
Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZFI-BM-2006-03

Bachelorarbeit
im Studiengang "Angewandte Informatik"

Development of a Prototypical
Event-Condition-Action Engine for the

Semantic Web

Daniel Schubert

am Lehrstuhl für

Datenbanken & Informationssysteme

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen

03. Februar 2006

Georg-August-Universität Göttingen
Zentrum für Informatik

Lotzestraße 16-18
37083 Göttingen
Germany

Tel. +49 (5 51) 39-1 44 14

Fax +49 (5 51) 39-1 44 15

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den 03. Februar 2006

Bachelor Thesis

Development of a Prototypical
Event-Condition-Action Engine

for the Semantic Web

Daniel Schubert

February 3, 2006

Supervised by Prof. Dr. Wolfgang May

Databases and Information Systems Group

Georg-August-Universität Göttingen

Abstract

The Semantic Web will consist of a large number of autonomously evolving information systems.
In contrast to the Web of today, these information systems will not only be able to answer query
requests but they will also be capable of reacting to events, such as database updates at remote
systems.

To define the reactive behavior of an information system, the concept of Event-Condition-
Action (ECA) rules can be applied. An ECA rule specifies an event, an optional condition and
in case the condition is satisfied, the indented action that should be executed.

In this thesis, a prototypical evaluation service for the distributed evaluation of ECA rules is
developed. Since it adheres strictly to current Web standards, it can easily be integrated into
existing information systems and turn them into active participants of the Semantic Web.

Contents

1 Introduction 1

2 The ECA Framework 3
2.1 Semantic Web . 3
2.2 ECA Rules . 4

2.2.1 Rule Components . 4
2.2.2 Component Languages . 5

2.3 Domain Ontologies . 8
2.4 General Framework Architecture . 9

3 Rule Markup 13
3.1 Rule Markup (ECA-ML) and Language Binding 13
3.2 Opaque Expressions . 14

4 Variables and Communication 17
4.1 Variable Concept . 17
4.2 Markup for Binding and Using Variables . 19
4.3 Communication between Framework Components 21

4.3.1 Communication of Variable Bindings . 22
4.3.2 Request and Answer Messages . 22
4.3.3 Specification of Variable Handling . 25

5 Evaluation of ECA Rules 31
5.1 Rule Registration . 32
5.2 Evaluation of the Event Component . 32
5.3 Evaluation of the Query Components . 33
5.4 Employed Query Engines . 34
5.5 Evaluation of the Test and Action Components 39
5.6 Employed Action Engines . 41
5.7 Internal Functionality of the ECA Engine . 42
5.8 Additional Infrastructure . 44

6 Implementation 45
6.1 Employed Technologies . 45
6.2 Architecture . 46
6.3 Common Classes . 46

i

Contents

6.3.1 Variable Bindings . 46
6.3.2 Utility Classes . 46

6.4 ECA Engine . 48
6.4.1 Communication Interface of the ECA Engine 48
6.4.2 Architecture of the ECA Engine . 50
6.4.3 Rule Management . 51
6.4.4 Rule Evaluation . 52

6.5 Generic Request Handler . 52
6.6 An Exemplary Language Processor: XPath Engine 54

6.6.1 Communication Interface of a Language Processor 54
6.6.2 Architecture of the XPath Engine . 56

6.7 ECA Engine Client . 57

7 Conclusion 59

Bibliography 61

ii

List of Figures

2.1 ECA Rule Components and Corresponding Languages 7
2.2 Kinds and Components of Ontologies . 8
2.3 General Framework Architecture . 9

4.1 Use of Variables in Components . 18
4.2 Multiple Tuples of Variable Bindings . 18
4.3 Communication of ECA Engine and Language Processor 21

5.1 Detection of the Event Component . 33
5.2 Gathering Information about the Language Processor 36
5.3 Answer to the First Query Component . 37
5.4 Invocation of a Framework-Unaware Service . 38
5.5 Simulation of a Framework-Aware Service using a XQuery Expression 39
5.6 Elimination of Tuples during the Natural Join 40
5.7 Executing the Action Component . 42
5.8 Internal Architecture of the ECA Engine . 43

6.1 Class Diagram for Variable Bindings . 47
6.2 Class Diagram for Utility Classes . 48
6.3 Communication Interface of the ECA Engine 49
6.4 Class Diagram for the ECA Engine . 51
6.5 Class Diagram for the Generic Request Handler 53
6.6 Communication Interface of Language Processors 54
6.7 Managing Rules with the ECA Engine Client 57
6.8 Sending Answers with the ECA Engine Client 58

iii

List of Figures

iv

1 Introduction

While today’s World Wide Web is evolving into the Semantic Web, the provided information

is becoming more thoroughly structured and computer understandable. This process leads to

a new understanding of the Web as a whole.

Instead of solely being data sources, the nodes inside the Semantic Web represent au-

tonomously evolving information systems. They are not only able to provide or update their

own data, but may also request other information systems to do so with their local databases.

Furthermore, these information systems can react to events (usually data updates at remote

nodes) that may happen anywhere inside the Web. The latter implies that the Semantic Web

must provide a way of propagating event occurrences among its nodes.

When a node becomes aware that an event occurred (either by being notified or by actively

querying other nodes) it may then react to the same by first gathering additional information

and checking conditions before finally, taking the appropriate actions. The behavior of a node

may suitably be formalized by Event-Condition-Action (ECA) rules that separate these different

aspects of reactivity.

Based on the framework for reactivity and evolution that was presented in [10], this thesis

deals with the development of an evaluation service for ECA rules — the ECA Engine. Taking

the existing architecture outline of the framework as a basis, it furthermore specifies the details

of cooperation and communication between the different components.

Additionally, an exemplary information system is developed in order to provide a reason-

able testing environment. This information system consists of several query processors and

represents a fictional car-rental company.

The structure of this thesis is as follows. In the next chapter, a general outline of ECA rules

and the ECA framework is given which is followed by the presentation of a markup language

for ECA rules. How variables can be used for communication between the different components

of a rule is shown in Chapter 4 along with a detailed description of the communication between

the individual framework components. Chapter 5 deals with the process of rule evaluation

and explains the abstract architecture of the ECA engine whose implementation is described

afterwards. Finally, the thesis is concluded and the next steps in the process of implementing

the complete ECA framework are identified.

1

1 Introduction

2

2 The ECA Framework

The framework that forms the basis of this thesis was presented in [10] and provides an imple-

mentation of reactive behavior in the Semantic Web by the use of Event-Condition-Action rules.

These rules separate the different concerns of triggering rule execution, gathering additional

information, deciding if something should be done and defining what should be done.

After a short explanation of the basic terms in the next section, the detailed aspects of ECA-

style rules in a Semantic Web environment are discussed in Section 2.2. Afterwards the general

framework architecture is illustrated.

2.1 Semantic Web

Documents in the World Wide Web are usually marked up in HTML to provide a specific

visual layout of the contained information. While this is sufficient for information exchange

with human readers, there is no reliable way for a computer to process such data.

The Semantic Web aims at supplying a framework to add a well-defined meaning to the

information inside these documents. This allows for the automated processing of the data

including a machine-based reasoning. To achieve this goal the Semantic Web utilizes a stack

of recommendations by the W3C [17] that will now be explained in short1.

XML. The Extensible Markup Language defines a generic, text-based way of marking up

semistructured data by the use of element tags and attributes. It is extremely flexible in that

it not imposes any restrictions wrt. the naming and the semantics of these tags. See [18] for

more details about XML.

XML Schema. The language XML Schema provides a way to formally restrict the structure

of an XML document and defines the names and possible values of its elements and attributes.

Thus, using XML Schema allows for the adaption of the general concept of XML to a specific

application domain. More information can be found at [19].

1Note that XML Schema, RDF, RDF Schema and OWL also have XML representations.

3

2 The ECA Framework

RDF. The Resource Description Framework serves as a meta-data model for the description

of concepts. It uses triples to associate two resources (a subject and an object) with a predicate.

A resource may be anything that can be identified by a URI2. See [12] for more details.

RDF Schema. Similar to XML Schema and XML, RDF Schema specifies the “vocabulary”

of an RDF document and transfers the general concept behind RDF to a specific application

domain. Furthermore, it allows for the specification of properties and concepts and relations

between different concepts. See [13] for more information about RDF Schema.

OWL. The Web Ontology Language is located at the same level as RDF Schema and serves

a similar purpose. The main intention behind its development was the need for a much more

expressive language than RDF Schema. Thus, it extends RDF Schema by adding more vocab-

ulary to describe properties and relations of concepts more differentiated. OWL is described in

detail in [11].

2.2 ECA Rules

2.2.1 Rule Components

Rules that follow the ECA paradigm are in general divided into several components, namely

the event component, the condition component and the action component.

The event component specifies the event (or the sequence of events) that triggers the execution

of the rule. In the Semantic Web, an event is something that can occur at any node and must

be propagated and detected separately (in contrast to local databases that represent a closed

world).

When the execution of a rule is triggered, the condition component can gather additional

knowledge and decide if the following actions should be executed. To cleanly separate these

tasks it can be split up into a query part and a test part.

The action component finally defines what actions are to be taken. It can use all previously

collected information but should not collect any information itself.

The semantics of ECA rule execution can be summarized as

ON event AND additional knowledge IF condition DO something.

Example 2.1 An example of the financial sector might be the following. Whenever a banking

account is debited (event), check the new balance and the credit line (additional knowledge). If

2Uniform Resource Identifier.

4

2.2 ECA Rules

the liabilities exceed the credit line (condition), send a mail to the customer and ask him to

make an appointment (action).

2.2.2 Component Languages

The ECA framework makes it possible to use arbitrary languages inside each of the rule com-

ponents to support greater interoperability of the involved nodes. In general, every rule uses

an event language, one or more query languages, a test language, and one or more action

languages.

Event Languages. Languages used inside the event component must be able to describe the

event in a way that allows for its detection.

In case of atomic events (that are given as XML fragments), languages can be employed that

are able to analyze the structure and content of an XML document. A possible language for

the event part is XPath [20] whose expressions can address parts of an XML document and

constrain the result to match specified conditions.

Composite events represent expressions over several atomic events. To describe them, the

event language must provide composers that define the relation between the atomic events (e.g.

AND, OR and AND THEN). A language that is able to describe composite events is SNOOP [4].

Query Languages. There are two main types of languages that can be used inside a query

component, namely functional and logical languages.

Functional query languages provide a set of functions that act upon data and return a set

of data items (in case of a database query) or a data fragment (in case of an XML query). To

work with the result in a subsequent component, it has to be bound to a variable at the rule

level as described in the next section.

Besides the previously mentioned language XPath, the language XQuery [21] represents such

a functional language. XQuery is described in more detail in Section 5.4.

