
Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZFI-BM-

Bachelorarbeit
im Studiengang "Angewandte Informatik"

Übersetzung von Aktionen auf
semantischer Ebene in einem

RDF Web Service

Thomas Westphal

am Lehrstuhl für

Datenbanken & Informationssysteme

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen

30. März 2007

Georg-August-Universität Göttingen
Zentrum für Informatik

Lotzestraße 16-18
37083 Göttingen
Germany

Tel. +49 (5 51) 39-1 44 14

Fax +49 (5 51) 39-1 44 15

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den 30. März 2007

Bachelor Thesis

Translation of semantic level actions
in an RDF Web Service

Thomas Westphal

30. March 2007

Supervised by Prof. Dr. Wolfgang May
Databases and Information Systems Group

Georg-August-Universität Göttingen

Abstract

The basis of the Semantic Web is provided by autonomously evolving information systems.

Today’s internet mostly consists of web pages that can’t be processed easily in a computer-

understandable way. These information systems can be queried as known from Web Services

and additionally use domain ontologies that enable automatic information integration. MARS

Modular Active Rules in the Semantic Web is based on this infrastructure and adds the capability

to specify and execute active rules using the Event-Condition-Action (ECA) paradigm. Reactive

behavior is created by an event-driven communication using semantically high level events that

are raised within a network of independent services. High level events are derived from data model

changes using ECE rules. If an optional condition is satisfied, semantically equally high level ac-

tions are distributed and executed. In this thesis, an ACA mapper is developed that enables the

definition of rules that map semantic level actions to a sequence of data model update commands.

Such a mapping is needed to execute domain level actions in an RDF Web Service.

Contents

List of Figures . iii

1 Introduction 1

2 MARS: Modular Active Rules in the Semantic Web 2

2.1 Semantic Web . 2

2.2 MARS Framework . 3

2.3 Application Domain Nodes . 7

2.4 ACA Mappings at the Application Domain Node 12

3 RDF Web Service with Update and Trigger Functionality 14

3.1 Interface for Manipulation of the OWL Model . 14

3.2 RDF Update XML Markup . 16

3.3 SPARQL Queries Evaluated against the OWL Model 18

3.4 Triggers . 19

4 Adaption of the RDF Web Service to an Application Domain Node 23

4.1 Events raised within the Domain Node . 23

4.2 Action Interface of the Application Node . 25

4.2.1 Syntax and Semantics of Actions . 25

4.2.2 Actions with Variable Bindings . 26

4.3 ACA Mapping Wrapper . 27

4.3.1 ACA Mappings using XQuery . 29

4.3.2 ACA Mappings using XSLT . 31

4.4 Administration of the ACA Wrapper . 32

4.5 Task Description of the Domain Node Prototype 35

5 Implementation 37

5.1 Technologies . 37

5.2 Architecture . 37

5.2.1 Core Architecture of the ACA Wrapper . 38

5.2.2 Class Structure of the ActionImplementation Classes 42

5.2.3 Database Access within the ACA Wrapper 42

5.3 Action Interface Servlets . 45

5.4 Extension of the RDF Web Server Client . 49

5.5 Examples and Testing . 52

i

CONTENTS

5.6 Installation of the ACA Reactive RDF Web Service 55

5.7 Configuration . 55

6 Conclusion 57

A Abbreviations 58

B ACA RDF Web Service Configuration Files 59

B.1 Configuration Properties File . 59

B.2 Node Initialization Actions . 61

C ACA Mapping XQuery modules 63

C.1 Application Node Module . 63

C.2 ACA Module . 65

C.3 OWL Module . 66

C.4 RDF Module . 66

C.5 RDFS Module . 66

C.6 RDF Update Module . 66

ii

List of Figures

2.2.1 Communication: Event Processing, Action Forwarding (taken from [1]) 6

2.3.1 Structure and Interference in Ontologies (taken from [1]) 7

2.3.2 Interference of Events, Actions, and Literals (taken from [1]) 11

4.0.1 Architecture of the Domain Node (taken from [1]) 24

4.2.1 RDF Graph of the Action Instance . 26

5.2.1 Class Diagram: ACA Core Classes . 40

5.2.2 Class diagram: Administrative Application Node Actions 41

5.2.3 Class diagram: RDF Update Actions . 42

5.2.4 Class diagram: ACA database classes . 43

5.3.1 Screenshot: ActionServlet . 46

5.3.2 Screenshot: ModuleAccessorServlet . 50

5.3.3 Screenshot: MappingAccessorServlet . 50

5.4.1 Screenshot: Client Main Window . 51

5.4.2 Screenshot: Client XQuery Dialog . 51

iii

Chapter 1

Introduction

The infrastructure provided by the Semantic Web differs severely from today’s World Wide Web

where the content is mostly given by documents that are intended for human readers to use. The

information technologies developed for the Semantic Web enable the creation of autonomously

evolving heterogeneous information systems that hold computer-understandable data.

These systems are not only static isolated data sources but may be extended to show reactive

behavior driven by the communication of semantically high level events. Usually, these events are

raised within an information system according to particular update operations. Active rules serve

to trigger actions if certain events occur and when optional additional conditions are satisfied.

Based on the MARS Framework that is presented in [1], this thesis deals with the development

of an ACA mapper for an RDF Web Service. Such a module is necessary for the execution of

semantic level actions at the Web Service. It enables the definition of ACA rules that describe

how a high level domain action can be executed locally using data model operations.

The next chapter gives an overview of the MARS Framework including the description of important

aspects of the Semantic Web in general. Following this, the RDF Web Service is introduced that

is the foundation of the ACA mapper. Additionally, a RDF update language is explained that

was developed with the Web Service and has been extended by an XML markup for this thesis.

Chapter 4 deals with the description of the ACA mapper and explains how high level actions

are processed and additionally describes the syntax of ACA rules. Finally, Chapter 5 describes

the implementation of the prototype by giving an outline of the employed technologies and by

describing the core classes followed by the installation instructions of the extended RDF Web

Service.

1

Chapter 2

MARS: Modular Active Rules in

the Semantic Web

2.1 Semantic Web

The goal of the Semantic Web is to provide a new infrastructure in the internet where different

services can communicate in a computer-understandable manner. Today’s internet usually presents

itself as a source of HTML documents that represent a markup of information for human readers to

process. The actual information contained in these documents is usually stored within databases.

Such an infrastructure is not suited for automated machine-understandable integration of different

data sources. That is because direct integration of different databases requires a lot of effort

because they usually do not share a common schema. They have to be mapped manually by a

wrapper that joins the different schemas and makes them accessible through a common interface.

For an HTML page to be interpreted in a machine based manner also special wrappers are needed

to provide a way to enrich the given data with semantics.

The Semantic Web is an approach to build a semantical level upon today’s internet. Basically,

that is achieved by using a data model that forces users to define common ontologies. These are

used to describe the concepts and relations of a certain domain on a semantical level. Such a

procedure is not new because other data models may also be described on a meta level using some

kind of schema description. The difference is the importance to do so. In the Semantic Web,

however, defining a common schema is a core task and not just an auxiliary description.

To achieve this the Semantic Web uses W3C [20] recommendations that will be described in

short in the following.

RDF and RDF Schema The Resource Description Framework (RDF) [14] is the foundation

of the Semantic Web. It provides the possibility to describe concepts in a computer-processable

manner. That is done by defining subject-predicate-object triples where two resources can be

associated. Resources and predicates are identified by URIs1. An RDF specification can be

seen as graph with labeled nodes and labeled edges. Furthermore, the RDF Schema (RDFS) [16]

provides meta data specification for RDF. There are certain predefined concepts to describe classes

and properties. Also, the hierarchy of classes and properties may be expressed.

1Unified Resource Identifier

2

2.2. MARS FRAMEWORK

RDF graphs can be defined using several formats. The most common ones are the N3 syntax

[11] and RDF/XML [15]. The former is a direct approach that simply uses triple definitions to

describe RDF content. N3 is easy to read for human readers and therefore it is the preferred

syntax in this thesis. RDF/XML provides an XML language for the description of RDF data.

Because XML is a common exchange format in many contexts and especially within the internet,

RDF/XML is most commonly used.

OWL The Web Ontology Language (OWL) [12] extends the meta concepts given by RDF

Schema and provides the possibility to describe resources on an even higher semantic level. Using

OWL, it is possible to specify concepts in more detail. For example, a property of an concept can

be defined as inverse to another property or as transitive. Therefore, even the transitive closure

can be expressed. To do so, OWL needs some kind of reasoning which is provided by Description

Logic. The latter is a decidable subset of First Order Logic.

Ontology An ontology in computer science is a set of notions, concepts, concept hierarchy and

relations known about a given domain. It describes the whole vocabulary and meta data of the

specific domain.

An ontology in the Semantic Web differs from those of classical data models in its complexity.

By defining an Entity-Relationship model it is possible to describe a domain ontology in the

relational model. But such an ontology consists only of static notions expressed by relations or

entity types with their attributes and relationships. With UML it is possible to define ontologies

that do not only describe static notions. Dynamic issues of a domain may also be described by

declaring actions. A complete domain ontology in the Semantic Web does not only have to describe

the static issues of that domain like predicates or literals but also all dynamic issues including

actions and events. For example a banking domain will consist of concepts like bank, money or

credit-transfer or define actions like withdraw-money and events like overdraft.

2.2 MARS Framework

The MARS-Framework (Modular Active Rules in the Semantic Web) [1] provides an infrastructure

for implementing reactive behavior within the Semantic Web. Such behavior is achieved by the

specification and execution of active rules. These rules follow the Event-Condition-Action (ECA)

paradigm and therefore consist of three components. An event that determines when the rule

shall be triggered, a condition (often some kind of query collecting data) and an action which is

executed when the condition is satisfied (possibly using gathered information). The infrastructure

that is suggested by this framework intends the distribution of events throughout a network of

participating service nodes, followed by the evaluation of registered rules and final distribution of

the resolving actions as consequences of these events. The ECA Rules are intended to be executed

on a high global level. Rules can be defined using arbitrary languages for the event, condition

and action component because there is an abstraction level provided by Language Services that

implement the different language processors. These Language Services are accessible via a Lan-

guages and Services Registry (LSR) that is addressed by the rule processor. Therefore any event

or action algebra may be used to define a rule for which there is an according Language Service

that implements this language.

3

2.2. MARS FRAMEWORK

The bottom of the MARS infrastructure is provided by Domain Services that implement the

behavior of certain domain ontologies. Therefore they have to emit domain events and have to be

able to process domain actions.

The concepts of the MARS Framework are described in an ontology and as such it is a resource

within the Semantic Web itself. The ontology contains MARS meta concepts for describing and

implementing domain services. Such concepts include the languages needed for defining rules or

queries and methods for defining actions and events that build the main structure for the reactive

behavior.

ECA Rules These rules are the core of the MARS Framework. They relate events that may

occur within the network with actions that are to be executed upon these events. On the detection

of an event an optional condition part is evaluated which may then lead to the execution of the

action part.

Example 1 (ECA Rule) The following XML document represents an ECA Rule in the eca-ml

markup. It has an eca:Event componment using snoopy: as event algebra, a condition component

provided by the eca:Query element with an opaque SPARQL query and finally an action part using

ccs: as language.

This particular rule assures that when any flight is canceled on which a customer of the agency

was booked the agency is informed by email. Additionally to the email a hotel room for the pas-

senger should automatically be booked at the concerning airport.

<eca:Rule xmlns:eca=“http://www.semwebtech.org/eca/2006/eca-ml#”>

<eca:Event xmlns:snoopy=“http://www.semwebtech.org/eca/2006/snoopy#”>

<snoopy:Sequence>

<travel:delayed-flight flight=“{$flight}” date=“{$date}”/>

<travel:canceled-flight flight=“{$flight}” date=“{$date}”/>

</snoopy:Sequence>

</eca:Event>

<eca:Query>

<eca:opaque language=“sparql” domain=“travel”>

... some query according to the task selecting the

$name of the passenger and a corresponding $hotel-uri ...

</eca:opaque>

</eca:Query>

<eca:Action xmlns:ccs=“http://www.semwebtech.org/eca/2006/ccs#”>

<ccs:Sequence>

<ccs:Action>

<travel:reserve-room hotel=“$hotel-uri” name=“$name”/>

</ccs:Action>

<ccs:Action>

<smtp:send-mail to= “myAgency@some-provider.com”>

“flight $flight caceled ... customer $name was bokked at $hotel-uri ...

</smtp:send-mail>

</ccs:Action>

</ccs:Sequence>

4

2.2. MARS FRAMEWORK

</eca:Action>

</eca:Rule>

For more details about ECA Rules and their markup see [1].

ECA Engine, Event Detection Service, Action Engine Some service within the framework

has to be responsible for the evaluation of ECA Rules. Such a service is provided by the ECA

Engine. A prototype has been implemented in the bachelor thesis by Daniel Schubert [17]. The

service supports the registration of ECA Rules. These are executed when a certain atomic or

composite event occurs. The ECA Engine itself is not responsible for the detection of events or

for the execution of actions but delegates this tasks to specialized services. These are the Event

Detection Service and the Action Engine, respectively. There are several of these services, each

for a particular event or action language.

The Event Detection Service is able to detect not only atomic but also composite events (for

example a sequence of events as in Example 1). It uses Atomic Event Matchers to gather atomic

event occurrences within a certain application domain.

Event and Action Language Services There are several Language Services for event action

and query handling. These services are responsible for different languages (event, action algebras

etc.) but each class of these services provides a common set of tasks. That means that for example

every Composite Event Detection Engine supports a task for the registration of an event pattern

or that each Action Engine supports the execution of an action. Just like with the heterogeneity

of possible languages for an ECA Rule, every provider of a Language Service has the liberty to

implement these tasks freely. There is a registry provided by the LSR where all Language Services

are listed including an description of how they have to be addressed. Therefore, this registry can

be asked which particular service processes for example a certain event algebra.

Domain Service Domain Web Services implement one or more domain ontologies. That means

they use concepts and behavior that is defined in these domain descriptions. For example, a

travel agency may use a travel ontology containing concepts like flight-connection, hotel, or book-

flight along with additional notions defined within a buisness ontology etc. A Domain Service

has to implement an appropriate communication interface for being compatible with the MARS

Framework. That includes receiving tasks as actions from a domain language and raising events

respectively. Additionally, a domain service has to provide some information about the kind of

services it supports.

Domain Broker Obviously, events and actions have to be distributed between different services

within the framework. Domain Brokering Services provide this task. For each application domain

there is at least one domain broker where Domain Services may be registered. The domain bro-

kering may be divided in three separate services. An Event Broker receives and forwards events

raised within registered Domain Services. A Query Broker provides an interface for SPARQL

requests within the domain. Additionally, there is an Action Broker that forwards actions within

a downward communication to Domain Services that are marked to support the certain action

command. That means that an Action Engine that is used to execute a certain complex action by

the ECA Engine forwards atomic domain ontology actions to an Action Broker of that domain.

5

2.2. MARS FRAMEWORK

At this point the broker iterates over the registered Domain Services and either broadcasts the

action or chooses relevant services by some kind of reasoning using the underlying domain ontology.

Example 2 The communication between the framework services is quite complex. There are

multiple abstraction levels, so it is advisable to introduce a small step by step example adapted

from [1]. As a case study, Figure 2.2.1 below shows a travel agency (Client C) that registers an

ECA rule at an ECA Engine (point 1.1). The particular rule was already described in Example 1.

The ECA Engine recognizes the request to register a new rule and extracts the event component.

Corresponding to the used event algebra (here snoop:) an Event Detection Service is contacted that

processes the composite event definition (point 1.2). The ECA Engine is registered to be informed

about any occurrences of the complex event. Atomic Event Matchers are involved internally (1.3).

At this point the event is splitted into its atomic components from the travel: language. Therefore,

a Domain Broker or more explicitly an Event Broker of the travel: application domain is contacted

and asked to register the Atomic Event Matcher to be informed of occurrences of relevant events

raised within the domain (1.4). If so (2.1, 2.2), these events or their variable bindings respectively

are communicated upwards (3). If the whole event as defined by the event algebra is detected,

the ECA Engine is informed (4). Now the whole action part is sent to an Action Engine that

supports the used action algebra (here ccs:) (5.1). Atomic events are sent to appropriate brokers

and services (5.2) where they are forwarded or executed.

Event
Detection
snoop:

Atomic Event
Matcher
match:

ECA
Engine
eca:

Action
Engine
ccs:

Domain
Broker
travel:

SMTP Mail
Service
smtp:

Lufthansa
travel:

SNCF
travel:

Client C:
Travel
Agency
travel:

1.1: register
rule
eca: travel:
match: snoop: ccs:
smtp:

1.2: register event
travel: match: snoop:

1.3: atomic
event patterns
match: travel:

1.4:
register me
travel:

2.1a:
atomic
events
travel:

2.1b:
atomic
events
travel:

2.2:
atomic events
travel:

3: detected
parameters

4: detected
parameters

5.1: action
ccs: travel: smtp:

5.2a: atomic
actions
travel:

5.2b: atomic
actions
smtp:

5.3b:
message
(here:
confirm)

by url

L
a
n
g
u
a
g
e

S
er

v
ic

es
A

p
p
li
ca

ti
o
n

D
o
m

a
in

5.3a:
LH
booking
travel:

Figure 2.2.1: Communication: Event Processing, Action Forwarding (taken from [1])

6

2.3. APPLICATION DOMAIN NODES

As seen above, the communication interfaces within the MARS framework are dynamic. Addi-

tionally to the Language and Service Registry, there has to be a corresponding registry for Domain

Brokers and Domain Services. When an Event Detection Service or an Atomic Event Matcher

wants to register a certain event at an Event Broker there has to be a way to identify the corre-

sponding Domain Brokers responsible for that domain. For actions distribution there is the same

problem. Even if a Domain Broker for a domain is known, it is insufficient to broadcast an action

request to all Domain Services of that domain for not all will support that specific action. There-

fore there has to be a Domain Service Registry (DSR) that provides more detailed information

about the Domain Services.

