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1 Introduction

In relational databases it is assumed that the information contained are complete, what is
called the Closed World Assumption. This assumption is not made for incomplete databases
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or knowledge bases based on description logics (DL) as for example OWL. There it is assumed
that the available information are incomplete (Open World Assumption). Whereas at a query
with a negated condition, a relational database returns all tuples for which it is not stored in
the database that they satisfy the condition, the answer under the Open World Assumption
contains only such tuples for which it is guaranteed that they do not satisfy the condition.

In the article Obtaining Complete Answers from Incomplete Databases by Alon Y. Levy
[Lev96] the relational data model well-known at that time is used for partially incomplete
databases. The authors investigate the question when the completeness of an answer to a
query can be ensured, which was already considered in [Mot89]. The Closed World Assumption
inhering in the relational model involves that the information that tuple does not satisfy a
certain condition cannot be expressed. Later, with RDF and OWL, a formalism was developed
in which the OpenWorld Assumption is inherent. Besides the possibility to store positive atoms
(atomic facts), therein exists the possibility to store further axioms (i. e. concept inclusions),
that are taken into account in query answering and which can for example imply that a tuple
cannot satisfy a certain condition. Such axioms concerning only concepts and not concrete
instances form the TBox (Terminological Formalism), the schema of a knowledge base. They
are formulated in the language of description logic and can be translated to predicate logic
formulas.

The schema of a relational database contains as well conditions that can be represented by
predicate logic formulas, namely the so-called integrity constraints. However, these are not
taken into consideration in query answering but used to ensure the integrity of the database
state after a data update. Considering them for query answering is unnecessary because owing
to the underlying Closed World Assumption, all true facts have to be contained in the database.
At best, it yields a performance gain.

The different behaviour of relational databases and knowledge bases at query answering can
be described formally by means of the underlying semantics. In relational databases, every
predicate symbol (relation schema) is interpreted as the relation given by the current database
state S. A tuple (a1, . . . , an) thereby occurs in the answer to a query ϕ(x1, . . . , xn) if and
only if S � ϕ[a1/x1, . . . , an/xn]. In knowledge bases, the stored information are not treated
as a complete specification but merely as conditions that a potential interpretation must ful-
fill. Every such interpretation of the predicate symbols is called a model of the specification
K. A tuple (a1, . . . , an) then appears in the answer to a query ϕ(x1, . . . , xn) if and only
if S � ϕ[a1/x1, . . . , an/xn] for every interpretation S with S � K (then one says K entails
ϕ[a1/x1, . . . , an/xn] and writes K � ϕ[a1/x1, . . . , an/xn]). If K only contains atoms, then the
interpretation used for relational databases is exactly the minimal model of K.

The different handling of the database schema in relational databases and DL knowledge bases
causes according to [MHS07] misunderstandings and problems in practice. Each of the two
behaviours described – on the one hand treating the TBox axioms as background knowledge,
from which conclusions can be drawn (reasoning) in order to answer a query, on the other
hand the strict enforcement of conditions to ensure the integrity of the database state – are
in certain situations preferable. In the article Bridging the Gap Between OWL and Relational
Databases [MHS07], Boris Motik, Ian Horrocks and Ulrike Sattler describe how the
semantic of DL knowledge bases can be extended by integrity constraints.
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Owing to the high expressiveness of OWL 2, the complexity of query answering over OWL 2
ontologies is high. A common approach to obtain reasonable performance is to restrict the
ontology language to a more tractable fragment (OWL profile). The answer of a reasoner
for such a profile is always correct, but it is complete only if the ontology falls inside the
profile. Hence, the answer computed by such a system provides a lower bound for the actual
answer. However the incompleteness is unsatisfactory which is why the optimization of fully
fledged OWL 2 reasoners is an ongoing field of research. Such an approach is presented by
Yujiao Zhou, Yavor Nenov, Bernardo Cuenca Grau and Ian Horrocks in the paper
Pay-as-you-go Ontology Query Answering Using a Datalog Reasoner [ZNGH14] for which the
prototypical system PAGOdA was developed and the associated technical report [ZCGN+15].
The idea is based on the calculation of a lower and an upper bound for the answer and on
checking the answers in the gap with respect to a relevant fragment of the ontology. Thereto a
Datalog reasoner is used. Like the semantic of the relational model, the semantic of Datalog is
based on the Closed World Assumption. Unfortunately, the system PAGOdA did not answer
correctly typical test queries.

2 Completeness of answers in incomplete databases

Let R = {R1(X1), . . . , Rn(Xn)} be a relational signature. Below it is assumed that all tuples
in the database also hold in reality but that not all tuples holding in reality are contained in
the database. So two different relational structures over R are considered, on the one hand
the “real state of the world” S and on the other hand the database state S ′, for which holds
that S ′(Ri) ⊂ S(Ri) for all i ∈ {1, . . . , n}.1 Thereto the notation S ′ v S is used.

The answer set S ′(Q) to a query Q is called correct if S ′(Q) ⊂ S(Q) and complete if S(Q) ⊂
S ′(Q). Obviously, under the above assumption, the answer to every query without negation is
correct. In what follows, it is investigated when such an answer is also complete. In order to
make a statement about the completeness (without knowing S), it must be known that parts
of the database are complete. What is meant by this, is illustrated by the following example
and subsequently defined formally.
Example 2.1. Consider a movie database with the following relational signature R

Movie(title, director, year)
Oscar(title, year)
Showing(title, year, cinema, hour)
Director(name, dateOfBirth, nationality),

that contains besides the information about the movies also the showings in some cinema in
Göttingen. Assume that the relation Movie is complete from the year 1960 on, but that older
movies can be missing, and that the relations Oscar, Showing and Director are complete.

1The notation of [Lev96] was changed to the notation of the database lecture, which was also used by [Mot89].
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1. The answer to the query

(Q1) SELECT m.director
FROM Movie m, Oscar o

WHERE m.title = o.title
AND m.year = o.year
AND m.year ≥ 1965

for the directors of all movies that won an Oscar since 1965 is under the above assumptions
complete.

2. For the answer to the query

(Q2) SELECT m.title, m.director
FROM Movie m, Showing s

WHERE m.title = s.title
AND m.year = s.year

for the names and directors of all movies that are currently shown in Göttingen, the
completeness cannot be guaranteed. However if

S ′(Showing) := {(Jurassic World, 2015, CinemaxX , 20:00),
(Elser – Er hätte die Welt verändert, 2015, Lumière, 17:00),
(Die Entdeckung der Unendlichkeit, 2014, Unikino, 20:00)},

then the answer to the query must be complete because all movies that are currently
played in Göttingen must be contained in the relation Movie.

The example shows that it does not suffice to specify a set of names of relations that are
complete in S ′, since single relations can be “partially complete”, i. e. complete for all tuples
satisfying a certain condition. This will be conceptualized by the following definitions.

Definition 2.1. Let R(X1, . . . , Xn) ∈ R. A constraint C on R is a conjunction of atoms
that can include variables from X1, . . . , Xn as well as further variables and that does not
use the relation name R. A tuple (a1, . . . , an) satisfies C w. r. t. the database state T if
T � C[a1/X1, . . . , an/Xn].

Example 2.2.

1. In the above example, year ≥ 1960 is a constraint on Movie. It is satisfied by all movies
that were shot since 1960.

2. Showing(title, year, cinema, hour) ∧ year ≥ 1960 is a constraint on Movie as well. It is
satisfied by all movies shot since 1960 and currently shown in a cinema in Göttingen.

