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Abstract

A lot of the data sources that are available in the Web can only be accessed through limited
access patterns. By entering some input values, appropriate output values are returned in
a table-like schema. On the one hand, there are human-oriented sources that return data
in form of dynamically generated Web pages by filling out Web forms (Deep Web). On
the other hand, there are only machine accessible Web Services. This thesis implements
the prototype of a Query Broker that uses these sources to answer declarative queries. For
this, semantic annotations are assigned to the sources. This enables the query broker to
select suitable sources for the query answering and to query them in an appropriate order
by taking the output values of queried sources as the input for other sources.
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1 Introduction

This thesis implements the approach described in the paper “Semantic Annotations and
Querying of Web Data Sources” [5].

A lot of the data sources that are available in the Web can only be accessed through
restricted access patterns. For example, consider a flight portal that can be queried by
entering a departure airport, a destination airport and a date to get connections between
these airports by flight code, departure time, arrival time, price and the operating airline.
We daily use such sources to gather information. In order to answer a question, often
the use of different data sources is necessary, whereupon the results have to be combined
manually. If we, for example, want to find the places where we can fly from Munich on
1.10.2010 for less than 50e, we can not use the above-mentioned source directly, since no
destination airport is known. But there may be another data source that can be queried by
entering a departure airport to get a list of reachable destination airports. It can be used to
get the destination airports that are reachable from Munich. With the result, the first source
can be queried.

Many data sources that are available in the Web require some input values and return
corresponding output values in a table like-schema. They are called Web Data Sources. On
the one hand, there are human-oriented sources that return data in form of dynamically
generated Web pages by filling out Web forms (Deep Web). On the other hand, there are
only machine accessible Web Services.

The goal of the thesis is to implement a Query Broker that automatically answers declar-
ative queries by the use of distributed Web Data Sources. Since the semantics of the infor-
mation provided by the different data sources is usually not explicitly given, an automatic
combination of the information is a problem. For this purpose, the Web Data Sources are
associated with the semantics of an application domain. If now a query in terms of the
domain ontology is sent to the broker, appropriate Web Data Sources for the query an-
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1 Introduction

swering can be selected and queried, taking the input-output-characteristics into account.
A schematic representation of the Query Broker is shown in Figure 1.1.

Web Data Source A

Web Data Source B

Web Data Source C

Query Broker

Source Descriptions

Source A

Source B Source C

Query

Answer

1
3

4
2

(1) receive query (2) select sources (3) query sources (4) return answer 

Figure 1.1: Schematic Representation of the Query Broker

This thesis deals not with the technical aspects of how to access the data sources. For
this purpose, generic wrapper languages are available, which are used to encapsulate the
sources. The thesis starts above this level and is concerned with the selection, query order
and result combination of the wrapped sources.

Structure of the Thesis

The thesis is divided into 6 chapters. In Chapter 2 the basic theoretical foundations of
the thesis are introduced. Chapter 3 covers the semantic annotation of Web Data Sources.
In the subsequent Chapter 4, the query processing is described. Chapter 5 describes the
implementation of the Query Broker. The thesis is concluded with a short summary and
perspective.
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2 Foundations

This thesis is based on concepts of the Semantic Web, that are introduced in this chap-
ter. First, the idea of the Semantic Web is presented. In the next section, the Resource
Description Framework (RDF), which is the data model underlying the Semantic Web, is
introduced. The subsequent section introduces the RDF vocabulary definition language
RDF Schema. This chapter ends with an overview of the RDF query language SPARQL.

2.1 Semantic Web

The World Wide Web (Web) is organized in interlinked documents, designed to provide
content for human users. Thus, the Web is meant to be read and understood by humans,
and not machines. The Semantic Web extends the World Wide Web with the purpose of
assigning machine processable semantics to the data. This enables computers to auto-
matically process information in a reliable way. For example, information from different
sources can be automatically integrated and unknown connections can be discovered.

An important term concerning the Semantic Web is the ontology. A domain ontology
formally specifies a domain. It defines concepts, properties and relationships of a domain.
Besides, logical rules that allow reasoning are part of ontologies. [12]

2.2 RDF

The Resource Description Framework (RDF) [9] is a data model for representing infor-
mation in the Semantic Web. RDF represents information by making statements about
resources. A resource may be a Web page, a person, a book or any other object. A resource
is identified by a Uniform Resource Identifier (URI). Thus, different sources can describe
the same resource using its URI. To give an example, the city Berlin is a resource, identified
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2 Foundations

by its URI http://example.org/cities/berlin. A statement about a resource is called triple and
consists of the following three parts:

• a subject, which is the resource (represented by its URI) the statement is made about,

• a predicate, which is the property (represented by its URI) of the resource that is
described,

• and an object, which is the value of the property and can either be a URI or a literal.

Consider the sentence: “Berlin has a population of 3442675”.

• Subject (URI): http://example.org/cities/berlin

• Predicate (URI) : http://example.org/population

• Object (literal): 3442675

2.2.1 Graphical Representation

An RDF model consists of a set of triples. These triples form a labeled directed graph,
where subjects and objects are nodes and predicates are directed edges. For the graphi-
cal representation, ovals are used for nodes. Literal nodes are drawn as rectangles. The
example sentence is shown in Figure 2.1.

http://example.org/cities/berlin 3442675
http://example.org/population

Figure 2.1: RDF Graph of the Sample Triple

2.2.2 Turtle Syntax

As a textual syntax for RDF data, the Terse RDF Triple Language (Turtle) [7] is used in this
thesis. A triple has the format

sub jec t p red ica te ob jec t .

URIs are enclosed in < and >. The above example statement is written as follows.

< h t t p : / / example . org / c i t i e s / b e r l i n > < h t t p : / / example . org / popula t ion > 3442675.

4



2 Foundations

Combining statements

Triples are separated by full stops. Two or more statements about the same subject can be
combined using a semicolon as a separator.

sub jec t p red ica te1 ob jec t1 ; p red ica te2 ob jec t2 .

If additionally the predicates are the same, statements can be written with comma-
separated objects.

sub jec t p red ica te object1 , ob jec t2 .

Namespace Prefixes

Namespace prefixes are used to abbreviate URIs. The prefix definition

@prefix c i t y : < h t t p : / / example . org / c i t i e s / > .

declares city as a short prefix for <http://example.org/cities/> and allows to use city:berlin as a
shorthand for <http://example.org/cities/berlin>.

The following prefix definition defines a default namespace.

@prefix : < h t t p : / / example . org / > .

Blank Nodes

A blank node is a node that is neither a URI nor a literal. It indicates an anonymous
resource. To serialize a blank node, an id is assigned to it. The scope of the id is limited to
the serialization. Thus, the same blank node may have different ids in two documents. In
Turtle, blank nodes are written as “_:id”.

The sentence “Peter knows someone who lives in Berlin” might look like:

< h t t p : / / example . org / persons / peter > : knows _ : p .

_ : p : l i v e s I n < h t t p : / / example . org / c i t i e s / b e r l i n >.

In this example, _:p is a blank node. Alternatively, anonymous nodes can be defined by
square brackets.

< h t t p : / / example . org / persons / peter > : knows

[ : l i v e s I n < h t t p : / / example . org / c i t i e s / b e r l i n > ] .

