>

<bahn:hasSection rdf:resource="#Fulda -Kassel_Wilhelmshoehe"/>

<bahn:hasSection rdf:resource="#Kassel_Wilhelmshoehe -Goettingen"/>

<bahn:hasSection rdf:resource="#Goettingen -Hannover"/>

<bahn:hasSection rdf:resource="#Hannover -Hamburg_Harburg"/>

<bahn:hasSection rdf:resource="#Hamburg_Harburg -Hamburg_Hbf"/>

<bahn:hasSection rdf:resource="#Hamburg_Hbf -Hamburg_Dammtor"/>

<bahn:hasSection rdf:resource="#Hamburg_Dammtor -Hamburg_Altona"/>

</rdf:Description >

<rdf:Description rdf:about="#routemap_S -B">

<rdf:type rdf:resource="#Schedule"/>

<bahn:hasSection rdf:resource="#Stuttgart -Mannheim"/>

<bahn:hasSection rdf:resource="#Mannheim -Frankfurt_Main_Hbf"/>

<bahn:hasSection rdf:resource="#Frankfurt_Main_Hbf -Hanau"/>

<bahn:hasSection rdf:resource="#Hanau -Fulda"/>

<bahn:hasSection rdf:resource="#Fulda -Kassel_Wilhelmshoehe"/>

<bahn:hasSection rdf:resource="#Kassel_Wilhelmshoehe -Goettingen"/>

<bahn:hasSection rdf:resource="#Goettingen -Hildesheim"/>

<bahn:hasSection rdf:resource="#Hildesheim -Braunschweig"/>

<bahn:hasSection rdf:resource="#Braunschweig -Berlin_Spandau"/>

<bahn:hasSection rdf:resource="#Berlin_Spandau -Berlin_ZoologischerGarten"

/>

<bahn:hasSection rdf:resource="#Berlin_ZoologischerGarten -

Berlin_Ostbahnhof"/>

</rdf:Description >

<rdf:Description rdf:about="#routemap_B -HH">

<rdf:type rdf:resource="#Schedule"/>

<bahn:hasSection rdf:resource="#Berlin_Ostbahnhof -

Berlin_ZoologischerGarten"/>

<bahn:hasSection rdf:resource="#Berlin_ZoologischerGarten -Hamburg_Hbf"/>

<bahn:hasSection rdf:resource="#Hamburg_Hbf -Hamburg_Dammtor"/>

<bahn:hasSection rdf:resource="#Hamburg_Dammtor -Hamburg_Altona"/>

</rdf:Description >

<bahn:Station rdf:ID="Munich_Hbf"/>

<bahn:Station rdf:ID="Munich_Pasing"/>

<bahn:Station rdf:ID="Augsburg"/>

<bahn:Station rdf:ID="Wuerzburg"/>

<bahn:Station rdf:ID="Fulda"/>

<bahn:Station rdf:ID="Kassel_Wilhelmshoehe"/>
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<bahn:Station rdf:ID="Goettingen"/>

<bahn:Station rdf:ID="Hannover"/>

<bahn:Station rdf:ID="Hamburg_Harburg"/>

<bahn:Station rdf:ID="Hamburg_Hbf"/>

<bahn:Station rdf:ID="Hamburg_Dammtor"/>

<bahn:Station rdf:ID="Hamburg_Altona"/>

<bahn:Station rdf:ID="Stuttgart"/>

<bahn:Station rdf:ID="Mannheim"/>

<bahn:Station rdf:ID="Frankfurt_Main_Hbf"/>

<bahn:Station rdf:ID="Hanau"/>

<bahn:Station rdf:ID="Hildesheim"/>

<bahn:Station rdf:ID="Braunschweig"/>

<bahn:Station rdf:ID="Berlin_Spandau"/>

<bahn:Station rdf:ID="Berlin_ZoologischerGarten"/>

<bahn:Station rdf:ID="Berlin_Ostbahnhof"/>

<bahn:Section rdf:about="#Munich_Hbf -Munich_Pasing">

<bahn:startPoint rdf:resource="#Munich_Hbf"/>

<bahn:endPoint rdf:resource="#Munich_Pasing"/>

<bahn:distance rdf:datatype="&xsd;integer">7</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">8</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Munich_Pasing -Augsburg">