3. One has to be careful with the naming of the variables. For instance the constraint
Showing(title2, year, cinema, hour) ∧ year ≥ 1960 is satisfied by all movies shot in a year
since 1960 in which also a film currently shown in Göttingen was shot.
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Definition 2.2. Let S ′ v S and C a constraint on the relation name R. The database state
S ′ is locally complete at R under the constraint C for S if S ′(R) contains all tuples from S(R)
that satisfy C. Then, one says S ′ fulfills the local completeness statement LC(R,C) for S and
writes (S,S ′) � LC(R,C).

Example 2.3. The statement

(S,S ′) � LC(Movie, Showing(title, year, cinema1, hour1)
∧Showing(title, year, cinema2, hour2) ∧ cinema1 6= cinema2).

means that all movies from S that are shown in at least two cinemas in Göttingen are contained
in S ′.

For a set Γ of local completeness statements, one writes (S,S ′) � Γ if (S,S ′) � LC(R,C) for
all LC(R,C) ∈ Γ.

Now the problem to decide whether the answer to a query Q is complete may be formalized.
If S and S ′ are known, this can trivially be decided by calculating S(Q) and S ′(Q) and
comparing them. In practice, this is of course not applicable since S is not available. Instead,
the completeness is to be derived from the local completeness statements and, when indicated,
from the current database state S ′.

Definition 2.3. Let R be a relational signature and Γ a set of local completeness statements
of the form LC(R,C) for R ∈ R. A query Q over R is called answer-complete w. r. t. Γ if for
all structures S and S ′ over R with (S,S ′) � Γ holds that S ′(Q) = S(Q).

Definition 2.4. Let R be a relational signature, Γ a set of local completeness statements of
the form LC(R,C) for R ∈ R and S ′ a database state over R. A query Q over R is called
instance answer-complete w. r. t. Γ and S ′ if for all structures S over R with (S,S ′) � Γ holds:
S ′(Q) = S(Q).

Clearly, if a query is answer complete, then it is instance answer complete for every database
instance S ′. The converse does not hold: The query Q2 from example 2.1 is not answer-
complete but instance answer-complete w. r. t. the given state S ′.
Remark 2.1. From a theoretical point of view, one could define a query Q to be reality answer-
complete w. r. t. Γ and S if for all S ′ with (S,S ′) � Γ holds that S ′(Q) = S(Q). Of course, this
cannot be decided only on the basis of the database state; however it would be conceivable
that the reality answer-completeness of a query can be deduced from additional knowledge
about the reality (ontology). If S and S ′ are two structures over R with (S,S ′) � Γ and if Q
is a positive query, then neither the instance answer-completeness of Q w. r. t. S ′ implies the
reality answer-completeness w. r. t. S nor vice versa.
Example 2.4.

1. Let Γ = {LC(Director,>)} and

S ′(Director) = {(Woody Allen, December 1, 1935, USA),
(Steven Spielberg, December 18, 1946, USA)}
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and

S ′(Movie) = {(Midnight in Paris, Woody Allen, 2011),
(Minority Report, Steven Spielberg, 2002)}.

Then the query

(Q1) SELECT d.name, d.dateOfBirth
FROM Director d, Movie m

WHERE d.name = m.director
AND m.year ≥ 2000,

that asks for all directors with their dates of birth that directed a film since 2000, is
instance answer-complete w. r. t. S ′. Let S := S ′. Then Q1 is not reality answer-complete
w. r. t. S because for S ′′ with S ′′(Movie) = ∅, S ′′(Q1) 6= S(Q1).

2. Let Γ = {LC(Movie, year ≥ 1960)} and

S(Movie) = {(Midnight in Paris, Woody Allen, 2011),
(Minority Report, Steven Spielberg, 2002)}.

Then the query

(Q2) SELECT m.title
FROM Movie m

is reality answer-complete w. r. t. S. However, for S ′ := S, Q2 is not instance answer-
complete w. r. t. S ′

In the following, we will focus on answer-completeness and instance answer-completeness.

2.1 Answer-completeness

In [Lev96], the problem of checking answer-completeness is transformed to the problem of
detecting update independence for which was already known ([LS93]) that it can be reduced
to the problem of checking query equivalence. In what follows, we will omit the intermediate
step and directly reduce the answer-completeness problem to the query equivalence problem.

Theorem 2.1. Let Q be a union of positive conjunctive queries over R = {R1(X1), . . . , Rn(Xn)}
and comparison predicates, and let Γ = {LC(Ri, Cij) | 1 ≤ j ≤ mj , 1 ≤ i ≤ n}. Let E1, . . . , En

be new relation symbols and for 1 ≤ i ≤ n let Vi be the view defined by

Vi(Xi) :− Ri(Xi) ∨ (Ei(Xi) ∧ ¬Ci1 ∧ · · · ∧ ¬Cimi).

Then the query Q is answer-complete w. r. t. Γ if and only if Q is equivalent to the query Q′
obtained by replacing every occurrence of Ri by Vi for 1 ≤ i ≤ n.
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Remark 2.2. In [Lev96], the case that there is more than one local completeness statement for
one relation, is not properly considered. Instead, in [Lev96, Theorem 3.1], it is claimed that
Q is answer complete if and only if for every local completeness statement LC(R,Ci), Q is
independent of the insertion of tuples not satisfying Ci. This is wrong in the case of multiple
local completeness statements for one relation as shows the following example.
Example 2.5. Consider

Γ = {LC(Movie, year ≥ 1960), LC(Movie, year ≥ 1970)}
and the query

(Q) SELECT m.title
FROM Movie m

WHERE m.year ≥ 1965
Then Q is answer-complete. However, Q is not independent of the insertion of tuples with
year < 1970.

The query equivalence problem is of high complexity. In many cases, the answer-completeness
problem can however be reduced to checking query satisfiability, what can be done in poly-
nomial time. In the general case of a conjunctive query, we only get a sufficient condition for
answer-completeness, but under certain additional assumptions, this condition is also neces-
sary. We call a conjunctive query Q = c1 ∧ · · · ∧ ck minimal if there is no i ∈ {1, . . . , k} such
that Q is equivalent to c1 ∧ · · · ∧ ci−1 ∧ ci+1 ∧ · · · ∧ ck.
Theorem 2.2. Let Q be a positive conjunctive query over R = {R1, . . . , Rn}, and let Γ =
{LC(Ri, Cij) | 1 ≤ j ≤ mi, 1 ≤ i ≤ n}. For i ∈ {1, . . . , n} let Ri have relation schema
Ri(Xi

1, . . . , X
i
li

). If for all i ∈ {1, . . . , n}, for every occurrence Ri(Y1, . . . , Yli) of the relation
name Ri in the query Q, the query Q∧ σ(¬Ci1 ∧ · · · ∧ ¬Cimi), where σ is the substitution that
replaces Xi

k by Yk, is unsatisfiable, then Q is answer-complete w. r. t. Γ.
Conjecture. Let Q be a minimal positive conjunctive query over R = {R1, . . . , Rn}, and let
Γ = {LC(Ri, Cij) | 1 ≤ j ≤ mi, 1 ≤ i ≤ n}. For i ∈ {1, . . . , n} let Ri have relation schema
Ri(Xi

1, . . . , X
i
li

). If there is a i ∈ {1, . . . , n} and an occurrence Ri(Y1, . . . , Yli) of the relation
name Ri in the query Q such that the query Q ∧ σ(¬Ci1 ∧ · · · ∧ ¬Cimi) is satisfiable, where σ
substitutes Xi

k by Yk, then Q is not answer-complete w. r. t. Γ.