2.3 Application Domain Nodes

Domain Ontology

Named Events Concepts Named Actions

Classes Relationships Individuals

influence

raise

Figure 2.3.1: Structure and Interference in Ontologies (taken from [1])

Application domain nodes represent Domain Service implementations in an application domain

like airlines, car rentals, universities or other. These nodes are similar to ordinary Web Services and

hold local data in some kind of database or knowledge base that may be queried and manipulated

through external interfaces. The difference to ordinary Web Services is that they are registered at

a Domain Broker of the domain they support and of course they are framework-aware.

An application in the Semantic Web will usually use several domain ontologies though it will

“live” in one in particular. A travel agency for example will use a travel application domain

but probably it will also need certain features from a banking ontology. Generally ontologies of

several domains interfere. But there are also interferences between the components of every single

ontology as shown in Figure 2.3.1. The static issues or concepts may be divided into classes,

relationships and individuals. All of these may be influenced by actions that may further raise

events.

The framework defines special concepts for actions and events of a domain ontology. These are:

[mars:Event rdf:type owl:Class]

[mars:Action rdf:type owl:Class]

For being recognized by framework-aware nodes it is necessary that actions and events that are

defined in an ontology can be identified to belong to these classes by reasoning. It is recommended

that a domain ontology describes a hierarchy of actions and events that inherit in some way from

mars:Event and mars:Action.

7

2.3. APPLICATION DOMAIN NODES

Example 3 (Application Domain Ontology) Usually, application domain ontologies are de-

fined by OWL documents. Consider an ontology regarding a university with its staff, students

lectures etc. The following example uses the N3 syntax [11] . It contains class definitions as

well as predicates and dynamic issues represented by actions and events. Note that the ontol-

ogy describes uni:Action and uni:Event concepts which are subClassOf mars:Action and mars:Event

respectively. The inheritance from the mars concepts is important to achieve the intended be-

havior and framework awareness. Alternatively defining uni:hired-professor directly as instance of

mars:Event would be possible. But that would suppress the fact that it is not only an event but its

also belonging to the university ontology.

The university application domain ontology will be the foundation for other examples in this

thesis. The URI of this ontology is http://localhost/test.owl#. It has a Domain Broker that can

be reached at http://localhost/service/uni-domain and there is one application domain service that

implements the domain reachable at the URL http://localhost/service/uni-service.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix mars: <http://www.semwebtech.org/2006/mars#> .

@prefix uni: <http://localhost/test.owl#> .

@prefix my: <http://localhost/service/> .

uni: a mars:Domain ;

uni:Action a mars:Class ;

rdfs:subClassOf mars:Action ;

mars:belongs-to-domain uni: .

uni:Event a mars:Class ;

rdfs:subClassOf mars:Event ;

mars:belongs-to-domain uni: .

uni:register-student a mars:Class ;

rdfs:subClassOf uni:Action ;

mars:belongs-to-domain uni: .

uni:professor-hired a mars:Class ;

rdfs:subClassOf uni:Event ;

mars:belongs-to-domain uni: .

...

uni:Lecture a mars:Class ;

mars:belongs-to-domain uni: .

uni:Professor a mars:Class ;

mars:belongs-to-domain uni: .

uni:in-charge-of-lecture a mars:Property ;

mars:belongs-to-domain uni: ;

rdfs:domain uni:Professor ;

8

2.3. APPLICATION DOMAIN NODES

rdfs:range uni:Lecture ;

owl:inverseOf uni:lecture-has-professor .

...

Additionally to application domain ontologies, there are also application-independent ones. The

latter describe an application or provide concepts and behavior that will be needed in arbitrary

applications. This includes for example services like messaging, transactions, calendars, generic

data manipulation etc.

Within the MARS Framework a Domain Service has to provide two special tasks. These are

described in the Service Ontology (see [1]). The relevant part is (given in RDF/XML):

<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”

xmlns:owl=“http://www.w3.org/2002/07/owl”

xmlns=http://www.semwebtech.org/2006/mars#”

xml:base=http://www.semwebtech.org/2006/mars”>

<rdf:Description rdf:about=#DomainService”>

<meta-provides-task rdf:resource=”/domain-node#receive-query”/>

<meta-provides-task rdf:resource=”/domain-node#receive-action”/>

<meta-provides-task rdf:resource=”/domain-node#give-service-description”/><!– opt –>

</rdf:Description>

</rdf:RDF>

Therefore a Domain Service has to provide an interface to receive queries and application level

actions. Note that these resource URIs only represent the names of the tasks that have to be

supported by a node. How they are implemented and addressed exactly is to be specified for

each node separately. Furthermore, there has to be the possibility to request a detailed Service

Description. Such a description is itself a small ontology given in RDF/XML. It describes a service

concerning the application domains it uses and the high level actions it supports. The Service

Description of a domain node supporting the university ontology described earlier could look like

the following RDF/XML example.

<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:mars=“http://www.semwebtech.org/2006/mars#”

xmlns:uni=“http://localhost/test.owl#” >

<mars:DomainService rdf:about=http://localhost/test/uni-service”>

<mars:uses-domain rdf:resource=http://localhost/test.owl#”/>

<mars:supports rdf:resource=“http://localhost/test.owl#register-student”/>

...

</mars:DomainService>

</rdf:RDF>

Additionally to the Service Description, a Domain Service also has to describe its tasks and the

way they can be addressed respectively. When a new Domain Service is initialized and is inserted

into the network provided by the framework, it has to register at a Domain Broker for each

domain it supports. Such a registration includes the communication of the Service Description

9

2.3. APPLICATION DOMAIN NODES

of the new domain node. Possibly, the Domain Broker will request the Service Description to

identify the actions the node supports. The information gathered about an application domain

node is forwarded and stored within the DSR.

Application domain nodes are the leaves in the Semantic Web. They show reactive behavior

by supporting certain actions and events of one or more application ontologies. Actions are either

received by a Domain Broker or any other node. Usually actions are conceps ?X in an ontology

such that { ?X rdfs:subClassOf mars:Action } holds. These actions are communicated in an XML

markup possibly with variable bindings and represent a small RDF/OWL graph. Their execution

normally leads to a change in the local data state like booking a flight or registering a student for

a particular course.

Example 4 (Application Domain Actions) Assume an ECA rule for an airport or travel on-

tology that reacts upon bad weather situations. The actions that are triggered by such a rule may

lead to the delay or canceling of flights. Such a rule may lead to the broadcasting of a series of

application domain actions like the following one:

<travel:cancel-flight xmlns:travel=“http://www.semwebtech.org/domains/2006/travel#”

flight=“LH1234” date=“20060523”>

<travel:reason>bad weather</travel:reason>

</travel:cancel-flight>

For this example it is assumed that the RDF statement

[travel:cancel-flight rdfs:subClassOf mars:Action]

holds in the concerned ontology.

These nodes also support application ontology events by being able to emit events upon changes

of their local data (possibly caused by the execution of actions). Such a push communication for

news is a great advantage of the MARS Framework. Nodes that support this reactive behavior do

not have to be monitored to identify changes. For example an event may be raised when a flight

is half booked or a professor is newly employed at a certain university. Events are just like actions

communicated in a XML format. Analogously to actions events are concepts ?X such that { ?X

rdfs:subClassOf mars:Event } holds. They are forwarded to the corresponding domain broker and

may be responsible for the triggering of ECA rules which again leads to the raising of actions.

Example 5 (Application Domain Events) Events are data fragments that are available in

XML markup. The events

<travel:canceled-flight flight=“LH123” date=“20060523”/>

<travel:reason>bad weather</travel:reason>

</travel:canceled-flight>

<travel:delayed-flight flight=“LH1234” minutes=“30”/>

are possible events from the traveling domain and mean that the flight “LH1234“ is canceled for

the given reason or that its departure has been delayed for 30 minutes.

10

2.3. APPLICATION DOMAIN NODES

For being able to execute application domain actions or emitting events it is necessary that a

node supports the registration of rules that define how a certain high level action can be processed

locally or when a certain application domain event shall be raised. In detail there are three kinds

of rules that have to be considered:

• low level local ECA rules (triggers) that ensure local integrity maintenance in a knowl-

edge base,

• ECE rules that raise application level events upon changes in the local knowledge base

triggered by RDF modification events,

• ACA mappings which map higher level application domain actions to actions on a lower

semantic level. The processing of semantically high actions from the ontology level involve

the execution of several data model level actions within the domain node. These are the

only kind of actions the node can process directly.

So when actions are received by a node, it checks if there are registered ACA mappings that map

this probably high level action to a sequence of instructions it can process locally. Such instructions

may include updating the local data, directly raising derived events or other. Sometimes it is

necessary for certain updates in the local knowledge base that triggers care for the model integrity

(see Section 3.4).

Registered ECE rules may be triggered when the local model of a node has changed. These

rules react upon RDF/OWL data model level events such as insertion, deletion or modification

of a statement. That means that while mapping received actions to a semantically lower level, an

application domain node ascends low level data model events to the application ontology level.

The latter will be forwarded by the corresponding event broker and will probably lead to the

detection of other events and to the execution of actions through the ECA Engines.

Application-Domain Ontology

Domain

Ontology
Events Actions

Data Model Literals

Database
Level Events

Database
Level Actions

ECA Business Rules

ECE
Derivation

ACA Mapping

Triggers

actions+internal reasoning ; events

Figure 2.3.2: Interference of Events, Actions, and Literals (taken from [1])

11

2.4. ACA MAPPINGS AT THE APPLICATION DOMAIN NODE

Summary Application domain nodes support the following behavior:

• receiving queries; answering them,

• receiving action requests, executing them,

• raising events and

• administrative stuff: registering ACA mappings, ECE rules etc.

2.4 ACA Mappings at the Application Domain Node

So one of the main tasks of an application domain node is to execute high level actions defined in

the corresponding ontology. From the view of the ontology, the actions sent to a domain service are

atomic. Nevertheless for an application that is supposed to update its local data these actions can’t

be executed directly. They have to be mapped to the local data model level. As mentioned above,

a node uses ACA mappings to provide this task. How that happens is explained in Section 4.3

and shall be briefly introduced here.

Assume the request to execute an action is received by a domain node. This action shall

represent a simple modification of the local knowledge base. More specifically it represents the

registration of students for a certain lecture. The message could look like this:

<uni:register-students xmlns:uni=“http://localhost/test.owl#”>

<uni:lecture>http://localhost/myuni/lectures/WS20062007/semweb</uni:lecture>

<uni:student>http://localhost/myuni/students/2019987</uni:student>

<uni:student>http://localhost/myuni/students/2029382</uni:student>

<uni:student>http://localhost/myuni/students/1023457</uni:student>

<uni:student>http://localhost/myuni/students/2014473</uni:student>

</uni:register-students>

To deal with such an action, an application node needs to know some kind of INSTEAD-trigger that

translates the semantically high action to simple data model updates. Additionally, it is possible

that some actions should only be executed if a certain condition is fulfilled. In the given example

it could be advised to check if the lecture is known to the local knowledge base. Furthermore the

mechanism providing the mapping functionality has to be implemented by a procedural language

because it has to iterate over the list of students. Additionally, it could be necessary to generate

a new resource URI and insert several statements about that resource into the model.

Seeing that the input language is XML and the task of mapping such an input to a sequence

of data model updates can be seen as a transformation, the idea to use XQuery [22] or XSLT [23]

suggests itself. These are well known W3C recommendations and integrate nicely in the general

web service scenario.

The above action <uni:register-students> could easily be mapped by an XQuery instruction:

declare namespace uni = "http://localhost/test.owl#";

let $lecture_uri := //uni:register-students/uni:lecture/text()

return

<rdfu:condition ask="<{$lecture_uri}> rdf:type uni:Lecture">

12

2.4. ACA MAPPINGS AT THE APPLICATION DOMAIN NODE

{

for $student in //uni:register-students[./uni:lecture]/uni:student

return

<rdfu:insert>

<rdf:subject rdf:resource="{$lecture_uri}" />

<rdf:predicate rdf:resource="http://localhost/test.owl#has-student" />

<rdf:object rdf:resource="{$student/text()}" />

</rdfu:insert>

}

</rdfu:condition>

Syntax and semantic of ACA mappings like these will be discussed in Section 4.3. The result of

an ACA mapping is expected to be an executable sequence of actions on a lower semantical level

that are natively implemented within the domain node. The XML element rdfu:condition is such

an action from the extended RDF update language (Section 3.2). It expects an ask parameter

containing an ASK SPARQL query. The contents of the condition element will be executed if

the condition evaluates to true using the local knowledge base as underlying model. Naturally

rdfu:insert is also a native node action. It just inserts a given RDF statement into the local model.

Note that several XQuery modules will be automatically imported on execution of a XQuery ACA

mapping as will be described in Section 4.3.1

13

Chapter 3

RDF Web Service with Update

and Trigger Functionality

This thesis deals with the adaption of an RDF Web Service to an application domain node in

the MARS Framework [1]. The Web Service was created by Elke von Lienen as a Diploma thesis

[19]. It uses the Jena API [6] as foundation for an RDF/OWL knowledge base and provides an

infrastructure for active rules with triggers. Jena is an open framework for the Semantic Web

written in Java. It provides tools for dealing with RDF/OWL graphs like storing the model data

in a relational database. This Web Service uses PostgreSQL for the storage. Furthermore, it uses

the separate DL reasoner Pellet [13] for reasoning via the DIG interface [3]. A detailed description

of the Web Service can be found in [10].

The triggers that are implemented in the Web Service react on insert, update or delete trans-

actions within the knowledge base. They may be defined to either fire before or after execution of

the requested update. Therefore they may be used for maintaining the consistency of the knowl-

edge base, committing complex update transactions or for the creation of events. These events

are communicated to a registered Domain Broker [8]. The triggers are described in more detail in

Section 3.4.

On top of that, the Web Service offers the possibility to query the local model using SPARQL

[18]. So it provides most of the conditions necessary to be used as application domain node within

the MARS Framework. But so far it has no interface for receiving complex actions from the

Domain Broker. The only update possibility is given by a low level update interface described in

Section 3.1. The actions which are sent by the Domain Broker are defined in the specific domain

ontology and are therefore on a higher semantic level than simple RDF updates.

The following sections describe the service in more detail. Note that minor changes were made

to syntax and functionality compared with the prototype first implemented. Everything described

in this chapter presents the current state of development.

3.1 Interface for Manipulation of the OWL Model

The Web Service provides the possibility to manipulate the OWL model. For this task an RDF

update language has been developed. RDF update provides the structure for update requests

which can be executed by the Web Service. Each single of these update messages begins with

14

3.1. INTERFACE FOR MANIPULATION OF THE OWL MODEL

a command string mostly followed by an RDF triple specifying the statement to be updated.

The triples should be given with absolute URIs but namespace prefixes are possible for standard

namespaces as rdf, owl and rdfs or namespaces explicitly defined within the model.

There are six different update operations for the manipulation of RDF statements:

insert (rdf:subject URI, rdf:predicate URI, rdf:object URI or literal) This update command

inserts the given [rdf:subject rdf:predicate rdf:object] triple into the model.

assert (rdf:subject URI, rdf:predicate URI, rdf:object URI or literal) Assert ensures that after

execution of the command the model holds the given RDF statement. If the latter already holds

because it is explicitly given as a fact or can be inferred by the reasoner, nothing happens.

delete (rdf:subject URI, rdf:predicate URI, rdf:object URI or literal) Deletes the given RDF

statement if it is explicitly contained as a fact in the model. That means if the given statement

exists as materialized fact within the model it is removed. Note that delete does not ensure that

the statement will not hold after the operation. It may still be able to derive the given statement

by reasoning.

delete resource (resource URI) The argument of this RDF update command may be any re-

source URI. It leads to the deletion of any statement containing this resource either in subject,

predicate or object position. Just like delete the delete-resource operation does not influence state-

ments derived by reasoning.

retract (rdf:subject URI, rdf:predicate URI, rdf:object URI) Like delete, this RDF update com-

mand removes a statement from the model. The difference is that using this update operation it

is guaranteed that the specified statement cannot be inferred by other statements in the model.

That means after this operation was executed successfully it is ensured that the given statement

does not hold within the model.

update (rdf:subject URI, rdf:predicate URI, rdf:object URI or literal)

set subject|predicate|object = new value With this operation it is possible to update the spec-

ified RDF statement by assigning a new rdf:subject URI, rdf:predicate URI or rdf:object value

within the statement.

rename [property of class] (old rdf:predicate URI, [rdfs:Class URI,] new rdf:predicate URI)

By sending a rename request to the web service it is possible to rename a rdf:predicate URI within

the model. There are two possibilities to use this update option. Every occurrence of the specified

rdf:predicate URI is renamed. If a class is given, only those URIs are renamed which are a property

of an instance of the specified rdfs:Class.

Example 6 By sending an HTTP message with the content

insert (http://some.class.uri, rdf:type, owl:Class)

to the web service, the statement

15

3.2. RDF UPDATE XML MARKUP

[<http://some.class.uri>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Class>]

will be inserted into the model. If the model contains the statement:

[<http://some.instance.uri>

<http://some.namespace#property> "current value"]

and the object value should be changed to ”new object value” the RDF update message would look

like this:

update (http://some.instance.uri, http://some.namespace.uri#property, “current value“)

set object = “new object value“

3.2 RDF Update XML Markup

The RDF update language defines data model update instructions that are important not only

for a generic RDF Web Service but also for an application domain service within the MARS

Framework. These are the low level actions that are used by ACA rules at Domain Services to

map higher domain level actions to the data model level. To be used by ACA mappings, it is

helpful if there is an XML markup for these operations. The markup described in this section

follows a straightforward attempt. It should be noted that this XML language uses a namespace

with the base http://www.semwebtech.org/lang/2006/ as it is intended for languages within the

MARS Framework. Additionally to the operations introduced in the previous sections, there is

a new one called rdfu:condition that can be used to evaluate a given SPARQL ASK query. If

it holds, update commands defined within the rdfu:condition element are executed. Otherwise

nothing happens.

The update commands rdfu:insert, rdfu:delete, rdfu:assert and rdfu:retract are very similar in their

plain text syntax and therefore also in their XML markup. As an example, an insert command

is given below. The only difference to the other commands is the name of the root element. Of

course it has to be the URI of the update command that should be executed.