5



2 Foundations

2.3 RDFS

RDF Schema (RDFS) [10] is an extension of the Resource Description Framework, used to
define vocabularies. A vocabulary declares classes and properties to describe data of a
specific domain. The RDFS vocabulary descriptions themselves are written in RDF.

To specify a vocabulary, classes can be defined and arranged in a hierarchy. In addition,
relations between classes can be specified by properties, including domain and range. The
following may be a fragment of a simple ontology.

ex : C i t y r d f : type r d f s : Class .

ex : Person r d f : type r d f s : Class .

ex : l i v e s I n r d f s : domain ex : Person ; r d f s : range ex : C i t y .

The two classes ex:City and ex:Person are defined. A person can have the property ex:livesIn
with a city as range. To express that a resource is an instance of a class, the predicate rdf:type
(or its short form “a”) is used. The example

< h t t p : / / example . org / c i t i e s / b e r l i n > r d f : type ex : C i t y .

declares Berlin as a city.

2.4 SPARQL

The SPARQL Protocol and RDF Query Language (SPARQL) [3] is a query language for
RDF data. A SPARQL query specifies a graph pattern, which is matched against an RDF
graph and returns answers by binding variables.

Consider a query that asks for the cities where at least 100,000 people live.

PREFIX ex : < h t t p : / / example . org / >

SELECT ? c i t y

WHERE { ? c i t y a ex : C i t y .

? c i t y ex : popu la t ion ? popu la t ion .

FILTER ( ? popu la t ion >= 100000 ) }

The SPARQL query basically consists of three parts: prefix, select and where.

Prefix The prefix defines namespaces similar to the Turtle syntax.

6



2 Foundations

Where The graph pattern that is matched against the RDF data is specified by the where
clause. The where clause consists of triple patterns, written in turtle syntax, where
positions can be replaces by variables. A variable is indicated either by “?” or “$”,
followed by its name, and acts as a placeholder for URIs, literals or blank nodes. A
variable appearing more than once acts as a join variable. For a solution, all triple
patterns must match. Additionally, results can be restricted by filters. The filter con-
dition "?population >= 100000" restricts the solutions to those where the value bound
by ?population is greater than or equal to 100000.

Select The select clause identifies the variables to be returned. The select clause can be
replaced by ASK. In that case, a boolean value that indicates whether the query has
a solution or not is returned.

In a basic graph pattern, as given above, all triple patterns must match. An optional
graph pattern contains triple patterns that may match. For example

PREFIX ex : < h t t p : / / example . org / >

SELECT ?person , ?emai l

WHERE { ?person a ex : Person .

OPTIONAL { ?person ex : emai l ?emai l . } }

returns all persons, even if they don’t have an email address. Hence, variables in optional
parts may extend the solution.

Alternative graph patterns can be combined using UNION. Consider a query to find
persons that were born or live in Berlin (or both).

PREFIX ex : < h t t p : / / example . org / >

SELECT ?person

WHERE { ?person a ex : Person .

{ ?person ex : l i v e s I n < h t t p : / / example . org / c i t i e s / b e r l i n >. }

UNION

{ ?person ex : bornIn < h t t p : / / example . org / c i t i e s / b e r l i n >. } }

For a solution it is sufficient if one of the alternative graph patterns matches. Without the
union, the result would be restricted to persons that were born and live in Berlin.

Further Reading. In [8] the topics of this chapter are introduced in detail.
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3 Web Data Sources

A lot of the data sources that are available in the Web are internally based on databases
that can’t be accessed directly from the outside, but through limited access patterns. By
entering some input values, appropriate output values are returned in a table-like schema.
Such sources are called Web Data Sources and can be classified in two groups. On the one
hand, there are human-oriented sources that return data in form of dynamically generated
Web pages by filling out Web forms (Deep Web). On the other hand, there are sources that
are only machine accessible by technologies like REST [1] and SOAP [11] (Web Services).

This chapter describes how Web Data Sources can be annotated such that the Query
Broker can use them to answer queries.

3.1 Sample Sources

The thesis is illustrated by querying for flight connections. For this, the following three
sample Web Data Sources are introduced.

(A) Source A is a flight portal that can be queried with a departure airport, a destination
airport and a date to get connections between these airports by flight code, departure
time, arrival time, price and the operating airline.

(B) By entering a departure airport, a destination airport and a date, possible connections
with departure time, arrival time, price and flight code operated by Lufthansa are
returned by http://lufthansa.de.

(C) Source C requires a departure airport to return a list of reachable destination airports
in conjunction with the airlines that offer flights between these airports.

8



3 Web Data Sources

Travel Ontology

In addition to the sample sources, the travel ontology is introduced. The sample sources
are later associated with it to specify the semantics of the sources. The following classes
and properties are part of the travel ontology.

• Airports travel:Airport have the property IATA code travel:code.

• Airlines travel:Airline have a name travel:name.

• travel:Flight represents flight connections with the following properties. A flight con-
nection has a flight code travel:fcode, departs from an airport travel:from at time
travel:deptTime and arrives a destination airport travel:to at time travel:arrTime. A flight
connection is related to an airline by travel:operatedBy.

• While travel:Flight represents an abstract flight connection, bookable connections
travel:BookableConn are the actual instances of flight connections travel:instanceOfConn.
A bookable connection is on a given date travel:date and has a price travel:price.

For example, consider a connection with the flight number "LH4728" from Frankfurt
(FRA) to London (LHR). The connection is operated by Lufthansa and daily departs from
Frankfurt (FRA) at 12:50 and arrives in London (LHR) at 13:25. A bookable connection is,
for example, given on 01.10.2010 at the price of 439 e. The corresponding RDF data is:

@prefix t : < h t t p : / / www. semwebtech . org / domains /2006/ t r a v e l #> .

@prefix a i r p o r t : < h t t p : / / www. semwebtech . org / domains /2006/ t r a v e l / a i r p o r t s / > .

@pref ix a i r l i n e : < h t t p : / / www. semwebtech . org / domains /2006/ t r a v e l / a i r l i n e s / > .

@prefix f l i g h t : < h t t p : / / www. semwebtech . org / domains /2006/ t r a v e l / f l i g h t s / > .

a i r l i n e : l h a t : A i r l i n e ; t : name " Lufthansa " .

a i r p o r t : f r a a t : A i r p o r t ; t : code "FRA" .

a i r p o r t : l h r a t : A i r p o r t ; t : code "LHR" .

f l i g h t : lh4728 a t : F l i g h t ; t : f l i gh tCode "LH4728 " ;

t : from a i r p o r t : f r a ; t : to a i r p o r t : l h r ;

t : deptTime " 1 2 : 5 0 " ; t : arrTime " 1 3 : 2 5 " .

f l i g h t : lh4728−01−10−2010 a t : BookableConn ; t : instanceOfConn f l i g h t :4728;

t : date "01−10−2010"; t : p r i ce 439.