<bahn:startPoint rdf:resource="#Munich_Pasing"/>

<bahn:endPoint rdf:resource="#Augsburg"/>

<bahn:distance rdf:datatype="&xsd;integer">55</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">31</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Augsburg -Wuerzburg">

<bahn:startPoint rdf:resource="#Augsburg"/>

<bahn:endPoint rdf:resource="#Wuerzburg"/>

<bahn:distance rdf:datatype="&xsd;integer">215</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">112</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Wuerzburg -Fulda">

<bahn:startPoint rdf:resource="#Wuerzburg"/>

<bahn:endPoint rdf:resource="#Fulda"/>

<bahn:distance rdf:datatype="&xsd;integer">92</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">35</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Fulda -Kassel_Wilhelmshoehe">

<bahn:startPoint rdf:resource="#Fulda"/>

<bahn:endPoint rdf:resource="#Kassel_Wilhelmshoehe"/>

<bahn:distance rdf:datatype="&xsd;integer">90</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">32</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Kassel_Wilhelmshoehe -Goettingen">

<bahn:startPoint rdf:resource="#Kassel_Wilhelmshoehe"/>

<bahn:endPoint rdf:resource="#Goettingen"/>

<bahn:distance rdf:datatype="&xsd;integer">44</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">21</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Goettingen -Hannover">

<bahn:startPoint rdf:resource="#Goettingen"/>

<bahn:endPoint rdf:resource="#Hannover"/>

<bahn:distance rdf:datatype="&xsd;integer">99</bahn:distance >
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<bahn:duration rdf:datatype="&xsd;integer">40</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Hannover -Hamburg_Harburg">

<bahn:startPoint rdf:resource="#Hannover"/>

<bahn:endPoint rdf:resource="#Hamburg_Harburg"/>

<bahn:distance rdf:datatype="&xsd;integer">167</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">67</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Hamburg_Harburg -Hamburg_Hbf">

<bahn:startPoint rdf:resource="#Hamburg_Harburg"/>

<bahn:endPoint rdf:resource="#Hamburg_Hbf"/>

<bahn:distance rdf:datatype="&xsd;integer">12</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">11</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Hamburg_Hbf -Hamburg_Dammtor">

<bahn:startPoint rdf:resource="#Hamburg_Hbf"/>

<bahn:endPoint rdf:resource="#Hamburg_Dammtor"/>

<bahn:distance rdf:datatype="&xsd;integer">1</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">7</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Hamburg_Dammtor -Hamburg_Altona">

<bahn:startPoint rdf:resource="#Hamburg_Dammtor"/>

<bahn:endPoint rdf:resource="#Hamburg_Altona"/>

<bahn:distance rdf:datatype="&xsd;integer">5</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">8</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Stuttgart -Mannheim">

<bahn:startPoint rdf:resource="#Stuttgart"/>

<bahn:endPoint rdf:resource="#Mannheim"/>

<bahn:distance rdf:datatype="&xsd;integer">0</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">40</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Mannheim -Frankfurt_Main_Hbf">

<bahn:startPoint rdf:resource="#Mannheim"/>

<bahn:endPoint rdf:resource="#Frankfurt_Main_Hbf"/>

<bahn:distance rdf:datatype="&xsd;integer">0</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">42</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Frankfurt_Main_Hbf -Hanau">

<bahn:startPoint rdf:resource="#Frankfurt_Main_Hbf"/>

<bahn:endPoint rdf:resource="#Hanau"/>

<bahn:distance rdf:datatype="&xsd;integer">0</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">17</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Hanau -Fulda">

<bahn:startPoint rdf:resource="#Hanau"/>

<bahn:endPoint rdf:resource="#Fulda"/>

<bahn:distance rdf:datatype="&xsd;integer">0</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">42</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Goettingen -Hildesheim">

<bahn:startPoint rdf:resource="#Goettingen"/>

<bahn:endPoint rdf:resource="#Hildesheim"/>
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<bahn:distance rdf:datatype="&xsd;integer">0</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">30</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Hildesheim -Braunschweig">

<bahn:startPoint rdf:resource="#Hildesheim"/>

<bahn:endPoint rdf:resource="#Braunschweig"/>

<bahn:distance rdf:datatype="&xsd;integer">0</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">26</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Braunschweig -Berlin_Spandau">