In logical query languages, variables are bound by matching free variables that act as a kind

of placeholder. As these variable bindings represent the result of the query, they can directly

be used in a subsequent component. An example for a logical language is Datalog [8] that is

able to query relational databases.

Example 2.2 In logical languages like Datalog, the database to be queried is represented by a

set of predicates (facts) and rules.

Predicates are known to be valid and consist of a head and a number of arguments, for

example:

5

2 The ECA Framework

father(’John’, ’Tim’).

mother(’Mona’, ’Tim’).

father(’Tim’, ’Christine’).

father(’Tim’, ’Lisa’).

mother(’Nicole’, ’Christine’).

mother(’Nicole’, ’Lisa’).

In contrast, rules allow for the deduction of new facts. A rule consists of a head and a body of

the form head :- body. When the body of a rule can be proven, this directly implies the validity

of the head.

The two following rules use free variables to specify that X is a grandfather of Y when he is

the father of Z who in turn is a parent (mother or father) of Y:

grandfather(X, Y) :- father(X, Z), father(Z, Y).

grandfather(X, Y) :- father(X, Z), mother(Z, Y).

It is then possible to query the database:

?- grandfather(X, Y).

This would bind the variables X, Y and Z in the body to the values

X → “John”, Z → “Tim”, Y → “Christine” and

X → “John”, Z → “Tim”, Y → “Lisa”

which are then used in the head to deduce the facts

grandfather(’John’, ’Christine’).

grandfather(’John’, ’Lisa’).

Thus, the result of the query would be:

X → “John”, Y → “Christine” and

X → “John”, Y → “Lisa”

Test Languages. An expression of a language that is used in the test component must result

in a logical truth value (i.e. true or false). Results of expressions of functional languages can be

interpreted as such. An empty result or a literal “false” indicates a negative result, anything

else a positive one. Thus, XPath and XQuery can also be used inside the test component.

Action Languages. In an action component, arbitrary languages can be used that are able to

describe the intended action(s). Besides the “classical” programming languages like Java, it is

also possible to call Web Services using SOAP or simple HTTP requests.

6

2.2 ECA Rules

Rule Model ECARule

EventComponent ConditionComponent ActionComponent

Query
Component

Test
Component

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model

Language

Name

URI

Processor

service/plugin

syntax definition

1 0..1
1..*

* 1

�

�

�

�

↓uses ↓uses ↓uses ↓uses

impl by

Figure 2.1: ECA Rule Components and Corresponding Languages (from [1])

Language Binding. As every component can use an arbitrary language, it is necessary to

provide a uniform way of handling the respective component languages. To achieve this, rules,

their components and the languages themselves are turned into objects of the Semantic Web

by describing them in XML and RDF/OWL in a generic rule ontology.

As shown in Figure 2.1, every language is associated with an appropriate language processor

that implements the language’s semantics. The rule evaluation service can then exploit this

association and handle all languages inside the rule components the same way. A detailed

description of how languages are mapped to language processors is given in Section 3.1.

Example 2.3 Consider a rule that sends a message to the owner of the car-rental company

containing the bookings of the current day. The event part may be written in SNOOP, allowing

to detect and cumulate these kinds of events. To extract the actual content (e.g. customer name

and car type) from the events, some local XPath queries are executed. As the owner also wants

to know how many cars are still available the next day, the rule may contain another query part

written in XQuery. As there is no test part in this example, it is simply omitted. The action

part may then be written in any language that allows for sending mails.

Communication between Rule Components. A rule component often depends on informa-

tion gathered by another component before (e.g., to extract the customer name from the event

in the previous example, the query component must be able to access it). In this context, the

7

2 The ECA Framework

Ontologies of Application-Independent Domains:
communication/messages, transactions, etc.

Atomic Events Literals Atomic Actions

Application-Domain Ontology

Atomic Events Literals Atomic Actions

talk about

Figure 2.2: Kinds and Components of Ontologies (from [1])

use of logical variables (see Example 2.2) provides a suitable mechanism for communicating this

information between the rule components. Thus, every component may bind variables and/or

use variables that have been bound before. A more extensive description of the use of variables

is given in Section 4.1.

2.3 Domain Ontologies

The purpose of domain ontologies is to describe all aspects of a specific domain. Besides the

static aspects, in the Semantic Web represented by resources, this also includes dynamic aspects

like events and actions.

As Figure 2.2 illustrates, there are two different kinds of ontologies used in the Semantic Web

to define an application.

Application domain ontologies describe the primary domain of the application. An ontology

for a travel domain, for example, might describe resources like train and flight schedules, actions

like booking a flight and events like “flight booked” or “flight fully booked”.

In contrast, there are application-independent domain ontologies that provide a generic in-

frastructure and talk about the application domain. For example, the “calendar” domain might

define days and months as resources and provide events like “first of month”.

A complete application in the Semantic Web is then described by employing a combination

of both types of ontologies.

Inside a domain ontology, the description of an atomic action contains its pre- and postcon-

ditions and the specification of an agent that is responsible for its execution. Atomic events

8

2.4 General Framework Architecture

Event
Broker
banking:

Event
Detection S

snoop:

ECA
Engine R

eca:

Event
Broker
travel:

Event
Detection
bla:

Lufthansa
travel:

SNCF
travel:

Client C:
Travel
Agency
travel:

1.1: register rule
eca: travel: snoop:

1.2: register event
travel: snoop:

1.3: register me
travel:

2.1a∗: atomic
events
travel:

2.1b∗: atomic
events
travel:

2.2∗: atomic
events
travel:

3: detected
parameters

4.1: updates
(here:
bookings)

travel:

4.2: messages
(here:
flight delayed)

travel:

Figure 2.3: General Framework Architecture (from [1])

directly result from atomic actions3. The action “book flight (seat: 67, flightno: LH1234)”, for

example, might result in the events “booked seat 67 of flight LH1234” and “50% of the seats of

flight LH1234 are booked”. Thus, the domain ontology also describes the correlation between

atomic actions and the atomic events that possibly result from them.

2.4 General Framework Architecture

As the (Semantic) Web consists of a huge number of independent nodes, it is not surprising to

find the ECA framework being employed in a completely distributed environment.

The sources of events are represented by services inside the application domain while the

clients may be arbitrary nodes in the Semantic Web that want to react to these events by

defining rules that specify the intended reactive behavior.

Acting as mediators, there are services that handle the event propagation (e.g. event brokers)

and the detection of events. The rule evaluation itself is finally done by a local or remote rule

evaluation service — the ECA engine. Thus, the ECA engine can be seen as the main control

unit for reactive behavior inside the framework although it does not detect events, handle

queries or execute actions itself.

The framework architecture is illustrated in Figure 2.3 based on an example from the “travel”

domain.

3Note that this is not a one-to-one relation, since a single action might result in multiple events.

9

2 The ECA Framework

Example 2.4 Consider the case when a travel agency wants to be informed, when a flight is

delayed and reschedule the passengers to new connecting trains.

Thus, the travel agency would register a rule at the ECA engine (1.1), containing a composite

event of the “travel” domain that is composed of the events “new flight”, an arbitrary number

of “flight booked” events (that contain the names of the passengers) and a final “flight delayed”

event. The event component is given using SNOOP. At the ECA engine, the rule is analyzed

and the event component registered at an appropriate event detection engine that is capable of

detecting composite events specified in SNOOP (1.2).

To be able to detect the registered event, this engine needs a way of becoming aware of all

relevant atomic events. There are several solutions to this problem. The event detection engine

might for example contact a dedicated event broker for the “travel” domain and request to be

informed about all atomic events from this domain (1.3). The event broker is then used by the

different applications inside the “travel” domain to propagate their atomic events (2.1). Thus,

it only needs to forward these events to the event detection engine (2.2).

Another possible solution is to instruct the client to find out about the relevant events it-

self (not shown). When an event occurs, the client forwards it to the rule evaluation service

which in turn forwards it to all known event detection engines. This makes it possible to fake

events directly at the client, which is an important feature during the development phase of the

prototype.

When the composite event is detected, the according event detection engine sends a message

to the ECA engine (3) that hereupon triggers the evaluation of the appropriate rule. Since the

required information for the rescheduling of the passengers was already gathered in the event

component (the “flight booked” events), the ECA engine can directly update the reservations for

the connecting trains (4.1) and inform the travel agency about the result (4.2).

In another scenario, the ECA engine might have to contact several other query services (again

of the “travel” domain) in order to retrieve the required information.

ECA Engine. The ECA engine is responsible for the evaluation of rules. When it becomes

aware that a relevant event was detected, it creates a new instance of the according rule(s),

evaluates the specified queries, the test and possibly executes the actions. Depending on the

concrete implementation, the ECA engine may furthermore be responsible for the the man-

agement of rules4 (registration and deregistration) and the forwarding of atomic events to all

known event detection engines.

4This is the case in the prototype developed in this thesis.

10

2.4 General Framework Architecture

Language Processors. As described in Section 2.2.2, every component language is associated

with a language processor that is capable of evaluating expressions of the implemented language.

During the evaluation of a rule, the ECA engine determines the appropriate language processor

for each rule component and communicates the respective component to this processor. Next,

the language processor evaluates the component and finally returns the result to the ECA

engine that hereupon proceeds with the evaluation of the rule.

An enumeration of the developed query, test and action engines can be found in Section 5.4

and Section 5.6.

11

2 The ECA Framework

12

3 Rule Markup

3.1 Rule Markup (ECA-ML) and Language Binding

For the definition of rules, the ECA framework provides an XML markup language, ECA-ML,

that was presented in [9]. The basic structure of a rule is as follows:

<eca:rule rule-specific attributes>

rule-specific content, e.g., declaration of logical variables

<eca:event identification of the language>

event specification, probably binding variables

</eca:event>
<!-- there may be several queries -->

<eca:query identification of the language>

query specification; using variables, binding others

</eca:query>

<eca:test identification of the language>

condition specification, using variables

</eca:test>
<!-- there may be several actions -->

<eca:action identification of the language>

action specification, using variables, probably binding local ones

</eca:action>

</eca:rule>

The association of the rule components with their specific languages is done at the expression

level. There are three kinds of expressions, namely atomic, composite and opaque ones.

• Atomic expressions (atomic event, literal or action) belong to a domain language that

can be directly identified by the namespace of the expression (cf. Section 2.3).

• Composite expressions consist of a composer and several subexpressions which all belong

to (possibly different) languages of the same kind. Here the language association is defined

by the namespace of the expression’s root node.

• The third type - opaque expressions - are not in XML markup and thus do not have a

namespace definition by themselves. For still being able to determine an appropriate lan-

guage processor, it is necessary to include the namespace information inside an attribute

13

3 Rule Markup

of the enclosing element. The language binding of opaque expressions is explained in

detail in the next section.

