
Chapter 3
Databases vs. Knowledge Bases
Overview

• basic notions of first-order logic: syntax, semantics, model theory, tableau – see slides for
Database Theory Lecture

• Recall: the Relational Model is a specialization of First-Order Logic:

– no function symbols. Only constant literals.

35

Query Answering in DB vs. KB

• A database (state) is (e.g.) a relational structure.

Check whether a formula holds there, or for which values of X it holds (which is then a
query).

The semantics of a database is the current database state (use algebraic evaluation).

• A (first-order) knowledge base is a set of closed (first-order) formulas. It contains facts,
but also other formulas.

We are interested whether a knowledge base K implies a fact or a formula F . This
means, if for all modelsM of K, F must be true inM.

The semantics of a knowledge base (or in general a set of formulas) is given by a model
theory:

Deductive Databases/Datalog: minimal model, stratified model, well-founded model,
stable models (with specific algorithms)

First-Order Logic: all models (“traditional” reasoning)

• an intermediate form occurs when a database is extended by axiomatic formulas
(subclasses etc.) or rules that can be used to derive additional facts.
Then, the semantics is given by the model(s) of the database state and the rules.
Is the (Semantic) Web more like a database or more like a knowledge base?

36

LOGICAL MODELING OF ONTOLOGIES

• common “recipe” for mapping ER diagrams to the relational model (cf. MONDIAL):

– n-ary entity tables with primary keys,

– n-ary tables for n:m-relationships,

– integrate n:1 relationships with the n side,

– modeling subclass relationships is not a primary concern of the “recipe”.

• Alternative (storage) variants, traditionally rather seen as physical data models:

– column stores,

– “vertically partitioned”: two-column tables with format (id,value) for each attribute or
binary relationship; introducing “object” ids.

* saves space if null values are frequent

* lots of joins,

* smaller tuples,

* less projections

* better suited for Web context where properties of the same object can be stored at
different locations

* coincides with the modeling in Description Logics

37

EXAMPLE: AXIOMATIZATION OF THE “COMPANY” ONTOLOGY

Consider again the ER diagram from Slide 22.

• give the first-order signature Σ of the ontology,

• formalize the constraints given in the

– subclass constraints

– range and domain constraints

– cardinality constraints

and

– additional constraints/definitions that cannot be expressed by the ER model.

(this set of formulas is called a first-order “theory” or “axiomatization” of the ontology)

• express the instance level as an interpretation of the signature Σ.

38

Example: Signature

• Classes are represented by unary predicates: Emp/1, Mgr/1, AMgr/1, TMgr/1, Dept/1.

• Attributes are represented by binary predicates: name/2, salary/2 (optionally, this could
be modeled by unary functions)

• (binary) relationships are represented by binary relationships: wf/2, mg/2, sub/2.

Thus,
Σcompany = {Emp/1, Mgr/1, AMgr/1, TMgr/1, Dept/1, name/2, salary/2, wf/2, mg/2, sub/2}.

Example: Subclass Constraints

∀x : Mgr(x)→ Emp(x) ,

∀x : AMgr(x)→ Mgr(x) ,

∀x : TMgr(x)→ Mgr(x) ,

∀x : Mgr(x)→ (AMgr(x) ∨ TMgr(x)) since declared as covering

39

Example: Domain and Range Constraints

∀x : (∃n : name(x, n)→ (Emp(x) ∨ Dept(x))) ,

∀x : (∃s : salary(x, s)→ (Emp(x))) ,

∀x : ∀y : (sub(x, y)→ (Emp(x) ∧Mgr(y))) ,

∀x : ∀d : (wf(x, d)→ (Emp(x) ∧ Dept(d))) ,

∀x : ∀d : (mg(y, d)→ (Mgr(y) ∧ Dept(d))) .