<bahn:startPoint rdf:resource="#Braunschweig"/>

<bahn:endPoint rdf:resource="#Berlin_Spandau"/>

<bahn:distance rdf:datatype="&xsd;integer">0</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">65</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Berlin_Spandau -Berlin_ZoologischerGarten">

<bahn:startPoint rdf:resource="#Berlin_Spandau"/>

<bahn:endPoint rdf:resource="#Berlin_ZoologischerGarten"/>

<bahn:distance rdf:datatype="&xsd;integer">0</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">11</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Berlin_ZoologischerGarten -Berlin_Ostbahnhof">

<bahn:startPoint rdf:resource="#Berlin_ZoologischerGarten"/>

<bahn:endPoint rdf:resource="#Berlin_Ostbahnhof"/>

<bahn:distance rdf:datatype="&xsd;integer">0</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">18</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Berlin_Ostbahnhof -Berlin_ZoologischerGarten">

<bahn:startPoint rdf:resource="#Berlin_Ostbahnhof"/>

<bahn:endPoint rdf:resource="#Berlin_ZoologischerGarten"/>

<bahn:distance rdf:datatype="&xsd;integer">0</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">15</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Berlin_ZoologischerGarten -Hamburg_Hbf">

<bahn:startPoint rdf:resource="#Berlin_ZoologischerGarten"/>

<bahn:endPoint rdf:resource="#Hamburg_Hbf"/>

<bahn:distance rdf:datatype="&xsd;integer">0</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">90</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Hamburg_Altona -Hamburg_Dammtor">

<bahn:startPoint rdf:resource="#Hamburg_Altona"/>

<bahn:endPoint rdf:resource="#Hamburg_Dammtor"/>

<bahn:distance rdf:datatype="&xsd;integer">5</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">8</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Hamburg_Dammtor -Hamburg_Hbf">

<bahn:startPoint rdf:resource="#Hamburg_Dammtor"/>

<bahn:endPoint rdf:resource="#Hamburg_Hbf"/>

<bahn:distance rdf:datatype="&xsd;integer">1</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">7</bahn:duration >

</bahn:Section >
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<bahn:Section rdf:about="#Hamburg_Hbf -Hamburg_Harburg">

<bahn:startPoint rdf:resource="#Hamburg_Hbf"/>

<bahn:endPoint rdf:resource="#Hamburg_Harburg"/>

<bahn:distance rdf:datatype="&xsd;integer">12</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">11</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Hamburg_Harburg -Hannover">

<bahn:startPoint rdf:resource="#Hamburg_Harburg"/>

<bahn:endPoint rdf:resource="#Hannover"/>

<bahn:distance rdf:datatype="&xsd;integer">167</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">67</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Hannover -Goettingen">

<bahn:startPoint rdf:resource="#Hannover"/>

<bahn:endPoint rdf:resource="#Goettingen"/>

<bahn:distance rdf:datatype="&xsd;integer">99</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">40</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Goettingen -Kassel_Wilhelmshoehe">

<bahn:startPoint rdf:resource="#Goettingen"/>

<bahn:endPoint rdf:resource="#Kassel_Wilhelmshoehe"/>

<bahn:distance rdf:datatype="&xsd;integer">44</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">21</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Kassel_Wilhelmshoehe -Fulda">

<bahn:startPoint rdf:resource="#Kassel_Wilhelmshoehe"/>

<bahn:endPoint rdf:resource="#Fulda"/>

<bahn:distance rdf:datatype="&xsd;integer">90</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">32</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Fulda -Wuerzburg">

<bahn:startPoint rdf:resource="#Fulda"/>

<bahn:endPoint rdf:resource="#Wuerzburg"/>

<bahn:distance rdf:datatype="&xsd;integer">92</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">35</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Wuerzburg -Augsburg">

<bahn:startPoint rdf:resource="#Wuerzburg"/>

<bahn:endPoint rdf:resource="#Augsburg"/>

<bahn:distance rdf:datatype="&xsd;integer">44</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">112</bahn:duration >

</bahn:Section >

<bahn:Section rdf:about="#Augsburg -Munich_Pasing">

<bahn:startPoint rdf:resource="#Augsburg"/>

<bahn:endPoint rdf:resource="#Munich_Pasing"/>

<bahn:distance rdf:datatype="&xsd;integer">55</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">31</bahn:duration >