3.2 Opaque Expressions

Opaque expressions provide a way to embed services that do not have an XML markup (e.g.

XPath) and/or are not framework-aware. This is especially important during the development

of the prototype, as these represent the majority of services inside the current environment.

An opaque expression is marked up the following way:

<eca:(event|query|test|action)>
<eca:opaque attributes>

opaque code

</eca:opaque>

</eca:(event|query|test|action)>

Since the expression itself is not marked up in XML, there is no namespace declaration the ECA

engine could use to find out about the correct language processor. To solve this issue, there

are several attributes of the <eca:opaque> element that specify how the according expression is

to be evaluated.

• The attribute lang can be used to specify the namespace of the expression language

directly. This is useful to specify framework-aware wrappers around language processors

whose implemented language does not have an XML markup, e.g. an XQuery engine (see

Section 5.4).

• While the previously mentioned XQuery engine represents a generic service (it is not

important which engine finally evaluates the expression), there are cases, e.g. updates

to relational databases, where it does matter to which node the request is sent to. By

specifying a URI address with the uri attribute, the ECA engine can be forced to send

the request to this specific node.

• Many services that are not framework-aware can be queried (or invoked in case of an

update) by simple HTTP-GET or the more complex HTTP-POST requests. In order to

integrate those services, the attribute method can be given in addition to the previously

mentioned uri. Obviously, there are two possible values for method, namely “get” and

“post” which instruct the ECA engine to use the respective method.

For the communication of input variables (see Section 4.1) the following logic is applied.

At first, the content of the <eca:opaque> element is inspected. If the variable name

14

3.2 Opaque Expressions

occurs inside it, it is replaced by the value of the variable. Otherwise, the variable is

communicated by appending it as a parameter to the URI in the form “name=value”.

Example 3.1 Consider the following XML document to be available at the local node, refer-

enced by the URL http://localhost/customers.xml:

<customers>
<customer name="John Doe" mail="john@doe.nop"/>

<customer name="Lisa Miller" mail="lisa@miller.nop"/>

<customer name="Jack Miller" mail="jack@miller.nop"/>

</customers>

A query component, using an opaque XPath expression, now might query for the customer

elements:

<eca:query>

<eca:opaque lang="http://www.w3.org/XPath">

document(’http://localhost/customers.xml’)/customers/*

</eca:opaque>

</eca:query>

The value of lang is mapped to an appropriate language processor to which the query is then

sent. In return, the following result is retrieved:

<customer name="John Doe" mail="john@doe.nop"/>

<customer name="Lisa Miller" mail="lisa@miller.nop"/>

<customer name="Jack Miller" mail="jack@miller.nop"/>

In order to make this result available to the subsequent rule components, it has to be bound to

a variable. How this is expressed in the markup language and how the following components

can use the value of this variable (which must then be communicated to the language processor)

is the main focus of the next chapter. Furthermore, the previous example raises the question,

what should happen to results that consist of multiple answers to a query.

15

3 Rule Markup

16

4 Variables and Communication

On the abstract rule level, the individual components of the rule can communicate their col-

lected information by binding variables. Any following component may then use the values of

these variables to narrow down its own query (or execute an action). A detailed description of

the variable concept in the ECA framework is given in the first section of this chapter, followed

by a presentation of the according markup elements.

When a rule component is actually evaluated, it must be communicated along with its re-

quired variable bindings to an appropriate language processor. How this communication takes

place and what messages are sent is then explained in the last section.

4.1 Variable Concept

In the ECA framework, a concept of variables is provided that is similar to those found in

logical languages. During the evaluation of a rule, variables occur as free variables in the scope

of the rule and can appear positively or negatively inside the components (see Example 2.2).

If a variable has not already been bound, a positive occurrence binds it to a value1, otherwise

it acts as a join variable.

A negative occurrence of a variable uses the value it has previously been bound to. Thus, if a

variable is used negatively inside a component, it must have been bound before to provide the

necessary safety. Although logical variables are sufficient at the abstract rule level there may

also be situations during the actual rule evaluation where they need to be used as arguments

and results. This leads to a slightly different definition of variables at the operational level

which is illustrated in Figure 4.1:

• used variables represent all variables that may be communicated to the language proces-

sor in order to minimize the result as early as possible. They are equivalent to free

variables in logical languages.

• input variables denote the set of variables that must be provided in order to successfully

evaluate the expression. They correspond to negative occurrences of free variables.

1A variable can be bound to literals, references (URIs), XML or RDF fragments, or events.

17

4 Variables and Communication

ECARule RuleComponent Expression

Variable

name

repr. by

1

↓scopes
*

*input,output
uses, returns

*

*
input,output
uses,returns*

Figure 4.1: Use of Variables in Components (from [6])

• output variables are variables that are bound by the language processor in any case. If

they have been bound before they must be considered by an equi-join.

• returned variables are those variables that are communicated to the language processor

but not included in the resulting answer. The rule evaluation service has to replenish these

variables to ensure correct join semantics.

At the end of the previous chapter, Example 3.1 raised the need for a mechanism of handling

multiple answers to a query2. To meet this need, the concept of variables is extended to allow for

a variable being bound to different values (when specified at once). Variable bindings therefore

consist of a set of tuples that in turn contain the actual values of the variables.

Example 4.1 Consider again Example 3.1. If the resulting elements were bound to the variable

“Customer”, the resulting variable bindings would look as illustrated in Figure 4.2.

Variable Bindings

Tuple 1

Customer → <customer name=“John Doe” mail=“john@doe.nop”>

Tuple 2

Customer → <customer name=“Lisa Miller” mail=“lisa@miller.nop”>

Tuple 3

Customer → <customer name=“Jack Miller” mail=“jack@miller.nop”>

Figure 4.2: Multiple Tuples of Variable Bindings

2A query on an XML document that returned three elements.

18

4.2 Markup for Binding and Using Variables

4.2 Markup for Binding and Using Variables

At the rule level, the result of an event or query component can be bound to a variable by

enclosing the component with the definition of the variable in the following way:

<eca:variable name="name">

<eca:(event|query)>
expression

</eca:(event|query)>
</eca:variable>

The attribute name defines the name of the variable and the enclosed element contains an

arbitrary expression of the respective event or query language. After the evaluation of the

event or query component, the result of the expression is bound at once to a new variable of

the specified name. If the evaluation returns multiple results, each result will be bound in a

separate tuple as described in the previous section.

Since at first the vast majority of rule components will be given as opaque expressions whose

results have to be bound to variables, the following syntax can be used to shorten the component

definition:

<eca:variable name="name" lang="language" select="expression"/>

This variable definition is equivalent to:

<eca:variable name="name">

<eca:query>

<eca:opaque lang="language">

expression

</eca:opaque>

</eca:query>

</eca:variable>

To access information gathered by the previous rule components, every component may make

use of an arbitrary number of (previously bound) variables. In order to prevent the necessity

of always sending all variable bindings to the language processor, the required variables have

to be specified inside the component:

<eca:(query|test|action)>
<eca:input-variable name="..." use="..."/>

<eca:use-variable name="..."/>

<eca:output-variable name="..."/>

<eca:return-variable name="..."/>

expression

</eca:(query|test|action)>

19

4 Variables and Communication

The naming of the elements is analogous to Section 4.1. By specifying the additional attribute

use with the <eca:input-variable> element, the variable can temporarily be renamed inside the

actual component.

Example 4.2 Consider the following XML document to be available at the local node, refer-

enced by the URL http://localhost/customer-cars.xml:

<customer-cars>
<car owner="John Doe">Golf</car>
<car owner="John Doe">Passat</car>
<car owner="Lisa Miller">Corolla</car>
<car owner="Jack Miller">Focus</car>

</customer-cars>

The following query component then returns the cars that a customer owns:

<eca:variable name="OwnCar">

<eca:query>

<eca:input-variable name="Person"/>

<eca:query>

<eca:opaque lang="http://www.w3.org/XPath">

document("http://localhost/customer-cars.xml")

/customer-cars/car[@owner=$Person]/text()

</eca:opaque>

</eca:query>

</eca:query>

</eca:variable>

It uses the variable “Person” as input and binds the result of the query to the variable “Own-

Car”. Consider “Person” to be bound to the value “John Doe”. The evaluation will then result

in the variable bindings

OwnCar → Golf

OwnCar → Passat

that represent the two different answers to the query.

This leads to the question how these answers are communicated and how the language proces-

sor is invoked in the first place. Since the variable bindings also must be communicated to the

language processor (e.g., a subsequent query component might ask for the availability of equiv-

alent cars), a common format for their exchange has to be specified that is understood by all

framework-aware language processors.

20

4.3 Communication between Framework Components

ECA Engine:
<rule>

<event xmlns:ev=“. . . ”/>. . . </event>

<query xmlns:ql=“. . . ”/>. . . </query>

<test xmlns:tst=“. . . ”/>. . . </test>

<action xmlns:act=“. . . ”/>. . . </action>

</rule>

Language
Processor

→
component,
input variable bindings

←
functional result or
variable bindings

Figure 4.3: Communication of ECA Engine and Language Processor (adapted from [3])

4.3 Communication between Framework Components

The communication of variable bindings represents a central aspect during the evaluation of

a rule. While variables may already be specified before the event component (containing only

static values), they are in any case returned by the service that detected the triggering event.

These variable bindings then form the basis of the evaluation of the subsequent query com-

ponents which extend them by binding further variables. After the evaluation of the test com-

ponent potentially discarded some of the resulting tuples, the action components are executed

for each of the remaining ones.

Since the actual evaluation of a rule component happens at a remote language processor, the

variable bindings required for the evaluation must somehow be communicated in addition to the

component itself (see Figure 4.3). The language processor then returns the functional result or

the resulting variable bindings, depending on the type of language used (functional or logical).

In any case, the request message to and the answer message from the language processor must

contain an identification of the rule component in order to later correctly process the result.

When the ECA engine is notified about the result of the evaluation, it joins the resulting

variable bindings with its own.

In the following, a format for the communication of variable bindings is presented and it is

shown how this format is integrated into the request and answer messages exchanged with the

language processors.

21

4 Variables and Communication

4.3.1 Communication of Variable Bindings

For the communication of variable bindings between the different nodes inside the framework,

the following markup is used:

<eca:variable-bindings>
<eca:tuple>

<eca:variable name="name" ref="URI"/>

<eca:variable name="name">

any value

</eca:variable>

:

</eca:tuple>

<eca:tuple>...</eca:tuple>

:

<eca:tuple>...</eca:tuple>

</eca:variable-bindings>

Example 4.3 Consider again Example 4.2 on page 20. The evaluation of the query component

presented there resulted in the following variable bindings:

OwnCar → Golf

OwnCar → Passat

Applying the specified exchange format, the variable bindings are marked up the following way:

<eca:variable-bindings>
<eca:tuple>

<eca:variable name="OwnCar">Golf</eca:variable>

</eca:tuple>

<eca:tuple>

<eca:variable name="OwnCar">Passat</eca:variable>

</eca:tuple>

</eca:variable-bindings>

4.3.2 Request and Answer Messages

Communication between different framework nodes is based on the exchange of <eca:request>

and <eca:answers> messages. An <eca:request> message is sent by the ECA engine when it

invokes a language processor to evaluate a rule component. The language processor then wraps

the result inside an <eca:answers> message and sends it back to the ECA engine.