<rdfu:insert xmlns:rdfu=“http://www.semwebtech.org/lang/2006/rdfupdate#”

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#” >

<rdf:subject rdf:resource=“subject URI” />

<rdf:predicate rdf:resource=“predicate URI” />

[<rdf:object rdf:resource=“object URI”/> | <rdf:object>object literal</rdf:object>]

</rdfu:insert>

The URIs that specify the RDF resources have to be absolute. RDF literals are also allowed

as rdf:object. In the prototype implementation string literals can be specified by a quoted char

sequence.

Example 7 Assume the following statement with a typed literal should get inserted into a knowl-

edge base using the RDF update language.

[http://my/persons#peter http://my/meta#name

"Peter"^^<http://www.w3.org/2001/XMLSchema#string>]

16

3.2. RDF UPDATE XML MARKUP

The corresponding RDF update command would be:

<rdfu:insert xmlns:rdfu=“http://www.semwebtech.org/lang/2006/rdfupdate#”

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#” >

<rdf:subject rdf:resource=“http://my/persons#peter” />

<rdf:predicate rdf:resource=“http://my/meta#name” />

<rdf:object>”Peter”</rdf:object>

</rdfu:insert>

Note that the URI and literals used have to be PCDATA contents. That means that characters

like ‘<’ and ‘>’ have to be translated to the corresponding XML entities.

rdfu:update is marked up as follows:

<rdfu:update xmlns:rdfu=“http://www.semwebtech.org/lang/2006/rdfupdate#”

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#” >

<rdf:subject rdf:resource=“subject URI” />

<rdf:predicate rdf:resource=“predicate URI” />

[<rdf:object rdf:resource=“object URI”/> | <rdf:object>object literal</rdf:object>]

<rdfu:set>

[<[rdf:subject|rdf:predicate| rdf:object] rdf:resource=“new value”/>] |

<rdf:object>object literal</rdf:object>]

</rdfu:set>

</rdfu:update>

Thus this command basically extends the commands mentioned above by a rdfu:set element that

contains one child element that is either rdf:subject, rdf:predicate or rdf:object. The new value will

be assigned to the corresponding component of the statement.

The element rdfu:rename is the markup for both rename and rename property of class that are

described in Section 3.1. The command rename property of class may be expressed by including a

rdfs:Class element with the class URI as text content as child of rdfu:rename.

<rdfu:rename xmlns:rdfu=“http://www.semwebtech.org/lang/2006/rdfupdate#”

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

rdf:resource=“resource URI” />

[<rdfs:Class rdf:about=“optional class URI”/>]

<rdfu:new-value rdf:about=“object URI or literal”/>

</rdfu:rename>

rdfu:delete-resource is the last remaining original RDF update command. It is simply marked-up

as follows:

<rdfu:delete-resource xmlns:rdfu=“http://www.semwebtech.org/lang/2006/rdfupdate#”

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

rdf:resource=“resource URI” />

A new RDF update command has to be introduced to enable a conditional execution of application

domain actions. That means that possibly actions depend upon a certain model state at the

domain node and should only be executed if a condition concerning the model holds. The new

17

3.3. SPARQL QUERIES EVALUATED AGAINST THE OWL MODEL

command is rdfu:condition. RDF update commands that are placed within a rdfu:condition element

are not immediately executed. First a condition that is expressed by a SPARQL ASK query is

evaluated against the local knowledge base. Only if it holds, the inner commands are executed.

The query is given as string contents of a attribute of the rdfu:condition element named rdfu:ask.

Ony a ASK query is accepted. For convenience reasons, the prototype accepts ASK queries that

only consist of the condition pattern of the query. A syntactically correct ASK query would look

like

ASK { << condition pattern >> }.

Of course that is accepted but it would also be accepted without the keyword ASK and the curly

brackets. Note that a SPARQL query requires for an absolute resource URI, that means without

prefix, to be embedded within angle brackets. But these have to be replaced by their corresponding

XML entities as said above.

3.3 SPARQL Queries Evaluated against the OWL Model

The RDF Web Service wouldn’t be useful if it was not possible to query the model held by it.

So SPARQL queries may be sent to the Web Service as plain text content of an HTML request.

These are evaluated against the local model. Only SELECT and ASK queries are accepted and

answered by a variable binding in the usual XML markup of the MARS framework. Note that for

an ASK query a variable named ask is bound to the answer. The answers are returned according

to the following DTD:

<!ELEMENT variable-bindings (tuple+)>

<!ELEMENT tuple (variable+)>

<!ELEMENT variable ANY>

<!ATTLIST variable name CDATA #REQUIRED

ref URI #IMPLIED> <!– variable has either ref or content–>

In contrast to plain XML where namespaces are not relevant, in the Semantic Web they play an

important role. So it shouldn’t be withheld that the elements of the variable bindings belong to

the namespace http://www.semwebtech.org/lang/2006/logic#.

Example 8 SPARQL queries are sent as plain text contents of an HTTP request to the web

service. For example:

prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

prefix rdfs: http://www.w3.org/2000/01/rdf-schema#

select ?sub where { ?sub rdf:type rdfs:Class }

The answer of such a query could look like this:

<logvars:variable-bindings xmlns:logvars=“http://www.semwebtech.org/lang/2006/logic#”>

<logvars:tuple>

<logvars:variable name=“sub“ ref=“http://some.namespace#uri1“/>

</logvars:tuple>

<logvars:tuple>

18

3.4. TRIGGERS

<logvars:variable name=“sub“ ref=“http://some.namespace#uri2“/>

</logvars:tuple>

...

</logvars:variable-bindings>

3.4 Triggers

The main advantage of the RDF Web Service is to provide an infrastructure for triggers to react

upon model modifications. With these triggers it is not only possible to raise application domain

events on special model changes but they are essentially necessary for a semantically correct model

change itself. That is because the model the web service holds does not only contain materialized

facts but also derived ones. Dealing with information within the semantic web is a complex

matter. When an application uses the relational data model, the application logic is practically

outside the database and referential integrity should be sufficient for maintaining a consistent state.

On the contrary, an RDF/OWL model holds not only facts but the model itself is enriched by

logic and therefore application semantics which leads to the necessary of higher level modification

capabilities. Rules have to be defined explicitly to ensure the consistency of the model and to

react accordingly to semantic constraints.

Triggers may be registered to the web service by sending an HTTP message with a content

that corresponds to the following syntax:

CREATE TRIGGER name

[LET variable := value]*

ON

[

[[INSERTION|DELETION|MODIFICATION] OF property OF INSTANCE [OF class]?]

| [[CREATION|DELETION|MODIFICATION] OF INSTANCE OF class]

| [[RETRACT|INSERT|UPDATE] OF property OF INSTANCE [OF class]?]

| [NEW CLASS]

| [NEW PROPERTY [OF class]?]

| [NEW PROPERTY OF INSTANCE [OF class]?]

| [NEW STATEMENT ABOUT INSTANCE [OF class]?]

]

[WHEN SPARQL-Anfrage]?

DO

BEGIN

[

[RDF update action]

| [SEND(url, message)]

| [RAISE EVENT(event in XML markup with variables)] ;

]*

END;

Now the semantics of triggers used in the RDF Web Service will be described. There are two

different kinds of triggers used here. Firstly, there are direct triggers that react immediately upon

19

3.4. TRIGGERS

the request of an update and secondly, there are indirect triggers that react upon a chance that

was preformed within the model.

Immediate execution of direct triggers means that they are fired before the update itself is

performed. These triggers are intended to support the requested update in being performed

accordingly. That means the triggers ensure that an update will not violate the consistency of

the model in perspective of the OWL model theory. Because these triggers do not react on actual

changes of the model but only on the request of an modification the actions to be triggered are

restricted to RDF update actions. Such triggers are defined as follows:

ON [INSERT|UPDATE|RETRACT] OF property OF INSTANCE [OF class]?

Direct triggers react before an insert, update or retract operation of an instance (optionally of the

specified class) is executed.

Example 9 Consider a model with the property hasPresident that is defined as functional because

it describes that a company has a unique president. Assume the model contains two different

entities x and y and the statement [c hasPresident x]. The RDF update operation insert (c,

hasPresident, y) would immediately cause an inconsistency since hasPresident is required to be

functional. At this point a direct trigger may be used to delete the previous entry of hasPresident

before the new one is inserted. Such a trigger could look like this:

ON INSERT OF hasPresident

WHEN SELECT ?c ?x WHERE { ?c <hasPresident> ?x .

FILTER(?c = NEW.subject) .

FILTER(?x != NEW.object) }

DO

BEGIN

retract (?c, hasPresident, ?x);

END;

Example 10 Another example shows a different reason why these direct triggers are necessary.

Consider a property hasHusband and the statements [hasHusband owl:inverseOf hasWife], [Alice

hasHusband Bob]and [Dan hasWife Carol]. Although not contained as materialized facts both

[Bob hasWife Alice] and [Dan hasHusband Carol] are derived by the reasoner and are therefore

evaluated as true within the model.

Assume now an RDF database that contains both [Emmy hasHusband Frank] and [Frank hasWife

Emmy] as facts. Deleting one of them has no effect since the reasoner will derive it from the other

one. Thus a trigger

ON RETRACT OF hasHusband

% by an raising of this trigger the following variables are bound

% OLD.subject := wife URI

% OLD.property := hasHusband

% OLD.object := husband URI

DO

BEGIN

delete (OLD.object, hasWife, OLD.subject);

END;

20

3.4. TRIGGERS

(and vice versa) is necessary to perform the deletion as intended. Only by removing both statements

from the model any change becomes visible to the outside. Here it is essential that the trigger is

fired upon the request of an update instead of a model change, because neither delete (Emmy,

hasHusband, Frank) nor delete (Frank, hasWife, Emmy) will change the model on their own.

As said above, indirect triggers are raised after an actual model change. They are intended to

implement the complex application logic and reactive behavior of the RDF web service. Therefore,

in addition to RDF update actions, such triggers may also raise application domain events. Indirect

triggers are defined as follows:

ON [INSERTION|MODIFICATION|DELETION] OF property

OF INSTANCE [OF class]? Such a trigger is raised if a property by the given name is

inserted, updated or deleted from a resource (optionally of the specified class).

ON NEW PROPERTY OF INSTANCE [OF class]? is raised when any new property

is inserted to a resource (optionally: to a specified class). In difference to the latter one, such a

trigger reacts on any property change of an resource and not only to the change of a property with

a certain name.

ON NEW STATEMENT ABOUT INSTANCE [OF class]? This trigger condition

extends the latter one to any statement change of an instance. For example a change of the object

of an property.

ON [CREATION|MODIFICATION|DELETION] OF INSTANCE OF class is raised

when a resource of a given type is created, modified or deleted.

ON NEW CLASS is raised if a new class is introduced to the model.

ON NEW PROPERTY [OF class]? is raised when a new property is introduced to the

model. This property has not to be assigned to any instance for such a trigger to be fired.

Example 11 Assume that an RDF application node of a university is supposed to be able to list

all publications that have been published by its members. That means all publications should be

listed that were published at a time when the author was employed by that university. Note that

that knowledge is independent from the current employer of the author. Publications are intended

to be assigned to the employer university at the time of publication. Consider a model where a

query [my university produced publication] would lead to the intended information and statements

like [hans peter works for my university], [hans peter published publication 0815] and [works for

rdfs:domain Person] are contained.

The following trigger is an example how the knowledge could be collected:

ON INSERTION OF published OF INSTANCE OF Person

% by an raising of this trigger the following variables are bound

% NEW.subject := author URI

% NEW.property := published

21

3.4. TRIGGERS

% NEW.object := publication URI

WHEN SELECT ?U WHERE { NEW.subject <works for>?U . ?U rdfs:type <university>}

DO

insert ($U, produced, NEW.object) ;

END;

The condition part of a trigger is optional. But when used, it always has to start with the keyword

WHEN followed by a valid SPARQL SELECT or ASK query. Internally nothing else happens than

the evaluation of the given query using the Jena Framework. Variables that were bound within a

SELECT query will be assigned to the variables in the action part respectively. If no variables are

bound, or an ASK query results in false, the trigger will not fire.

As already shown in the examples, there are variables that are automatically bound to the

resource URIs of the RDF statement that fired the trigger. NEW and OLD variables are bound

that have the components subject, property and object. These components hold the corresponding

statement URIs. When using a trigger that reacts on the creation of a new class, only a component

class is available. On execution of a trigger that reacts on insertion of a new property to the meta

data, the components of the NEW variable are property and domain.

The binding of the variables NEW and OLD is intuitive. NEW is bound to a statement after

its creation or update and OLD to a statement that has been deleted or has been updated.

It is possible to bind variables at the beginning of a trigger definition. Such variables have to

start with $. They are available in the condition and the action part. All RDF update requests can

be raised by a trigger. For indirect triggers, also the sending of an HTTP message to a given URL

is possible. Application domain events can also be raised by sending a specific form of message to

a registered domain broker as described in Section 4.1. In the prototype, it is necessary to set the

URL for the concerned Domain Broker in a configuration file. For more detail on how to configure

the web service see Section 5.7. The event to be sent has to be in a valid XML markup. It may

contain variables from the LET part or the condition part as well as the variables NEW and OLD

as described above. A sequence of action may be defined separated by semicolons.

22

Chapter 4

Adaption of the RDF Web Service

to an Application Domain Node

The central theme of this thesis is the adaption of the RDF web service described in the previous

chapter to an actual application domain node within the MARS Framework. The prototype of

the Web Service implemented by Elke von Lienen provides a good foundation. The triggers of

the RDF Web Service can be used to define rules for performing low level updates and derivation

of events upon model state changes. So they provide a mechanism for upward communication.

To turn the service into a part of the MARS Framework, it was necessary to add a downward

communication interface. That is the capability to map abstract application domain actions to

low level RDF update actions like they are described in Section 3.1. Such high level actions are

forwarded from the Domain Broker where the node is registered after they were raised by an ECA

rule within the ECA Engine or sent to the broker directly.

The handling of these high level actions is implemented in a wrapper around the core Web

Service as shown in Figure 4.0.1. That wrapper is addressed by a different URL to separate the

functionalities.

Apart from this new interface, some minor changes had to be performed. Mostly they can

be summarized as debugging of existing functionalities and minor changes in syntax and usage.

For example, the syntax of the trigger definitions has changed. Note that all changes that were

made in the web service are orthogonal to the functionalities that were described in Chapter 3.

That means that everything said about that service also holds for the application domain node

developed for this thesis.

4.1 Events raised within the Domain Node

An application domain node knows mainly three ways to communicate with the rest of the frame-

work. It supports a SPARQL query interface where other nodes like domain brokers may post

queries. The answer is a variable binding XML message as described in Section 3.3. Although

it is possible and necessary for other nodes to query an application domain node in such a pull

information manner, the intended communication within the framework is event-driven. Instead

of asking the node whether something has changed from outside it is the node itself that informs

the concerning domain about local updates that were performed.

23

4.1. EVENTS RAISED WITHIN THE DOMAIN NODE

users,

others

event

broker

ACA Mapper

matches actions

against mappings

ACA Mappings

Repository

Jena-based core module

with Active Functionality

PostgreSQL

Database:

Base RDF facts

DIG tell& ask interface

DL Reasoner

(e.g. Pellet)

updates

base facts
materialized

facts
queries

model
answers

event
occurrences

queries

actions

answers

Figure 4.0.1: Architecture of the Domain Node (taken from [1])

The information that is communicated within the Semantic Web usually is on a semantically

higher level than simple update operations. That is why the domain node needs an mechanism

to define ECE Rules that map simple data model updates to the application domain level. Such

an infrastructure is realized by the triggers of the Active Web Service. As described earlier in

Section 3.4, there exists a certain trigger action especially for this task. The latter is: raise event

(<<XML content>>), where the content is intended to be an application domain event in XML

markup. Only indirect triggers that react upon model changes in the node may raise events. Note

that the events have to be defined within the Application Domain Ontology to be recognized as

such. To define an event named uni:professor-hired statements like

[uni:professor-hired rdfs:subClassOf uni:Event]

[uni:Event rdfs:subClassOf mars:Event]

have to be known to the ontology as described in Section 2.3.

Example 12 Consider an application domain node in the university ontology. Assume that every

time a new professor is hired in one of the participating universities, an event uni:professor-hired

should be raised. The employment of a person may be stored using the predicate uni:employed. So

an event should be raised when a statement [my-university-uri uni:employed some-person-uri] is

inserted into the local model. A trigger for that task could look like that:

ON INSERTION OF uni:employed OF INSTANCE OF uni:University

WHEN ASK { <NEW.object> <rdfs:type> <uni:Professor>}

DO

BEGIN

RAISE EVENT (

24

4.2. ACTION INTERFACE OF THE APPLICATION NODE

<uni:professor-hired xmlns:uni=“http://localhost/test.owl#”

professor=“NEW.object” university=“NEW.subject”/>

);

END;

So the emitting of high level events is fully covered by the trigger functionality implemented within

the Active Web Service - at least for events that should be raised upon model state changes. But

the second major task of an application domain node, the executing of high level actions was not

supported by the Web Service described in the previous chapter. The implementation of such an

interface is the main topic of this thesis.

4.2 Action Interface of the Application Node

An application domain node needs an interface for the execution of high level application domain

actions. As described earlier, these actions are small RDF/OWL graphs that are transmitted

between nodes participating in a Semantic Web network. Usually actions are the outcome of the

evaluating of an ECA rule. That means the behavior that is triggered upon certain events that

occurred within the network. Actions are distributed by Action Brokers that are a component of

the Domain Brokers.

The actions communicated within the Semantic Web are on the application domain level, just

like the events. So analogously to ECE Rules that map data model events to the higher level there

have to be ACA mappings that map high level actions to data model updates. The following

sections describe a proposal of how such an ACA mapping can be implemented by a Domain

Service.

4.2.1 Syntax and Semantics of Actions

Within the MARS Framework, every domain action has to be defined as a class that extends the

mars:Action concept. That is because an actual action that is distributed within the Semantic Web

represents an instance of the corresponding action class. Take for example the possible university

domain ontology action uni:add-publication that may be used to distribute the insertion of a new

publication within a network of participating university application nodes. Such an action has to

be declared in the University Domain Ontology with statements like:

[uni:add-publication rds:subClassOf uni:Action]

[uni:Action rdfs:subClassOf mars:Action]

An actual instance of that action may look like the following XML fragment.