The graphical representation of the sample data is shown in Figure 3.1
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3 Web Data Sources

t:Flight

t:Airportt:BookableConn

flight:lh4728

airport:lhrairport:fra

FRA LHR

LH4728

t:Airlineairline:lhLufthansa

flight:lh4728-01-10-2010

01.10.2010 439.00

12:50
13:25

instanceOfConn

name

a

a

a

a a
date

deptTime
arrTimefrom to

fcode

code code

operatedBy

price

Figure 3.1: Sample Data of the Travel Domain

3.2 Characteristics

Web Data Sources range from Deep Web sources to Web Services. All these sources have
in common that they return data in form of a table like schema. It can be seen as a pred-
icate q(x) = q(x1, ..., xn) over variables {x1, ..., xn}, called the characteristic predicate of a
Web Data Source. The characteristic predicate can only be queried through limited access
patterns, which require input values to be given to return suitable output values. Thus, a
Web Data Source provides predefined views on its data. A view v has a set of input ar-
guments qin = {xin1, ..., xink} ⊆ {x1, ..., xn} and returns corresponding output arguments
qout = {xout1, ..., xoutm} ⊆ {x1, ..., xn}\qin. It is called the signature of a view, written as
qout← v(qin).

3.3 Technical Handling

Each type of Web Data Sources requires a specific technical handling. The actual technical
handling of the different types of Web Data Sources is not part of this thesis. For this pur-
pose, wrapper languages that provide a uniform set oriented interface to the outside are
available. Web forms are queried using the Deep Web Query Language (DWQL). REST-
based and SOAP-based Web services are wrapped with the Web Service Query Language
(WSQL). Consider a wrapped view qout ← v(qin). If a set r of tuples of input variable
bindings over qin is sent to the wrapper, the tuples are joint with the tuples q that the char-
acteristic predicate is holding and the resulting tuples π[qin ∪ qout](q ./ r) are returned.

10



3 Web Data Sources

3.4 Source Annotation

To make Web Data Sources available for the Query Broker, they are described in the Web
Data Source Description Language (WDSDL) [5]. By the use of the WDSDL vocabulary, a
Web Data Source can be described in RDF. The notation of a source is done in two steps.
The signature level specifies the characteristic predicate of the Web Data Source and the
views provided upon this. Then, the signature is related to the domain ontology by the
semantic level.

3.4.1 Signature Level

The signature level specifies the characteristic predicate and the views of a Web Data
Source. For this, the variables of the characteristic predicate are labeled with tags. The
sample sources could be tagged as:

Source A: (from, to, date, airline, flightCode, deptTime, arrTime, price).
(airline, flightCode, deptTime, arrTime, price)← viewA(from, to, date).

Source B connection(from, to, date, flightCode, deptTime, arrTime, price).

(flightCode, deptTime, arrTime, price)← viewB(from, to, date).

Source C flight(from, to, airline).

(to, airline)← viewC(from).

Note that the tag names can be freely chosen and may differ at different sources. The
purpose of the tagging is not to assign a semantics to the sources. This is done later on the
semantic level. The current level is only concerned with the signature description.

WDSDL specifies the following vocabulary for describing the signature:

@prefix < h t t p : / / www. semwebtech . org / languages /2008/ wdsdl#> .

: WebDataSource a owl : Class .

: baseURL r d f s : domain : WebDataSource ; r d f s : range xsd : anyURI .

: DeepWebSource r d f s : subClassOf : WebDataSource .

: WebServiceSource r d f s : subClassOf : WebDataSource .

: View a owl : Class .

: providesView r d f s : domain : WebDataSource ; r d f s : range : View .

: Tag a owl : Class .

: name r d f s : domain : Tag ; r d f s : range r d f s : L i t e r a l .
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3 Web Data Sources

: hasTag r d f s : domain : WebDataSource ; r d f s : range : Tag .

: has Inpu tVar iab le r d f s : domain : View ; r d f s : range : Tag .

: hasOutputVar iable r d f s : domain : View ; r d f s : range : Tag .

The description is done in RDF. Thus, the Web Data Source and its views are resources,
represented by URIs. The tags are anonymous resources, described by name and data
type. The tags of the characteristic predicate are related to the source by :hasTag. The views
provided by the source are described by their input and output tags.

The description of the signature level of source A is:

@prefix t r a v e l : < h t t p : / / www. semwebtech . org / domains /2006/ t r a v e l #> .

@prefix : < h t t p : / / www. semwebtech . org / languages /2008/ wdsdl#> .

<b la : / / views / t r a v e l / sourceA> a : WebDataSource ;

: baseURL < h t t p : / / www. sourceA .com/ > ;

: providesView <bla : / / views / t r a v e l / sourceA / viewA >;

: hasTag _ : from , _ : to , _ : date , _ : a i r l i n e , _ : fcode , _ : depT , _ : arrT , _ : p r i ce .

_ : from a : Tag ; : name " from " ; : datatype xsd : s t r i n g .

_ : to a : Tag ; : name " to " ; : datatype xsd : s t r i n g .

_ : date a : Tag ; : name " date " ; : datatype xsd : date ; : format " dd .MM. yyyy " .

_ : a i r l i n e a : Tag ; : name " a i r l i n e " ; : datatype xsd : s t r i n g .

_ : fcode a : Tag ; : name " f l i gh tCode " ; : datatype xsd : s t r i n g .

_ : depT a : Tag ; : name " deptTime " ; : datatype xsd : t ime ; : format "HH:mm" .

_ : ar rT a : Tag ; : name " arrTime " ; : datatype xsd : t ime ; : format "HH:mm" .

_ : p r i ce a : Tag ; : name " p r i ce " ; : datatype xsd : decimal .

<b la : / / views / t r a v e l / sourceA / viewA> a : View ;

: has Inpu tVar iab le _ : from , _ : to , _ : date ;

: hasOutputVar iable _ : a i r l i n e , _ : fcode , _ : depT , _ : arrT , _ : p r i ce .

3.4.2 Semantic Level

So far, the signature of the Web Data Source has been described. Now, the semantics of
the signature is specified by correlating the signature with the domain ontology. For this,
the tags of the characteristic predicate are mapped to the domain ontology. As exemplarily
demonstrated in Figure 3.2 for Source A, each tag is associated with a node of the ontology.
So, the relation between the tags is expressed in terms of the domain ontology.
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t:Flight

t:Airportt:BookableConn

flight:lh4728

_:ap2_:ap1

FRA LHR

LH4728

t:Airlineairline:lhLufthansa

flight:lh4728-01-10-2010

01.10.2010 439.00

12:50
13:25

instanceOfConn

name

a

a

a

a a
date

deptTime
arrTimefrom to

fcode

code code

operatedBy

price

Web Data Source A

_:from _:to _:fcode_:date _:airline _:deptTime _:arrTime

Figure 3.2: Mapping from Source A to the Travel Ontology

The approach of the WDSDL is to represent the correlation between the tags as RDF
triples. Consider the following RDF triples. The tags are printed in bold.

_ : f l i g h t V a t r a v e l : F l i g h t ; t r a v e l : f l i gh tCode " fcode " ;

t r a v e l : from [ a t r a v e l : A i r p o r t ; " from " ] ;

t r a v e l : to [ a t r a v e l : A i r p o r t ; " to " ] ;

t r a v e l : deptTime "deptTime " ; t r a v e l : arrTime "arrTime " .

t r a v e l : operatedBy [ a t r a v e l : A i r l i n e t r a v e l : name "airline " ] ;

_ : bconnV a t r a v e l : BookableConn ; t r a v e l : instanceOfConn _ : f l i g h t V ;

t r a v e l : date "date " ; t r a v e l : p r i ce "price " .