The structure of both message types is very similar. Their root elements contain four at-

tributes that uniquely identify the rule instance they belong to.

22

4.3 Communication between Framework Components

• The attribute ref contains a uri of the form http://localhost:8081/rules#rule2 that identi-

fies the rule and the ECA engine where it is located.

• The rule component is identified by the attribute component. The following rule shows

the possible values for component in brackets.

<eca:rule>

<eca:event>event component (event)</eca:event>
<eca:query>first query component (query[1])</eca:query>

<eca:query>second query component (query[2])</eca:query>

...

<eca:test>test component (test)</eca:test>
<eca:action>first action component(action[1])</eca:action>

<eca:action>second action component (action[2])</eca:action>

...

</eca:rule>

• In contrast to the first two attributes which provide static information about the rule def-

inition, the attributes timestamp and instance combined identify the correct rule instance.

timestamp holds the point in time when the rule instance was created in milliseconds since

January 1, 1970. As there may exist multiple rule instances that where created at the

same time, the attribute instance uniquely identifies the correct one.

Request Messages. As its first child, an <eca:request> message contains the rule component

that is to be evaluated. If the evaluation of the component requires the use of variable bindings,

these are inserted immediately after the component itself. The following XML document shows

a generic request message.

<eca:request ref="..." component="..." timestamp="..." instance="...">

<eca:[query|test|action]>
...

</eca:[query|test|action]>
<eca:variable-bindings>

...

</eca:variable-bindings>
</eca:request>

Answer Messages. In contrast, an <eca:answers> message is composed of an arbitrary number

of <eca:answer> elements - one for each answer to the request. The answer element then contains

an optional <eca:result> element (in case of a functional result) and the resulting variable

23

4 Variables and Communication

bindings3. A generic answers message looks like the following:

<eca:answers ref="..." component="..." timestamp="..." instance="...">

<eca:answer>
<eca:result>
...

</eca:result>
<eca:variable-bindings>
...

</eca:variable-bindings>
</eca:answer>
.

.

<eca:answer>
...

</eca:answer>
</eca:answers>

Example 4.4 An exemplary request message for the query from Example 4.2 that takes the

variable “Person” as input looks as follows.

<eca:request ref="..." component="..." timestamp="..." instance="...">

<eca:query>

<eca:opaque lang="http://www.w3.org/XPath">

document("http://localhost/customer-cars.xml")

/customer-cars/car[@owner=$Person]/text()

</eca:opaque>

</eca:query>

<eca:variable-bindings>
<eca:tuple>

<eca:variable name="Person">John Doe</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:request>

The answer to this request might then be:

<eca:answers ref="..." component="..." timestamp="..." instance="...">

<eca:answer>
<eca:result>Golf</eca:result>
<eca:variable-bindings>

<eca:tuple>

<eca:variable name="Person">John Doe</eca:variable>

</eca:tuple>

</eca:variable-bindings>

3The resulting variable bindings consist of variables bound during the evaluation and the original input variables
to identify the correct tuple this answer belongs to.

24

4.3 Communication between Framework Components

</eca:answer>
<eca:answer>

<eca:result>Passat</eca:result>
<eca:variable-bindings>

<eca:tuple>

<eca:variable name="Person">John Doe</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:answer>

</eca:answers>

Since the language used in this example returns a functional result, the ECA engine has to bind

it to a variable as specified in the rule definition. In contrast, the result of a logical language to

the same query (without the enclosing variable definition) might look like the following.

<eca:answers ref="..." component="..." timestamp="..." instance="...">

<eca:answer>
<eca:variable-bindings>

<eca:tuple>

<eca:variable name="Person">John Doe</eca:variable>

<eca:variable name="OwnCar">Golf</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:answer>
<eca:answer>

<eca:variable-bindings>
<eca:tuple>

<eca:variable name="Person">John Doe</eca:variable>

<eca:variable name="OwnCar">Passat</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:answer>

</eca:answers>

4.3.3 Specification of Variable Handling

During the evaluation of a rule the ECA engine integrates various kinds of language processors.

These processors may differ heavily in the method of communication and their capabilities wrt.

to the handling of variable bindings. Thus, a mechanism is needed for the ECA engine to find

out about all relevant information — the Service Description (SD).

In the first prototype the SD is a simple XML document that contains one element for each

feature a language processor may have. Furthermore, as there is currently no way to specify a

25

4 Variables and Communication

communication method4, all framework-aware processors must use the same technology5.

A generic service description looks as follows:

<eca:service language="http://...">

<eca:multiple-input>(true|false)</eca:multiple-input>
<eca:send-use>(true|false)</eca:send-use>

</eca:service>

The root attribute language specifies the URI of the language that is implemented by the

processor. At this time a language processor may only implement a single language.

The first child element, <eca:multiple-input>, indicates if the processor can handle variable

bindings that contain more than one tuple. If so, it must replenish the resulting variable

bindings with the original input variables to allow for the correct identification of the initial

tuple. If the language processor is not capable of handling multiple tuples, the ECA engine

itself needs to iterate over them and invoke the processor for each of them.

Example 4.5 Consider again the variable bindings shown in Example 4.3:

<eca:variable-bindings>
<eca:tuple>

<eca:variable name="OwnCar">Golf</eca:variable>

</eca:tuple>

<eca:tuple>

<eca:variable name="OwnCar">Passat</eca:variable>

</eca:tuple>

</eca:variable-bindings>

A subsequent query component might map the given cars to their classes (sizes) according to

the following XML document:

<classes>
<class name="B">

<car>Golf</car>
<car>Corolla</car>

</class>
<class name="C">

<car>Passat</car>
</class>

</classes>

The query component itself might contain an XPath expression:

4For language processors that are not framework-aware this is possible by using the <eca:opaque> element as
described in Section 3.2.

5The first prototype uses SOAP over HTTP.

26

4.3 Communication between Framework Components

<eca:variable name="Class">

<eca:query>

<eca:input-variable name="OwnCar"/>

<eca:opaque lang="http://www.w3.org/XPath">

document("...")/classes/class[car/text()=$OwnCar]/@name

</eca:opaque>

</eca:query>

</eca:variable>

When the ECA engine invokes a language processor that is capable of handling multiple tuples

of variable bindings they can simply be attached to the request message unchanged:

<eca:request ref="..." component="..." timestamp="..." instance="...">

<eca:query>

<eca:opaque lang="http://www.w3.org/XPath">

document("...")/classes/class[car/text()=$OwnCar]/@name

</eca:opaque>

</eca:query>

<eca:variable-bindings>
<eca:tuple>

<eca:variable name="OwnCar">Golf</eca:variable>

</eca:tuple>

<eca:tuple>

<eca:variable name="OwnCar">Passat</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:request>

If however, the language processor can only handle a single tuple per invocation, the ECA engine

has to split the variable bindings and invoke the processor twice:

<eca:request ref="..." component="..." timestamp="..." instance="...">

<eca:query>

<eca:opaque lang="http://www.w3.org/XPath">

document("...")/classes/class[car/text()=$OwnCar]/@name

</eca:opaque>

</eca:query>

<eca:variable-bindings>
<eca:tuple>

<eca:variable name="OwnCar">Golf</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:request>

and

<eca:request ref="..." component="..." timestamp="..." instance="...">

<eca:query>

27

4 Variables and Communication

<eca:opaque lang="http://www.w3.org/XPath">

document("...")/classes/class[car/text()=$OwnCar]/@name

</eca:opaque>

</eca:query>

<eca:variable-bindings>
<eca:tuple>

<eca:variable name="OwnCar">Passat</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:request>

The second child element of the service description, <eca:send-use>, defines if the ECA engine

should also send used variables6 along with the request. This is especially relevant for logical

languages, as it can reduce the result of a query at an early stage by binding otherwise free

variables. If these additional variables are supplied, a first join can already happen during the

evaluation at the language processor. Otherwise, a much larger result may be returned which

then has to be joined at the ECA engine.

Example 4.6 Consider the following facts that represent cars available for rent and their ac-

cording location:

available(’Golf’, ’Paris’).

available(’Corolla’, ’Paris’).

available(’C6’, ’Munich’).

available(’Passat’,’Munich’).

A query in a logical language like Datalog (see Example 2.2 on page 5) could return the variables

“AvailableCar” and “City”:

<eca:query>

<eca:use-variable name="City"/>

<eca:opaque lang="prolog">

?- available(AvailableCar, City).

</eca:opaque>

</eca:query>

If no value for “City” is provided, this would result in the following answer that contains all

cars in all cities:

<eca:answer ref="..." component="..." timestamp="..." instance="...">

<eca:variable-bindings>
<eca:tuple>

<eca:variable name="AvailableCar">Golf</eca:variable>

6See Section 4.1 for an explanation of the different kinds of variables.

28

4.3 Communication between Framework Components

<eca:variable name="City">Paris</eca:variable>

</eca:tuple>

<eca:tuple>

<eca:variable name="AvailableCar">Corolla</eca:variable>

<eca:variable name="City">Paris</eca:variable>

</eca:tuple>

<eca:tuple>

<eca:variable name="AvailableCar">C6</eca:variable>

<eca:variable name="City">Munich</eca:variable>

</eca:tuple>

<eca:tuple>

<eca:variable name="AvailableCar">Passat</eca:variable>

<eca:variable name="City">Munich</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:answer>

When a value for “City” is provided to the language processor, it can already join the query’s

result with this value and return only those tuples that match the city name. Thus, a value of

“Paris” would result in the following answer:

<eca:answer ref="..." component="..." timestamp="..." instance="...">

<eca:variable-bindings>
<eca:tuple>

<eca:variable name="AvailableCar">Golf</eca:variable>

<eca:variable name="City">Paris</eca:variable>

</eca:tuple>

<eca:tuple>

<eca:variable name="AvailableCar">Corolla</eca:variable>

<eca:variable name="City">Paris</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:answer>

Up to now, the different aspects of rule evaluation have only been presented in isolation. The

next chapter therefore combines the results gathered so far and describes the complete process

in the aggregate on the basis of a working example.

29

4 Variables and Communication

30

5 Evaluation of ECA Rules

After the theoretical description of ECA-style rules, the ECA framework and the communi-

cation between the individual framework components in the previous chapters, this chapter

focuses on the process of rule evaluation.