The reason for the first statement to be true is that if all the queries obtained by restricting
an occurrence of a relation Ri to the potentially incomplete part are unsatisfiable, then these
parts cannot contribute to the answer to the positive conjunctive query. We give two examples
where this is not the case, i. e. there is an occurrence of Ri such that the restriction to the
incomplete part is still satisfiable.
Example 2.6. We consider again the signature from example 2.1. Let

Γ := {LC(Movie, year ≥ 1960),
LC(Oscar, >),
LC(Showing, >),
LC(Director,>)}.
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Let
(Q1) SELECT m1.title

FROM Movie m1,Movie m2

WHERE m1.year ≥ 1960
AND m.director = m2.director
AND m2.year < 1960

be a query asking for all films since 1960 whose director also directed a film before 1960. This
query is minimal. In relational calculus form, it is
Q1(title) = Movie(title, director, year1)∧ year1 ≥ 1960∧Movie(_, director, year2)∧ year2 < 1960,
where variables occurring only once are written as underscores (anonymous variables). The
only relation name in the query is Movie, which occurs twice. Let C be the corresponding
constraint, i. e. C = year ≥ 1960.

• Let σ1(year) = year1. Then

Q1 ∧ σ1(¬C) = Movie(title, director, year1) ∧ year1 ≥ 1960
∧Movie(_, director, year2) ∧ year2 < 1960 ∧ year1 < 1960

which is obviously unsatisfiable.

• Let σ2(year) = year2. Then

Q1 ∧ σ2(¬C) = Movie(title, director, year1) ∧ year1 ≥ 1960
∧Movie(_, director, year2) ∧ year2 < 1960 ∧ year2 < 1960

which is satisfiable. In accord with the conjecture, Q1 is not answer-complete. The
example illustrates that it is necessary to consider every occurrence of the relation names.

The next example shows that the additional assumption of minimality in the second statement
is necessary.
Example 2.7. We consider the same signature and the same set Γ as in the last example. Let

(Q2) SELECT m1.title
FROM Movie m1,Movie m2

WHERE m1.year ≥ 1960
AND m1.director = m2.director.

In relational calculus form, this is
Q2(title) = Movie(title, director, year1) ∧ year1 ≥ 1960 ∧Movie(_, director, year2)

Again, restricting year2 < 1960 preserves satisfiability. However, the query is answer-complete
since m2 can always be chosen equal to m1. This does not disprove the conjecture because the
query is not minimal.
Remark 2.3. [Lev96] claims a weaker version of the conjecture in which an additional precon-
dition on the shape of C is made and gives a proof sketch for it.
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2.2 Instance answer-completeness

The idea is to check whether the answer to one part of the query contains the answer to another
part of the query which is known to be answer-complete and which determines functionally all
variables of the query.
Example 2.8. Consider again the query Q2 from example 2.1. In relational calculus form, it is

Q2(title, director) = Movie(title, director, year) ∧ Showing(title, year, cinema, hour).

Then the subquery

Q2(title, year) = Showing(title, year, cinema, hour)

is known to be answer-complete and the variables of this query functionally determine all
variables of Q2. Furthermore for the database state S ′ of Example 2.1, the answer to Q2 is
contained in the answer to Q2(title, year) = Movie(title, director, year). This is why the answer
to Q2 must be complete.

The example can easily be generalized leading to the following theorem.

Theorem 2.3. Let Q(X) = R1(X1) ∧ · · · ∧ Rn(Xn) ∧ C be a conjunctive query, where
R1, . . . , Rn ∈ R and C is a conjunction of comparison atoms, let Γ be a set of local com-
pleteness statements of the form LC(R,C) with R ∈ R and let S ′ be a database state. Let
{1, . . . , n} = I

·∪ J = {i1, . . . , ik}
·∪{j1, . . . , jn−k} be a partition of the relational atoms, XI :=⋃

i∈I Xi, XJ := ⋃
j∈J Xj and Y := X ∩ XI ∩ XJ . Let furthermore CI be the set of com-

parison atoms of C containing only variables from XI and CJ be the set of comparison
atoms containing only variables from XJ . Let QI(Y ) = Ri1(Xi1) ∧ · · · ∧ Rik

(Xik
) ∧ CI and

QJ(Y ) = Rj1(Xj1) ∧ · · · ∧Rjn−k
(Xjn−k

) ∧ CJ .

If XI functionally determines every variable of Q, QI is answer complete, and S ′(QI) ⊂
S ′(QJ), then Q is instance answer-complete w. r. t. Γ and S ′.

If XI functionally determines the other variables, then for every answer to QI , there exists
exactly one answer to Q in S. If this answer is already in S ′(QJ), then it is also in S ′(Q). So
the answer is complete.

2.3 Correctness

The results of the last sections for incomplete databases can easily be transferred to incorrect
databases. There, S v S ′ is assumed. All results only relied on identifying if a query is
independent of updates. This is why the same algorithms can be applied even if the database
is both incomplete and incorrect.
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3 Integrity Constraints in DL-Knowledge Bases

In [MHS07], the authors discuss different ideas and on the basis of examples, the related
problems and draw conclusions, that finally result in the semantic proposed. In the following
subsections, the ideas and the resulting problems are summarized.

3.1 Idea 1: Consistency check

In relational databases, after changing the database state, it is checked whether the schema
constraints are compatible with the database state, i. e. whether the model given by the
database state satisfies the schema constraints. Something similar is done at a consistency
check of a knowledge bases. There it is checked whether the schema axioms are consistent
with the atomic facts ABox (assertional formalism), that means, if there is a model that
satisfies the statements of the ABox and the axioms of the TBox. As owing to the Open
World Assumption, among others, models in which also not explicitly given statements hold
are considered, the completeness of the data cannot be verified. In case of an insufficient
specification of the ontology, some database states felt to be contradictory do not result in a
logic inconsistency.
Example 3.1. The objective is to ensure that for every country at least one language spoken
therein is listed. For this purpose, the TBox axiom

Country v ∃language.Language

is set up. However, the ABox

Country(Germany), Country(Bahamas), Language(German), language(Germany, German)

is not inconsistent because a model S with S(Country) = {Germany, Bahamas} and S(language) =
{(Germany, German), (Bahamas, German)} satisfies for example the TBox axiom.
Example 3.2. It is to be ensured that the capital of every country is a city. Thereto the TBox
axiom

> v ∀capital.City

is introduced. This time the ABox

City(Berlin), Person(Angela Merkel), capital(Germany, Angela Merkel)

again does not cause an inconsistency, although Angela Merkel is indicated in the database
to be a person, because it is not stated in the TBox that the concepts City and Person are
disjoint. The reasoner would merely conclude from the preceding axiom that Angela Merkel
must be city and person at the same time.

If the objective is to guarantee that a certain part of the database is complete (Closed World),
then the treatment of the TBox axioms as integrity constraints is intended; but if the database
is incomplete in a certain part (Open World), then the TBox axiom should, as customary for

10



DL knowledge bases, be used to derive further facts. The goal is therefore that a user can
explicitly indicate, which TBox axioms should be treated as integrity constraints. To this end,
the set of TBox axioms is partitioned in a set TS of standard TBox axioms and a set TC of
TBox axioms treated as integrity constraints.

3.2 Idea 2: The ABox must satisfy the integrity constraints

The question arises how the satisfaction of the integrity constraints can be checked. Since they
are supposed to ensure the correctness of the data and not of the schema, it is a likely idea
to consider, while checking the integrity, only the ABox A, and to regard the standard TBox
axioms only while answering queries. For the integrity check, the ABox could be treated like
a relational data base taking the Closed World Assumption as a basis. This approach would
have the desired effect for the two preceding examples.

In terms of model theory, the integrity constraints would be applied to the model of the ABox
in which every predicate symbol is interpreted by the set of explicitly asserted tuples.