<uni:add-publication xmlns:uni=“http://localhost/test.owl#”>

<uni:published-by rdf:resource=“university-URI” />

<uni:title>some title</uni:title>

<uni:abstract> ... </uni:abstract>

<uni:author rdf:resource=“first-author-URI” />

<uni:author rdf:resource=“second-author-URI” />

</uni:add-publication>

25

4.2. ACTION INTERFACE OF THE APPLICATION NODE

Such an XML fragment can be interpreted as RDF/XML definition and therefore be validated

with the W3C-RDF-Validator [21] when it is nested within an rdf:RDF root element. Doing so

will show that indeed an anonymous resource of type http://localhost/test.owl#add-publication is

described with the following N3 statements:

[genid:A333958 rdf:ype http://localhost/test.owl#add-publication]

[genid:A333958 http://localhost/test.owl#published-by http://base/university-URI]

[genid:A333958 http://localhost/test.owl#title "some title"]

[genid:A333958 http://localhost/test.owl#abstract "..."]

[genid:A333958 http://localhost/test.owl#author http://base/first-author-URI]

[genid:A333958 http://localhost/test.owl#author http://base/second-author-URI]

Figure 4.2.1 shows that resource as graph.

Figure 4.2.1: RDF Graph of the Action Instance

A domain node that receives such an action is requested to check if it is interested in publications

that are published by that university and if so, add this particular one to its model. Therefore an

ACA mapping has to provide a possibility to query the local model to decide whether a certain

action instance is relevant.

4.2.2 Actions with Variable Bindings

Actions are not necessarily sent fully instantiated but as action patterns with variable bindings

instead. That is because internally within the ECA Engine with its Event Detection Services,

event occurrences are also communicated in form of variable bindings. Action definitions of ECA

Rules declare input variables that use variables from the event pattern and the optional query part

of a rule. When an action is actually triggered, it is evaluated by the Action Engine where the

variable bindings are usually evaluated so that the action patterns are mapped to instances of the

action that are forwarded to the Domain Brokers and finally to Domain Services to be executed.

Therefore domain nodes have to be able to bind variables to action patterns. Such an action

pattern is of the following form:

26

4.3. ACA MAPPING WRAPPER

<travel:delay-flight xmlns:travel=“http://www.semwebtech.org/domains/2006/travel#”

flight=“{$flight}“ date=“{$date}“>

<logvars:variable-bindings xmlns:logvars=“http://www.semwebtech.org/lang/2006/logic#”>

<logvars:tuple>

<logvars:variable name=“flight”>LH1234</logvars:variable>

<logvars:variable name=“date”>20060523</logvars:variable>

</logvars:tuple>

<logvars:tuple>

<logvars:variable name=“flight”>GR5432</logvars:variable>

<logvars:variable name=“date”>20060523</logvars:variable>

</logvars:tuple>

</logvars:variable-bindings>

Variables that are used in the pattern have to start with an $ and may be engulfed within curly

brackets.

4.3 ACA Mapping Wrapper

It is the ACA wrapper for application domain actions that extends the Reactive Web Service to

an application domain node. Such a wrapper has to provide several tasks. Of course its main task

is to map domain actions to the data model level. Additionally it has to provide administrative

functionalities for ACA mapping registration. On top of that the ACA interface supports a simple

action algebra by allowing the execution of action sequences and the binding of variables to action

patterns.

But what exactly is such a mapping? As it is implemented in the prototype, an ACA mapping

is the transformation of a received XML action message to an XML document that is a markup

for instructions that can natively be executed at a domain node. These instructions are mostly

XML mark-upped RDF update commands that were introduced in Section 3.1. Therefore the

output of a mapping is interpreted as an action itself. Note that the MARS Framework only

requires the node to provide the action translation according to the given Application Ontology.

How that is done is not part of the framework but lies in the responsibility of the provider of

the node implementation. The usage of an XML markup for the RDF update language suggests

itself because XML is easy to parse and with the Document Object Model (DOM) there is a well

documented API [4].

What has not been covered is how exactly the transformation process is done. Because the

prototype uses an XML language for actions on the data model level, the task of a mapping is to

transform an XML document into another XML document. That is a common task in the W3C

XML world and therefore already well covered. The prototype both accepts ACA mappings that

use either an XQuery expression [22] or an XSLT style-sheet [23]. These W3C Recommendations

both implement the needed functionality. XQuery is a clause based query language for XML that

supports the generation of an XML document as a result. XSLT enables to define style sheets

that transform an input XML document into a requested format using a tree walk formalism.

Because the result of a mapping is interpreted as an action it is possible to define an ACA

27

4.3. ACA MAPPING WRAPPER

mapping that raises other application domain actions within the specific domain node instead of

data level updates.

As the term Action-Condition-Action already suggests, ACA mappings have to provide the

possibility to formulate conditions that restrict the execution of an action at a certain domain

node. It has to be able to place conditions on the action message that was received and on the

state of the local knowledge base. The first requirement is implicitly fulfilled because both XQuery

and XSLT support placing very expressive conditions on the XML input they process. But neither

one of them support querying an RDF knowledge base. Therefore, the RDF update language was

extended by the possibility to make the execution of update commands conditional on a certain

model data state.

The general semantics of the RDF update language has already been described in Section 3.2.

It has been developed to enable the modification of an RDF Web Service. Therefore, it provides a

method for the ACA wrapper to formulate a data model update. Because the updates requested

by an application level action are probably complex and include the change or insertion of multiple

RDF statements, the processing of sequences of these commands has to be possible.

Now the example ACA mapping from Section 2.4 is revisited. To refresh the memory, this

example maps the application level action uni:register-students to the data model level. To do so

for every student that is listed in the action message, an RDF statement is inserted into the model

that associates the student to the lecture. But before doing so the local knowledge base is queried

to check if the given lecture is already known. Because if it is not, the action is of no interest for

the node. Using XQuery as translation language, such a mapping could look like the following:

declare namespace uni = ”http://localhost/test.owl#”;

let $lecture uri := //uni:register-students/uni:lecture/text()

return

<rdfu:condition xmlns:rdfu=“http://www.semwebtech.org/lang/2006/rdfupdate#”

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

rdfu:ask=“<{$lecture uri}> rdf:type uni:Lecture”>

{

for $student in //uni:register-students[./uni:lecture]/uni:student

return

<rdfu:insert>

<rdf:subject rdf:resource=“{$lecture uri}” />

<rdf:predicate rdf:resource=“http://localhost/test.owl#has-student” />

<rdf:object rdf:resource=“{$student/text()}” />

</rdfu:insert>

}

</rdfu:condition>

This example uses an rdfu:condition element to check if the local knowledge base knows a resource

of type uni:Lecture with the URI given in the high level action message. That is done by the query:

ASK { <$lecture uri> rdf:type uni:Lecture }.

If it is found to be true, the rdfu:insert commands within the rdfu:condition element are executed.

28

4.3. ACA MAPPING WRAPPER

Now after the general architecture of the wrapper has been described the translation part

of ACA mappings should be described, in more detail. That will be done in the following two

sections.

4.3.1 ACA Mappings using XQuery

Both XQuery and XSLT are equally suitable to transform XML documents. Although XSLT is

especially developed for this task, the prototype prefers XQuery to formulate ACA mappings.

That is mainly because XQuery is declarative and more straightforward. Additionally, it offers

to import function modules. That feature is used within the prototype. Before a mapping using

XQuery is executed, several predefined XQuery modules are added to the mapping and default

namespaces are declared. There are prefix namespace bindings that are usually used in every

mapping. So the prefixes rdf, rdfs, owl and rdfu are respectively bound to their namespaces. That

means that these prefixes do not have to be bound explicitly.

The generation of the XML representation of rdfu commands is provided by functions similar

to:

• rdfu:stringLiteral($obj)

• rdfu:intLiteral($obj)

• rdfu:doubleLiteral($obj)

• rdfu:booleanLiteral($obj)

• rdfu:insert($sub, $pre, $obj)

• rdfu:delete($sub, $pre, $obj)

• rdfu:retract($sub, $pre, $obj)

• rdfu:assert($sub, $pre, $obj)

• rdfu:delete-resource($sub)

• rdfu:update-subject($sub, $pre, $obj, $new)

• rdfu:update-predicate($sub, $pre, $obj, $new)

• rdfu:update-object($sub, $pre, $obj, $new)

• rdfu:rename($old, $new)

• rdfu:rename-property-of-class($old, $new, $class)

The insert update statement in the example from above can be written as follows:

rdfu:insert ($lecture_uri, http://localhost/test.owl#has-student,

$student/text())

The first four functions in the list above format a given object literal value as typed RDF literal.

For example a call of rdfu:intLiteral(10) will return

29

4.3. ACA MAPPING WRAPPER

10^^<http://www.w3.org/2001/XMLSchema#int>.

Additionally to the simpler syntax, the RDF update functions have the advantage that they

implicitly implement a ACA condition. That is because the functions only return an XML RDF

update element if the value of the given $obj or $new parameter exists. If the corresponding value

is empty, the update command is not executed because nothing has to be updated. Using this

feature, it is possible to define ACA mappings that do not have to check explicitly for the existence

of certain text or attribute nodes in the received high level action.

Example 13 XQuery mappings can be very simple containing only XPath expressions. Take for

example a ACA mapping definition as follows:

declare namespace uni = "http://localhost/test.owl#";

(

rdfu:insert (uni:add-student/@uri,

"http://localhost/test.owl#name",

rdfu:stringLiteral(uni:add-student/uni:name/text())),

rdfu:insert (uni:add-student/@uri,

"http://localhost/test.owl#city-of-birth",

uni:add-student/uni:city-of-birth/text()),

rdfu:insert (uni:add-student/@uri,

"http://localhost/test.owl#date-of-birth",

uni:add-student/uni:date-of-birth/text()),

rdfu:insert (uni:add-student/@uri,

"http://localhost/test.owl#mobile-phone",

uni:add-student/uni:mobile/text())

)

If a domain node with such an ACA mapping receives the action message with all properties that

are mentioned in the mapping like:

<uni:add-student xmlns:uni="http://localhost/test.owl#"

uri="stud-uri">

<uni:name>Peter Mueller</uni:name>

<uni:city-of-birth>Berlin</uni:city-of-birth>

<uni:date-of-birth>23.05.1984</uni:date-of-birth>

<uni:mobile>017712345678</uni:mobile>

</uni:add-student>

then for all these properties there are rdfu:insert returned by the mapping. But if an action message

misses one ore more of these properties like:

<uni:add-student xmlns:uni="http://localhost/test.owl#"

uri="stud-uri">

<uni:name>Peter Mueller</uni:name>

</uni:add-student>

then the same mapping returns only rdfu:insert elements for the properties that are present. In

this example only

30

4.3. ACA MAPPING WRAPPER

<rdfu:insert xmlns:rdfu="..." xmlns:rdf="...">

<rdf:subject rdf:resource="stud-uri" />

<rdf:predicate rdf:resource="http://localhost/test.owl#name" />

<rdf:object>Peter Mueller</rdf:object>

</rdfu:insert>

is returned by the mapping.

The ACA module definitions can be found in Appendix C. It is intended that there are function

module definitions for application domains. Every Domain Ontology should describe how the URIs

for the concepts defined in these ontologies are created. The prototype expects such definitions

to be made within Domain Ontology XQuery modules. Therefore, the prototype supports the

submission of new function modules as described later. These modules should contain functions

for the creation of URIs and other Domain specific operations. Note that these modules have to

be imported explicitly in an ACA mapping

4.3.2 ACA Mappings using XSLT

The prototype also supports the definition of ACA mappings as XSLT style-sheet. This method

is much less comfortable within the prototype because there are no simplifications implemented.

For example the XSLT version of the short XQuery mapping.

declare namespace uni = "http://localhost/test.owl#";

for $stud in uni:add-student[./uri]

let $stud_uri := concat("http://localhost/test.owl#", $stud/uri/text())

let $name := $stud/uni:name/text()

return

(

rdfu:insert ($stud_uri, rdf:ns("type"), "http://localhost/test.owl#Student"),

rdfu:insert ($stud_uri, rdf:ns("type"), "owl:Thing"),

rdfu:insert ($stud_uri, "http://localhost/test.owl#name", $name)

)

would look like the following:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"

xmlns:uni="http://localhost/test.owl#">

<xsl:template match="uni:add-student[./uri]">

<xsl:variable name="stud_uri"

select="concat(’http://localhost/test.owl#’, uri)" />

<xsl:variable name="name" select="uni:name" />

<rdfu:insert xmlns:rdfu="http://www.semwebtech.org/lang/2006/rdfupdate#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<rdf:subject><xsl:value-of select="$stud_uri" /></rdf:subject>

<rdf:predicate>rdf:type</rdf:predicate>

<rdf:object>http://localhost/test.owl#Student</rdf:object>

</rdfu:insert

31

4.4. ADMINISTRATION OF THE ACA WRAPPER

<rdfu:insert xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfu="http://www.semwebtech.org/lang/2006/rdfupdate#">

<rdf:subject><xsl:value-of select="$stud_uri" /></rdf:subject>

<rdf:predicate>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</rdf:predicate>

<rdf:object>http://www.w3.org/2002/07/owl#Thing</rdf:object>

</rdfu:insert>

<xsl:if test="not(empty($name))">

<rdfu:insert xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfu="http://www.semwebtech.org/lang/2006/rdfupdate#">

<rdf:subject><xsl:value-of select="$stud_uri" /></rdf:subject>

<rdf:predicate>http://localhost/test.owl#name</rdf:predicate>

<rdf:object><xsl:value-of select="$name" /></rdf:object>

</rdfu:insert>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

4.4 Administration of the ACA Wrapper

An important aspect of a description of the ACA wrapper is of course its administration. There has

to be a way to register ACA mappings and XQuery modules that contain domain specific functions.

The prototype provides certain node update actions for this task. Note that these actions are not

intended to be used by anyone other than the provider of the particular application domain node.

The node update actions supported by the prototype are implementation dependent. That means

they are not part of the MARS Framework but simply implement needed functionalities of the

particular domain node implementation.

There are different categories of node update actions. They all are syntactically equal to

application domain actions and RDF update actions because the ACA wrapper already provides

the possibility to process this kind of actions. Firstly, there are those that add or delete node

components. They are as follows:

• applnode:register-aca-mapping - Registraction of an ACA mapping

• applnode:delete-aca-mapping - Removal of an ACA mapping

• applnode:register-aca-function-library - Registration of an XQuery module

• applnode:delete-aca-function-library - Removal of such a module

• applnode:register-trigger - Registration of an RDF data model trigger as described in 3.4

• applnode:delete-trigger - Removal of such a trigger

• applnode:read-rdf - Update of the knowledge base by loading given RDF statements

Most of these XML mark-upped actions expect the XML elements to have plain text content.

Only applnode:register-aca-mapping and applnode:read-rdf also support content that is given in

XML. For applnode:read-rdf that is an ontology in RDF/XML. An ACA mapping may be given as

32

4.4. ADMINISTRATION OF THE ACA WRAPPER

XSLT style-sheet and therefore as XML child element of applnode:register-aca-mapping. Instead

of defining the corresponding contents directly, it is possible for each of these actions to specify

an attribute named applnode:url that contains the URL1 from where the actual content will be

loaded. The actions will now be described in detail:

An applnode:register-aca-mapping action needs several parameters. Every mapping has a unique

name. An Element named applnode:name may be used to specify that name. Otherwise a de-

fault name is used. The application domain action that this particular mapping is intended for

has to be specified. For that task there are the two elements applnode:action-namespace and

applnode:action-name. This approach is chosen because it avoids the necessity of string parsing

to separate namespace and local part of the action URI. Another necessary parameter is the lan-

guage used for the mapping definition. The element applnode:language is expected to have either

“xquery” or “xslt” as content. Optionally, an owner resource for the mapping may be specified.

It is stored within the database. As mentioned above, an applnode:register-aca-mapping action

either needs an element applnode:url with the location of the mapping content or the mapping has

to be given as plain text or XML content. So such an action has the following form:

<applnode:register-aca-mapping

xmlns:applnode=“http://www.semwebtech.org/2006/application-node#”>

<applnode:name> ... </applnode:name>

<applnode:action-namespace> ... </applnode:action-namespace>

<applnode:action-name> ... </applnode:action-name>

<applnode:language> ... </applnode:language>

[<applnode:url> ... </applnode:url>]

[<applnode:owner-resource> ... </applnode:owner-resource>]

... ACA mapping given in XQuery or XSLT ...

</applnode:register-aca-mapping>

The other node update actions are simpler. An XQuery module may be registered by embedding

the module definition in an applnode:register-aca-function-library element. Additionally, a unique

applnode:name has to be given. That parameter is also the only parameter of applnode:delete-aca-

mapping, applnode:delete-aca-function-library and applnode:delete-trigger. The action applnode:register-

trigger takes only a trigger definition as plain text content without any other parameters. Finally,

applnode:read-rdf can be used to directly change the knowledge base by sending an ontology de-

scription that is added to the local model of the node. The language that ontology is described

in has to be specified by the parameter applnode:input-language . The accepted input formats are

“RDF/XML”, “RDF/XML-ABBREV”, “N-TRIPLE”, “N3-PLAIN”, “N3-PP”, “N3-TRIPLE”

and “N3”. The RDF data has to be given as contents of the applnode:read-rdf element or of

course via a URL as described above.

On top of the node update actions already mentioned there are some more that are not responsible

for changes within the node but are nevertheless needed. These are:

• applnode:actionSequence - Implements a sequence of actions to be executed in the ACA

wrapper. All child elements of that XML node are interpreted as action and executed in

1Unified Resource Locator

33

4.4. ADMINISTRATION OF THE ACA WRAPPER

document order.

• applnode:nodeSequence - Similar to applnode:nodeSequence with the difference that child

elements are not necessarily interpreted as plain action.

• applnode:dump - Returns a dump of the current domain node. There are several modes to

choose from.