During the evaluation of a rule, several components are working together, namely the ECA

engine and a variable set of autonomous language processors. The ECA engine controls when

to evaluate which rule component and keeps the state information during the evaluation. The

actual evaluation of a rule component then happens at an appropriate language processor that

is capable of processing expressions of the implemented language in consideration of the given

variable bindings.

This process is demonstrated in the subsequent examples in this chapter on the basis of the

following exemplary ECA rule that offers cars owned by a car-rental company to the customers

on the event of a flight booking.

Example 5.1 Consider the following (abstract) ECA rule that is used in the examples through-

out this chapter:

<eca:rule xmlns:eca="http://www.eca.org/eca-ml">

<eca:variable name="car-rental-url">

http://localhost:8081/exist/servlet/db/travel/car-rental.xml

</eca:variable>

<eca:event>
<eca:atomic-event><booking person="$Person" to="$To"/></eca:atomic-event>

</eca:event>
<eca:variable name="OwnCar">

<eca:query><!-- query the person’s cars --></eca:query>

</eca:variable>

<eca:variable name="Class">

<eca:query><!-- map the cars to the appropriate classes --></eca:query>

</eca:variable>

<eca:query>

<!-- query for cars that are available at the destination. this query returns

multiple variable bindings and is therefore not bound to a variable itself. -->

</eca:query>

<eca:test><!-- omitted --></eca:test>
<eca:action><!-- inform the customer about available cars --></eca:action>

</eca:rule>

At the time the rule evaluation is triggered, the following facts are known: the name of the

person who booked the flight and the destination city. These are used to ask for the cars the

customer owns at home which are then mapped to predefined classes. In a further query, all

31

5 Evaluation of ECA Rules

cars that are available at the destination city are acquired and compared to the cars owned by

the customer. Finally, the resulting list is sent to the customer.

5.1 Rule Registration

Upon the registration of a rule by a client, the ECA engine needs to execute a sequence of

actions. At first, the rule may be validated against a given DTD or a XML Schema to ensure

its syntactical correctness. The next step is to assign an ID to the rule and make it persistent

(e.g. by storing it inside a database). Afterwards, the static variable definitions, that may be

given before the event specification of the rule, must be evaluated and bound. Finally, the

event part itself is taken and registered at an appropriate event detection engine along with

the needed variable bindings. When a rule is deregistered the inverse tasks must be executed.

After the rule has been successfully registered the ECA engine remains in an idle state,

waiting for the specified event pattern to be detected.

Since an event detection engine has not yet been implemented, the ECA engine currently

only stores the rule without taking any further actions. Notifications of event occurrences are

sent by the ECA engine client (see Section 5.8). In the future, the event detection component

from ruleCore1 [14] could be integrated into the framework by providing an “opaque” wrapper

that transforms the registration and answer messages.

5.2 Evaluation of the Event Component

During the registration of a rule, the event component is registered at an appropriate event

detection engine that is responsible for its further evaluation. The ECA engine hereupon

suspends the evaluation of the event component and waits for the specified event pattern to be

detected. When a respective answer message arrives that contains the detected event sequence,

the ECA engine resumes the evaluation2.

If the detected event contains information that needs to be extracted, the event part of

the rule is enclosed by a <eca:variable> element. Thus, the existing variable bindings will be

extended with a variable that contains the detected sequence of events.

Example 5.2 The evaluation of the exemplary rule is triggered when the event

<booking person=”John Doe” from=”Munich” to=”Paris”/>

1ruleCore is a registered trademark of MS Analog Software kb.
2Note that an event component can be detected any number of times. Each detection leads to an independent

“firing” of the rule.

32

5.3 Evaluation of the Query Components

Figure 5.1: Detection of the Event Component

occurs and is detected by an atomic event detection engine. The ECA engine receives an answer

message containing the materialized event along with the bound variables (Figure 5.1[1]) and

retrieves the appropriate rule (identified by the ref attribute of the message).

At first, the variable car-rental-url is bound to the given string literal. Next, the event com-

ponent is evaluated. As it is not enclosed by an <eca:variable> element, it does not have to be

bound to a variable. Nevertheless, the ECA engine needs to extract the variable bindings that

were provided by the event detection engine and join them with its local bindings (Figure 5.1[2]).

5.3 Evaluation of the Query Components

A query component may be marked up using either an <eca:query> element or an <eca: variable>

element containing a select attribute. In the latter case, the ECA engine needs to temporally

expand the variable element as described in Section 4.2 to contain a correctly marked up

<eca:query> element.

Afterwards, the ECA engine determines the required variable bindings it has to send along

with the query by examining the component for <eca:input-variable> elements.

Next, the ECA engine analyzes the namespace of the expression’s root element. If the

33

5 Evaluation of ECA Rules

component contains an opaque expression, the necessary information is extracted according to

Section 3.2. The namespace is hereupon used to determine an appropriate language processor.

Before the ECA engine can send the query to this language processor, it has to find out about

the processor’s capabilities wrt. the handling of variable bindings. This is accomplished by

obtaining and analyzing its service description (see Section 4.3.3).

After consolidating all gathered information, the query is finally send to the language proces-

sor for the actual evaluation.

The language processor evaluates the query and returns the result inside an answer message.

In case of a functional result, the ECA engine needs to bind it to a variable before it can join

the resulting variable bindings with its own. Otherwise, the variable bindings can be joined

directly.

In the last step, the ECA engine computes the next rule component and triggers its evalua-

tion.

5.4 Employed Query Engines

This section describes several query engines that were implemented during the development of

the ECA engine and shows in detail how the query components of Example 5.1 are actually

evaluated.

XPath Engine. This engine interprets expressions of the language XPath [20] which is a query

language for XML and is useful for addressing parts of an XML document. XPath forms the

basis of several other languages, including XQuery, which is described in the next section.

Example 5.3 Consider the following simple XML document:

<a>

<b nr="1">one

<b nr="2">two

The XPath expression /a/b[@nr=”2”] results in the node

<b nr="2">two

XQuery Engine. XQuery is a declarative and functional query language for XML documents

that extends XPath. Expressions of this language are composed according to the for, let, where,

order by, return paradigm that is similar to SQL’s Select, From, Where.

34

5.4 Employed Query Engines

• The for clause allows for iterating over one or more sets of nodes. During each iteration,

the current node is bound to the specified variable. Since the result of the for clause

represents an ordered sequence of tuples of bound variables, it is called the tuple stream.

• Contrary to the for clause, the let clause binds variables to the result of an expression

without iteration. The previously mentioned tuple stream is then extended with these

variable bindings.

• If a where clause is present, it is evaluated once for every tuple. Depending on the result,

the respective tuple is kept or discarded.

• Usually, every XQuery expression returns its results in document order. Using the order

by clause makes it possible to specify a different sort order.

• The return clause finally constructs the result of the expression and is evaluated once for

every tuple of variable bindings.

Example 5.4 Consider the following XML document:

<a>

<b nr="1">one

<b nr="2">two

<b nr="3">three

Then, the exemplary XQuery expression

<result>
{

for $b in //b

where $b/@nr > 1

return <number>{$b/text()}</number>
}

</result>

results in the following XML document:

<result>
<number>two</number>
<number>three</number>

</result>

A more detailed description of XQuery is available at [21].

35

5 Evaluation of ECA Rules

Figure 5.2: Gathering Information about the Language Processor

eXist Engines. The XML database eXist [5] provides a way to natively store XML documents.

In order to query the database, XQuery (implying XPath) can be used. In this thesis, two

different wrapper engines are developed:

• The General eXist Engine is a wrapper around a predefined set of eXist databases that

transforms framework-native request messages into correct XQuery expressions by adding

the separately given variable bindings using XQuery’s let clause. To identify the according

eXist database, the content of the doc(’/db/...’) function is mapped to a predefined URL.

After the evaluation, the resulting XML fragment is returned inside an answer message.

36

5.4 Employed Query Engines

Figure 5.3: Answer to the First Query Component

• While the Direct eXist Engine also extends the given query with the provided variable

bindings, it only sends queries to a single predefined eXist database. Furthermore, it

returns the resulting XML fragment without modification, i.e. the query must return a

correctly marked up answer message itself. This allows for the generation of arbitrary

answer messages, most notably the faking of an answer returned by a logical language

expression (which only contains variable bindings and no functional result).

37

5 Evaluation of ECA Rules

Figure 5.4: Invocation of a Framework-Unaware Service

Example 5.5 The first query component of the rule (see Figure 5.2[1]) asks for the cars that

the customer owns at home using an opaque XQuery expression. The ECA engine retrieves the

service description of the language processor (see Figure 5.2[2]) and sends the query including

all value combinations for the input variables car-rental-url and Person (see Figure 5.2[3]).

The language processor then returns an <eca:answers> message containing one answer ele-

ment for each result (see Figure 5.3[1]). At the ECA engine, this result is bound to the variable

OwnCar and joined with the existing variable bindings (see Figure 5.3[2]). Note that as John

Doe owns two cars at home, a Golf and a Passat, the final variable bindings contain two

separate tuples to reflect this fact.

The next query component maps the cars to classes (sizes) by integrating a framework-

unaware service using the GET method of the HTTP protocol (see Figure 5.4[1]). Before in-

voking this service, the ECA engine combines the uri attribute of the <eca: opaque> element

with its content and replaces the variable $OwnCar with its actual value (see Figure 5.4[2]).

As there are two tuples of variable bindings, each containing a different value for OwnCar, the

ECA engine needs to invoke the service twice and assign the result (bound to the variable Class)

to the correct tuple (see Figure 5.4[3]).

38

5.5 Evaluation of the Test and Action Components

Figure 5.5: Simulation of a Framework-Aware Service using a XQuery Expression

In a further query, a list of all cars that are available at the destination city is retrieved (see

Figure 5.5). It is stated against the direct eXist engine described in Section 5.4 and fakes a

framework-aware service by generating an <eca:answers> message directly inside the XQuery

expression.

The classes of the available cars (B and D) are compared with the classes of the customer’s

cars (B and C) as shown in Figure 5.6[1]. In a natural join over the variable Class, all tuples

containing a car of class C or D are eliminated and only those with both cars of class B remain

(see Figure 5.6[2]).

5.5 Evaluation of the Test and Action Components

When all query components are processed, the evaluation of the test component results in a

set of tuples for which the action components will be executed. While the process of evaluation

39

5 Evaluation of ECA Rules

Figure 5.6: Elimination of Tuples during the Natural Join

40

5.6 Employed Action Engines

is the same as for the query components3, the handling of the results is more similar to the

boolean interpretation of an XPath expression. If the result is empty4 or equals the literal

string false, the respective tuple of variable bindings is discarded. In any other case, the result

is interpreted as true and the tuple is kept and later used during the execution of the action

components.