Instead of real data, the tag names are used. It can be seen as a pattern for the tuples
returned by the source, where the tags act as placeholders for the actual values. But if
such a source description would be available in the Web, it could be wrongly assumed as
real data. Due to this, WDSDL uses source annotation statements to describe the graph
pattern. The annotation statements are based on a reification vocabulary that allows to
describe RDF statements using RDF. Consider the statement below.

_ : f l i g h t V r d f : type t r a v e l : F l i g h t .

13
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An annotation statement for the statment looks like:

_ : astmt a Annotat ionStatement .

_ : astmt r d f : sub jec t _ : f l i g h t V ; r d f : p red ica te r d f : type ; r d f : ob jec t t r a v e l : F l i g h t .

The semantic level of the WDSDL ontology works according to this principle. The graph
pattern, which specifies the relation between the tags, is described using the source anno-
tation statements. If required, the annotation statements can be materialized back into real
RDF triples, resulting in the above-mentioned triples.

The second part of the WDSDL ontology is given below.

@prefix : < h t t p : / / www. semwebtech . org / languages /2008/ wdsdl#> .

: Annotat ion a owl : Class .

: hasAnnotat ion r d f s : domain [ owl : unionOf ( : WebDataSource : View ) ] ;

r d f s : range : Annotat ion .

: Annotat ionStatement a owl : Class . : Anno ta t ionCons t ra in t a owl : Class .

: hasAnnotat ionStatement r d f s : domain : Annotat ion ; r d f s : range : Annotat ionStatement .

: hasAnnota t ionConst ra in t r d f s : domain : Annotat ion ; r d f s : range : Anno ta t ionCons t ra in t .

The semantic level of Source A is annotated as follows. It is stored together with the
signature level description and uses the blank nodes of the tags introduced in the signature
level.

@prefix t r a v e l : < h t t p : / / www. semwebtech . org / domains /2006/ t r a v e l #> .

@prefix : < h t t p : / / www. semwebtech . org / languages /2008/ wdsdl#> .

<b la : / / views / t r a v e l / sourceA> : hasAnnotat ion [

: l oca lVa r _ : f l i g h t V , _ : a i r l i n e V , _ : airp1V , _ : airp2V , _ : bconnV ;

: hasAnnotat ionStatement

[ r d f : sub jec t _ : f l i g h t V ; r d f : p red ica te r d f : type ; r d f : ob jec t t r a v e l : F l i g h t ] ,

[ r d f : sub jec t _ : f l i g h t V ; r d f : p red ica te t r a v e l : operatedBy ; r d f : ob jec t _ : a i r l i n e V ] ,

[ r d f : sub jec t _ : a i r l i n e V ; r d f : p red ica te r d f : type ; r d f : ob jec t t r a v e l : A i r l i n e ] ,

[ r d f : sub jec t _ : a i r l i n e V ; r d f : p red ica te t r a v e l : name ; r d f : ob jec t _ : a i r l i n e ] ,

[ r d f : sub jec t _ : f l i g h t V ; r d f : p red ica te t r a v e l : from ; r d f : ob jec t _ : ai rp1V ] ,

[ r d f : sub jec t _ : f l i g h t V ; r d f : p red ica te t r a v e l : to ; r d f : ob jec t _ : ai rp2V ] ,

[ r d f : sub jec t _ : f l i g h t V ; r d f : p red ica te t r a v e l : f l i gh tCode ; r d f : ob jec t _ : fcode ] ,

[ r d f : sub jec t _ : airp1V ; r d f : p red ica te t r a v e l : code ; r d f : ob jec t _ : from ] ,

[ r d f : sub jec t _ : airp1V ; r d f : p red ica te r d f : type ; r d f : ob jec t t r a v e l : A i r p o r t ] ,

[ r d f : sub jec t _ : airp2V ; r d f : p red ica te t r a v e l : code ; r d f : ob jec t _ : to ] ,

[ r d f : sub jec t _ : airp2V ; r d f : p red ica te r d f : type ; r d f : ob jec t t r a v e l : A i r p o r t ] ,

[ r d f : sub jec t _ : f l i g h t V ; r d f : p red ica te t r a v e l : deptTime ; r d f : ob jec t _ : depT ] ,
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[ r d f : sub jec t _ : f l i g h t V ; r d f : p red ica te t r a v e l : arrTime ; r d f : ob jec t _ : ar rT ] ,

[ r d f : sub jec t _ : bconnV ; r d f : p red ica te r d f : type ; r d f : ob jec t t r a v e l : BookableConn ] ,

[ r d f : sub jec t _ : bconnV ; r d f : p red ica te t r a v e l : instanceOfConn ; r d f : ob jec t _ : f l i g h t V ] ,

[ r d f : sub jec t _ : bconnV ; r d f : p red ica te t r a v e l : date ; r d f : ob jec t _ : date ] ,

[ r d f : sub jec t _ : bconnV ; r d f : p red ica te t r a v e l : p r i ce ; r d f : ob jec t _ : p r i ce ] ] .

WDSDL describes the characteristics of the the Web Data Sources in terms of RDF. Re-
sources in RDF are identified by URIs. Anyway, the sources just return literal tuples. Since
no URIs are returned by the sources, it is not possible to merge the results of different web
data sources using URIs. So, the literal properties of the resources (like travel:code for air-
ports) have to be used to join the results. A more correct way would be to specify which of
the literal properties actually are key attributes. This may be added in a further version.
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The Query Broker answers queries by means of distributed Web Data Sources. Available
Web Data Sources are related to the domain ontology with WDSDL. To be able to identify
usable sources, the queries must be posed in terms of the domain ontology. The Query Bro-
ker can handle simple SPARQL select queries with a basic graph pattern. This especially
means, that no optional and alternative graph patterns are supported. Furthermore, the
query is supposed to be completely specified in terms of the ontology using the rdf:type
property, maybe done by some preprocessing.

To get the idea of the query handling, at first an overview of the query processing is
given. Then the query processing is shown in detail.

4.1 Overview

When the Query Broker receives a query, its job is to answer the query by means of the
known Web Data Sources. The query processing starts with the identification of useful
Web Data Sources. For this, the graph pattern specified by the where clause of the query
is compared to the WDSDL annotations of the sources, in order to find structural overlap-
pings.

Consider the query “where can we go from MUC on 1.10.2010 for less than 50e?”. The
corresponding SPARQL query is:

PREFIX t : < h t t p : / / www. semwebtech . org / domains /2006/ t r a v e l #>

SELECT ?DEST ?P

WHERE { ?C a t : F l i g h t ; t : from [ a t : A i r p o r t ; t : code "MUC" ] ;

t : to [ a t : A i r p o r t ; t : code ?DEST] .

?BC a t : BookableConn ; t : instanceOfConn ?C; t : date "01 .10 .2010" ; t : p r i ce ?P .