• applnode:describe-service - Implements the Domain Service task:

http://www.semwebtech.org/2006/mars/domain-node#give-service-description

• applnode:query - Enables the domain node to receive a SPARQL query. Therefore it is an

implementation of:

http://www.semwebtech.org/2006/mars/domain-node#receive-query

• applnode:raise-event - Implements mars:raise-event

• applnode:raise-directed-event - Implements mars:raise-directed-event

The prototype implementation of the ACA wrapper ensures that the result of an ACA mapping

is a valid XML document and therefore can be parsed as such. This is done by placing it into

an applnode:actionSequence element. That is done implicitly because it resembles the fact that it

is an action sequence that the mapping should produce. Any sequence of elements send to the

action interface is in principle interpreted as sequence of actions. If the parsing of the message

received by the wrapper fails, the message is wrapped into a applnode:nodeSequence element and

parsed again. The semantics of applnode:nodeSequence is almost the same as the meaning of

applnode:actionSequence except that the contents of an applnode:nodeSequence element may be an

action pattern with variable bindings. That is checked by searching for a logvars:variable-bindings

sub element. If such exists, the whole message is interpreted as application domain action and

the variables are bound. Any element of the message apart from the logvars:variable-bindings is

treated as action pattern.

Using applnode:dump it is possible to get a dump file. Practically, the prototype returns an

applnode:actionSequence containing node update actions. These represent the action instances that

are needed to clone the particular node concerning its ACA mappings, ACA XQuery modules,

triggers and knowledge base content. The applnode:dump action uses two parameters. These are

applnode:mode and applnode:target-url. Using applnode:mode it is possible to specify what should

get dumped. As contents it accepts “rdf”, “aca-mapping” “aca-function-library”, “trigger” and

“all”. A combination of these keywords separated by whitespace is possible. By the parameter

applnode:target-url a URL may be optionally given where the dump file is sent to via HTTP.

That is also the case for applnode:describe-service where it is also possible to give an additional

target using applnode:target-url.

Apart from the RDF update actions, an ACA mapping may use mars:raise-event or mars:raise-

directed-event as reaction upon an application domain action. These two actions lead to the raising

of events defined as XML contents of the elements. For mars:raise-event that means that its child

elements are sent to the Event Broker that is registered with the domain node. mars:raise-directed-

event needs the parameter target-url where the content is sent to, respectively. It does not matter if

these two actions are used with mars or applnode as namespace because the two different signatures

of these actions are treated equally.

34

4.5. TASK DESCRIPTION OF THE DOMAIN NODE PROTOTYPE

Indeed, the namespaces of all node update actions may be ignored. If any namespace is used, it

has to be applnode or mars for mars:raise-event respectively. But if no namespace is used at all, the

actions are identified correctly by their local names. That means for example that the prototype

reacts equally when receiving one of the actions <applnode:describe-service /> or <describe-service />

and returns the Service Description of the node as RDF/XML.

Just like for the RDF update actions there is a default XQuery module that simplifies the

usage of node update actions. That module is listed under 5.5. Naturally it is also automatically

imported and therefore binds the applnode prefix. Finally there is a basic ACA module that is

imported in every XQuery mapping. So far that module has only one function. It has the signature

aca:getProperty($node as element(), $name as xs:string). Using this function, it is possible to get a

property of the given name from an element node. That property may either be given as attribute

or as sub-element. So when using this function to get the content of action properties it does not

matter if these are given as attribute or element. This may be used in ACA mappings to achieve a

higher compatibility for differently mark-upped application domain actions. Another convenience

functionality is provided by the functions owl:ns($name as xs:string), rdfs:ns($name as xs:string)

and rdf:ns($name as xs:string). These may be used to phrase an absolute URI in the corresponding

namespace with the value of the $name argument as local part.

4.5 Task Description of the Domain Node Prototype

As already mentioned in Section 2.3, a domain node has to implement the following tasks:

<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”

xmlns:owl=“http://www.w3.org/2002/07/owl”

xmlns=http://www.semwebtech.org/2006/mars#”

xml:base=http://www.semwebtech.org/2006/mars”>

<rdf:Description rdf:about=“#DomainService”>

<meta-provides-task rdf:resource=”/domain-node#receive-query”/>

<meta-provides-task rdf:resource=”/domain-node#receive-action”/>

<meta-provides-task rdf:resource=”/domain-node#give-service-description”/><!– opt –>

</rdf:Description>

</rdf:RDF>

The prototype provides these tasks according to the following task description:

<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns=“http://www.semwebtech.org/2006/dsr#”

xml:base=“www.semwebtech.org/mars”

xmlns:mars=“www.semwebtech.org/mars#”>

<mars:DomainService rdf:about=“http://localhost:8080/semweb/uni-service”

<mars:uses-domain rdf:resource=“http://localhost/test.owl#”/>

<has-task-description>

<TaskDescription>

<describes-task rdf:resource=“ /domain-node#receive-query” />

<provided-at rdf:resource=“ http://localhost:8080/semweb/rdfserver/services” />

35

4.5. TASK DESCRIPTION OF THE DOMAIN NODE PROTOTYPE

<input>element query</input>

<variables>no</variables>

<communication-mode>synchronous</communication-mode>

</TaskDescription>

</has-task-description>

<has-task-description>

<TaskDescription>

<describes-task rdf:resource=“ /domain-node#receive-action” />

<provided-at rdf:resource=“ http://localhost:8080/semweb/rdfserver/actions” />

<input>item *</input>

<variables>*</variables>

</TaskDescription>

</has-task-description>

<has-task-description>

<TaskDescription>

<describes-task rdf:resource=“ /domain-node#give-service-description” />

<provided-at rdf:resource=“ http://localhost:8080/semweb/rdfserver/services” />

<input>element describe-service</input>

<variables>no</variables>

<communication-mode>synchronous</communication-mode>

</TaskDescription>

</has-task-description>

</mars:DomainService >

</rdf:RDF>

36

Chapter 5

Implementation

This chapter deals with the description of the ACA wrapper implementation. After a short

overview of technologies used, the interaction of important components will be described. This

is followed by the communication interface of the action wrapper and a short description of the

extended Web Service Client.

5.1 Technologies

The ACA wrapper is implemented in Java [5]. Specifically, the Web Service uses the Servlet

technology. The wrapper is integrated by adding a new Servlet to the Web Service that extends

its functionality. The Servlet structure will be described later in Section 5.3.

The actual translation of XML high level actions to model updates is provided by XQuery

or XSLT style-sheets. These technologies are implemented in the SAXON package that can be

found at [7]. The wrapper uses SAXON 8.8 which supports XPath 2.0, XSLT 2.0, and XQuery

1.0. XQuery is accessed via the SAXON implementation of XQJ (XQuery API for Java)1.

5.2 Architecture

Along with the introduction of the ability to process application domain actions, the package

structure of the Web Service developed in [19] was renewed.

Now there are the following packages :

• org.semwebtech.applnode - Base package with ModelServer class

• org.semwebtech.applnode.aca - ACA wrapper main package

• org.semwebtech.applnode.aca.database - Database sub package for ACA transformation

• org.semwebtech.applnode.servlet - Servlet classes

• org.semwebtech.applnode.trigger - Trigger package

• org.semwebtech.applnode.util - Utility classes used in several packages

• org.semwebtech.applnode.xml - XML utilities (including XQuery and XSLT processors)

1currently published as ”Early Draft Review 2” (JSR 225) at http://jcp.org/en/jsr/detail?id=225.

37

5.2. ARCHITECTURE

5.2.1 Core Architecture of the ACA Wrapper

The core class of the ACA wrapper is org.semwebtech.applnode.aca.Action. It is one of the

few public classes of the aca package and provides all interfaces needed to execute an application

domain action. Note that the action wrapper uses the DOM API [4]. An XML action that should

be executed using the wrapper has to be parsed into a DOM document.

The gateway for action execution is the static method

Action.executeActionNode(ActionTracer, ModelServer, Element).

The element argument is expected to be a parsed XML element representing an action instance.

The class org.semwebtech.applnode.ModelServer is the core of the RDF Web Service. It encap-

sulates the knowledge base and provides the update mechanisms including the trigger functionality.

An instance of this class has to be given to the wrapper, because data model updates that re-

solve from the application domain action execution are directly executed. It would be possible

to communicate with the ModelServer over HTTP but the prototype directly calls the methods

responsible for the model update rather than sending update messages. The first argument of the

executeActionNodemethod is an instance of an utility class that logs the action execution. When

executing an application domain action, usually several update instructions are triggered within

the ModelServer. Each of these is logged by the org.semwebtech.applnode.aca.ActionTracer

instance. Of course that is not necessary for the execution of high level actions because Actions

produce no result but only side effects in the form of model changes or the sending of asynchronous

messages if events are raised by a mapping. The logging is needed for debugging capabilities. The

action interface of the extended Web Service optionally returns a result in the form of an XML

document containing the logged actions.

For the actual execution of actions that are given to the executeActionNodemethod, the class

org.semwebtech.applnode.aca.ActionExecuter is used internally. This class provides a set of

org.semwebtech.applnode.aca.ActionImplementation objects, each of which is responsible for

the execution of an action with a certain action URI. These action URIs are for example the RDF

update actions like http://www.semwebtech.org/lang/2006/rdfupdate#insert or the domain node

actions like http://www.semwebtech.org/2006/application-node#actionSequence etc. For each of

these actions, there is an implementation class that extends ActionImplementation. Basically,

the ActionExecuter iterates over the known action implementing objects, checking if their URI

matches the URI of the action it is about to execute. Every ActionImplementation has to imple-

ment the method execute(ActionTracer, ModelServer, Element) that finally is responsible

for the execution of that particular type of action. At this point, the element node is evaluated. It

should be mentioned that the URI of an action instance is identified by the namespace and local

name of the element argument given to executeActionNode.

Note that application domain actions may have arbitrary URIs. That is why there is a special

ActionImplementation class named

org.semwebtech.applnode.aca.AbstractNodeActionImpl.ApplicationDomainAction

that is not responsible for a static URI but any URI that has been registered with an ACA

mapping. Such registration may be checked with the method

MappedDomainActionRegistry.isMappedApplicationAction(String ns, String name).

38

5.2. ARCHITECTURE

On execution of an application domain action, the element representing the action is given to an

org.semwebtech.applnode.aca.AcaMappingProcessor instance as shown in Figure 5.2.1. There,

all ACA mappings that are registered for the current action URI are used to transform the ac-

tion. The method Iterator<AcaMapping> iterator(String ns, String name) from the class

org.semwebtech.applnode.aca.database.AcaMappingRegistry is used to iterate over all rele-

vant ACA mappings. The actual tranformation is done by the utility classes XQuery and Xslt

from the package org.semwebtech.applnode.xml. The result of transformAction(Element) of

AcaMappingProcessor is again a DOM element. It is ensured that it is an actionSequence ele-

ment containing all RDF update actions etc. that are intended for the execution of the particular

Domain Action. At this point, the method

ActionExecuter.executeNode(ActionTracer, ModelServer, Element)

is simply called again with the original ActionTracer and ModelServer arguments and the new

actionSequence element as third argument. At his run of that method, the ActionImplementation

objects of the RDF update actions contained in the http://www.semwebtech.org/2006/application-

node#actionSequence are called. They directly perform the requested model changes using the

methods provided by the ModelServer argument.

39

5.2. ARCHITECTURE

ActionTracer

instance() : ActionTracer
instance(name : String) : ActionTracer
ActionTracer()
ActionTracer(name : String)
destroy() : void
unsetApplicationDomainAction() : void
setApplicationDomainAction(action_uri : String) : void
toString() : String
wasUnsupported() : boolean
wasException() : boolean
wasSuccess() : boolean
clear() : void
warn(string : String) : void
unsupported(node : Element) : void
exception(node : Element,e : Throwable) : void
exception(e : Throwable) : void
exception(action : String,e : Throwable) : void
traceAction(node : Element,answer : String) : void
traceAction(node : Element,answer : String,props : Properties) : void
traceAction(node : Element,answer : Element,props : Properties) : void
traceAction(action_uri : String,answer : String,props : Properties) : void
traceAction(action_uri : String,answer : Element,props : Properties) : void
tracedActions() : Iterator

log : Logger
SUCCESS : int
EXCEPTION : int
UNSUPPORTED : int
flag_of_last_action : int
buffer : StringBuffer
name : String
traced_actions : ArrayList
application_domain_action_uri : String

Action

createConditionActionXML(ask : String,actions : String) : String
getOutputFormat() : int
setOutputFormat(format : int) : void
getActionTracer() : ActionTracer
getActionTracer(name : String) : ActionTracer
isAction(uri : String,node : Element) : boolean
isApplicationDomainAction(server : ModelServer,ns : String,name : String) : boolean
isApplicationDomainAction(server : ModelServer,action_uri : String) : boolean
isMappedApplicationAction(ns : String,name : String) : boolean
isMappedApplicationAction(uri : String) : boolean
isMappedApplicationAction(e : Element) : boolean
isRDFUAction(namespace : String,name : String) : boolean
isRDFUAction(e : Element) : boolean
isNodeUpdateAction(namespace : String,name : String) : boolean
isNodeUpdateAction(e : Element) : boolean
isSupportedAction(namespace : String,name : String) : boolean
isSupportedAction(e : Element) : boolean
createActionSequence(xml : String) : Element
parseActionSequence(xml : String) : Element
executeActionSequence(server : ModelServer,xml : String) : boolean
executeActionNode(action_tracer : ActionTracer,server : ModelServer,node : Element) : String
actionUri(e : Element) : String
actionUri(ns : String,name : String) : String
isActionStillSupported(server : ModelServer,uri : String) : boolean
insertAcaMapping(server : ModelServer,mapping : AcaMapping) : long
deleteAcaMapping(server : ModelServer,id : long) : boolean
deleteAcaMapping(server : ModelServer,mapping_name : String) : boolean
assertSupports(server : ModelServer,uri : String) : void
retractSupports(server : ModelServer,uri : String) : void
formatResult(actt : ActionTracer) : String
execute(action_uri : String,actt : ActionTracer,node : Element) : Object
execute(action_uri : String,actt : ActionTracer,server : ModelServer,node : Element) : Object
dump(server : ModelServer,mode : String) : String
getMarsActionResource() : Resource
getActionProperty(node : Element,ns : String,name : String) : String

log : Logger
aca_mappings : AcaMappingRegistry

ActionExecuter

execute(uri : String,actt : ActionTracer,server : ModelServer,node : Element) : Object
executeNode(actt : ActionTracer,server : ModelServer,node : Element) : void
getExecuterFor(action_uri : String) : AbstractAction
init() : void
addExec(exec : AbstractAction) : void

action_exec : Hashtable
log : Logger

ApplicationDomainAction

ApplicationDomainAction()
getURI() : String
isAction(namespace : String,name : String) : boolean
transformAction(node : Element) : Element
execute(action_tracer : ActionTracer,server : ModelServer,e : Element) : String

URI : String
aca_processor : AcaMappingProcessor

AcaMappingProcessor

AcaMappingProcessor()
getInstance() : AcaMappingProcessor
countOfCoughtExceptions() : int
getExceptions() : Iterator
transformAction(action : Element) : Element
applyMapping(node : Element) : String
getAcaMappingsFor(action_ns : String,action_name : String) : Iterator
addDefaultModuleImports(the_query : StringBuilder) : void
executeXQueryMapping(xml : String,query : String) : String
executeXSLTMapping(xml : String) : String
executeXSLTMapping(xml : String,xslt_mapping : String,xslt_id : String) : String

shared_instance : AcaMappingProcessor
log : Logger
exceptions : Vector

XQuery

XQuery()
getSharedInstance() : XQuery
initDataSource() : XQDataSource
initConnection() : XQConnection
isOpenConnection() : boolean
closeConnection() : void
executeOnDocument(doc : String,query : String) : XQResultSequence
executeOnDocument(node : Node,query : String) : XQResultSequence
executeOnDocument(doc : File,query : String) : XQResultSequence
executeOnSimpleExpression(string : String,query : String) : XQResultSequence
createItemFromString(string : String) : XQItem
createItemFromNode(node : Node) : XQItem
createDocumentFromString(doc : String) : XQItem
createDocumentFromFile(doc : File) : XQItem
execute(xml : XQItem,query : String) : XQResultSequence
finalize() : void
tryParseQuery(query : String) : void

shared_instance : XQuery
log : Logger
dataSource : XQDataSource
conn : XQConnection

Xslt

Xslt()
tryCache(xslt_id : String,xslt : String) : Templates
transform(xml : String,xslt : String,xslt_id : String) : String

log : Logger
cache : HashMap

AcaMappingRegistry

AcaMappingRegistry()
getSharedInstance() : AcaMappingRegistry
getMappings() : List
mappings() : List
modules() : List
iterator() : Iterator
iterator(action_ns : String,action_name : String) : Iterator
checkForUpdates_modules() : void
checkForUpdates_mappings() : void
initAcaModules() : List
initAcaRules() : List

log : Logger
aca_mappings : List
timestamp_mappings : Date
aca_librarys : List
timestamp_librarys : Date
shared_instance : AcaMappingRegistry

abstract MappedDomainActionRegistry

static public boolean isMappedApplicationAction(String namespace, String name)
static public boolean isMappedApplicationAction(String uri)
static public List getMappingDescriptionsFor(String namespace, String name)
static public List getMappingDescriptionsFor(String uri)
static public List getMappingDescriptions()
static private void checkForUpdates()
static private void initAcaMappingDescriptions()
static public String getActionUriOfMapping(String mapping_name)
static public String getActionUriOfMapping(long id)

private static Logger log = Logger.getLogger(Action.class)
private static Hashtable action_uri_map
private static Hashtable aca_mapping_name_map
private static Hashtable aca_mapping_id_map
private static ArrayList descs
private static Date description_timestamp

Figure 5.2.1: ACA Core Architecture

40

5.2. ARCHITECTURE

ActionImplementation

AbstractAction(ns : String,action : String)
toString() : String
getURI() : String
isAction(e : Element) : boolean
isAction(namespace : String,name : String) : boolean
execute(actt : ActionTracer,server : ModelServer,node : Element) : Object

log : Logger
namespace : String
action_name : String

AbstractNodeActionImpl

AbstractNodeAction(ns : String,action : String)
isNodeUpdateAction(namespace : String,name : String) : boolean
tryFetchBody(element : Element) : void