It is not clear at first sight why the rules for drawing conclusions should be taken into con-
sideration in the check of the integrity constraints. The following example is supposed to
show that this can indeed be appropriate and that the nonconsiederation can have unwanted
consequences.
Example 3.3. The objective is to ensure that only an animal can be the pet of somebody. For
this purpose, one sets

TC := {> v ∀hasPet.Animal}.

Let further
TS := {Cat v Animal, Dog v Animal}

and the ABox be

A := {Dog(Struppi), Cat(Garfield), hasPet(John, Garfield), hasPet(Alice, Struppi)}.

Then the ABox does not satisfy the integrity constraint, as in the ABox, it is not asserted
explicitly that Garfield and Struppi are animals. This only follows using the axiom from TS .

3.3 Idea 3: Every model of A ∪ TS must satisfy the integrity constraints

At first sight, the demand that every model of A ∪ IS has to satisfy the integrity con-
straints would solve the problem of the last example, because in every model of A ∪ TS hold
Animal(Garfield) and Animal(Struppi). However, there are quite a lot of models of A∪TS , many
of which do not satisfy the integrity constraints, as shows the following example.
Example 3.4. For TS and A from example 3.3, S with S(Animal) = {Struppi, Garfield} and
S(hasPet) = {(John, Garfield), (Alice, Struppi), (Ash, Pikachu)} is a feasible model which ob-
viously does not satisfy the integrity constraint > v ∀hasPet.Animal.
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One can limit oneself to Herbrand models over the active domain ADOM of the database, i. e.
such models whose universe consists only of the occurring resources and literal values. But
of course, it is easy to find an example of such a Herbrand model, in which facts hold that
can not at all be deduced from the knowledge base, and which does not satisfy the integrity
constraints.
Example 3.5. For the same TS and A as in the last two examples, S with S(Animal) =
{Struppi, Garfield} and S(hasPet) = {(John, Garfield), (Alice, Struppi), (Garfield, John)} is a
possible Herbrand model over the active domain that does not satisfy the integrity constraint.

In fact, this approach is equivalent to checking whether A∪TS entails the integrity constraint.

3.4 Idea 4: The consequence set of A∪TS must satisfy the integrity constraints

The idea to consider all possible models resulted in problems in the last example since there
are models in which some facts are true that do not follow from the ABox and the TBox.
Therefore it seams sensible to regard instead the set of all positive atoms following from the
ABox-atoms and TBox-axioms. So it is checked whether the integrity constraints are satisfied
in the model of A in which every n-ary predicate symbol R is interpreted by the relation
{(a1, . . . , an) | TS ∪A � R(a1, . . . , an)}. This approach corresponds to the semantic of positive
query answering. In all preceding examples, this would have the desired effect (if the condition
in the first two examples is considered as integrity constraint). Problems arise however for
disjunctive rules as the subsequent example shows.
Example 3.6. The purpose is to ensure that every student has an entry as bachelor or master
student in the database and that every staff member is known to be a technical staff member
or a scientific staff member. To this end, the integrity constraints
TC := {Student v BachelorStudenttMasterStudent, StaffMember v TechicalStafftScientificStaff}
are used. Let now

TS := {FacultyMember v Student t StaffMember},
A := {FacultyMember(Fritze Bolte)}.

Then neither the statement Student(Fritze Bolte) nor the statement StaffMember(Fritze Bolte)
is a consequence of TS ∪ A, so the two predicate symbols Student and StaffMember are inter-
preted by the empty set and thus, the integrity constraint is satisfied. So Fritze Bolte being
listed neither as bachelor student nor as master student nor as technical staff member nor as
scientific staff member does not cause a violation of the integrity constraint.

This behaviour is even more unpleasant if, as in the following example, the same constraint
has to be satisfied for both possible superclasses.
Example 3.7. As a variant of the preceding example, now, it is to be guaranteed that every
student and every staff member be a person, i. e.

TC := {Student v Person, StaffMember v Person}.
Still, for TS and A as above, the integrity constraint is satisfied for the consequence set although
it can not be derived that Fritze Bolte is a person.
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3.5 Idea 5: Minimal Herbrand models must satisfy the integrity constraints

As the last examples show, the consequence set of A∪TS is too small as a base of the integrity
check. It is indeed a model of A but in general not a model of A∪TS , whence it is possible that
integrity constraints are satisfied that are violated by every model of A ∪ TS and vice versa.
The problem is that the disjunctive rule heads do not find their way into the consequence set
though they confine the set of feasible models. In example 3.7, this problem could be solved
by introducing a new predicate StudentOrStaffMember and adapting the other constraints
accordingly. In example 3.6 however, this would not work.

Instead of considering the consequence set, A better idea is to require minimal Herbrand
models of A∪TS to satisfy the integrity constraints. For this, a Herbrand model S is identified
with the subset of the Herbrand base consisting of all atoms that are true in S. Then, S is
called minimal if there is no Herbrand model S ′ with S ′ $ S. Unlike to the second idea,
the integrity constraints are not just checked under the assumption that the ABox contains a
closed description of the world. Nevertheless, the restriction to minimal models is predicated
on the Closed World Assumption. It corresponds to the semantic of Datalog.

In example 3.6, there are two minimal models, namely

S1 = {FacultyMember(Fritze Bolte), Student(Fritze Bolte)},
S2 = {FacultyMember(Fritze Bolte), StaffMember(Fritze Bolte)},

both obviously not satisfying the integrity constraint. Thus, the knowledge base is rightly
identified as incorrect. The same applies for example 3.7.

Also in the examples before these two, the approach results in the intended behaviour: in each
of the examples 3.1 and 3.2, there is only one minimal model, which violates the integrity
constraint as requested, and in example 3.3, the unique minimal model satisfies the integrity
constraint.

3.6 Further decisions and formal definition

The following two questions are to be settled:

1. How to proceed if some of the minimal models satisfy an integrity constraint and some
do not?

2. How to deal with axioms in TS containing quantifiers?
Example 3.8. In the ontology, it is specified that every student has a matriculation number
even if the latter is not explicitly given, i. e.

TS := {Student v ∃matrNo.>}.

Let furthermore
A := {Student(Fritze Bolte)}.
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Now it depends on what is used as (algebraic) signature of the Herbrand universe (datatype
literals, active domain, natural numbers, Skolem function symbols, . . . ). The active domain
would not be a good idea in this example; it only consists of Fritze Bolte, and since there are
no function symbols, the associated Herbrand universe is U = {Fritze Bolte}. Consequently,
the only Herbrand model of A ∪ TS is given by

{Student(Fritze Bolte),matrNo.(Fritze Bolte,Fritze Bolte)}.

To consider a separate minimal model for every datatype value is of course not a good idea
as well. The only practical method is to introduce new objects for the existential quantifiers,
similar to Blank Nodes in RDF. Below, alternative approaches are compared.

For answering the first question, it has to be decided

a) whether the integrity constraints from TC must be satisfied in every minimal model,

b) or whether it suffices if there is a minimal model satisfying them.

This question is not treated explicitly in [MHS07]. The following two examples are supposed
to illustrate the effects of the decision on practical applications and to clarify which variant
better matches the intuition.
Example 3.9. Let

TS := {Person v Student t Employee t Unemployed t Freelancer t Pensioner t Prisoner},
A := {Person(John)},
TC := {Prisoner v Murderer t Thief}

Under the first alternative, the database state would be rejected, but under the second it would
be accepted.
Example 3.10. Let TS and A be as above and

TC := {Student v Lazy t Diligent, Employee v PublicServant t IndustrialEmployee,
Unemployed v ShortTerm t LongTerm, Pensioner v Under65 t Over65,
Prisoner v Murderer t Thief}

Just as in the last example, the database state would be rejected under the first alternative
and accepted under the second.