</bahn:Section >
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<bahn:Section rdf:about="#Munich_Pasing -Munich_Hbf">

<bahn:startPoint rdf:resource="#Munich_Pasing"/>

<bahn:endPoint rdf:resource="#Munich_Hbf"/>

<bahn:distance rdf:datatype="&xsd;integer">7</bahn:distance >

<bahn:duration rdf:datatype="&xsd;integer">8</bahn:duration >

</bahn:Section >

</rdf:RDF >

Example A.3: Train Connections
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The prototype consists of two parts:

1. Florid Server: The Florid part consists of the Florid system itself and the web ser-
vice. It is available on request from [Dat]. See Section B.1 for installation instructions.

2. DLFLorid.war: This is the Java based part, using servlets, the Jena Framework and
Pellet. See Section B.2 for installation instructions.

B.1 Installation of the Florid Web Service:

1. Unpack the FloridServer.zip to an appropriate folder, for example

/usr/local/share/FloridServer

2. Compile the server (gcc4.x needed):

make all

Refer to the Makefile for further options.

3. Set the following paths (e.g. by using exports in the .bashrc):

export DEFAULTCFG="/path/to/FloridServer/environment/config.flp"

export DEFAULTHIS="/path/to/FloridServer/environment/default.his"

4. Start the server:

/path/to/FloridServer/bin/floridServer 127.0.0.1 8900

Both, the address and the port can be changed.

5. Now, the server should be ready and the following response should be displayed:

Socket connection successful: ...

B.2 Installation of DL-Florid

As already mentioned, the prototypical implementation of DL-Florid uses mainly the Java
Servlet technology. Therefore, a Java Runtime Environment and a Java Servlet Container
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are required. Please make sure, that the $CATALINA_HOME path and $JAVA_HOME path are
set correctly. Furthermore, DL-Florid uses a relational database, e.g., PostgreSQL, for per-
sistence. The following summarized requirements have to be fulfilled:

Requirements:

• Apache Tomcat45 (tested with version 5.5.18, but should also work with 5.0.x or 6.x)

• Java Runtime Environment46 1.5.x (Since the implementation makes use of some new
features which were introduced in Java 1.5.0, the use of older version is not encouraged.)

• PostgreSQL-Database47 (or any other relational database, e.g. MySQL)

To install the system, follow the instructions below.

Installation:

1. Use the provided sql script to generate the necessary tables.

2. Place the DLFlorid.war-file in the webapps-directory of the Tomcat installation
($CATALINA_HOME/webapps/) and wait for the auto-deployment.

3. Navigate to the WEB-INF folder inside the newly created sub folder DLFlorid and
configure the system as described in Section B.3.

4. Now, the DLFlorid web interface should be accessible under: http://localhost:

8080/DLFlorid/index.html (depends on the specific Tomcat configuration). You can
use the status-function to check the system status, particularly to test the connection
to the FloridServer and to the database.

Note that a build.xml file is provided along with the system which can be used to rebuild
the war file.

B.3 Configuration

Basically, the system is configured via the web.xml file which should be found in the
$CATALINA_HOME/webapps/DLFlorid/WEB-INF directory. This place will also be searched
for further files, like the log4j-configuration file log4j.properties.

45Available from http://tomcat.apache.org/
46Available from http://java.sun.com/
47Available from http://www.postgresql.org/
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Directory Structure.

$CATALINA_HOME/

webapps/

DLFlorid/

WEB-INF/

log4j.properties

floridDL.sql

web.xml

examples/

...

log/

floridAdditions.log

Please adjust the following settings in the web.xml file:

• DB_URL: URL of database server

• DB_USER: database user id

• DB_PASSWD: database password

• DB_TYPE: database type (e.g. PostgreSQL)

• DB_DRIVER: name of JDBC driver class (e.g. org.postgresql.Driver)

• MODEL_NAME: Name of the “default” model

• FLORID_URL: URL of Florid WebService (e.g. 127.0.0.1)

• FLORID_TABLE_NAME: Tablename to store Florid rules

• FLORID_COMMIT_LENGTH: the size of the “batch commits” in number of characters

The configuration file has to contain a valid database URL and user account informa-
tion for the application to be able to open a database connection to the underlying re-
lational database. Furthermore, the address of the FloridServer must be correct (see
Section B.1).

xxxi



Bibliography

Bibliography
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