FILTER (?P < 50 ) }
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The graph pattern defined by the sample query is depicted in the upper part of Figure
4.1. For source A, consider the lower part of Figure 4.1. Source A completely covers the
query, as well as Source B. Source C only covers a part of the query, as illustrated in Figure
4.2. Even if the sources A and B completely cover the query graph, they can’t be used

t:Flight

t:Airportt:BookableConn

from to

fcode

t:Airlineairline

date price

deptTime
arrTime

instanceOfConn

name

a

a

a

a a

date

deptTime
arrTimefrom to

fcode

code code

operatedBy

price

t:Flight

t:Airportt:BookableConn

MUC ?DEST1.10.2010 ?P

instanceOfConn

a

a

a a

date

from to

code codeprice

Figure 4.1: Comparison of the query with source A. Source A (lower part) covers the complete query (upper part).

directly, since the views provided by these sources need the destination airport as an input
parameter. Now reconsider the view (to, airline)← viewC(from) provided by Source C. It
is applicable, since the only required input parameter, from, is given by the query. After
querying Source C, a list of destination airports reachable from Munich is known. With
that, sources A and B can be asked. Finally, the filter condition “?P < 50” is applied to the
results and the final answer returned.

The query processing is structured in three main tasks. At first, the query graph is cre-
ated according to the graph pattern specified by the query. In the next step, structural
overlappings between the query graph and the Web Data Sources are ascertained. Once
the useful Web Data Sources have been identified, a query plan is created under consider-
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ation of the access limitations. It specifies the order in which the sources are queried and
how the results are combined.

t:Flight

t:Airport

from to

t:Airlineairline name

a

a

a

a

from to

code code

operatedBy

t:Flight

t:Airportt:BookableConn

MUC ?DEST1.10.2010 ?P

instanceOfConn

a

a

a a

date

from to

code codeprice

Figure 4.2: Comparison of the query with source C. Source C (lower part) covers just a fragment of the query (upper
part). Uncovered parts are faded.

4.2 Query Graph

The where clause of a SPARQL query consists of a set of triple patterns. These triple pat-
terns specify a graph pattern, similar to graphs specified by RDF data. To determine what
a Web Data Source can contribute to the query, at first a graph representing the query, the
query graph, is built.

The query graph is created according to the graph pattern specified by the query. A node
is created for each subject and object occurring in the graph pattern. The directed edges
are created according to the triple patterns and labeled with the predicates.

Reconsider the sample query
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SELECT ?DEST ?P

WHERE { ?C a t : F l i g h t ; t : from [ a t : A i r p o r t ; t : code "MUC" ] ;

t : to [ a t : A i r p o r t ; t : code ?DEST ] .

?BC a t : BookableConn ; t : instanceOfConn ?C; t : date "01 .10 .2010" ; t : p r i ce ?P.

FILTER (?P < 50 ) }

For the triple pattern “?C a t:Flight” a node representing the subject ?C, and a node for the
object t:Flight is created. Then, the nodes are linked with an arc from ?C to t:Flight, labeled
with the predicate a. This is done for each triple pattern and results in the graph shown in
Figure 4.3.

t:Flight

t:Airportt:BookableConn

?C

_:ap2_:ap1

MUC ?DEST

?BC

1.10.2010 ?P

t:instanceOfConn

a

a

a a

t:date

t:from t:to

t:code t:codet:price

Figure 4.3: Initial Query Graph

4.3 Web Data Source Matching

The basic idea of how to compare the query graph with a Web Data Source is the following.
The query graph is reduced until the Web Data Source covers the remaining parts of the
graph. For this, a test if the Web Data Source covers the query graph is required. This is
done by a SPARQL query. Since the query graph represents the graph pattern of a SPARQL
query, it can simply be turned back into a SPARQL query. The query is then posed against
the materialized WDSDL source annotation statements (see Section 3.4.2). Thereby, the
variables are exploited to bind tags instead of real data.

The SPARQL query technically requires variables to bind tags. Thus, the literals occur-
ring in the query graph have to be replaced by variables. Otherwise an airport with the
code “MUC” would be searched in the source description, though a tag is to be found. For
this reason, literals occurring in the query graph are substituted by variables. The sample
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query graph with replaced URIs and literals is shown in Figure 4.4. The literals “MUC”
and “01.10.2010” have been replaced by the variables ?FROM and ?DATE. Note that intu-
itive variable names are used in the running example. However, the variable names can be
arbitrarily chosen.

t:Flight

t:Airportt:BookableConn

?C

_:ap2_:ap1

?FROM ?DEST

?BC

?DATE ?P

t:instanceOfConn

a

a

a a

t:date

t:from t:to

t:code t:codet:price

Figure 4.4: Query Graph with Substituted Literals

For the sample query graph the following query is created:

PREFIX t : < h t t p : / / www. semwebtech . org / domains /2006/ t r a v e l #>

ASK WHERE {

?C a t : F l i g h t .

?C t : from _ : ap1 .

?C t : to _ : ap2 .

_ : ap1 a t : A i r p o r t .

_ : ap1 t : code ?FROM.

_ : ap2 a t : A i r p o r t .

_ : ap2 t : code ?DEST .

?BC a t : BookableConn .

?BC t : date ?DATE.

?BC t : p r i ce ?P}

Reconsider the materialized source description of Source A given in section 3.4.2. If the
query is posed against it, the query returns true with the following variable bindings:

?C ?FROM ?DEST ?BC ?DATE ?P _:ap1 _:ap2

_:flightV from to _:bconnV date price _:airp1V _:airp2V

In the following, the expression “a source covers a query graph” signifies that the query
graph posed against the materialized source description of the source returns true.
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4.4 Maximal Structural Overlappings

So far, the Web Data Source matching has been introduced. Since a Web Data Source maybe
just covers a part of the query graph, the partial structural overlappings of the query graph
by the Web Data Sources have to be ascertained. This is discussed in this section.

4.4.1 Edge Inversion

The algorithm that will be presented in the subsequent Section 4.4.4 requires the query
graph (without the ontology parts) to be a tree. Consider the query graph in the left part
of Figure 4.5. The node ?P has two incoming edges. Thus, the graph isn’t a tree. If the
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aname

?PROVINCE

Country?Co
aname

?COUNTRY

hasProvince

cityIn

City?Ci
aname

?CITY

Province?P
aname

?PROVINCE

Country?Co
aname

?COUNTRY

provinceIn

cityIn

Figure 4.5: Edge Inversion Example

ontology would describe the relation hasProvince by its inverse provinceIn, as demonstrated
in the right part of Figure 4.5, the graph would be a tree. Based on this idea, it is tried
to convert the query graph into a tree by inverting edges. If the graph has a cycle after
the inversion of an edge, the inversion is removed and the node has to be split. This is
described in the next subsection.

The edge inversion is done to transform the query graph into a directed tree. As already
mentioned above, this is required by the algorithm that will be presented in Section 4.4.4.
In contrast, the matching queries use the edges in their original direction as defined in the
ontology and used in the source annotations, otherwise the queries wouldn’t match. Thus,
there are different views on the query graph. On the one hand, the graph is considered as
the query it represents with the edges in their original direction (query view). On the other
hand, the graph is considered with the inverse edges (graph view).
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4.4.2 Splitting

For instance, consider a Web Data Source that provides information about persons, includ-
ing the native city of a person and the city the person currently lives in. The materialized
source description looks like the following (tags are printed bold).

_ : p a : Person ; : name "person " ;

: bornIn [ a C i t y ; : name "bornIn " ] ;

: l i v e s I n [ a C i t y ; : name " livesIn " ] . }

A query looking for persons that live in their native city is diagrammed in the left part
of Figure 4.6. The source obviously provides all the required information to answer the
query. To determine if the the query graph is covered by the source, the following query is
created.