In the first example, the rejection of the database state seems quite strict in view of the fact that
apart from disjunctions, only facts that follow from the database are taken into consideration.
Meanwhile, the acceptance of the database state in the second example seams quite weak.

In [MHS07], the authors choose the first, stricter condition for the acceptance of the integrity
constraints. Thereby, possible modelling errors are detected with a higher probability.

In contrast to the first question, the authors of [MHS07] devote a comprehensive discussion to
the handling of quantifiers. Universal quantifiers in the head or existential quantifiers in the
body of a rule do not pose any problem. Every rule with a universal quantifier in the body
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can be transformed to a rule with an existential quantifier in the head. In the following, three
alternatives for handling existential quantifiers in rule heads are discussed.

Beforehand we notice that by the confinement to Herbrand models, the Unique Name Assump-
tion is implicitly made. In order to be compatible with OWL, an equality relation ≈ can be
taken into account. Then the semantic has to be modified in such a way that only models S
are allowed that fulfill the following equality axioms are allowed [ZCGN+15]. For each n-ary
predicate symbol R and every 1 ≤ i ≤ n:

∀x1, . . . , xn (P (x1, . . . , xn)→ xi ≈ xi) (EQ1)
∀x, y (x ≈ y → y ≈ x) (EQ2)
∀x, y, z (x ≈ y ∧ y ≈ z → x ≈ z) (EQ3)

∀x1, . . . , xn, y (P (x1, . . . , xn) ∧ xi ≈ y → P (x1, . . . , xi−1, y, xi+1, . . . , xn) (EQ4)

Then, the assumption that different constants denote by default different resources becomes
manifest in the fact that minimal (also w. r. t. the equality relation) models are looked for.

By the axioms, it is possible to conclude the existence of resources that are not explicitly
mentioned in the ABox (Blank Nodes). It has to be decided whether

a) only “really minimal” models are considered, i. e. existentially quantified variables are
interpreted by new individual if no other individual satisfies the condition,

b) all (minimal) models are considered in which existentially quantified variables represent
already known or new individuals,

c) or only such minimal models are considered in which it is assumed that all existentially
quantified variables denote different, not already known things (provided the contrary can-
not be deduced).

Example 3.11. Let

TS := {TwoChildrenParent v (∃hasChild.>)},
A := {TwoChildrenParent(John), hasChild(John,Bob)}
TC := {TwoChildrenParent v (≥ 2 hasChild.>)}.

According to alternatives a) and b), the database state would be rejected because it is possible
that John has only one child, namely Bob. In contrast, it would be accepted according to
alternative c) because it is assumed that the existentially quantified child is different from
Bob.
Example 3.12. Let now

TS := {OneChildParent v (∃hasChild.>)},
A := {OneChildParent(John), hasChild(John,Bob)}
TC := {OneChildParent v (≤ 1 hasChild.>)}.

This time, the database state would be accepted according to alternative a) since in it is as-
sumed that the existentially quantified child coincides with Bob. According to the alternatives
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b) and c), it would however be rejected because (also) the model is considered in which the
existentially quantified child is a new unknown child.

The acceptance of the integrity constraint in the first example according to alternative c) is
counter-intuitive. This variant has moreover the disadvantage that semantically equivalent ax-
ioms can lead to different behaviour. Its advantage is that it is easy to implement: It is obtained
by replacing every existential quantifier in a rule head by an own Skolem function symbol fi

and considering minimal Herbrand models for A ∪ TS over the signature (ADOM, (fi)i∈I ,R)
where R is the set of all occurring predicate symbols. Since in minimal Herbrand models
(with equality), all terms are (by default) interpreted as different, this produces the behaviour
described in alternative c). For this reason, the authors opt for this variant. We will now give
the formal definition.

Definition 3.1. An extended DL-knowledge base is a triple (TS , TC ,A) consisting of a set TS

of DL-axioms called the standard TBox, a further set TC of DL-axioms called the integrity
constraints, and a set A of atomic facts called the ABox.

For a set K of DL-axioms, let π(K) be an equivalent first-order logic formula. Such a translation
is explained in detail in [SCM03].

Definition 3.2. For a set K of DL-axioms, let sk(K) be the formula obtained by Skolemizing
π(K). We write

sk(K) |=MM ψ

for a formula ψ if S � ψ for every minimal Herbrand model S of sk(K) (together with the
equality axioms) over the signature of sk(K) (and the symbol ≈).

Definition 3.3. Let K := (TS , TC ,A) be an extended DL-knowledge base. The integrity
constraints TC are satisfied in K if

sk(TS ∪A) |=MM π(TC).

This definition is not without formal elegance, however, example 3.11 shows that minimal
cardinality constraints cannot be ensured therewith. This is why in my opinion, it is worthy
to consider alternative a) in more detail than it is done in [MHS07]. The idea to instantiate
existential rules only if the rule head is not already satisfied is known as restricted chase and
described in [CGK13, Section 2.5]. The applicability of this idea to integrity constraints could
be the object of future research.

3.7 Remarks

We conclude this section with some remarks on the approach of Motik, Horrocks and
Sattler presented in [MHS07].
Remark 3.1. A DL-knowledge base (T ,A) according to the usual definition can be seen as
special extended DL-knowledge base, namely as (T , ∅,A).
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Remark 3.2. If TC ⊂ TS and TS∪A is consistent, then the integrity constraints TC are satisfied.
This is a trivial consequence of the definition, however it is essential for the understanding of
the role of integrity constraints. It does not make sense to use a condition at the same time
as integrity constraint and as a usual TBox-axiom.
Remark 3.3. If the knowledge base satisfies the integrity constraints, it makes no difference if
TS or TS ∪ TC is used as TBox for answering queries without negated conditions.

Proof. Let U be the Herbrand universe, ϕ(x1, . . . , xn) a query without negated conditions and
(a1, . . . , an) ∈ Un. Owing to the monotonicity of reasoning under the Open World Assumption,
it is clear that

((TS ∪ A) � ϕ[a1/x1, . . . , an/xn]) =⇒ ((TS ∪ TC ∪ A) � ϕ[a1/x1, . . . , an/xn]) .

For the converse, we assume that (TS ∪A) 6� ϕ[a1/x1, . . . , an/xn], i. e. that there is a model of
TS ∪ A in which ϕ[a1/x1, . . . , an/xn] does not hold. So by Herbrand’s theorem, there is also
such an Herbrand model S. Let Smin be a minimal Herbrand model with Smin ⊂ S. Then,
Smin 6� ϕ[a1/x1, . . . , an/xn] as well because every positive statement in Smin also holds in S.
This minimal model satisfies by assumption the integrity constraints, i. e. Smin � TC . Thus,
Smin is a model of TS ∪ TC ∪ A which does not satisfy ϕ[a1/x1, . . . , an/xn].

Remark 3.4. By taking into consideration the constraints from TC , the performance of the
reasoner can be influenced. The authors of [MHS07] give an example in which the constraint
from TC is badly manageable so that it yields a performance gain to omit it. But surely there
are also examples in which the axioms in TC shorten the reasoning process.

4 Answering OWL-queries with the aid of a Datalog reasoner

The aim of PAGOdA is to speed up the calculation of a correct and complete answer for queries
to an OWL 2 knowledge base. Thereto the system resorts to an existing fully-fledged OWL
2 reasoner (HermiT) and a Datalog reasoner (RDFox). The main idea is to use the efficient
Datalog reasoner as much as possible and to fall back to the OWL reasoner only for a small
relevant fragment of the ontology. More precisely, for a given knowledge base K, two knowledge
bases L(K) and U(K) that fall into the Datalog fragment of OWL 2 are computed, such that
for every query Q the answer set for L(K) provides a lower bound and the answer set of U(K)
provides an upper bound to the answer set for K. After calculating these bounds for every
query Q, the tuples in the gap are checked w. r. t. a relevant fragment KQ

rel by the fully-fledged
OWL 2 reasoner. This is concretized by the following algorithm.