When at least one (possibly empty) tuple remains, all action components are executed anal-

ogous to the query and test components. With the execution of the last rule component, the

evaluation of the rule instance is finished and all state information is discarded.

5.6 Employed Action Engines

Mail Engine. An exemplary language processor for the action part of a rule is the mail engine.

While in a future version of the ECA prototype it will be able to send messages via electronic

mail, in this thesis it is only implemented as a simple logging service. When it receives a request

message, it forwards it to the framework logging service described in Section 5.8.

Answer Engine. So far, rule execution always started with the detection of an event and

resulted in the possible execution of actions. These actions may themselves result in the firing of

atomic events (e.g. after a database update). As long as there is no prototypical implementation

of an appropriate event detection engine, another mechanism is required that allows for the

triggering of rules from inside a rule.

This task is handled by the answer engine that is capable of generating an answers message

and forwarding it to the ECA engine.

Example 5.6 As the exemplary query of this chapter does not contain a query, it is simply

omitted and the evaluation of the rule continues with the execution of the first (and only) action

component (see Figure 5.7[1]).

By analyzing the service description of the language processor (see Figure 5.7[2]), the ECA

engine learns that it can send the two tuples of variable bindings unchanged. With the sending

of this request (see Figure 5.7[3]), the rule evaluation is finished.

41

5 Evaluation of ECA Rules

Figure 5.7: Executing the Action Component

5.7 Internal Functionality of the ECA Engine

While the ECA engine represents a single component of the framework when seen from the

outside, the prototype developed in this thesis is divided into two parts. The core ECA engine

is responsible for the evaluation of rules at a declarative level.

As illustrated in Figure 5.8, the ECA engine employs a generic service, called Generic Request

Handler (GRH), to handle the actual invocation of an appropriate language processor. In

3Note that in a production environment the test component will likely be evaluated locally at the ECA engine
for optimized performance.

4Whitespace at the beginning and the end of the result is ignored.

42

5.7 Internal Functionality of the ECA Engine

ECA Engine:
<rule>

<event xmlns:ev=“. . . ”/>. . . </event>

<query xmlns:ql=“. . . ”/>. . . </query>

<test xmlns:t=“. . . ”/>. . . </test>

<action xmlns:act=“. . . ”/>. . . </action>

</rule>

Generic
Request
Handler

• •· · · Component Language Services· · · •

→
component
input var.bdgs

←
resulting
variable bdgs

Figure 5.8: Internal Architecture of the ECA Engine (from [3])

addition to the component, it provides the necessary variable bindings to the GRH and receives

the variable bindings resulting from the query.

Thus, from the viewpoint of the core ECA engine, all language processors inside the Web are

not only framework-aware but also directly return variable bindings.

To provide this abstraction, the GRH is able to transform the native messages of the frame-

work into messages that are understood by the specific services. Furthermore, it can iterate

over sets of variable bindings and replenish the resulting bindings, if applicable.

Example 5.7 Consider again Figure 5.4. While it only shows that the ECA engine invokes the

framework-unaware service twice and joins the results, internally the following things happen:

1. The ECA engine sends the component and variable bindings to the GRH.

2. The GRH iterates over the tuples and sends the HTTP request once for Golf and once

for Passat.

3. The GRH generates the following variable bindings and sends them to the ECA engine:

<eca:variable-bindings>
<eca:tuple>

<eca:variable name="Class">C</eca:variable>

<eca:variable name="OwnCar">Passat</eca:variable>

</eca:tuple>

<eca:tuple>

<eca:variable name="Class">B</eca:variable>

<eca:variable name="OwnCar">Golf</eca:variable>

</eca:tuple>

</eca:variable-bindings>

4. The ECA engine joins the resulting bindings with its own.

43

5 Evaluation of ECA Rules

5.8 Additional Infrastructure

Besides the framework components described so far, a few additional components are required

during the development phase of the ECA prototype.

Message Broker. In the future it will be possible to state queries and actions against “the

Web” as a whole without previous knowledge of where the appropriate information system is

actually located. The mechanisms of the Semantic Web will then ensure that the query (or

action) is sent to the correct node(s). As this functionality is not available yet, it must be

simulated by a dedicated message broker that holds a static mapping of namespaces (URIs) to

the respective services.

Logging Engine. As the individual components of the framework may be located at different

nodes inside the web it is reasonable for the prototype to have a central logging engine. This

allows to cumulate all logging messages at one place and make them available to the client for

demonstration purposes.

ECA Engine Client. While the framework components mentioned so far represent the center

of the ECA prototype developed in this thesis, some important aspects are not yet dealt with:

• An administration tool is needed to be able to register and deregister rules at the ECA

engine.

• For demonstration purposes there must be a tool for viewing the framework log.

• As no event detection engine is currently available, the detection of an event must be

simulated by sending a faked <eca:answers> message to the ECA engine.

These requirements have to be met by the ECA engine client.

44

6 Implementation

This chapter presents the actual implementation of the ECA prototype. At first, the em-

ployed technologies are described, followed by a general outline of the architecture. Finally, the

implementation of each framework component is explained in detail.

6.1 Employed Technologies

The complete protoype of the ECA framework is implemented in Java. The individual frame-

work components exist as web services and use the SOAP protocol for communication1.

Java and the Spring Framework. The object-oriented programming language Java was in-

vented by Sun and allows for the development of software that is independent of the underlying

harware architecture and operation system.

For the easy configuration of the framework components, the Spring framework is used.

Spring acts as a container around the individual framework components and provides the nec-

essary dependencies by the use of the dependency injection concept. Furthermore, it simplifies

the setup and use of web services that are described in the next section.

For more information about Java see [16], the Spring is framework described in [7] and [15].

Web Services with Apache Axis. Since the components of the ECA framework represent ar-

bitrary nodes inside the Semantic Web, a communication method is required that does not

depend on a specific operating system or programming language. Thus, the Simple Object

Access Protocol (SOAP) was chosen as it allows for a complete abstraction of the underlying

hard- and software.

A popular implementation of SOAP in Java is Apache Axis which is also used in this imple-

mentation. More information on Axis can be found at [2].

1Due to the fact, that all messages are already marked up in XML it is likely that SOAP will be replaced by
plain HTTP-POST requests in the future.

45

6 Implementation

6.2 Architecture

The ECA prototype consists of two different kinds of classes. On the one hand, there are aspects

that several or all of the framework components must deal with, e.g. the handling of variables

or the analyzation and generation of messages. On the other hand, each of the components is

an individual web service and has its own needs.

To represent this, the classes are divided into common ones and component specific ones.

The common classes are kept inside the common package2, the specific ones in subpackages of

engines.

6.3 Common Classes

All classes that are shared by multiple framework components are kept below the subpackage

common, most notably classes for the handling of variable bindings and utility classes. This

makes it easy to distribute the individual framework components to different web nodes, as

they only depend one additional java archive.

6.3.1 Variable Bindings

The classes inside the package common.variables (see Figure 6.1)3 implement the concept of

variable bindings as described in Section 4.1. The central class is called VariableBindings and

maintains a list of instances of the class Tuple. It offers methods for joining its own tuples with

those of another instance and for finding all existent combinations of input variables inside its

own tuples.

The class Tuple maintains a map of variable names to the according instances of subclasses

of VariableBinding4. A Tuple can be cloned, compared to or joined with another Tuple.

A subclass of VariableBinding then holds the actual value of the logical variable and can also

be cloned and compared and may additionally be transformed to its string representation.

6.3.2 Utility Classes

The package common.util (see Figure 6.2) contains - as the name implies - a collection of

helper classes that are useful for several framework components. The most generic class is

2Note that all packages have the prefix de.uni goettingen.informatik.dbis.
3Note that in all class diagrams throughout this chapter, the declaration of the getter and setter methods for

private attributes is omitted.
4These are EmptyVariableBinding, StringVariableBinding and XMLVariableBinding for now. This list can later be

extended to implement a more complex type system.

46

6.4 ECA Engine

EmptyVariableBinding

clone():Object
equals(obj:Object):boolean
getValue():Object
hashCode():int
stringValue():String

StringVariableBinding

clone():Object
equals(obj:Object):boolean
getValue():Object
hashCode():int
stringValue():String

XMLVariableBinding

clone():Object
equals(obj:Object):boolean
getValue():Object
hashCode():int
stringValue():String

<<abstract>>

VariableBinding
name:String

abstract clone():Object
equals(obj:Object):boolean
abstract getValue():Object
abstract hashCode():int
abstract stringValue():String

Tuple
bindings:Map<String, VariableBinding>

bindVariable(binding:VariableBinding)
clone():Object
equals(obj:Object):boolean
equiJoin(other:Tuple):Tuple
getBinding(name:String):VariableBinding
getBindings():Collection<VariableBinding>
hashCode():int
isBound(name:String):boolean
renameBinding(oldName:String, newName:String)

VariableBindings
tuples:List<Tuple>

addTuple():Tuple
addTuple(tuple:Tuple)
bindInAllTuples(binding:VariableBinding)
equiJoin(other:VariableBindings)
getCombinations(variables:Set<Variable>, rename:boolean):Set<Tuple>
getContainingTuples(variables:Set<Variable>, rename:boolean):VariableBindings
getFirstTuple():Tuple
getTuples():List<Tuple>
importTuples(tuples:Collection<Tuple>)
importTuples(bindings:VariableBindings)

1

1

Figure 6.1: Class Diagram for Variable Bindings

XMLUtils that is able to serialize and deserialize XML documents to and from their string

representation. This feature is for example used by the class VariableBindingsXMLHelper to

implement de-/serialization for variable bindings.

Methods for the analyzation and composition of framework messages like <eca:request> and

<eca:answers> are provided by the class MessageXMLHelper. It uses the class MessageAttributes

that holds all attributes that are required for the unique identification of a rule instance 5.

The class ServiceDescription is also part of this package. It is implemented as a plain object

that has one attribute for every feature of a language processor and the respective getter and

setter methods. Analogous to the variable bindings, the class ServiceDescriptionXMLHelper

implements de-/serialization for the service description6.