ASK WHERE {

?PERSON a : Person ; : name ?NAME; bornIn ?C; l i v e s I n ?C.

?C a : C i t y ; name ?CITY . }

The SPARQL query posed against the materialized WDSDL description of the source re-
turns false. This is because the city acts as a join condition. The variables ?C and ?CITY
can either bind the tag bornIn or the the tag livesIn, but not both at once. The tags may
return the same cities, but the source description just contains the tag names. Thus, the
triple patterns “?PERSON :bornIn ?C” and “?PERSON :livesIn ?C” can’t be bound at the
same time. To avoid this problem, the node city is split in two nodes. The query graph
with split nodes is shown in the right part of Figure 4.6.
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?CITY_2

a

name

a
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Figure 4.6: Query Graph before and after the Splitting.

The query has the following form after the splitting.

22



4 Query Processing

ASK WHERE {

?PERSON a : Person ; : name ?NAME;

bornIn ?C_1 ; l i v e s I n ?C_2 .

?C_1 a : C i t y ; name ?CITYNAME_1 .

?C_2 a : C i t y ; name ?CITYNAME_2 . }

Now it matches with the following solution.
?Person ?NAME ?C_1 ?CITYNAME_1 ?C_2 ? CITYNAME_2

_:p person _:c1 bornIn _:c2 livesIn

The problem demonstrated above is a general problem when a variable node has multi-
ple incoming edges. The different tags may return the same values, but the source descrip-
tion just contains the tag names instead of real data. So, variable nodes with more than
two incoming edges are split into one node for each incoming edge. The fragment that is
connected to the split node by outgoing edges is copied to each new node. At this point, it
is important that the graph is cycle free, otherwise this wouldn’t work. Due to this reason,
cycles in the graph pattern are forbidden. The equality of the values that are returned for
the different split parts is checked later with the help of the results. A side effect of the
splitting is that the query qraph (in the graph view), if it is considered without the ontol-
ogy nodes like “City”, now is a tree, because each node can only have one incoming edge
and cyles are forbidden.

4.4.3 Separated Checks

Now, each triple pattern represented by the query graph in its query view is checked sep-
arately whether or not it is covered by the Web Data Source. The idea is the following. If
an isolated triple pattern isn’t covered by the Web Data Source, it especially isn’t covered
in combination with other triple patterns. Each check is done by a SPARQL query like

ASK WHERE { S P O. S a TypeOfS . O a TypeOfO . }

where S is the subject, P the predicate and O the object of the triple pattern. If a type
of the subject or object is available, it is added to the check. The query is posed against
the materialized source annotation statements. If it returns false, then the triple pattern is
removed from the query graph.

The following separated checks are done for the sample query graph (Figure 4.4)
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1) ASK WHERE { ?BC t : date ?DATE. ?BC a t : BookableConn . }

2) ASK WHERE { ?BC t : p r i ce ?P. ?BC a t : BookableConn . }

3) ASK WHERE { ?BC t : ins tance t : instanceOfConn ?C. ?BC a t : BookableConn . ?C a t : F l i g h t . }

4) ASK WHERE { ?C t : from _ : ap1 . ?C a t : F l i g h t . _ : ap1 a t : A i r p o r t . }

5) ASK WHERE { _ : ap1 t : code ?FROM _ : ap1 a t : A i r p o r t . }

6) ASK WHERE { ?C t : to _ : ap2 . ?C a t : F l i g h t . _ : ap2 a t : A i r p o r t . }

7) ASK WHERE { _ : ap2 t : code ?DEST. _ : ap2 a t : A i r p o r t . }

For source C, the queries 1, 2 and 3 return false. Hence, the corresponding triples are
removed from the query graph. The remaining query graph for source C is shown in
Figure 4.7.
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Figure 4.7: Query Graph after the Separated Checks

4.4.4 Graph Pruning

The Web Data Source provides information for the triple patterns that survived the sep-
arated checks, but this does not necessarily mean that the Web Data Source also covers
these triples in the structural combination required by the query. So the remaining query
graph as a whole is checked against the source. This test returns true for Source C and the
remaining query graph (Figure 4.7).

But consider another Web Data Source that provides information about the parents of
a person as illustrated in the right part of Figure 4.8. The graph of a query asking for the
mother and the maternal grandfather of a child is diagrammed in the left part of Figure 4.8.
The separated checks return true for each triple, but the source doesn’t cover the triples in
combination, since the structure of the Web Data Source is different from the query graph.
To determine the maximal structural overlappings with the Web Data Source, the query
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Figure 4.8: Sample Query (left part) and the Web Data Source (right part)

graph is reduced until the Web Data Source covers the remaining graph. This is done by
the following algorithm: While the Web Data Source doesn’t cover the query graph, a leaf
triple pattern is selected and removed. A leaf triple pattern is a node (object) that has no
outgoing edge, together with its incoming edge (predicate) and the corresponding node
(subject). It can be removed without splitting the graph in unconnected components.

Because the ontology parts (triples of the form “node rdf:type type”) are important for
the meaning of the variables, they are not removed by the algorithm. This algorithm uses
the graph view. Thus, the removable parts of the graph form a tree, because each node can
only have one incoming edge. Hence, a leaf triple is always available.

The algorithm applied to the example may remove the triples in the following order.

At first, “?M ex:name ?MOTHER” is
removed.

ex:Person
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?GF

?M

?GRANDFATHER ex:name

?MOTHER ex:name

?CHILD ex:name

a

a
ex:father

ex:mother

a
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Then, “?GF ex:name ?GRANDFA-
THER” is removed.
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Next, the triple “?M ex:father ?GF”
is removed. Now the source covers
the remaining graph.
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?GF

?M

?GRANDFATHER ex:name

?MOTHER ex:name

?CHILD ex:name

a

a
ex:father

ex:mother

a

The triple pattern “?M ex:father ?GF” isn’t covered in combination with the remaining
query graph, because the query graph is covered after the removal of “?M ex:father ?GF”.
The triple pattern “?GF ex:name ?GRANDFATHER” was connected to the query graph by
“?M ex:father ?GF”, thus it also isn’t covered in combination with the triples of the remain-
ing query graph. But for the other removed triple pattern, “?M ex:name ?MOTHER” , this
is unknown. As the maximal structural overlapping is searched, it is added to the query
graph. The query graph is still covered. So, the query graph and the source have a maximal
structural overlapping as given in the upper part of Figure 4.9.