1. Check consistence of the knowledge base.

2. Use a Datalog reasoner to compute the answers LQ to the query w. r. t. L(K) and UQ

w. r. t. U(K) providing a lower and an upper bound respectively. If LQ = UQ, return
LQ. Otherwise, let GQ = UQ \ LQ.

3. Compute a relevant fragment KQ
rel.
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4. For each tuple a ∈ GQ, check with the aid of the fully fledged OWL 2 reasoner whether
KQ

rel � Q(a). If not, set GQ := GQ \ {a}.

5. Return LQ ∪GQ.

4.1 Semantics of Datalog and OWL

As already described in the introduction, the semantic of OWL is based on the well-defined
notion of entailment. A tuple a is in the answer to a query if the knowledge base entails that
a satisfies the condition of the query. Contrary to this, the semantic of Datalog is based on
minimal Herbrand models. However, the minimal model of a knowledge base need not be
unique if there are rules with negated atoms in the body or disjunction in the head. This is
the reason why the definition of the semantic has to be stated more precisely in the case of
negative atoms in the body. A restriction to stable models reduces the set of possible models but
still does not guarantee uniqueness. The definition of well-founded semantics circumvents this
problem by allowing a 3-valued model that only specifies what is definitely true and what is false
in every minimal model. Yet, if there is a unique stable model, then the well-founded model
coincides therewith. In order to compute the well-founded model, one alternately computes
an upper bound and a lower bound to all minimal models. In the first step, one assumes all
negative atoms to hold and derives the corresponding minimal model M1 that overestimates
every minimal model of K. In the second step, one assumes only the negative atoms to hold
whose corresponding positive atoms do not belong toM1 and calculates the minimal modelM2
for this. Then M2 underestimates all minimal models of K. Overestimating the conclusion in
one step can thus lead to an underestimation in a later step. Then the odd sequence elements
form a falling sequence of upper bounds and the even sequence elements form a raising sequence
of lower bounds, so both converge, yielding the well-founded model. It is possible that for two
logically equivalent knowledge bases, the stable models or the well-founded model differ.

The two issues do not occur in the semantic of OWL.

1. In OWL, the reasoning is monotonic, so overestimating the conclusion in one step always
leads to an overestimation (of the known facts) in later steps. This is because negated
preconditions are not assumed to hold by default.

2. Logical equivalence transformations of the knowledge base do not change the answers to
a query.

The second point is the reason why every OWL rule can be translated to a set of predicate
logic formulas of the form

∀x

 n∧
j=1

Bj(x)→
m∨

i=1
∃yiϕi(x,yi)

 (1)

where x,yi are vectors of variables, Bj(x) are positive atoms and ϕj(x,yj) are conjunctions of
positive atoms. The universal quantifier is usually omitted. Positive Datalog rules are exactly
the rules with m = 1 that do not contain an existential quantifier. A knowledge base is called
a Datalog knowledge base if all rules are positive Datalog rules.
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In this chapter, only positive conjunctive queries are considered, i. e. queries given by a formula
Q(x) = ∃yϕ(x,y) where ϕ is a conjunction of atoms. The set of all answers to Q w. r. t. the
knowledge base K is denoted by Ans(Q,K).

In the case of a Datalog knowledge base, the minimal model is unique. The reason why
Datalog can be used to answer queries in OWL is that for a conjunctive query over a Datalog
knowledge base, the answer w. r. t. the minimal model semantic coincides with the answer
w. r. t. the OWL semantic.

During the whole section we consider the following university example.
Example 4.1. Let the knowledge base K consist of the following axioms

Professor(x)→ StaffMember(x) (R1)
Assistant(x)→ StaffMember(x) (R2)

Assistant(x) ∧ teaches(x, y)→ Student(y) (R3)
Professor(x) ∧ teaches(x, y) ∧ Professor(y)→ ⊥ (R4)

StaffMember(x)→ ∃y(teaches(x, y)) (R5)
StaffMember(x)→ Professor(x) ∨ Assistant(x) (R6)

and the following facts

Professor(Schöbel) Assistant(Behrends) teaches(Schöbel, Kaufmann)
Professor(Seppänen) StaffMember(Merz) teaches(Seppänen, Merz)

Student(Kaufmann) teaches(Merz, Kaesberg)

and let the query be
Q(x) = ∃y(teaches(x, y) ∧ Student(y))

whose answer should be {Schöbel,Behrends,Merz}

4.2 Computing the lower bound

A direct way to generate a Datalog knowledge base L(K) providing a lower bound, is to omit
all non-Datalog rules from K.
Example 4.2. In the university example, L(K) contains the rules (R1)-(R4) and all atoms. The
answer LQ to this database is then {Schöbel}.

Some improvements are possible:

Program Shifting
Example 4.3. From the facts Professor(Seppänen) and teaches(Seppänen, Merz) and rule (R4),
one can deduce that Merz is not a professor. From this conclusion, the fact StaffMember(Merz)
and rule (R6), one can deduce that Merz is an assistant. Because of the fact teaches(Merz, Kaesberg)
and rule (R3), it is derivable that Kaesberg is a student so that Merz is supposed to be an answer
to the query.
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For the reasoning in the last example, one needs the disjunctive rule (R6). However, there
is no reasoning by case involved. The necessary rules can be expressed in Datalog by dint
of a new predicate: One can add the predicate Professor, meaning that somebody is not
a professor, and the rules Professor(x) ∧ teaches(x, y) → Professor(y) and StaffMember(x) ∧
Professor(x) → Assistant(x). Using this extended Datalog fragment, one obtains the lower
bound {Schöbel,Merz}.

With this approach, one obtains a Datalog program in polynomial time, called the shift of K,
that provides a stronger lower bound. The general transformation is described in [ZCGN+15,
Section 4.1]. It only takes into account the rules without existential quantifier. But even for
the purely disjunctive rules, the transformed program does not allow for conclusions that can
only be drawn by reasoning by case, so it is not an equivalent formulation.

The combined approach for ELHOr
⊥

The combined approach was originally developed in [SMH13] to compute the answer to a query
w. r. t. a ELHOr

⊥-knowledge base with the help of a Datalog reasoner. The given knowledge
base K need not fall inside ELHOr

⊥. However, by applying the approach to the ELHOr
⊥-

fragment of K, it provides a lower bound.

The algorithm for calculating the answer w. r. t. an ELHOr
⊥-knowledge base K′ in turn first

transforms the knowledge base to a Datalog program Ũ(K′) giving an upper bound and then
uses a filtration algorithm to discard spurious answers.

Combining Program Shifting with the combined approach

The two approaches can be combined as follows:

1. Construct the shift of K and compute its materialization M1.

2. Let K′ be the ELHOr
⊥-fragment of K. Compute Ũ(K′).

3. Compute the materialization M2 of Ũ(K′) ∪M1 providing an upper bound for LQ.

4. Compute the answers to Q w. r. t. M2 and filter out the sound answers w. r. t. K′ ∪M1.
The result is LQ.

Since the facts of M1 have to hold in any model, one can consider them as given atoms in
the subsequent calculation of the lower bound. This is done by calculating the complete and
correct answer to the ELHOr

⊥-fragment for K∪M1. According to [ZCGN+15], it is important
to take into accountM1 in the calculation ofM2. This is because not all the facts fromM1 can
be derived from the ELHOr

⊥-fragment, but together with the K′-rules they can imply further
facts. An interesting question not treated in [ZCGN+15] is whether one would profit from
applying again step 1 to K∪M2 and obtaining M3, then using Ũ(K′)∪M3 in step 3 to obtain
M4 and so on.
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4.3 Computing the upper bound

The main idea of computing the upper bound U(K) is to replace a rule with a disjunction∨m
i=1 ∃yiϕi(x,yi) in the head by m rules with heads ∃y1ϕ1(x,y1), . . . ,∃ymϕm(x,ym) and to

replace existential quantifiers by Skolem constants.