Example: Cardinality Constraints

∀m : (TMgr(m)→ ∃d : mg(m, d)) ,

∀m, d1, d2 : ((mg(m, d1) ∧mg(m, d2))→ d1 = d2) ,

∀d : (Dept(d)→ ∃m : mg(m, d)) ,

∀d,m1,m2 : ((mg(m1, d) ∧mg(m2, d))→ m1 = m2) ,

∀d : (Dept(d)→ ∃x : wf(x, d)) ,

∀x : (Emp(x)→ ∃d : wf(x, d)) ,

∀x : ((∃d1, d2, d3, d4 : wf(x, d1) ∧ wf(x, d2) ∧ wf(x, d3) ∧ wf(x, d4))→
(d1 = d2 ∨ d1 = d3 ∨ d1 = d4 ∨ d2 = d3 ∨ d2 = d4 ∨ d3 = d4))

40

Example: Further Constraints

• a person is subordinate to the manager of each department he/she works for:

∀x, y, d : wf(x, d) ∧mg(y, d) ∧ x 6= y → sub(x, y)

• should we have mg ⊆ wf, or mg ∩ wf = ∅?
The first is OK: ∀y, d : mg(y, d)→ wf(y, d)

• cardinality of “subordinate”? “Every employee has a boss”

∀x : Emp(x)→ ∃y : sub(x, y)

– this causes a semantical problem with the boss: an infinite chain is needed - leading
either to only infinite models, or a cycle.

– add axioms that guarantee transitivity and irreflexivity for “subordinate”:
∀x : ¬sub(x, x) and ∀x, y, z : (sub(x, y) ∧ sub(y, z)→ sub(x, z)).
Then the set of axioms has only one model: Emp is empty, everything is empty.

– add an axiom that guarantees that the company has at least one employee:
∃x : Emp(x) – then the set of axioms is unsatisfiable.

– such investigations help to validate an ontology.
Ontology design tools allow to check for inconsistency, empty classes etc.

41

Axiomatization of the “company” scenario

Denote the conjunction of the above formulas by Axiomscompany.

• For any database/knowledge base S using this scenario, S |= Axiomscompany is
required.

• a database then describes the individuals and their individual properties in this world.

42

Example: Instances

• The signature is extended by constant symbols for all named elements of the domain:

Σmy_company := Σcompany ∪ {Alice/f0, Bob/f0, John/f0, Mary/f0, Tom/f0, . . . , Sales/f0, . . . }

(Note: the signature symbols are capitalized, wereas alice, bob etc denote the elements
of the domain).

• first-order structure S = (I,D) as ...

• Domain D = {alice, bob, john, mary, tom, larry, sales, prod, mgm}

• map constant symbols (nullary function symbols) to D:
I(Alice) = alice, I(Bob) = bob, . . . , I(Sales) = sales,

• map unary predicates to subsets of the domain D:
I(Emp) = {alice, bob, john, mary, tom, larry}, I(Mgr) = . . . , I(Dept) = . . . , . . .,

• map binary predicates to subsets of D ×D:

I(wf) = {(alice, sales), (mary, sales), (larry, sales), (bob, prod), (bob, sales),

(tom, prod), (john, mgm) }
I(mg), I(sub), I(name), I(salary) see Slide 24.

43

Example: Instances (Cont’d)

The axiomatization of “my company” with the given individuals is then given as the
conjunction of

• all above constraints (general axiomatization of a company) and

• literal formulas describing the individuals:

Axiomscompany . . . ∧ Emp(Alice) ∧ Emp(Bob) ∧ . . . ∧ Dept(Sales) ∧ . . . ∧Mgr(Alice) ∧ . . . ∧
wf(Alice,Sales) ∧ . . . ∧mg(Alice,Sales) ∧ . . . ∧ sub(Mary,Alice) ∧

Example: Instances (Alternative)

• alternatively, instead of a signature extensions, all individuals can be described by
existentially quantified variables:

Axiomscompany ∧
∃a, b, . . . , s, . . . : (name(a, “Alice”) ∧ . . . ∧ Emp(a) ∧ Emp(b) ∧ . . . ∧ Dept(s) ∧ . . . ∧Mgr(a) ∧
. . . ∧ wf(a, s) ∧ . . . ∧mg(a, s) ∧ . . . ∧ sub(m, a) ∧ . . .)

44

3.1 DB vs. KB: Closed World vs. Open World

Consider the following formula F :

F ≡ person(“John”, 35) ∧ person(“Alice”, 10) ∧ person(“Bob”, 8) ∧
∧ person(“Carol”, 12) ∧ person(“Jack”, 65) ∧
∧ child(“John”, “Alice”) ∧ child(“John”, “Bob”) ∧
∀X,Y : (∃Z : (child(Z,X) ∧ child(Z, Y) ∧X 6= Y)→ sibling(X,Y))

• Does child(“John”, “Bob”) hold? – obviously yes.

• Does G:≡sibling(“Alice”, “Bob”) hold?