Nevertheless, the removed triple patterns survived the separated test. Thus, the Web
Data Source is also appropriate for the removed triple patterns, but has to be queried sepa-
rately for those. Consider Figure 4.9. The Web Data Source has two structural overlappings
with the query graph. The upper part contains the remaining query graph and the cover by
the source. The lower part contains the two removed triple patterns. The Web Data Source
covers both parts, but not in combination. Hence, the Web Data Source has to be queried
separately for both parts. Please note that the triple pattern “?M ex:name ?MOTHER” has
also been added to the lower overlapping, because it is the identifying attribute of ?M.
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ex:Person

?C

?GF

?M

?GRANDFATHER ex:name

?MOTHER ex:name

?CHILD ex:name

a

a
ex:father

ex:mother

a

ex:Person

?C

?GF

?M

?GRANDFATHER ex:name

?MOTHER ex:name

?CHILD ex:name

a

a
ex:father

ex:mother

a

ex:Person

father

ex:name

mother

ex:name

childex:name

aa
a

ex:fatherex:mother

ex:Person

father

ex:name

mother

ex:name

childex:name

aa
a

ex:fatherex:mother

Figure 4.9: Structural Overlappings of the Source and the Query

Summarized, the algorithm works as follows: Leaf triples are removed until the Web
Data Source covers the query graph. Then the removed triple patterns are added in reverse
order, since the maximal structural overlapping is searched. If the graph isn’t covered any-
more after a triple pattern has been added, the triple pattern and its children (triple patterns
connected by outgoing edges of the object) are finally removed from the query graph. The
result is the remaining query graph, which is a maximal structural overlapping between
the query graph and the web data source. Additionally, the removed triple patterns are
also structural overlappings with the source.
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4.5 Query Plan

Once a list of appropriate Web Data Sources, or rather structural overlappings, has been
created, they have to be accessed in a suitable order. Due to the input-output-charactersitics,
the sources can not be queried in any order.

4.5.1 Query Order

A Web Data Source can only be queried by its views. In consideration of the input-output-
characteristics, a view can only be accessed if values for all input tags are known. The
querying starts with the structural overlappings, where all input tags are known. The
results of these overlappings expand the set of known variables. Then, the remaining
overlappings are checked if they can be queried. If an overlapping can be queried and
contribute not yet covered parts of the query graph, it is added to the query plan. A query
order is determined by iterating this until the complete query graph is covered by the
queried overlappings. Note that even if sources for all triples of the query are available, it
is possible that the query can not be answered by reason of the input-output-characteristics
of the sources.

Reconsider the flight example.

PREFIX t : < h t t p : / / www. semwebtech . org / domains /2006/ t r a v e l #>

SELECT ?DEST ?P

WHERE { ?C a t : F l i g h t ; t : from [ a t : A i r p o r t ; t : code "MUC" ] ;

t : to [ a t : A i r p o r t ; t : code ?DEST] .

?BC a t : BookableConn ; t : instanceOfConn ?C; t : date "01 .10 .2010" ; t : p r i ce ?P .

FILTER (?P < 50 ) }

The corresponding query graph has been given in Figure 4.4.
The sample sources A, B and C have structural overlappings with the query graph. The

following views are available to access the sources.
Source A: (airline, flightCode, deptTime, arrTime, price)← viewA(from, to, date).

Source B: (flightCode, deptTime, arrTime, price)← viewB(from, to, date).

Source C: (to, airline)← viewC(from).

The mapping from the query variables to the tags is ascertained by a select query, at which
the variables are used to bind tags, like mentioned in Section 4.3.
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The literals "MUC" and "01.10.2010" have been replaced with the variables ?FROM and
?DATE. So these variables are known. Only viewC can be queried with these variables.
Thus, it is added to the query plan. Source C binds the variable ?DEST. Now the sources
A and B are applicable. The source A is added to the query plan. Now the complete query
is covered. Once the query plan has been executed, the filter conditions are applied to the
result and the variables of the select clause are returned.

4.5.2 Query Plan

The MARS Framework is used for the actual query execution. The query order is trans-
formed into a MARS CCS sequence of queries, at which not required output values are
removed in intermediate steps, and that ends with a test of the filter conditions.

An example of such a query plan in XML [13] Markup is given next.

1 <execute >

2 <ccs : Sequence xmlns : ccs =" h t t p : / / www. semwebtech . org / languages /2006/ ccs #"

3 xmlns : eca=" h t t p : / / www. semwebtech . org / languages /2006/ eca−ml #"

4 xmlns : dwql =" h t t p : / / www. semwebtech . org / languages /2008/ dwql#">

5 <ccs : Query eca : bind−to−v a r i a b l e ="DATE">

6 <eca : Opaque eca : language =" h t t p : / / www.w3 . org / XPath">"01−10−2010"</eca : Opaque>

7 </ ccs : Query>

8 <ccs : Query eca : bind−to−v a r i a b l e ="FROM">

9 <eca : Opaque eca : language =" h t t p : / / www.w3 . org / XPath " >"MUC" </ eca : Opaque>

10 </ ccs : Query>

11 <ccs : Query>

12 <dwql : Query>

13 <dwql : view dwql : resource =" b la : / / views / t r a v e l / sourceC / viewC "/ >

14 <dwql : i n p u t V a r i a b l e dwql : name="FROM" dwql : use=" from " / >

15 <dwql : ou tpu tVar iab le dwql : name="DEST" dwql : use=" to " / >

16 <dwql : ou tpu tVar iab le dwql : name=" tmp0 " dwql : use=" a i r l i n e " / >

17 </ dwql : Query>

18 </ ccs : Query>

19 <ccs : Pro jec t i on >

20 <ccs : remove−v a r i a b l e name=" tmp0 " / >

21 </ ccs : P ro jec t i on >

22 <ccs : Query>

23 <dwql : Query>

24 <dwql : view dwql : resource =" b la : / / views / t r a v e l / sourceA / viewA " / >

25 <dwql : i n p u t V a r i a b l e dwql : name="FROM" dwql : use=" from " / >
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26 <dwql : i n p u t V a r i a b l e dwql : name="DEST" dwql : use=" to " / >

27 <dwql : i n p u t V a r i a b l e dwql : name="DATE" dwql : use=" date " / >

28 <dwql : ou tpu tVar iab le dwql : name="P" dwql : use=" p r i ce " / >

29 <dwql : ou tpu tVar iab le dwql : name=" tmp0 " dwql : use=" arrTime " / >

30 <dwql : ou tpu tVar iab le dwql : name=" tmp1 " dwql : use=" deptTime " / >

31 <dwql : ou tpu tVar iab le dwql : name=" tmp2 " dwql : use=" f l i gh tCode " / >

32 <dwql : ou tpu tVar iab le dwql : name=" tmp3 " dwql : use=" a i r l i n e " / >

33 </ dwql : Query>

34 </ ccs : Query>

35 <ccs : Pro jec t i on >

36 <ccs : remove−v a r i a b l e name=" tmp0 " / >

37 <ccs : remove−v a r i a b l e name=" tmp1 " / >

38 <ccs : remove−v a r i a b l e name=" tmp2 " / >

39 <ccs : remove−v a r i a b l e name=" tmp3 " / >

40 </ ccs : P ro jec t i on >

41 <re ldb : Store >

42 <ccs : has−i nput−v a r i a b l e name="∗ " / >

43 <re ldb : tablename useValue ="TEMP" / >

44 </ re ldb : Store >

45 <ccs : Query>

46 <re ldb : QueryFakeView re ldb : from ="TEMP">

47 <ccs : has−output−v a r i a b l e name="DEST" / >

48 <ccs : has−output−v a r i a b l e name="P" / >

49 <re ldb : where >( "P" < 50 ) < / re ldb : where>

50 </ re ldb : QueryFakeView>

51 </ ccs : Query>

52 <re ldb : Store >

53 <ccs : has−i nput−v a r i a b l e name="DEST" / >

54 <ccs : has−i nput−v a r i a b l e name="P" / >

55 <re ldb : tablename useValue ="RESULT" / >

56 </ re ldb : Store >

57 </ ccs : Sequence>

58 </ execute >

The data flow in the MARS Framework is based on sets of tuples of variable bindings. An
example of a tuple is (FROM/"MUC", DATE/"01-10-2010"), at which the variable FROM is
bound to "MUC" and the variable DATE is bound to "01-10-2010". A set of such tuples can
be seen as a relation with the attributes FROM and DATE.