Obviously, the knowledge base U ′(K) obtained by applying these two steps to K entails K,
whence by monotonicity of OWL-reasoning it provides an upper bound to the answer to any
query. It can however happen that U ′(K) is inconsistent while K is consistent. This is not a
contradiction to the previous observation because according to the semantic of OWL, in an
inconsistent knowledge base, everything is an answer to every query, so it still provides an
upper bound. Yet this is unpleasant because the upper bound is trivial and does not yield any
useful information. The following example illustrates that in the common case of a disjoint
union, K is consistent while U ′(K) is inconsistent.
Example 4.4. The OWL 2 rule

StaffMember rdfs:subClassOf owl:disjointUnionOf(Professor Assistant).

is translated to the two DL-axioms

StaffMember v (Professor t Assistant)
Professor u Assistant v ⊥

which in turn correspond to the predicate logic rules

StaffMember(x)→ Professor(x) ∨ Assistant(x)
Professor(x) ∧ Assistant(x)→ ⊥.

By applying the replacement described above, one obtains the three rules

StaffMember(x)→ Professor(x)
StaffMember(x)→ Assistant(x)

Professor(x) ∧ Assistant(x)→ ⊥.

If there is any atom ensuring the existence of a staffMember, the transformed knowledge base
is inconsistent.

For this reason, before applying the two transformation steps described above, every ⊥ in a
rule head is replaced by a new nullary predicate symbol ⊥s with no predefined meaning. We
now come to the formal definition. Let as in section 3 T denote the TBox and A denote the
ABox of K.

Definition 4.1. The splitting split(r) of a rule r of the form (1) (p. 18) is the following set of
rules:

• if the head of r is ⊥, then split(r) := {B1(x) ∧ · · · ∧Bn(x)→ ⊥s};

• otherwise, split(r) := {B1(x) ∧ · · · ∧Bn(x)→ ∃yiϕi(x,yi) | 1 ≤ i ≤ m}.
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The splitting of the knowledge base K = T ∪ A is defined as split(K) := (⋃
r∈T split(r)) ∪ A.

Definition 4.2. The Datalog strengthening U(K) is defined as the c-Skolemization of split(K),
i. e. every rule r of the form B1(x) ∧ · · · ∧Bn(x)→ ∃yϕ(x,y) is replaced by the rule

B1(x) ∧ · · · ∧Bn(x)→ ϕ(x, cr)

where cr is a vector of globally unique fresh constant symbols.

We show the transformation for the example 4.1. The first three rules stay unchanged. Rule
(R4) is transformed in the splitting step to

Professor(x) ∧ teaches(x, y) ∧ Professor(y)→ ⊥s. (R′4)

and is not changed by the c-Skolimzation. (R5) equals is splitting and is altered to

StaffMember(x)→ teaches(x, cR5) (R′5)

by the c-Skolemization step, where cR5 is a new constant symbol. Finally (R6) is split to

StaffMember(x)→ Professor(x) (R1
6)

StaffMember(x)→ Assistant(x). (R2
6)

We already observed that splitting up rules with disjunctive heads and c-Skolemizing both
strengthen the knowledge base K, i. e. transform K to a knowledge base entailing K. Thus,
these two operations provide an upper bound to any positive query. What is however the effect
of replacing ⊥ by ⊥s? In this case, the opposite is true: the replacement results in a weakening
of the knowledge base. Since {⊥} � {⊥s}, every model satisfying K gives a model satisfying
the transformed knowledge base (by interpreting ⊥s arbitrarily). We will now give a contrived
example of a query for which U(K) does not provide an upper bound.
Example 4.5. The answer to the query Q() = ⊥ is either the empty set (if the knowledge base
is consistent) or the set containing only the empty tuple (if the knowledge base is inconsistent).
Consider now the following autodidact knowledge base Kauto consisting only of the rule (R4)
and the facts Professor(Bessel) and teaches(Bessel, Bessel). Then U(Kauto) consists of the rule
(R′4) and the two given facts. Furthermore Ans(Q,Kauto) = {()}, whereas Ans(Q,U(Kauto)) = ∅
because U(Kauto) is consistent, having a model S with S(⊥s) = >. So the answer w. r. t.
U(Kauto) is not an upper bound to the answer w. r. t. Kauto.

The example relies on the fact that K is inconsistent. It turns out that this is the only
problematic case: in [ZCGN+15], it is proved that whenever K is consistent, then for every
query Q holds: Ans(Q,K) ⊆ Ans(Q,U(K)). The reason for this is that the information from
the disjointness axioms (rules with head ⊥) used to derive an answer w. r. t. K is not needed in
U(K) because of the splitting of the disjunctive rule heads. This is illustrated by the following
example.
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Example 4.6. In Example 4.1, in order to derive the Answer Merz to the query Q, rule (R4) is
needed to exclude that Merz is a Professor from which can be concluded by rule (R6) that Merz
must be an Assistant. However, in U(K), it is not necessary to exclude Merz to be a Professor
in order to deduce that he is an Assistant because the latter follows directly from rule (R2

6).

The relation of the answer sets w. r. t. the original knowledge base K, the knowledge base U ′(K)
obtained by only splitting up disjunctions and c-Skolemizing, and the Datalog strengthening
U(K) according do definition 4.2 is illustrated in figure 1.

∅
(Q,K)

Ans(Q,K)
U |Q|

K inconsistent K consistent but U ′(K) incons. U ′(K) consistent

Figure 1: Qualitative relation between K (blue), U ′(K) (red) and U(K) (green)

Example 4.7. In example 4.1, the upper bound would lead to the answer Ans(Q,U(K)) =
{Schöbel,Behrends,Merz, Seppänen}, where Seppänen is derived with the aid of rule (R1) fol-
lowed by (R2

6) and (R3).

Two improvements of the Datalog strengthening are suggested in [ZCGN+15].

1. Replace the c-Skolemization by the so-called c-chase similar to the restricted chase
[CGK13, Section 2.5] already mentioned in section 3.6.

2. Replace a disjunctive head only by one of its disjuncts, which is selected by a choice
function taking as input all rules computed so far.

4.4 Computing Relevant Fragments

If, as in the above example, the lower bound and upper bound do not coincide, then the gap
tuples have to be checked separately. Instead of checking them w. r. t. the whole knowledge
base K, a relevant fragment KQ

rel is extracted. For this, different approaches are presented in
[ZNGH14] and [ZCGN+15].

• In [ZNGH14], all statements α ∈ K are included that are used in an SLD-resolution proof
of either ⊥s or Q(a) for some a ∈ GQ w. r. t. the Datalog strengthening U(K).
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• In [ZCGN+15], an algorithm is given that directly determines a set of statements from
K that could occur in a hyperresolution proof of ⊥ or Q(a) for some a ∈ GQ, without
using the Datalog strengthening U(K).

Here, a short summary of the first approach is given.

Definition 4.3. The relevant fragment KQ
rel of K to the query Q consists of all statements

α ∈ K for which exists a β ∈ U(α) involved in a resolution proof in U(K) of either ⊥s or of
Q(a) for some a ∈ GQ.