47

6 Implementation

MessageXMLHelper

addAnswer(answerDocument:Document, resultValue:Object, bindings:VariableBindings)
generateAnswers(requestDoc:Document):Document
generateAnswers(attributes:MessageAttributes):Document
generateRequest(attributes:MessageAttributes, componentPart:Element, bindings:VariableBindings):Document
getActionPart(request:Element):Element
getAnswers(message:Document):List<Element>
getEventPart(request:Element):Element
getMessageAttributes(message:Document):MessageAttributes
getMessageAttributes(messageRoot:Element):MessageAttributes
getPart(root:Element, name:String):Element
getParts(root:Element, name:String):List<Element>
getQueryPart(request:Element):Element
getRequestElement(message:Document):Element
getResultPart(answer:Element):Element
getTestPart(request:Element):Element
getVariableBindings(element:Element):VariableBindings
toAnswerDocument(attributes:MessageAttributes, answer:String):Document

ServiceDescription
namespace:String
multipleInput:boolean
sendUse:boolean

ServiceDescriptionXMLHelper

toServiceDescription(xml:String):ServiceDescription
toString(sd:ServiceDescription):String

MessageAttributes
ref:String
component:String
timestamp:String
instance:String

SoapHelper

call(url:String, operation:String, arguments:Object[]):Object

VariableBindingsXMLHelper

addVariableBinding(tuple:Tuple, variable:Element)
getUsedVariables(element:Element, includeUse:boolean):Set<Variable>
getVariableBinding(name:String, content:List<Content>):VariableBinding
insertBindingsIntoElement(varBindings:VariableBindings, targetElement:Element)
insertValueIntoElement(binding:VariableBinding, element:Element)
toString(varBindings:VariableBindings):String
toVariableBindings(root:Element):VariableBindings
toVariableBindings(varBindings:String):VariableBindings

XMLUtils

toDocument(xml:String):Document
toString(content:Content):String
toString(content:Content, raw:boolean):String
toString(doc:Document):String
toString(doc:Document, raw:boolean):String
toString(list:List):String
toString(list:List, raw:boolean):String

Figure 6.2: Class Diagram for Utility Classes

6.4 ECA Engine

6.4.1 Communication Interface of the ECA Engine

The communication interface of the ECA engine is shown in Figure 6.3. From the perspective

of the client, the methods for rule management are most important. When a client registers

a rule (in the respective XML markup), the method registerRule returns an identifier that the

client may later use to retrieve (getRule) or deregister (deregisterRule) the rule.

During the phase of event detection, the client may need to communicate atomic events to

the event detection engine where the event component of the rule was registered7. To allow

for this communication, the ECA engine provides the method forwardEvent that forwards the

given event (an XML fragment) to all known event detection engines.

Finally, when an event was detected, the event detection engine needs to notify the ECA

5This is explained in detail in Section 4.3.2.
6The format of a SD is explained in Section 4.3.3.
7This is only required when the event detection engine is not able to find out about the relevant events itself.

48

6.4 ECA Engine

ECA Engine

Rule Management
registerRule(<<Rule>>) : <<ID>>

deregisterRule(<<ID>>)
getRuleIDs() : ArrayOf<<ID>>

getRule(<<ID>>) : <<Rule>>

Rule Evaluation
forwardEvent(<<Event>>)
processAnswer(<<Answer>>)

<<Rule>>, <<Event>> and <<Answer>> represent the respective XML documents,

<<ID>> represents a string which identifies a rule.

Figure 6.3: Communication Interface of the ECA Engine

engine. The method processAnswer therefore provides a way to do this. Furthermore, it is used

during the subsequent evaluation of the rule in case the evaluation of a query or test component

is happening asynchronously.

Example 6.1 When a client wants to register a rule at the ECA engine, it may send the

following SOAP message to it:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<ns1:registerRule
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="http://soapinterop.org/">

<eca:rule xmlns:eca="http://www.eca.org/eca-ml">

<eca:event>
...

</eca:event>
<eca:query>

...

</eca:query>

...

...

</eca:rule>

</ns1:registerRule>

</soapenv:Body>

</soapenv:Envelope>

In return, the ECA engine would provide the id it assigned to the rule:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<ns1:registerRuleResponse

49

6 Implementation

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="http://soapinterop.org/">

<registerRuleReturn xsi:type="soapenc:string" xmlns:soapenc="...">

rule517

</registerRuleReturn>

</ns1:registerRuleResponse>

</soapenv:Body>

</soapenv:Envelope>

When the event detection engine notifies the ECA engine about an event occurrence (consider

again Example 5.2 on page 32), it sends the following SOAP message:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<ns1:handleAnswer
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="http://soapinterop.org/">

<eca:answers xmlns:eca="http://www.eca.org/eca-ml" ref="http://..." component="event">

<eca:answer>
<eca:result>

<booking person="John Doe" from="Munich" to="Paris"/>

</eca:result>
<eca:variable-bindings>

<eca:tuple>

<eca:variable name="Person">

John Doe

</eca:variable>

<eca:variable name="To">

Paris

</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:answer>

</eca:answers>
</ns1:handleAnswer>

</soapenv:Body>

</soapenv:Envelope>

Obviously, the ECA engine does not return an answer in return.

6.4.2 Architecture of the ECA Engine

The ECA engine is the central part of the framework prototype and is kept in the package

engines.eca (see Figure 6.4). Its main class, ECAEngine, provides all necessary methods for rule

management and rule evaluation.

Behind the scenes, it does not handle any task itself but uses the RuleManager or another

helper class for this purpose. To provide the necessary dependencies at runtime, it passes an

instance of HelperContext along with each call. As shown in Figure 6.4, the HelperContext

contains references to several objects that are needed for the management of rules and the rule

evaluation. These will be explained in the following sections.

50

6.4 ECA Engine

ElementProcessor

processActionElement(context:HelperContext, attributes:MessageAttributes, action:Element, bindings:VariableBindings)
processEventElement(context:HelperContext, attributes:MessageAttributes, event:Element, bindings:VariableBindings)
processQueryElement(context:HelperContext, attributes:MessageAttributes, query:Element, bindings:VariableBindings)
processTestElement(context:HelperContext, attributes:MessageAttributes, test:Element, bindings:VariableBindings)
processVariableElement(context:HelperContext, attributes:MessageAttributes, variable:Element, bindings:VariableBindings):boolean

RuleInstance
context:HelperContext
rule:String
bindings:VariableBindings
id:String
timestamp:Long
instance:Integer
component:String
position:Integer

handleEventAnswer(answer:Element)
handleQueryAnswer(answerDoc:Document)
handleTestAnswer(answerDoc:Document)
processNextComponent():boolean

RuleInstanceGroup
instances:Map<Integer, RuleInstance>

add(instance:RuleInstance)
get(instance:Integer):RuleInstance
remove(instance:Integer)
size():Integer)

RuleManager
groups:Map<String, RuleInstanceGroup>
context:HelperContext

handleAnswer(strAnswer:String)
registerRule(rule:String):String
removeInstance(instance:RuleInstance)

ECAEngine
context:HelperContext

registerRule(rule:String):String
deregisterRule(id:String):boolean
getRuleIds():String[]
getRule(id:String):String
forwardEvent(event:String)
processAnswer(answer:String)

HelperContext
logger:Logger
ruleDao:RuleDao
ruleManager:RuleManager
messageBroker:MessageBroker
requestHandler:GenericRequestHandler

RuleDao
db:ExistDB

deleteRule(id:String):boolean
getRule(id:String):String
getRuleIds():String[]
insertRule(rule:String):String

ExistDB
existUrl:String
user:String
pass:String

executeQuery(collection:String, document:String, parameters:String):String
executeUpdate(collection:String, document:String, xupdate:String):String

Figure 6.4: Class Diagram for the ECA Engine

6.4.3 Rule Management

Methods for the registration and deregistration of rules are located at the RuleManager which

implements the process described in Section 5.1. When a rule is registered, it is stored inside

the native XML database eXist. Thus, the class RuleDao8 that is responsible for storing the

rule uses an instance of ExistDB for connecting with the database and executing queries and

updates.

As the methods getRuleIds and getRule require no complex logic, the ECAEngine calls the

respective methods of RuleDao directly.

8DAO stands for Data Access Object.

51

6 Implementation

6.4.4 Rule Evaluation

The process of rule evaluation is described in detail in Chapter 5. At the level of the imple-

mentation, rule evaluation starts when the ECAEngine calls the method handleAnswer of the

RuleManager with a message that is an answer to the event part of a rule.

If it not already exists, the RuleManager then creates a new instance of the class RuleInstance-

Group and stores it along with the actual time point.

Next, a new instance of RuleInstance is created and added to the RuleInstanceGroup9. The

class RuleInstance controls the evaluation of the rule and stores all necessary information like

the actual variable bindings and the position of the actually evaluated rule component.

Finally, the RuleManager calls the method handleEventAnswer at the newly created RuleIn-

stance. This method builds up all static variable bindings that are defined before the rule’s

event part and binds the event itself, if appropriate. It then calls the private method process-

NextElement that is responsible for determining the next rule component to be evaluated.

Depending on the name of the respective element10, processNextComponent calls the appro-

priate method of ElementProcessor. The ElementProcessor then determines the required variable

bindings, generates an appropriate <eca:request> message and sends it to the generic request

handler.

At this point the evaluation of the rule is suspended, as the ECA engine has to wait for

the answer to its request. When this is available, it is delgated to the correct RuleInstance

which then joins the resulting variable bindings with its own and again determines the next

rule component by calling processNextElement.

This process is repeated until the last element of the rule has been evaluated. Afterwards

the RuleInstance is removed from the RuleInstanceGroup which itself is removed if it does not

contain any more active RuleInstances.

6.5 Generic Request Handler

The generic request handler inside the package engine.generic (see Figure 6.5) is responsible for

the identification and invocation of the correct language processor11 and the preprocessing of

the resulting answer.

While the ECA engine and the GRH communicate asynchronously, the communication be-

tween the GRH and the language processors is currently implemented in a synchronous man-

9If the message contains several <eca:answer> parts, it is split up into the according number of RuleInstance

objects.
10This can be <eca:variable>, <eca:query>, <eca:test> or <eca:action>.
11In case of a non-opaque expression this task is passed on to the message broker.

52

6.5 Generic Request Handler

GenericRequestHandler
messageBroker:MessageBroker
logger:Logger

handleAction(request:Element)
handleQuery(request:Element, variableName:String)
handleRequest(String strRequest)
handleTest(request:Element)

TestHandlerThread
messageBroker:MessageBroker
logger:Logger
request:Element

run()

QueryHandlerThread
messageBroker:MessageBroker
logger:Logger
request:Element
variableName:String

run()

ActionHandlerThread
messageBroker:MessageBroker
logger:Logger
request:Element

run()

ServiceComponent
logger:Logger
communicationType:CommunicationType
broker:MessageBroker
namespace:String
uri:String
protocol:String
method:String

fromElement(broker:MessageBroker, element:Element):ServiceComponent
read(in:InputStream):String
getServiceDescription():ServiceDescription
invoke(attributes:MessageAttributes, element:Element, bindings:VariableBindings):List<Element>
sendMessage(attributes:MessageAttributes, element:Element, bindings:VariableBindings):Document
sendNativeMessage(message:Document):String

<<enum>>

CommunicationType
FRAMEWORK_NATIVE
NON_NATIVE

Figure 6.5: Class Diagram for the Generic Request Handler

ner. When the GRH receives a request from the ECA engine, the method handleRequest of

the class GenericRequestHandler is called. Based on the component attribute of the request

message a new thread is started, running an according instance of either QueryHandlerThread,

TestHandlerThread or ActionHandlerThread.