Dump

execute(actt : ActionTracer,server : ModelServer,node : Element) : Element
isDump(mode_string : String,mode : String) : boolean
dump(server : ModelServer,mode_string : String) : Element
Dump()
dumpTrigger() : String
dumpAcaFunctionLibrary() : String
dumpAcaMapping() : String
dumpRDF(server : ModelServer) : String

URI : String
MODE_String_RDF : String
MODE_String_ACA_MAPPING : String
MODE_String_ACA_MODULE : String
MODE_String_TRIGGER : String
MODE_String_ALL : String
mapping_registry

ServiceDescription

ServiceDescription()
getElements(server : ModelServer,predicate : String) : List
hasUrlElements(server : ModelServer) : List
supportsElements(server : ModelServer) : List
usesDomainElements(server : ModelServer) : List
getDescription(server : ModelServer) : String
execute(actt : ActionTracer,server : ModelServer,node : Element) : Element

URI : String

RegisterAcaFunctionLibrary

RegisterAcaFunctionLibrary()
createXML(lib) : String
execute(action_tracer : ActionTracer,server : ModelServer,element : Element) : String

URI : String

DeleteAcaFunctionLibrary

DeleteAcaFunctionLibrary()
execute(action_tracer : ActionTracer,server : ModelServer,element : Element) : String

URI : String

RegisterAcaMapping

RegisterAcaMapping()
createXML(mapping) : String
insertMapping(server : ModelServer,rule) : long
execute(action_tracer : ActionTracer,server : ModelServer,element : Element) : String

URI : String

DeleteAcaMapping

DeleteAcaMapping()
deleteById(server : ModelServer,id : long) : boolean
deleteByName(server : ModelServer,mapping_name : String) : boolean
execute(action_tracer : ActionTracer,server : ModelServer,element : Element) : String

URI : String

RegisterTrigger

RegisterTrigger()
createXML(object : TriggerObject) : String
execute(action_tracer : ActionTracer,server : ModelServer,element : Element) : String

URI : String

DeleteTrigger

DeleteTrigger()
execute(action_tracer : ActionTracer,server : ModelServer,element : Element) : String

URI : String

ReadRDF

ReadRDF()
isSupportedLanguage(lang : String) : boolean
createXML(rdf : String,lang : String) : String
execute(ac : ActionTracer,server : ModelServer,node : Element) : String

URI : String
knownLanguages : String[]

RaiseDirectedEvent

RaiseDirectedEvent()
isAction(namespace : String,name : String) : boolean
execute(target_url : String,actt : ActionTracer,events : Iterator) : String
execute(actt : ActionTracer,server : ModelServer,node : Element) : String

ApplicationDomainAction

ApplicationDomainAction()
getURI() : String
isAction(namespace : String,name : String) : boolean
transformAction(node : Element) : Element
execute(action_tracer : ActionTracer,server : ModelServer,e : Element) : String

URI : String
aca_processor : AcaMappingProcessor

SparqlQuery

SparqlQuery()
ask(ask : String,server : ModelServer) : boolean
execute(query : String,server : ModelServer) : String
request(query : String,server : ModelServer) : Element
execute(ac : ActionTracer,server : ModelServer,node : Element) : String

URI : String

ActionSequence

ActionSequence()
execute(ac : ActionTracer,server : ModelServer,node : Element) : String
parseActionSequence(xml : String) : Element
flattenTree(updates_element : Element) : void
create(actions_xml : String) : Element
create(actions : List) : Element

URI : String
tracer_counter : int

NodeSequence

NodeSequence()
getVariableBinding(node : Element) : Element
getActionTemplates(node : Element) : List
hasVariableBindings(node : Element) : boolean
execute(action_tracer : ActionTracer,server : ModelServer,node : Element) : Object

URI : String

Figure 5.2.2: Application Node Actions

41

5.2. ARCHITECTURE

5.2.2 Class Structure of the ActionImplementation Classes

As mentioned in the previous section, org.semwebtech.applnode.aca.ActionImplementation

objects are very important for the action execution. The methods isAction(String ns, String

name) and execute(ActionTracer, ModelServer, Element) are of highest importance. The

latter was already mentioned. Using isAction, it is possible to check if the particular object is

intended for a certain action URI.

All actual ActionImplementation classes are declared as static member classes of the two ab-

stract classes AbstractRDFUActionImpl and AbstractNodeActionImpl. These types provide pro-

tected functions that are used in their sub classes. As said earlier, there is a set of ActionImplemen-

tation instances in the ActionExecuter containing one instance of each type. So when the RDF

update language or the node actions should be extended, it is only necessary to provide a new

implementation class in the class structure shown in Figure 5.2.3 and Figure 5.2.2 and of course

to add this to the ActionImplementation set of the ActionExecuter.

ActionImplementation

AbstractAction(ns : String,action : String)
toString() : String
getURI() : String
isAction(e : Element) : boolean
isAction(namespace : String,name : String) : boolean
execute(actt : ActionTracer,server : ModelServer,node : Element) : Object

log : Logger
namespace : String
action_name : String

AbstractRDFUActionImpl

AbstractRDFUAction(ns : String,action : String)
isRDFUAction(namespace : String,name : String) : boolean
parseRDFStatement(e : Element) : Properties
executeTopLevelAction(type : String,actt : ActionTracer,server : ModelServer,element : Element) : void

Assert

Assert()
execute(action_tracer : ActionTracer,server : ModelServer,element : Element) : String

URI : String

Delete

Delete()
execute(action_tracer : ActionTracer,server : ModelServer,element : Element) : String

URI : String

DeleteResource

DeleteResource()
execute(action_tracer : ActionTracer,server : ModelServer,element : Element) : String

URI : String

Insert

Insert()
execute(action_tracer : ActionTracer,server : ModelServer,element : Element) : String

URI : String

Rename

Rename()
public String execute(ActionTracer action_tracer, ModelServer server, Element node)

URI : String

Condition

Condition()
createXML(ask : String,xml : String) : String
execute(action_tracer : ActionTracer,server : ModelServer,node : Element) : String

URI : String

Update

Update()
execute(action_tracer : ActionTracer,server : ModelServer,element : Element) : String

URI : String

Figure 5.2.3: RDF Update Actions

5.2.3 Database Access within the ACA Wrapper

Figure 5.2.4 sketches the database access within the ACA wrapper. Both ACA mappings and

XQuery function libraries are stored within a relational database. Just like within the Reactive

Web Service, the open database system PostgreSQL is used for this task. The original database

schema was extended to store the necessary information needed for the action translation func-

42

5.2. ARCHITECTURE

AcaMappingDB

AcaMappingDB()
getCurrentRuleID() : long
getInstance() : AcaMappingDB
isOpenConnection() : boolean
initConnection() : Connection
closeConnection() : void
existsAcaMapping(name : String) : boolean
existsFunctionLibrary(name : String) : boolean
getAllFunctionLibrarys() : List
getAllAcaMappings() : List
getAcaMappingsFor(a_ns : String,a_name : String) : List
getAllMappedActionDescriptions() : List
getAllMappedActionDescriptions(ns : String,name : String) : List
getFunctionLibrary(id : long) :
getAcaMapping(id : long) :
dropFunctionLibrarys() : int
dropAcaMappings() : int
deleteFunctionLibrary(id : long) : boolean
deleteFunctionLibrary(name : String) : boolean
deleteAcaMapping(id : long) : boolean
deleteAcaMapping(name : String) : boolean
dbEncode(s : String) : String
getLastUpdate(type : Class) : Date
insert(acaMapping) : String
insert(lib) : String
delete(c : Class,name : String) : String
update(lib) : boolean
update(rule) : boolean
insertFunctionLibrary(lib) : long
insertAcaMapping(rule) : long
getUpdateStatement(lib) : String
getUpdateStatement(rule) : String
getInsertStatement(rule) : String
getInsertStatement(desc : MappedActionDescription) : String
getInsertStatement(lib) : String
executeInsert(sql : String,seq_name : String) : long
executeQuery(sql : String) : ResultSet
executeUpdate(sql : String) : int
loadDriver() : void
createConnection() : Connection

ACA_ACTION_REGISTER_TABLE_NAME : String
ACA_ACTION_REGISTER_REGCLASS : String
ACA_RULE_TABLE_NAME : String
ACA_FUNCTIONS_TABLE_NAME : String
ACA_RULE_ID_REGCLASS : String
ACA_FUNCTIONS_ID_REGCLASS : String
instance : AcaMappingDB
last_update_aca_rule : Date
last_update_aca_functions : Date
db_connection : Connection
current_rule_id : long
log : Logger

AcaMappingRegistry

AcaMappingRegistry()
getSharedInstance() : AcaMappingRegistry
getMappings() : List
mappings() : List
modules() : List
iterator() : Iterator
iterator(action_ns : String,action_name : String) : Iterator
checkForUpdates_modules() : void
checkForUpdates_mappings() : void
initAcaModules() : List
initAcaRules() : List

log : Logger
aca_mappings : List
timestamp_mappings : Date
aca_librarys : List
timestamp_librarys : Date
shared_instance : AcaMappingRegistry

MappedDomainActionRegistry

isMappedApplicationAction(namespace : String,name : String) : boolean
isMappedApplicationAction(uri : String) : boolean
getMappingDescriptionsFor(namespace : String,name : String) : List
getMappingDescriptionsFor(uri : String) : List
getMappingDescriptions() : List
checkForUpdates() : void
initAcaMappingDescriptions() : void
getActionUriOfMapping(mapping_name : String) : String
getActionUriOfMapping(id : long) : String

log : Logger
action_uri_map : Hashtable
aca_mapping_name_map : Hashtable
aca_mapping_id_map : Hashtable
descs : ArrayList
description_timestamp : Date

AcaMapping

AcaMapping(name : String,ln : String,ns : String,an : String,owner : String,rule : String)
toString() : String
usesLanguage(language : String) : boolean
getLanguage() : String
getContent() : String
getName() : String
setID(id : long) : void
getID() : long
getActionName() : String
getActionNamespace() : String
setOwnerResource(uri : String) : void
getOwnerResource() : String
getDescription() : MappedActionDescription
parse(xml : String) : AcaMapping
parse(element : Element) : AcaMapping
getDefaultName() : String
create(id : long,name : String,ns : String,an : String,ln : String,rule : String) : AcaMapping

NAMESPACE : String
NODE_NAME : String
XQUERY : String
XSLT : String
id : long
language : String
content : String
name : String
action_name : String
action_namespace : String
owner_resource : String
log : Logger

AcaFunctionLibrary

AcaFunctionLibrary(name : String,content : String)
getContent() : String
getName() : String
setID(id : long) : void
getID() : long
toString() : String
isFunctionLibrary(xml : String) : boolean
create(id : long,name : String,declaration : String) : AcaFunctionLibrary
parse(xml : String) : AcaFunctionLibrary
parse(element : Element) : AcaFunctionLibrary

NAMESPACE : String
NODE_NAME : String
log : Logger
id : long
name : String
content : String

MappedActionDescription

protected MappedActionDescription(AcaMapping rule)
protected MappedActionDescription(String ns, String name, long rule_id, String rule_name, String owner)
public long getAcaMappingID()
public String getAcaMappingName()
public String getActionName()
public String getActionNamespace()
public String getOwnerResource()
public String toString()

name : String
namespace : String
aca_mapping_id : long
aca_mapping_name : String
owner_resource : String

Figure 5.2.4: ACA database classes

43

5.2. ARCHITECTURE

tionality. Classes that deal with the database storage are in the package

org.semwebtech.applnode.aca.database.

There are three data classes that represent the objects stored in the database. These are AcaMapping,

AcaFunctionLibrary and MappedActionDescription. The latter is responsible for the storage of

relations between ACA mappings and application domain actions. That information is not stored

directly with the mapping content but externally in a separate relation with a foreign key to the

actual mapping data.

The database access is provided centrally by the class AcaMappingDB. It encapsulates all infor-

mation about relation names and schema and therefore simplifies the handling of possible modifica-

tions of the database schema. Two classes MappedDomainActionRegistryand AcaMappingRegistry

provide cached access to the database content. It would be inefficient to query the database by

calling the methods of AcaMappingDB every time a mapping or similar information is used. Thus

the two registry classes provide a cached database state in the memory that automatically refreshes

when a database update was performed.

The relations used for storage of the ACA functionality are defined as follows:

-- +++

-- relation that contains the ACA Mappings

--

CREATE TABLE acarule

(

-- primary key --

id serial NOT NULL,

-- unique name --

name varchar(256) NOT NULL,

-- rule content, language (xquery or xslt) --

rule text NOT NULL,

language varchar(32) NOT NULL,

CONSTRAINT acarule_pkey PRIMARY KEY (id),

CONSTRAINT acarule_unique_name UNIQUE (name)

) ;

-- ++

-- relation that contains the XQuery modules

--

CREATE TABLE acafunctionlibrary

(

-- primary key --

id serial,

44

5.3. ACTION INTERFACE SERVLETS

-- unique name --

name varchar(256) NOT NULL,

-- mudule declaration --

declaration text NOT NULL,

CONSTRAINT acafunction_pkey PRIMARY KEY (id),

CONSTRAINT acafunction_unique_name UNIQUE (name)

) ;

-- ++

-- relation containing the information that maps

-- ACA Rule to a specific Application Domain Action

--

CREATE TABLE acaactionregister

(

-- primary key --

id serial NOT NULL,

-- Application Domain Action (namespace, name) --

namespace varchar(256) NOT NULL,

name varchar(256) NOT NULL,

-- corresponding ACA Mapping (id, name, owner) --

aca_id int4 NOT NULL,

aca_name varchar(256) NOT NULL,

owner_resource varchar(256),

CONSTRAINT acaactionregister_pkey PRIMARY KEY (id),

CONSTRAINT acaregister_acarule_name FOREIGN KEY (aca_name)

REFERENCES acarule (name) MATCH SIMPLE

ON UPDATE CASCADE ON DELETE CASCADE,

CONSTRAINT acaregister_acarule_id FOREIGN KEY (aca_id)

REFERENCES acarule (id) MATCH SIMPLE

ON UPDATE NO ACTION ON DELETE CASCADE

) ;

[Filename:config/db-script-aca.sql]

5.3 Action Interface Servlets

The Action interface is mainly provided by a single Servlet that is intended to receive XML action

messages. Altogether, there are three Servlets that build the interface. These are (with their

URLs as currently configured in the prototype):

45

5.3. ACTION INTERFACE SERVLETS

• ActionServlet - Main Servlet of the ACA wrapper (relative URL: /semweb/rdfserver/actions

and /semweb/rdfserver/services).

• ModuleAccessorServlet - Servlet used to locally access and modify stored XQuery modules

(relatice URL: /semweb/aca/modules).

• MappingAccessorServlet - Servlet used to locally access and modify stored ACA mappings

(relatice URL: /semweb/aca/mappings).

Additionally, there are two Servlets that build the original Web Service. These are:

• RDFTriggerServlet - Main Servlet of the original RDF Web Service.

(relative URL: /semweb/rdfserver)

• TriggerServlet - Dummy service that is used as Event Broker. It opens received messages

in a GUI window. (relatice URL: /semweb/triggerserver).

Figure 5.3.1: ActionServlet screenshot

The ActionServlet is responsible for the processing of XML mark-upped actions including the

administrative node actions, RDF update actions and of course application domain actions. The

messages are parsed into the DOM and forwarded to the ACA executing classes as described

earlier in Section 5.2.

46

5.3. ACTION INTERFACE SERVLETS

Additionally to XML messages this Servlet can also process the following plain text commands:

• list aca mappings - Returns a text representaion of all registered ACA mappings.

• list function libraries - Returns a text representaion of all stored XQuery modules

• delete aca mapping [id | name] (<<ID or NAME>>) - Deletes the ACA mapping corresponding

to a given primary key value or mapping name.

• delete function library [id | name] (<<ID or NAME>>) - Deletes the XQuery module corre-

sponding to a given primary key value or module name.

• drop aca mappings - Removes all ACA mappings from the database

• drop function libraries - Removes all XQuery modules from the database.

• set output result format (OUTPUT ALL | OUTPUT FAILURE | OUTPUT ONLY SERVICE RESULTS)

- Changes the answering behavior of the action interface.

When set to OUTPUT ONLY SERVICE RESULTS the interface only returns variable bind-

ings as answer to a query, its service description and a requested dump file. Using the

OUTPUT FAILURE option, failure messages that occurred are additionally included in the

Servlet response. OUTPUT ALL lets the response reassemble a complete list of the executed

operations.

When enabled by set output result format, the result of an executed action is usually an appln-

oderesult element.