The following theorem ensures the correctness of the algorithm using this fragment.

Theorem 4.1.

1. K is inconsistent if and only if K⊥s
rel is inconsistent.

2. If K is consistent, then for every query Q and every a ∈ GQ holds:

K � Q(a) if and only if Kq
rel � Q(a).

For both claims the “if”-direction is clear by monotonicity of first-order logic. The other
direction is based on the following lemma.

Lemma 1. Let Q be a query and a ∈ GQ. For every statement α ∈ K occurring in a resolution
proof of Q(a) w. r. t. K, there is a statement β ∈ U(α) occurring either in a resolution proof
of Q(a) or of ⊥s w. r. t. U(K).

From this lemma follows that every atom Q(a) with a ∈ GQ that can be derived by resolution
from K, can already be derived from KQ

rel. The theorem ensues thus from the (refutation)
completeness and correctness of resolution calculus.
Example 4.8. Consider again example 4.6. In order to derive the answer Q(Merz) w. r. t. K, we
need the facts StaffMember(Merz),Professor(Seppänen) and teaches(Seppänen,Merz) and the
rules (R5), (R3), (R6) and (R4).

For deriving the same fact w. r. t. U(K), one only needs the fact StaffMember(Merz) and the
rules (R′5), (R2

6) and (R3). However, to derive ⊥s, a possible resolution proof uses the facts
Professor(Seppänen), StaffMember(Merz) and teaches(Seppänen,Merz) together with the rules
(R1

6) and (R′4).
Remark 4.1. In [ZNGH14], a stronger version of Lemma 1 is provided, namely that for every
statement α ∈ K occurring in a resolution proof of Q(a), every statement β ∈ U(α) either
occurs in a resolution proof in U(K) of Q(a) or of ⊥s. This is however not needed to prove the
theorem.

It remains the question how to compute KQ
rel. This can again be done with the aid of a Datalog

reasoner. The idea is to track the resolution proofs in U(K) with the help of a

• a new predicate P for each predicate P occurring in K which will give the relevant facts,
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• a fresh constant cr for every rule r,

• a fresh unary predicate S which will keep track of the rules involved in resolution proofs.

We assume that the query Q is atomic (or equivalently that Q is added as a rule to K). The
tracking knowledge base track(U(K), Q) for U(K) contains

• each rule and fact in U(K),

• a fact Q(a) for each a ∈ GQ as well as a fact ⊥s,

• and, for each rule r in U(K) of the form B1(x) ∧ · · · ∧Bn(x)→ C(x), the following new
rules:

C(x) ∧B1(x) ∧ · · · ∧Bn(x)→ S(cr)
C(x) ∧B1(x) ∧ · · · ∧Bn(x)→ Bi(x) ∀i ∈ {1, . . . , n}.

The facts Q(a) mean that the facts Q(a) occur in their own resolution proofs. The new rules
referring to a rule r ∈ U(K) mean that, for any predicate symbol C and any b, if C(b) can
occur in a resolution proof, and B1(b), . . . , Bn(b) are all true, then these premises and the rule
r can also occur in a resolution proof.

4.5 Summarization and answer dependencies

Summarization and the consideration of answer dependencies are exploited to accelerate the
examination of the gap tuples.

Summarization

Summarization is described in [FKM+06]. The idea is to identify constants instantiating the
same unary predicates (or equivalently belonging to the same classes). This process again
yields an upper bound to the answer to the query and can hence be used to exclude candidate
answers from GQ. This idea will now be formalized.

Definition 4.4. Let K be a knowledge base over the relational signature R and the constant
symbols C. The type of a ∈ C is the set T (a) = {A ∈ R | A(a) ∈ K}. For each type T let
cT be a globally unique fresh constant, and let σ be the substitution replacing each a ∈ C by
cT (a). The knowledge base σ(K) obtained by applying σ to every atom and every rule in K is
called the summary of K.

Proposition 4.1. Summarizing provides an upper bound: for every query Q we have
σ(Ans(Q,K)) = Ans(σ(Q), σ(K)).

Remark 4.2. Here, the idea of summarization is described in terms of a transformation of the
knowledge base. Equivalently, it is possible to describe the idea as a change of the model
theory, namely by restricting the set of considered models to those models S with S(a) = S(b)
whenever T (a) = T (b). This is a similar idea to the restriction to minimal Herbrand models
in definition 3.2.
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Answer dependencies

If a tuple b = (b1, . . . , bn) fulfills every statement of K that another tuple a = (a1, . . . , an)
fulfills and if a is an answer to the positive conjunctive query Q, then b must also be an
answer. To formalize this, let σ be the map that substitutes every ai by bi. If then σ(α) ∈ K
for all α ∈ K, then K � Q(a) implies K � Q(b).

According to [ZCGN+15, Proposition 7.5], this can be generalized by allowing, instead of the
map σ that only substitutes the ai by bi, a so-called endomorphism, i. e. a mapping h from the
set of all constants into itself mapping ai to bi and satisfying σ(α) ∈ K for all α ∈ K. However,
this is not true if the query contains constants as the following example shows.
Example 4.9. Consider the knowledge base

Male(John) Female(Alice) hasChild(John, Alice),
Male(Oscar) Female(Carol) hasChild(John, Bob)
Male(Bob) hasChild(Oscar, Carol)

Then the map h : {John, Oscar, Alice, Bob, Carol} → {John, Oscar, Alice, Bob, Carol} defined
by

John 7→ John Oscar 7→ John Alice 7→ Alice Bob 7→ Bob Carol 7→ Alice

is an endomorphism. Consider the query

Q(x) = hasChild(x,Carol).

Then Oscar is an answer to the query and h is an endomorphism mapping Oscar to John.
Nonetheless, John is not an answer to Q.

4.6 The tool PAGOdA

The authors claim in their paper to have implemented the described techniques in the proto-
typical system PAGOdA. By consulting the web page https://www.cs.ox.ac.uk/isg/tools/
PAGOdA/ one really finds a downloadable jar archive with this name and a very short user guide.
After downloading it and installing the required Java 8, the jar archive still did not run on the
test system (Intel® Core™ i3-2328M, neither under Ubuntu 14.04 64 Bit nor under Windows
8.1 64 Bit). The webpage informed us that in this case, we have to download and compile
RDFox and insert it into the archive. The attempt to do this failed because the version of
RDFox published in the web was incorrect. After contacting the authors of the paper, we
received by e-mail an other version of RDFox that could be compiled. However the version
published in the web is still erroneous (5.7.).

After inserting the self-compiled JRDFox into PAGOdA, we still had to make some preparations
none of which was mentioned in the user guide.

1. Create a folder with the name config, therein create a file called uobm.conf. In this file,
some standard parameter values can be specified. With ANSWER= one can specify the
standard output file.
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2. Remove comments from the query files. PAGOdA cannot handle comments because
newline characters are deleted before parsing comments so that the end of a comment is
not found.

3. Properties must at least contain a “:/”.

Although the source code of PAGOdA is available on the web, it is so difficult to compile it
that we did not add the ability to process comments to PAGOdA itself but wrote a bash script
that uses sed to generate a temporary copy of the query file without comments.

After all these preparations, we had to discover that PAGOdA did not answer correctly any
of our test queries for which a rule with disjunction in the head or a rule with an existential
quantifier in the head has to be applied. Even for ontologies that fall into the Datalog frag-
ment, some queries were not correctly answered. For example, unqualified cardinality of roles
(owl:minCardinality) was not taken into account by the reasoner. What works and what
does not work with PAGOdA is compiled in detail in the beamer presentation accompanying
this seminar paper.
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