Semantic Web 1

1. Sheet: SPARQL

Exercise 1.1 (SPARQL-Queries)
Give SPARQL queries against mondial.n3 that yield answers to the following questions:
e Names and populations (ordered) of all countries that have more than 10.000.000 inhabitants.
e Names of all countries that have at least one city with more than 1.000.000 inhabitants.
e Names of all countries that have no city with more than 1.000.000 inhabitants.
e Names of all european countries that have no membership in the European Union.

e Abbreviations of all organizations whose headquarter is located in the capital of a member
country (together with the names of the country and the city).

bigcountries.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT 7N 7P

FROM <file:mondial.n3>

WHERE {7X rdf:type mon:Country . ?X mon:name ?N . ?7X mon:population 7P .
FILTER (7P > 10000000) }

ORDER BY DESC(?7P)

bigcities.sparql
prefix mon: <http://www.semwebtech.org/mondial/10/meta#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?N
FROM <file:mondial.n3>
WHERE {7X rdf:type mon:Country . ?X mon:name 7N .

?X mon:hasCity ?C . 7C mon:population 7P .

FILTER (7P > 1000000) }

nobigcities.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT distinct 7N

FROM <file:mondial.n3>

WHERE {7X rdf:type mon:Country . ?X mon:name 7N .
OPTIONAL { ?X mon:hasCity ?C . ?C mon:population ?P . FILTER (7P > 1000000) } .
FILTER (!BOUND(?P)) }

no-eu.sparql
prefix mon: <http://www.semwebtech.org/mondial/10/meta#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT distinct 7N
FROM <file:mondial.n3>
WHERE {7X rdf:type mon:Country . ?X mon:name 7N .

?X mon:encompassed [mon:name ’Europe’]

Semantic Web

OPTIONAL { ?X mon:isMember [mon:name ’European Union’]

FILTER
bind XX (to

?X mon:name 7XX }
('BOUND(?XX)) }
anything ...) in case that EU membership is satisfied

cap-hq.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT 7XN 70A 7CN

FROM <file:mondial.n3>

WHERE {70 rdf

70 mon:

?X rdf

ORDER BY 7CN

:type mon:0rganization . 70 mon:abbrev 70A .

hasHeadq ?C .

:type mon:Country . ?X mon:carCode 7XN .
7X mon:
7X mon:

capital ?C . 7?C mon:name 7CN .
isMember 70 }

This is an example for a cyclic join: Organization - hasHeadq - City - isCapital - Country -
isMember - Organization. Note the occurrence of the join variable O that closes this circle. When
evaluated in the same order as stated in the query, the last triple pattern acts as a selection (the

actual evaluation order is defined by the optimizer).

Exercise 1.2 (SPARQL Optional)

Give a SPARQL query against mondial.n3 that yield answers to the following question:

e For each country, give the name, and the population.

If more than 1/4 of the population are living in its capital, give also the name and the population

of the capital.

e Give the same query in SQL (against relational Mondial) and in XML/XQuery (against mon-

dial.xml).

country-cap-

quarterpop.sparql

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select 7?N1 7P1 7N2 7P2

from <file:mondial.n3>

where { ?X a mon:Country; mon:name 7N1; mon:population 7P1 .
OPTIONAL {?X mon:capital [mon:name ?N2; mon:population 7P2]

FILTER (7P2 > 0.25 * ?7P1) }}

The central issue of this exercise is the “if-”functionality of the OPTIONAL with a filter in it.

The same in XQuery can explicitly use XQuery’s functional-style if-construct:

for $c in //country
let $pop := $c/population[position()=last()],

$cap :

id($c/@capital),
$cappop :=

$cap/population[position(D=last ()]

Semantic Web 3

return
<result code="{$c/Q@car_code}" pop="{$c/population[position()=last()]}">
{ if ($cappop > 0.25 * $pop)
then (attribute{"cap"}{$cap/name}, attribute{"cappop"}{$cappop})
else O
}
</result>

The algebraically closest SQL relative to SPARQL’s OPTIONAL is the outer join (note that
the outer SELECT-FROM is semantically redundant, but syntactically required; cf. that for the
UNION operator it would not be necessary)

SELECT x.code, x.population, y.name, y.population
FROM
(SELECT code, population
FROM country) x
LEFT OUTER JOIN
(SELECT country.code, city.name, city.population
FROM city, country
WHERE city.name=country.capital AND city.country=country.code
AND city.province= country.province
AND city.population > 0.25 * country.population) y
ON x.code = y.code

Another way with classical SQL is a UNION (note the OR-NULL check in the second subquery):

(SELECT x.code, x.population, y.name, y.population

FROM Country x, City y

WHERE x.capital = y.name AND x.code=y.country AND x.province=y.province
AND y.population > 0.25% x.population)

UNION

(SELECT x.code, x.population, NULL, NULL

FROM Country x, City y

WHERE x.capital = y.name AND x.code=y.country AND x.province=y.province
AND (y.population IS NULL

OR NOT(y.population > 0.25% x.population)))

SQL today also supports the functional CASE-WHEN-THEN-ELSE construct:

SELECT x.code, x.population,

CASE WHEN y.population > 0.25*% x.population THEN y.name ELSE NULL END AS cap,

CASE WHEN y.population > 0.25*% x.population THEN y.population ELSE NULL END AS cappop
FROM Country x, City y
WHERE x.capital = y.name AND x.code=y.country AND x.province=y.province

It is important to know which constructs a language supports and when and how to use them.