Example 14 Take for example a Domain Action uni:add-student in form of the following message:

<uni:add-student xmlns:uni=“http://localhost/test.owl#”>

<uni:uri>stud peter</uni:uri>

<uni:name>Peter</uni:name>

</uni:add-student>

Assume there is an ACA mapping for that action with the following XQuery definition:

import module namespace uni = "http://localhost/test.owl#"

at "http://localhost:8080/semweb/aca/modules/uni";

for $stud in //uni:add-student

let $uri := aca:getProperty($stud, "uni:uri")

let $stud_uri := uni:person_uri($uri)

let $name := aca:getProperty($stud, "uni:name")

return

(

rdfu:insert($stud_uri, rdf:ns("type"), uni:ns("Student")),

rdfu:insert($stud_uri, rdf:ns("type"), owl:ns("Thing")),

rdfu:insert($stud_uri, uni:ns("name"), rdfu:stringLiteral($name))

)

47

5.3. ACTION INTERFACE SERVLETS

So when the message above is sent to the ACA interface, it is processed by that mapping to the

following RDF update sequence:

<applnode:actionSequence

xmlns:applnode="http://www.semwebtech.org/2006/application-node#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfu="http://www.semwebtech.org/lang/2006/rdfupdate#">

<rdfu:insert>

<rdf:subject>http://localhost/test.owl#stud_peter</rdf:subject>

<rdf:predicate>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</rdf:predicate>

<rdf:object>http://localhost/test.owl#Student</rdf:object>

</rdfu:insert>

<rdfu:insert>

<rdf:subject>http://localhost/test.owl#stud_peter</rdf:subject>

<rdf:predicate>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</rdf:predicate>

<rdf:object>http://www.w3.org/2002/07/owl#Thing</rdf:object>

</rdfu:insert>

<rdfu:insert>

<rdf:subject>http://localhost/test.owl#stud_peter</rdf:subject>

<rdf:predicate>http://localhost/test.owl#name</rdf:predicate>

<rdf:object>Peter^^<http://www.w3.org/2001/XMLSchema#string></rdf:object>

</rdfu:insert>

</applnode:actionSequence>

When the result is enabled by the OUTPUT ALL option, the following messege is returned as a

response:

<applnode:result

xmlns:applnode="http://www.semwebtech.org/2006/application-node#"

xmlns:mars="http://www.semwebtech.org/2006/mars#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfu="http://www.semwebtech.org/lang/2006/rdfupdate#">

<applnode:executed-action

applnode:action-uri="http://www.semwebtech.org/lang/2006/rdfupdate#insert"

mars:Action="http://localhost/test.owl#add-student" >

<rdf:predicate>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</rdf:predicate>

<rdf:subject>http://localhost/test.owl#stud_peter</rdf:subject>

<rdf:object>http://localhost/test.owl#Student</rdf:object>

<![CDATA[Statement added successfully.]]>

</applnode:executed-action>

<applnode:executed-action

applnode:action-uri="http://www.semwebtech.org/lang/2006/rdfupdate#insert"

mars:Action="http://localhost/test.owl#add-student" >

<rdf:predicate>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</rdf:predicate>

<rdf:subject>http://localhost/test.owl#stud_peter</rdf:subject>

48

5.4. EXTENSION OF THE RDF WEB SERVER CLIENT

<rdf:object>http://www.w3.org/2002/07/owl#Thing</rdf:object>

<![CDATA[Statement added successfully.]]>

</applnode:executed-action>

<applnode:executed-action

applnode:action-uri="http://www.semwebtech.org/lang/2006/rdfupdate#insert"

mars:Action="http://localhost/test.owl#add-student" >

<rdf:predicate>http://localhost/test.owl#name</rdf:predicate>

<rdf:subject>http://localhost/test.owl#stud_peter</rdf:subject>

<rdf:object>Peter^^<http://www.w3.org/2001/XMLSchema#string></rdf:object>

<![CDATA[Statement added successfully.]]>

</applnode:executed-action>

</applnode:result>

Note that the attribute mars:Action marks a particular RDF update action to be performed as a

result of a mapping of the application domain action http://localhost/test.owl#add-student”.

Failures would be returned as an applnode:failure element instead of applnode:executed-action.

If OUTPUT FAILURE or OUTPUT ONLY SERVICE RESULTS is set as output format when

the uni:add-student is executed as shown above, nothing would be returned.

Figure 5.3.1 shows a screenshot of the action interface when loaded in a web browser. The server

is not intended to be used with a browser but it is nevertheless possible and useful for administrative

purposes. The yellow text input area enables the user to directly send requests to the server. The

links at the bottom of the page change the output format of the ACA interface or lead to the

ACA mapping Registry. The latter is provided by the two Servlets MappingAccessorServlet

and ModuleAccessorServlet as mentioned above. These servlets support the listing of registered

mappings and modules (see Figure 5.3.2) and their modification via the alter link, deletion via the

delete link and the insertion of new modules and mappings. Figure 5.3.3 shows the insert form for

a new ACA mapping.

Both Servlets enable access to the corresponding content. So, either mappings or modules can

be accessed via HTTP. When following the show link on the list pages (Figure 5.3.2) the module or

entry is shown in plain text. That is especially useful for the XQuery modules that are imported

in ACA mappings. Every module that has been registered is accessible under the relative URL

/semweb/aca/modules/<<MODULE NAME>>.

5.4 Extension of the RDF Web Server Client

Apart from the interface provided by the Servlets described in the latter section, there is a client

GUI that enables the administration of the Web Service. That client was created with the original

Web Service. It has been extended to be additionally used to administer the ACA transformation

mechanism. That has been done by adding a second main window to the client that uses the old

infrastructure and just extends the functionality. That new dialog is shown in Figure 5.4.1. There

is a button Trigger client that opens the old dialog.

The new dialog provides the ability to register and delete ACA mappings and XQuery modules

via HTTP messages. There is also the possibility to send XML actions to the server. The top

49

5.4. EXTENSION OF THE RDF WEB SERVER CLIENT

Figure 5.3.2: ModuleAccessorServlet: List of registered modules

Figure 5.3.3: Form to insert a new ACA Mapping

button on the right hand side of the client window opens the XQuery dialog that is shown in

Figure 5.4.2. That dialog may be used to test XQuery expressions locally before including them

in mappings or function library modules. The dialog has two text input areas. The one at the

bottom is expected to contain a XQuery query that is evaluated using an XML document given

in the upper text area as context node. Therefore it is possible to test the transformation of XML

marked-up actions with a given XQuery expression. The result of that transformation is shown

in a new window. That dialog creates the same as transformation result than the actual ACA

wrapper infrastructure. Thus the same default XQuery modules are imported automatically.

50

5.4. EXTENSION OF THE RDF WEB SERVER CLIENT

Figure 5.4.1: Client Main Window Screenshot

Figure 5.4.2: XQuery Dialog Screenshot

51

5.5. EXAMPLES AND TESTING

5.5 Examples and Testing

The local implementation of the action interface includes a mechanism to execute predefined

sequences of actions. It is provided by the protected local action applnode:actionSequence as

described in Section 4.4. This action is used internally when an application domain action is

executed because usually such a process involves the execution of several data model level update

instructions.

But additionally, the infrastructure provided by these local actions can be used for the speci-

fication of test cases. That is because practically, a test case is nothing less than the execution of

a stack of instructions in a certain order that intend a particular result.

Using an applnode:actionSequence, it is possible to define a test scenario for the action interface

by describing a list of actions. These will usually include the insertion of certain statements in

the knowledge base and the registration of ACA mappings followed by certain application domain

action that trigger the mappings and are transformed to derived data level actions. This process

can be monitored either by the result returned from the action interface or by adding queries to

the test case that output information about the success of the mapping by querying data that

correlates with the mapping that should be tested.

There are some predefined test cases that can be found under /semweb/examples/ when using

the original configuration of the prototype. There also are ACA mappings that can be found under

the relative URL /semweb/test/resources/.

An example for such a test case is given by the following XML document:

<node:actionSequence

xmlns:rdfu="http://www.semwebtech.org/lang/2006/rdfupdate#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:aca="http://www.semwebtech.org/lang/2006/aca#"

xmlns:node="http://www.semwebtech.org/2006/application-node#">

<!-- setup -->

<rdfu:assert>

<rdf:subject rdf:resource="http://localhost/test.owl#add-student" />

<rdf:predicate rdf:resource="http://www.w3.org/2000/01/rdf-schema#subClassOf" />

<rdf:object rdf:resource="http://www.semwebtech.org/2006/mars#Action" />

</rdfu:assert>

<rdfu:assert

<rdf:subject rdf:resource="http://localhost/test.owl#add-vorlesung" />

<rdf:predicate rdf:resource="http://www.w3.org/2000/01/rdf-schema#subClassOf" />

<rdf:object rdf:resource="http://www.semwebtech.org/2006/mars#Action" />

</rdfu:assert>

<rdfu:assert

rdf:subject rdf:resource=http://localhost/test.owl#hoert-vorlesung" />

rdf:predicate rdf:resource="http://www.w3.org/2000/01/rdf-schema#subClassOf" />

rdf:object rdf:resource="http://www.semwebtech.org/2006/mars#Action" />

</rdfu:assert>

52

5.5. EXAMPLES AND TESTING

<node:register-aca-mapping

node:name="mapping_xquery_newStudent_1"

node:action-namespace="http://localhost/test.owl#"

node:action-name="add-student"

node:language="xquery"

node:url="http://localhost:8080/semweb/test/resources/mapping_add-student_1.xq" />

<node:register-aca-mapping

node:name="mapping_xquery_newVorlesung_1"

node:action-namespace="http://localhost/test.owl#"

node:action-name="add-vorlesung"

node:language="xquery"

node:url="http://localhost:8080/semweb/test/resources/mapping_add-vorlesung_1.xq" />

<node:register-aca-mapping

node:name="mapping_xquery_hoertVorlesung_1"

node:action-namespace="http://localhost/test.owl#"

node:action-name="hoert-vorlesung"

node:language="xquery"

node:url="http://localhost:8080/semweb/test/resources/mapping_hoert-vorlesung_1.xq" />

<!-- application domain actions -->

<uni:add-student xmlns:uni="http://localhost/test.owl#">

<uni:uri>stud_peter</uni:uri>

<uni:name>Peter</uni:name>

</uni:add-student>

<uni:add-vorlesung xmlns:uni="http://localhost/test.owl#">

<uni:uri>vorl_semweb</uni:uri>

<uni:name>Semantic Web</uni:name>

</uni:add-vorlesung>

<uni:hoert-vorlesung xmlns:uni="http://localhost/test.owl#">

<uni:stud>http://localhost/test.owl#stud_peter</uni:stud>

<uni:vorl>http://localhost/test.owl#vorl_semweb</uni:vorl>

</uni:hoert-vorlesung>

<node:query><![CDATA[

select ?stud ?x ?y where { ?stud rdf:type uni:Person . ?stud ?x ?y }

]]></node:query>

<!-- clean up -->

<node:delete-aca-mapping node:name="mapping_xquery_newStudent_1" />

<node:delete-aca-mapping node:name="mapping_xquery_newVorlesung_1" />

<node:delete-aca-mapping node:name="mapping_xquery_hoertVorlesung_1" />

<rdfu:delete-resource rdf:resource="http://localhost/test.owl#stud_peter" />

<rdfu:delete-resource rdf:resource="http://localhost/test.owl#vorl_semweb" />

<rdfu:delete-resource rdf:resource="http://localhost/test.owl#add-student" />

<rdfu:delete-resource rdf:resource="http://localhost/test.owl#add-vorlesung" />

53

5.5. EXAMPLES AND TESTING

<rdfu:delete-resource rdf:resource="http://localhost/test.owl#hoert-vorlesung" />

</node:actionSequence>

[Filename:/semweb/examples/TestCase xquery 1.xml]

At first, this test ensures that three application domain action definitions (uni:add-student,

uni:add-vorlesung and uni:hoert-vorlesung) are known to the local knowledge base. After that,

three ACA mappings are registered that are followed by three corresponding Domain Actions and

a query. Finally, the modified resources are deleted and the mappings are de-registered.

A second way to test the action interface is provided by JUnit tests that directly use the ACA

wrapper by calling the methods of the Action class. These JUnit test cases can be found in the

Java package org.semwebtech.applnode.test. There is the convenience class

org.semwebtech.applnode.test.AbstractActionTestCase

that should be extended. It provides methods like

toDOM(String xml),

executeAction(Element),

insertXQueryMapping(..),

insertWorldAction(String uri) or

sparql(String query) etc.

An example JUnit test that is defined in the TestAction4 class has the following Java code:

public void testMapping1() {

String mapping = resourceToString("mapping_add-student_1.xq");

String name = "mapping_add-student_1";

String action_ns = uni_ns;

String action_name = "add-student";

try {

insertWorldAction(unins(action_name));

insertXqueryMapping(name, action_ns, action_name, mapping);

executeAction(addStudent("stud_peter", "Peter"));

assertEquals("Peter", getObject(unins("stud_peter"), unins("name")));

} finally {

deleteWorldAction(unins(action_name));

deleteMapping(name);

deleteResource(unins("stud_peter"));

}

}

54

5.6. INSTALLATION OF THE ACA REACTIVE RDF WEB SERVICE

The method resourceToString(String filename) enables to access the same resources that

can be found under /semweb/test/resources/. Using getObject(String subject uri, String

predicate uri) a query of the local model can be executed that will return the corresponding

object.

Most methods from AbstractActionTestCase implicitly test their success and may throw an

AssertionFailedError if they fail.

5.6 Installation of the ACA Reactive RDF Web Service

The prototype implementation of the ACA Reactive Web Service uses the Java Servlet technology

as already mentioned. Therefore, it has to be installed in a Java Container to be used. For such an

deployment, usually a Java WAR file is used that contains all necessary classes and configuration

files. This WAR file along a JAR file containing the GUI client can be automatically created using

the ant tool [2]. The provided ant build.xml file contains build targets for simple compiling,

creation of the archives and additionally the automatic deployment of the WAR file. Of course

this requires that the build.xml file is configured accordingly.

The Web Service is configured by a configuration property file that will be described in the

next section. This file is indented to be found in the WEB-INF directory of the WAR file. There

will also be search for the log4j [9] configuration file log4j.properties, two SQL script files

named db script aca.sql and db script trigger.sql and an XML file named nodeInit.xml

containing node actions that are executed upon the initialization of the ActionServlet. The

configuration file has to contain a valid database URL and user account information for the

application to be able to open a database connection to the underlying relational database where

the RDF data, the triggers and the ACA mappings are stored. In fact, the only precondition

that is required for a successful installation of the Web Service is that these database informations

are valid. All necessary tables are created automatically using the mentioned SQL scripts. The

nodeInit.xml file defines initial ACA mapping, Trigger and XQuery module registrations.

5.7 Configuration

Basically, the Web Service is configured by a properties file named configuration.properties.

Before installing the Web Service it is therefore necessary to update this file. It contains the

following properties:

• org.semwebtech.service.uri - Service URI of the particular Domain Service provided by this

installation. This URI is used to declare mars:supports or mars:uses-domain statements that

are included in the Service Description of the Domain Service.

• dburl, dbuser, dbpasswd - Information used for the database connection. There are three of

each of these properties because it is intended that the triggers, the mappings and the model

data may be stored in separate databases or be accessed by different users. See the example

configuration file that can be found under B.1 to see how these properties are used in detail.

• org.semwebtech.applnode.servlet.ModelServer.model.name - URI for the knowledge base model

that is used for storage in the database.

55

5.7. CONFIGURATION

• org.semwebtech.applnode.servlet.ModelServer.reasonerurl - URL of the DIG reasoner that will

be used.

• org.semwebtech.events.broker.url - URL of the Event Broker

• org.semwebtech.applnode.servlet.rdfserver.url - URL of the main Web Service. That is the URL

the RDFTriggerServlet responds to. It is nedded because the two Serlvets RDFTriggerServlet

and ActionServlet call each other via HTTP.

• org.semwebtech.applnode.servlet.rdfserver.actions.url - URL the ActionServlet responds to.

• org.semwebtech.applnode.servlet.ModuleAccessorServlet.url - URL of the ModuleAccessorServlet.

That URL is needed because the XQuery modules that are imported automatically upon

mapping execution are loaded from this URL.

Additionally, the following namespace properties have to set accordingly:

• org.semwebtech.lang.logvars.namespace

• org.semwebtech.lang.aca.namespace

• org.semwebtech.lang.rdfu.namespace

• org.semwebtech.applnode.namespace

• org.semwebtech.mars.namespace

• org.w3.rdf.namespace

• org.w3.rdfs.namespace

• org.w3.owl.namespace

56

Chapter 6

Conclusion

With the RDF Web Service that provides trigger functionality for the raising of events and the

ACA wrapper for the mapping of ontology actions to the local data model, it is possible to create

a service that is fully integrated into the MARS Framework. Therefore, for the first time, a test

scenario can be implemented that uses real Domain Services for that create domain events and

consume domain actions. So far, the different services like Domain Broker, ECA Engine and also

the RDF Web Service were only tested using stubs and dummy-implementations for the remote

framework services.

The Domain Services are important for such a test case scenario as this is where the application

logic is implemented. The other services provide the infrastructure for the event-driven commu-

nication and the possibility to specify and execute active rules, but without Domain Services a

“living” example network using the technology of the framework can’t be implemented.

Therefore, the next step in the framework development will be the definition of “real” Domain

Services that emit events and react upon action requests. At first, these services are restricted

to belong to only one application domain. The reason for this limitation lies in the current

implementation. The prototypical Web Service only supports one registered Event Broker. Thus,

the assignment of raised events to different Event Brokers is not possible. Though it would be

easy to provide such functionality, this is not necessary at the moment. It is more important to

join the different components of the framework together for a first time.

The main task will be to bring the communication interfaces of the different components into

line. As the development of the framework has progressed certain interfaces have changed. The

first step is to employ all components in a simple scenario that breaths life into the framework.

The complexity is of minor importance. Afterwards, the test scenario can be extended. While

doing this the components will presumably have to be adapted to fulfill new requirements.