In any case, the rule component and the required variable bindings are extracted from the

message. Afterwards, the appropriate language processor is determined and based on its service

description, the variable bindings that will be sent to the processor are calculated. The latter

is dependent on the evaluated component:

• In case of a query component, the set of variables communicated to the language processor

may be any subset of all used variables that at least contains all input variables. The

variable bindings finally sent then consist of every existing value combination.

• In the test component there are no other used variables than input variables and thus,

the variable bindings can be sent without modification.

53

6 Implementation

Language Processor

getServiceDescription() : <<ServiceDescription>>

processMessage(<<Request>>) : <<Answer>>

<<Request>>, <<Answer>> and <<ServiceDescription>>

represent the respective XML documents

Figure 6.6: Communication Interface of Language Processors

• An action component may only define input variables. Contrary to the former two, not

every value combination is sent to the language processor but every tuple.

At this point, the actual invocation of the language processor takes place which is encap-

sulated inside the class ServiceComponent. Its invoke method takes the MessageAttributes, the

rule component (as an XML element) and the VariableBindings as arguments. Depending on

the rule component (opaque vs. non-opaque) it correctly invokes the language processor and

returns an accurately marked up <eca:answers> message12.

The handling of the answer message is then different for the three component types (every

class has its own private handleXAnswers method, where X stands for the according component):

• The resulting variable bindings of a query component are simply joined with the ones

sent by the ECA engine.

• In the contrary, the result of a test component has a special meaning. If it is empty of

contains the string “false”, the according tuple is removed from the variable bindings,

otherwise it is kept.

• An action component does not yield an answer.

While the evaluation of an action component is finished at this point, a query or test com-

ponent requires the sending of a <eca:answers> message back to the ECA engine that contains

the resulting variable bindings.

6.6 An Exemplary Language Processor: XPath Engine

6.6.1 Communication Interface of a Language Processor

The communication interface of language processors is illustrated in Figure 6.6. Before the

ECA engine can invoke a language processor, it has to gather information about the processor’s

12Note that this is also true for language processors that are not framework-aware.

54

6.6 An Exemplary Language Processor: XPath Engine

capabilities wrt. the handling of variable bindings (see Section 4.3.3). It therefore calls the

method getServiceDescription that returns the required information (marked up in XML).

Afterwards, it can send a request message to the language processor by calling the method

processMessage. In return it will receive the result of the evaluation in form of an answer

message (again, both messages are marked up in XML).

In the future, a language processor may have the need of delegating the evaluation of a part

of the rule component to another evaluation service. The method processMessage is therefore

intentionally not named processRequest, since the language processor will then be able to receive

answer messages using this method without violating the naming convention.

Example 6.2 Consider again Example 5.5 on page 38. When the ECA engine evaluates the

first query component, it calls getServiceDescription at the language processor (Figure 5.2[2]).

Afterwards, the method processMessage is used to request the evaluation of the query component

(Figure 5.2[3]).

The respective SOAP message that is send to invoke the language processor looks as follows:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<ns1:processMessage
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="http://soapinterop.org/">

<eca:request xmlns:eca="http://www.eca.org/eca-ml" ref="..."

component="query[1]"timestamp="..."instance="...">

<eca:query>

<eca:opaque lang="http://www.w3.org/XQuery">

for $car in doc($doc)/car-rental/customer-cars/car[@owner=$Person]

return

$car/text()</eca:opaque>

</eca:query>

<eca:variable-bindings>
<eca:tuple>

<eca:variable name="doc">

http://localhost:8081/exist/servlet/db/travel/car-rental.xml

</eca:variable>

<eca:variable name="Person">

John Doe

</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:request>

</ns1:processMessage>

</soapenv:Body>

</soapenv:Envelope>

After the evaluation, the language processor returns the following SOAP message:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

55

6 Implementation

<ns1:processMessageResponse
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="http://soapinterop.org/">

<eca:answers xmlns:eca="http://www.eca.org/eca-ml" ref="..."

component="query[1]"timestamp="..."instance="...">

<eca:answer>
<eca:result>Golf</eca:result>
<eca:variable-bindings>

<eca:tuple>

<eca:variable name="doc">

http://localhost:8081/exist/servlet/db/travel/car-rental.xml

</eca:variable>

<eca:variable name="Person">

John Doe

</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:answer>
<eca:answer>

<eca:result>Passat</eca:result>
<eca:variable-bindings>

<eca:tuple>

<eca:variable name="doc">

http://localhost:8081/exist/servlet/db/travel/car-rental.xml

</eca:variable>

<eca:variable name="Person">

John Doe

</eca:variable>

</eca:tuple>

</eca:variable-bindings>
</eca:answer>

</eca:answers>
</ns1:processMessageResponse>

</soapenv:Body>

</soapenv:Envelope>

After describing the abstract interface of a language processor in this section, the next section

shows a possible implementation.

6.6.2 Architecture of the XPath Engine

As shown in the last section, a language processor must implement two methods, getSer-

viceDescription and processMessage, of which the first is simply serializing and returning a

ServiceDescription object described in Section 6.3.2.

The processMessage method is now explained in detail. At first, the <eca:request> message is

converted to an XML document and analyzed, i.e. the rule component and the required variable

bindings are extracted. Before the actual evaluation starts, an empty <eca:answers> message is

created, that will later be filled with the results.

Next, the private method query is called for every tuple of variable bindings13. This method

prepares the given XPath expression and provides the internal evaluator with the required

13Note that this service can obviously handle multiple tuples.

56

6.7 ECA Engine Client

Figure 6.7: Managing Rules with the ECA Engine Client

variable bindings. The result of the expression is then returned to the processMessage method

which inserts the appropriate number of <eca:answer> elements into the <eca:answers> message.

Finally, the <eca:answers> message is returned to the generic request handler.

6.7 ECA Engine Client

The graphical ECA engine client is implemented in Swing and consists of three logical parts.

1. The classes RegisteredRulesPanel (see Figure 6.7) and NewRulePanel allow for the admin-

57

6 Implementation

Figure 6.8: Sending Answers with the ECA Engine Client

istration of rules at the ECA engine.

2. The class EventPanel (see Figure 6.8) provides an interface for sending <eca:answers>

messages to the ECA engine and by doing so, simulating an event detection engine.

3. The class LogPanel presents the output of the framework log to the user. A refresh can

happen either in a predefined time interval or at the user’s request.

58

7 Conclusion

In this thesis, an ECA engine for evaluating Event-Condition-Action rules was developed,

using standard Web technologies (XML, SOAP and Java). This ensures, that the ECA engine

can easily be integrated into existing information systems in order to turn them into active

participants of the Semantic Web. By the use of declarative rules for defining the behavior of

these systems, a later reasoning about the same is rendered possible.

During the development of the ECA engine, it became apparent that the internal architecture

could be made much simpler by dividing it into two parts. Thus, there is a core part that handles

the declarative evaluation of a rule and keeps the current variable bindings. It is accompanied by

a generic wrapper around the language processors that hides the complexity of their invocation

and returns only the resulting variable bindings to the core ECA engine.

Possible areas of further development are:

• The lifting of the data model from XML to RDF which would allow for working with

concepts rather than plain data.

• The implementation of a grouping mechanism for tuples of variable bindings (similar to

SQL’s GROUP BY).

• The implementation of distributed transactions. This would provide ACID1 properties

to a set of action components.

While the ECA engine already provides services of reactive behavior to its clients, an im-

portant aspect of the ECA framework is not yet completely dealt with: the propagation and

detection of events. The development of a respective Event Detection Engine is currently sub-

ject to a project work and will, when finished, complete the prototypical implementation of the

basic ECA environment.

1Atomicity, Consistency, Isolation, and Durability.

59

7 Conclusion

60

Bibliography

[1] José Júlio Alferes, Ricardo Amador, Erik Behrends, Mikael Berndtsson, François Bry,

Gihan Dawelbait, Andreas Doms, Michael Eckert, Oliver Fritzen, Wolfgang May,

Paula Lavinia Pătrânjan, Loic Royer, Franz Schenk, and Michael Schröder. Specifica-

tion of a model, language and architecture for evolution and reactivity. Technical Report

I5-D4, REWERSE EU FP6 NoE, 2005. Available at http://www.rewerse.net.

[2] Apache Axis: an Implementation of the SOAP Protocol. http://ws.apache.org/axis.

[3] Erik Behrends, Oliver Fritzen, Wolfgang May, and Daniel Schubert. An ECA Engine

for Deploying Heterogeneous Component Languages in the Semantic Web. Draft for the

Workshop “Reactivity on the Web”, March 2006.

[4] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events for

active databases: Semantics, contexts and detection. In Proceedings of the 20th VLDB,

pages 606–617, 1994.

[5] eXist: an Open Source Native XML Database. http://exist-db.org/.

[6] A General Framework for Evolution and Reactivity in the Semantic Web. Draft, for

further information see http://www.dbis.informatik.uni-goettingen.de/rewerse/.

[7] Rob Harrop and Jan Machacek. Pro Spring. apress, 2005.

[8] Alfons Kemper and Andre Eickler. Datenbanksysteme. Oldenbourg, 4th edition, 2004.

[9] Wolfgang May, José Júlio Alferes, and Ricardo Amador. Active rules in the semantic

web: Dealing with language heterogeneity. In Rule Markup Languages (RuleML), num-

ber 3791 in LNCS, pages 30–44. Springer, 2005.

[10] Wolfgang May, José Júlio Alferes, and Ricardo Amador. An ontology- and resources-

based approach to evolution and reactivity in the semantic web. In Ontologies, Data-

bases and Semantics (ODBASE), number 3761 in LNCS, pages 1553–1570. Springer,

2005.

61

Bibliography

[11] OWL Web Ontology Language. http://www.w3.org/TR/owl-features/, 2004.

[12] Resource Description Framework (RDF). http://www.w3.org/RDF, 2000.

[13] Resource Description Framework (RDF) Schema specification. http://www.w3.org/TR/

rdf-schema/, 2000.

[14] The ruleCore R© system — advanced business situation detection. .

http://www.rulecore.com.

[15] Spring Framework. http://www.springframework.org/.

[16] Sun Microsystems, Inc. The Source for Java Developers. http://java.sun.com/.

[17] W3C – the world wide web consortium. http://www.w3c.org/.

[18] Extensible Markup Language (XML). http://www.w3.org/XML/, 1998.

[19] XML Schema. http://www.w3.org/XML/Schema, 1999.

[20] XML Path Language (XPath) version 1.0: 1999. http://www.w3.org/TR/xpath, 1999.

[21] XQuery: A Query Language for XML. http://www.w3.org/TR/xquery, 2001.

62