Line 5-10 The known variables are initialized. The values given by the query are bound.
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Line 11-18 viewC is queried. The input and output variables are specified. Row 15, for
example, specifies the variable FROM as the input for the " from" tag. The bindings of
the specified input variable (FROM) are sent to the query engine. Tuples containing
bindings for the new variables DEST and tmp0 are returned. The current tuples are
joined with the returned tuples using FROM as a join variable: (DATE, FROM) ./

(FROM, DEST, tmp0). So, the tuples now have the form (DATE, FROM, DEST, tmp0).

Line 19-21 viewC returned values for the output tag airline (tmp0). But since it is not
needed for the query answering, it is removed.

Line 22-34 viewA is queried. It adds the price (variable P).

Line 41-55 The tuples that satisfy the filter condition p < 50 are selected. The final result is
stored in the table “RESULT”.

Like demonstrated above, each queried view contributes its structural overlapping to
the result. The combined result is the intersection of all queried Web Data sources.
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5 Implementation

This chapter gives an overview of the Query Broker implementation. The used tools are in-
troduced and the implemented classes are presented. A detailed description of the classes
and their methods is not given, but can be found in the source code. Instead, the significant
design decisions of the implementation are pointed out.

5.1 General

The goal of the implementation is to test the described query processing approach in prac-
tice. The implementation is a prototype of a Query Broker that implements the basic func-
tionality. The implementation has been done in the programming language Java [6], using
the Jena Framework and the MARS Framework.

5.1.1 Jena Framework

Jena [2] is an open source framework for building Semantic Web applications. It is written
in Java and provides the functionality to handle RDF data. The Jena API can be used to
to read, write and manipulate RDF data. SPARQL queries are supported by ARQ, a query
engine for Jena.

5.1.2 MARS Framework

The MARS (Modular Active Rules for the Semantic Web) [4] Framework is developed by
the DBIS group of Göttingen University. It is a framework for specifying and implement-
ing active rules (ECA rules) in the Semantic Web. Among others, the MARS framework
supports queries against Deep Web sources and Web Services by the Deep Web Query
Language (DWQL) and the Web Service Query Language (WSQL).
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5.2 Class Architecture

Now, the interaction of the different classes is presented. Then, a short description is given
for each class. (Class names are italicized)

The Broker is the main class of the prototype implementation. During the start-up, it cre-
ates a WebDataSource object for each known source. After this, the Broker is ready to process
queries. When the Broker receives a query, it creates a new Query object. The Query object
parses the query using the Jena Framework and builds a QueryGraph for the query. Once
the Query object has been initialized, the Broker passes a list of the available WebDataSources
to the Query. Then, the Query starts with the identification of useful sources, arranges them
in a suitable order, and creates a query plan.

The prototype implementation of the Query Broker consists of the classes shown in Fig-
ure 5.1.

View

WebDataSource

Query

Edge

Node

Structural
Overlapping

Broker QueryGraph

Figure 5.1: Class Diagram for the Implemented Classes

5.2.1 Broker

The static class Broker is the main class. It maintains the available web data sources and
receives the queries.

5.2.2 WebDataSource

The WebDataSource class is the internal data structure of a Web Data Source. A WebData-
Source object is created for each available Web Data Source. The constructor takes the URL
of the WDSDL source description file and creates a new object according to the source
description. A WebDataSource object stores an RDF model with the WDSDL source de-
scription, an RDF model with the materialized source annotation statements, a list of its
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tags and a list of its views. The WebDataSource class provides methods to access those
information.

5.2.3 View

The View class is the internal data structure of a view. Among others, it stores the input and
output tags of the view. The attributes are accessible through getter and setter methods.

5.2.4 Query

The Query class is responsible for the query processing. It parses the query, builds the
query graph, compares the query graph with the sources and creates the query plan.

5.2.5 StructuralOverlapping

StructuralOverlapping is a simple data class. An instance is created for each determined
structural overlapping. It stores the overlapped triples of the query graph and the mapping
from the tags to the query variables.

5.2.6 QueryGraph

The query graph requires a data structure that can store labeled nodes and labeled directed
edges. The following data structure has been chosen. A query graph is represented by a
QueryGraph object. It keeps a list of the nodes. A Node has a label and a list of its outgoing
and incoming Edges. An Edge has a label and stores its source Node (from) and its target
Node (to).

Consider a short example.

? c i t y ex : popu la t ion ? popu la t ion .

The example is stored as shown in Figure 5.2
The QueryGraph stores the Nodes ":node1" and ":node2". The Edge ":edge1" stores its

source Node of the edge (":node1"), and its target Node (:node2).
Please note that it would be sufficient to just store the outgoing edges of a node and the

target nodes of the edges, but due to performance reasons the nodes also keep a list of their
incoming edges, and the edges store their source nodes .
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nodes = :node1, :node2
:graph

label = "?population"
outgoingEdges = ⌀
incomingEdges = {:edge1}

:node2
label = "?city"
outgoingEdges = {:edge1}
incomingEdges = ⌀

:node1
label = "ex:population"
from = :node1
to = :node2 

:edge1

Figure 5.2: Sample QueryGraph Instance

5.2.7 Node

As already mentioned, a Node has a label and a list of its incoming and outgoing Edges. The
rdf type declarations (node rdf:type type) are not stored as edges in the graph. Instead, the
Node class has an attribute to store its type. This is done for two reasons. First, it impoves
the performance. Second, it simplifies the algorithms that work on the graph, because
without these edges the graph is a tree.

5.2.8 Edge

The Edge class has attributes for storing the source and target Node, the label and an enabled
flag. The enabled flag indicates if an Edge is enabled or disabled. If an Edge is disabled, the
algorithms consider the graph without this Edge.
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6 Conclusion

The prototype version of a Query Broker that uses distributed Web Data Sources to answer
SPARQL queries has been developed in this thesis. A way to assign semantic annotations
to the Web Data Sources by dint of the Web Data Source Desription Language has been
described. For the identification of appropriate sources that can be used to answer a query,
a graph-based matching algorithm that compares the query with the source annotations
has been designed. The identified sources are arranged in an applicable query order, which
is executed using the MARS Framework.

Further Work

The current version of the Query Broker can be extended in a variety of ways.

Supported Queries. The current version of the Query Broker only supports simple SPARQL
queries with a basic graph pattern. A support for complex graph patterns, such as
alternative and optional graph patterns, could be added.

Source Selection. The algorithm that creates the query order only pays attention to the
sources that have structural overlappings with the query. A further version could
also take the other sources into account. Even if they can’t directly contribute to the
query answer, their outputs may help to make other views accessible.

If different Web Data Sources have the same structural overlappings with the query,
the query broker only queries one of those. But since they may return different re-
sults, all of these sources could be queried.

Result Combination. The literal properties of the resources are used to join the results. A
more correct way would be to specify which of the literal properties actually are key
attributes.
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