57

Appendix A

Abbreviations

ECA: Event-Condition-Action

ECE: Event-Condition-Event derivation rule

ACA: Action-Condition-Action implementation rule

DSR: Domain Service Registry

LSR: Languages and Services Registry

XML: Extensible Markup Language

XSLT: Extensible Stylesheet Language (XSL) Transformations

WAR: Web Archive

JAR: Java Archive

58

Appendix B

ACA RDF Web Service

Configuration Files

B.1 Configuration Properties File

SERVICE PROPERTIES ==

URI of service

org.semwebtech.service.uri = "http://localhost:8080/semweb/uni-service"

DATABASE PROPERTIES ===

--- JENA/RDF --

URL of RDF database server

org.semwebtech.applnode.servlet.ModelServer.dburl = "localhost/test1"

RDF database user id

org.semwebtech.applnode.servlet.ModelServer.dbuser = "schenk"

RDF database password

org.semwebtech.applnode.servlet.ModelServer.dbpasswd = "irgendeinpassowrt"

--- TRIGGER ---

URL of the database containing the trigger

org.semwebtech.applnode.trigger.TriggerDB.dburl = "localhost/test1"

user id of the trigger database

org.semwebtech.applnode.trigger.TriggerDB.dbuser = "schenk"

password for the trigger database

org.semwebtech.applnode.trigger.TriggerDB.dbpasswd = "irgendeinpassowrt"

--- ACA/ACTION ---

URL of the database containing the aca rules

org.semwebtech.applnode.aca.AcaMappingDB.dburl = "localhost/test1"

user id for the aca database

org.semwebtech.applnode.aca.AcaMappingDB.dbuser = "schenk"

password for the aca database

59

B.1. CONFIGURATION PROPERTIES FILE

org.semwebtech.applnode.aca.AcaMappingDB.dbpasswd = "irgendeinpassowrt"

MODELSERVER PROPERTIES ===

name of the model used for storage in database (has to be qname)

org.semwebtech.applnode.servlet.ModelServer.model.name = /

"http://org.semwebtech.applnode/model/uni"

URL of the model. The modelserver will try to read from this URL

org.semwebtech.applnode.servlet.ModelServer.model.fetchurl = /

"http://localhost:8080/semweb/RDF/uni.owl"

language used in resource identified by fetchurl (RDF/XML, N3, ...)

org.semwebtech.applnode.servlet.ModelServer.model.inputlanguage = "RDF/XML"

URL of the external Reasoner: PELLET

org.semwebtech.applnode.servlet.ModelServer.reasonerurl = "http://localhost:8081"

URL PROPERTIES ===

URL of the EventBroker, Domain Broker?

org.semwebtech.events.broker.url = "http://localhost:8080/semweb/triggerserver"

URL of the RDFTriggerServer

org.semwebtech.applnode.servlet.rdfserver.url = "http://localhost:8080/semweb/rdfserver"

URL of the RDFTriggerServers action interface

org.semwebtech.applnode.servlet.rdfserver.actions.url = /

"http://localhost:8080/semweb/rdfserver/actions"

base URL of ModuleAccessorServlet

so that ${BASE_URL}/MODULE_NAME is a valid URL

org.semwebtech.applnode.servlet.ModuleAccessorServlet.url= /

"http://localhost:8080/semweb/aca/modules"

NAMESPACE PROPERTIES ==

logvars namespace

org.semwebtech.lang.logvars.namespace = "http://www.semwebtech.org/lang/2006/logic#"

ACA namespace

org.semwebtech.lang.aca.namespace = "http://www.semwebtech.org/lang/2006/aca#"

rdf update namespace

org.semwebtech.lang.rdfu.namespace = "http://www.semwebtech.org/lang/2006/rdfupdate#"

namespace of the application node

org.semwebtech.applnode.namespace = "http://www.semwebtech.org/2006/application-node#"

mars

org.semwebtech.mars.namespace = "http://www.semwebtech.org/2006/mars#"

RDF namespace

org.w3.rdf.namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

RDFS namespace

org.w3.rdfs.namespace="http://www.w3.org/2000/01/rdf-schema#"

#OWL namespace

org.w3.owl.namespace="http://www.w3.org/2002/07/owl#"

60

B.2. NODE INITIALIZATION ACTIONS

[Filename:config/configuration.properties

B.2 Node Initialization Actions

<applnode:actionSequence xmlns:rdfu="http://www.semwebtech.org/lang/2006/rdfupdate#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:aca="http://www.semwebtech.org/lang/2006/aca#"

xmlns:applnode="http://www.semwebtech.org/2006/application-node#">

<applnode:read-rdf url="http://localhost:8080/semweb/RDF/mars-domain.n3"

input-language="N3" />

<applnode:read-rdf url="http://localhost:8080/semweb/RDF/uni-domain.n3"

input-language="N3" />

<applnode:read-rdf url="http://localhost:8080/semweb/RDF/uni-services.n3"

input-language="N3" />

<applnode:read-rdf url="http://localhost:8080/semweb/RDF/uni-instances.n3"

input-language="N3" />

<applnode:read-rdf url="http://localhost:8080/semweb/RDF/node-domain-actions.n3"

input-language="N3" />

<applnode:read-rdf url="http://localhost:8080/semweb/RDF/rdf-update-actions.n3"

input-language="N3" />

<applnode:register-aca-function-library

name="applnode"

url="http://localhost:8080/semweb/aca-module-defs/applnode.xq" />

<applnode:register-aca-function-library

name="basic"

url="http://localhost:8080/semweb/aca-module-defs/basic.xq" />

<applnode:register-aca-function-library

name="rdfu"

url="http://localhost:8080/semweb/aca-module-defs/rdfu.xq" />

<applnode:register-aca-function-library

name="rdfs"

url="http://localhost:8080/semweb/aca-module-defs/rdfs.xq" />

<applnode:register-aca-function-library

name="owl"

url="http://localhost:8080/semweb/aca-module-defs/owl.xq" />

<applnode:register-aca-function-library

name="rdf"

url="http://localhost:8080/semweb/aca-module-defs/rdf.xq" />

<applnode:register-aca-function-library

name="uni"

url="http://localhost:8080/semweb/aca-module-defs/uni.xq" />

61

B.2. NODE INITIALIZATION ACTIONS

<applnode:register-aca-mapping

name="add-professor_mapping_001"

action-namespace="http://localhost/test.owl#"

action-name="add-professor"

owner-resource="uri"

language="xquery"

url="http://localhost:8080/semweb/aca-mapping-defs/add-professor_mapping_001.xq" />

<applnode:register-trigger name="testtrigger1"

url="http://localhost:8080/semweb/trigger-defs/testtrigger1.txt" />

<applnode:register-trigger

url="http://localhost:8080/semweb/trigger-defs/test_uniquePraesident.txt" />

<applnode:register-trigger

url="http://localhost:8080/semweb/trigger-defs/test_delete_1.txt" />

<applnode:register-trigger

url="http://localhost:8080/semweb/trigger-defs/test_ask_1.txt" />

</applnode:actionSequence>

[Filename:config/nodeInit.xml

62

Appendix C

ACA Mapping XQuery modules

C.1 Application Node Module

module namespace applnode = "http://www.semwebtech.org/2006/application-node#";

declare function applnode:delete-aca-mapping($name as xs:string) {

<applnode:delete-aca-mapping applnode:name="{$name}"/>

};

declare function applnode:delete-aca-function-library($name as xs:string) {

<applnode:delete-aca-function-library applnode:name="{$name}"/>

};

declare function applnode:delete-trigger($name as xs:string) {

<applnode:delete-trigger applnode:name="{$name}"/>

};

declare function applnode:condition ($ask as xs:string,

$actions as element()*) {

<applnode:condition ask="{$ask}">

$actions

</applnode:condition>

};

declare function applnode:register-aca-mapping($name as xs:string,

$action_ns as xs:string,

$action_name as xs:string,

$lang as xs:string,

$def as xs:string) {

<applnode:register-aca-mapping>

<applnode:name>{$name}</applnode:name>

<applnode:action-namespace>{$action_ns}</applnode:action-namespace>

63

C.1. APPLICATION NODE MODULE

<applnode:action-name>{$action_name}</applnode:action-name>

<applnode:language>{$lang}</applnode:language>

{

$def

}

</applnode:register-aca-mapping>

};

declare function applnode:register-trigger($def as xs:string) {

<applnode:register-trigger>

{

$def

}

</applnode:register-trigger>

};

declare function applnode:read-rdf($url, $lang as xs:string) {

<applnode:read-rdf>

<applnode:url>{$url}</applnode:url>

<applnode:language>{$lang}</applnode:language>

</applnode:read-rdf>

};

declare function applnode:raiseEvent($event as element()*) {

<applnode:raise-event>

{

$event

}

</applnode:raise-event>

};

declare function applnode:raiseEventWhen($when, $events as element()*) {

<applnode:raise-event>

{(

<applnode:when>{string($when)}</applnode:when>,

$events

)}

</applnode:raise-event>

};

declare function applnode:raiseDirectedEvent($target_url,

$event as element()*) {

<applnode:raise-directed-event applnode:target-url="{$target_url}">

{

$event

64

C.2. ACA MODULE

}

</applnode:raise-directed-event>

};

declare function applnode:raiseDirectedEventWhen($when,

$target_url,

$events as element()*) {

<applnode:raise-directed-event applnode:target-url="{$target_url}">

{(

<applnode:when>{string($when)}</applnode:when>,

$events

)}

</applnode:raise-directed-event>

};

declare function applnode:actionSequence($actions as element()*) as element() {

<applnode:actionSequence

xmlns:rdfu="http://www.semwebtech.org/2006/rdfupdate#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

{

for $action in $actions

return $action

}

</applnode:actionSequence>

};

declare function applnode:nodeSequence($actions as element()*) as element() {

<applnode:nodeSequence

xmlns:rdfu="http://www.semwebtech.org/2006/rdfupdate#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

{

for $action in $actions

return $action

}

</applnode:nodeSequence>

};

[Filename:aca-mapping-defs/applnode.xq]

C.2 ACA Module

65

C.3. OWL MODULE

module namespace aca = "http://www.semwebtech.org/lang/2006/aca#";

declare function aca:getProperty($node as element(), $name as xs:string)

as xs:string {

if ($node/@*[./name() = $name]) then $node/@*[./name() = $name]/string()

else if ($node/*[./name() = $name]) then $node/*[./name() = $name]/text()

else ""

};

[Filename:aca-mapping-defs/basic.xq]

C.3 OWL Module

module namespace owl = "http://www.w3.org/2002/07/owl#";

declare function owl:ns($name as xs:string) as xs:string {

concat("http://www.w3.org/2002/07/owl#", $name)

};

[Filename:aca-mapping-defs/owl.xq]

C.4 RDF Module

module namespace rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#";

declare function rdf:ns($name as xs:string) as xs:string {

concat("http://www.w3.org/1999/02/22-rdf-syntax-ns#", $name)

};

[Filename:aca-mapping-defs/rdf.xq]

C.5 RDFS Module

module namespace rdfs="http://www.w3.org/2000/01/rdf-schema#";

declare function rdfs:ns($name as xs:string) as xs:string {

concat("http://www.w3.org/2000/01/rdf-schema#", $name)

};

[Filename:aca-mapping-defs/rdfs.xq]

C.6 RDF Update Module

module namespace rdfu = "http://www.semwebtech.org/lang/2006/rdfupdate#";

declare namespace rdfs = "http://www.w3.org/2000/01/rdf-schema#";

import module namespace rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

at "http://localhost:8080/semweb/aca/modules/rdf";

declare function rdfu:stringLiteral($obj) {

if (exists($obj)) then

66

C.6. RDF UPDATE MODULE

concat(’"’,$obj, ’"^^<http://www.w3.org/2001/XMLSchema#string>’)

else $obj

};

declare function rdfu:intLiteral($obj) {

if (exists($obj)) then

concat($obj, ’^^<http://www.w3.org/2001/XMLSchema#int>’)

else $obj

};

declare function rdfu:doubleLiteral($obj) {

if (exists($obj)) then

concat($obj, ’^^<http://www.w3.org/2001/XMLSchema#double>’)

else $obj

};

declare function rdfu:booleanLiteral($obj) {

if (exists($obj)) then

concat($obj, ’^^<http://www.w3.org/2001/XMLSchema#boolean>’)

else $obj

};

declare function rdfu:isLiteral($obj as xs:string) as xs:boolean {

if (starts-with($obj, ’"’)) then true()

else if (contains($obj, ’^^’)) then true()

else false()

};

declare function rdfu:insert($sub, $pre, $obj) {

if (exists($obj)) then

(

<rdfu:insert>

<rdf:subject rdf:resource="{string($sub)}" />

<rdf:predicate rdf:resource="{string($pre)}" />

{ if (rdfu:isLiteral($obj))

then <rdf:object>{string($obj)}</rdf:object>

else <rdf:object rdf:resource="{string($obj)}" />

}

</rdfu:insert>

) else ()

};

declare function rdfu:delete($sub, $pre as xs:string, $obj) {

if (exists($obj)) then

(

<rdfu:delete>

<rdf:subject rdf:resource="{string($sub)}" />

<rdf:predicate rdf:resource="{string($pre)}" />

{ if (rdfu:isLiteral($obj))

then <rdf:object>{string($obj)}</rdf:object>

67

C.6. RDF UPDATE MODULE

else <rdf:object rdf:resource="{string($obj)}" />

}

</rdfu:delete>

) else ()

};

declare function rdfu:retract($sub, $pre as xs:string, $obj) {

if (exists($obj)) then

(

<rdfu:retract>

<rdf:subject rdf:resource="{string($sub)}" />

<rdf:predicate rdf:resource="{string($pre)}" />

{ if (rdfu:isLiteral($obj))

then <rdf:object>{string($obj)}</rdf:object>

else <rdf:object rdf:resource="{string($obj)}" />

}

</rdfu:retract>

) else ()

};

declare function rdfu:assert($sub, $pre as xs:string, $obj) {

if (exists($obj)) then

(

<rdfu:assert>

<rdf:subject rdf:resource="{string($sub)}" />

<rdf:predicate rdf:resource="{string($pre)}" />

{ if (rdfu:isLiteral($obj))

then <rdf:object>{string($obj)}</rdf:object>

else <rdf:object rdf:resource="{string($obj)}" />

}

</rdfu:assert>

) else ()

};

declare function rdfu:delete-resource($sub) {

if (exists($sub)) then

(

<rdfu:delete-resource rdf:resource="{string($sub)}" />

) else ()

};

declare function rdfu:update-subject($sub, $pre as xs:string, $obj, $new) {

if (exists($obj) and exists($new)) then

(

<rdfu:update>

<rdf:subject rdf:resource="{string($sub)}" />

<rdf:predicate rdf:resource="{string($pre)}" />

{ if (rdfu:isLiteral($obj))

then <rdf:object>{string($obj)}</rdf:object>

68

C.6. RDF UPDATE MODULE

else <rdf:object rdf:resource="{string($obj)}" />

}

<rdfu:set>

<rdf:subject rdf:resource="{string($new)}" />

</rdfu:set>

</rdfu:update>

) else ()

};

declare function rdfu:update-predicate($sub, $pre as xs:string, $obj, $new) {

if (exists($obj) and exists($new)) then

(

<rdfu:update>

<rdf:subject rdf:resource="{string($sub)}" />

<rdf:predicate rdf:resource="{string($pre)}" />

{ if (rdfu:isLiteral($obj))

then <rdf:object>{string($obj)}</rdf:object>

else <rdf:object rdf:resource="{string($obj)}" />

}

<rdfu:set>

<rdf:predicate rdf:resource="{string($new)}" />

</rdfu:set>

</rdfu:update>

) else ()

};

declare function rdfu:update-object($sub, $pre as xs:string, $obj, $new) {

if (exists($obj) and exists($new)) then

(

<rdfu:update>

<rdf:subject rdf:resource="{string($sub)}" />

<rdf:predicate rdf:resource="{string($pre)}" />

{ if (rdfu:isLiteral($obj))

then <rdf:object>{string($obj)}</rdf:object>

else <rdf:object rdf:resource="{string($obj)}" />

}

<rdfu:set>

{ if (rdfu:isLiteral($new))

then <rdf:object>{string($new)}</rdf:object>

else <rdf:object rdf:resource="{string($new)}" />

}

</rdfu:set>

</rdfu:update>

) else ()

};

declare function rdfu:rename($old, $new) {

if (exists($old) and exists($new)) then

69

C.6. RDF UPDATE MODULE

(

<rdfu:rename rdf:resource="{string($old)}" >

<rdfu:new-value rdf:resource="{string($new)}" />

</rdfu:rename>

) else ()

};

declare function rdfu:rename-property-of-class($old, $new, $class) {

if (exists($old) and exists($new) and exists($class)) then

(

<rdfu:rename rdf:resource="{string($old)}" >

<rdfu:new-value rdf:resource="{string($new)}" />

<rdfs:Class rdf:resource="{string($class)}" />

</rdfu:rename>

) else ()

};

[Filename:aca-mapping-defs/rdfu.xq]

70

Bibliography

[1] José Júlio Alferes, Ricardo Amador, Erik Behrends, Mikael Berndtsson, François Bry, Gi-

han Dawelbait, Andreas Doms, Michael Eckert, Oliver Fritzen, Wolfgang May, Paula Lavinia

Pătrânjan, Loic Royer, Franz Schenk, and Michael Schröder. Specification of a model, lan-

guage and architecture for evolution and reactivity. Technical Report I5-D4, REWERSE EU

FP6 NoE, 2005. Available at http://www.rewerse.net.

[2] Apache Ant, a java-based build tool. http://ant.apache.org/.

[3] Description Logic Implementation Group (DIG). http://dl.kr.org/dig/.

[4] Document object model (DOM). http://www.w3.org/DOM/, 1998.

[5] Sun microsystems, inc. the source for java developers. http://java.sun.com/.

[6] Jena: A java framework for semantic web applications. http://jena.sourceforge.net.

[7] Michael Kay. SAXON: the XSLT and XQuery processor. http://saxon.sf.net/.

[8] Tobias Knabke. Development and implementation of a domain broker for the semantic web.

Master Thesis, Univ. Göttingen, 2006.

[9] Apache logging services. http://logging.apache.org/log4j/docs/index.html.

[10] Wolfgang May, Franz Schenk, and Elke von Lienen. Extending an owl web node with reactive

behavior. In Principles and Practice of Semantic Web Reasoning (PPSWR), number 4187,

pages 134–148. Springer, 2006.

[11] Notation3 (N3) a readable rdf syntax. http://www.w3.org/DesignIssues/Notation3.

[12] OWL Web Ontology Language. http://www.w3.org/TR/owl-features/, 2004.

[13] Pellet: An OWL DL reasoner. Maryland Information and Network Dynamics Lab, http:

//www.mindswap.org/2003/pellet.

[14] Resource Description Framework (RDF). http://www.w3.org/RDF, 2000.

[15] RDF/XML syntax specification (revised). http://www.w3.org/TR/rdf-syntax-grammar/.

[16] Resource Description Framework (RDF) Schema specification. http://www.w3.org/TR/

rdf-schema/, 2000.

[17] Daniel Schubert. Development of a prototypical event-condition-action engine for the semantic

web. Bachelor Thesis, Univ. Göttingen, 2005.

71

BIBLIOGRAPHY

[18] SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/, 2006.

[19] Elke von Lienen. Entwicklung eines RDF-Web-Services mit Trigger-Funktionalität. Diplo-

marbeit, TU Clausthal (in german), 2006.

[20] W3C – the world wide web consortium. http://www.w3.org/.

[21] W3C RDF validation service. http://www.w3.org/RDF/Validator.

[22] XQuery: A Query Language for XML. http://www.w3.org/TR/xquery, 2001.

[23] XSL Transformations (XSLT). http://www.w3.org/TR/xslt, 1999.

72