– (Relational) Database: sibling is a view. The answer is “yes”.

– FOL KB: for all modelsM of F , G holds. Thus, F |= sibling(“Alice”, “Bob”).

• What about G:≡sibling(“Alice”, “Carol”)?

– (Relational) Database: no. For the database state D, D 6|= sibling(“Alice”, “Carol”).

– FOL KB: there is a modelM1 of F , whereM1 6|= G, but there is also a modelM2 of
F , whereM2 |= G (e.g., add the tuple (“John”, “Carol”) to the interpretation of child).

For the Web, child(“John”, “Carol”) can e.g. be contributed by another Web Source.

45

DB VS. KB: CLOSED WORLD VS. OPEN WORLD

• What about G :≡ child(“John”, “Jack”)?

– (Relational) Database: no. For the database state D, D 6|= child(“John”, “Jack”).

– FOL KB: there is a modelM1 of F , whereM1 6|= G, but there is also a modelM2 of
F , whereM2 |= G.

• Obviously, the KB does not know that a child cannot be older than its parents.

Add a constraint to F , obtaining F ′:

F ′ :≡ F ∧ ∀P,C,A1, A2, : (person(P,A1) ∧ person(C,A2) ∧ child(P,C))→ A1 > A2

– database: this assertion would prevent to add child(“John”, “Jack”) to the database.

– for the KB, F ′ |= ¬child(“John”, “Jack”) allows to infer that Jack is not the child of John.

Such information can be given with the ontology of a domain.

46

DB VS. KB: CLOSED WORLD VS. OPEN WORLD

• the Database Model Theory is called “Closed World”: things that are not known to hold
are assumed not to hold.

• the FOL semantics is called “Open World”: things that are not known to be true or false
are considered to be possible.

CONSEQUENCES ON NEGATION

• in databases there is no explicit negation. It is not necessary to specify that Jack is not a
child of John.

• in a KB, it would be necessary to state ... ∧ ¬child(“John”, X) for all persons who are
known not to be children of John.
Additional constraints: extend the ontology, e.g., by stating that a person has exactly two
parents – then all others cannot be parents – works only for persons whose parents are
known. Similarly for the “age” constraint from the previous slide.

• note that the semantics of universal quantification (∀) is also effected: ∀X : φ is equivalent
to ¬∃X : ¬φ.

47

REASONING IN PRESENCE OF NEGATION

Obtaining new information (e.g., by finding another Web Source) has different effects on
Open vs. Closed world:

• Closed world: conclusions drawn before – “Carol is not a child of John”, or “John has
exactly two children” from less information can become invalid.

This kind of reasoning is nonmonotonic

• Open world: everything which is not known explicitly is taken into account to be possible
(by considering all possible models).

This kind of reasoning is monotonic:

Knowledge1 ⊆ Knowledge2 ⇒ Conclusions1 ⊆ Conclusions2

• Open World can be combined with other forms of nonmonotonic reasoning, e.g., Defaults:
“usually, birds can fly”. Knowing that Tweety is a bird allows to conclude that it flies.

Obtaining the information that Tweety is a penguin (which can usually not fly) leads to
invalidation of this conclusion.

The current Semantic Web research mainstream prefers Open World without default
reasoning.

48

COMPARISON, MOTIVATION ETC.

Database vs. FOL
Relational relational tuples SQL queries closed world
Databases schema

FOL signature facts S |= φ? (yes/no or answer mostly: open world
(predicates (atoms) ψ |= φ? variable bindings) sometimes
+functions) closed world

Situations and tasks
Given what to do how?

facts/database does p(. . .) hold in the DB? by combining data
SQL query

facts+constraints additionally: equivalent to first
(SQL assertions or test if constraints situation (query for
FOL formulas) satisfied violating tuples)

facts (DB) does p(. . .) hold DB+views
rules (KB) in DB+rules? application of rules

facts (DB) is a formula φ reasoning,
knowledge base KB entailed by DB+KB? entailment,
as FOL formulas KB |= φ?

49

VALIDITY AND DECIDABILITY

• preferably use a decidable logic/formalism

• with a complete calculus/reasoning mechanism

• Propositional logic: decidable

• First-order logic: undecidable

• Horn subset (= positive rules, with a special model theory) of FOL: decidable;
with negation in the body: still decidable

• 2-variable-subset of FOL: decidable

• Description Logic subsets of FOL: range from decidable to undecidable

50

3.2 Reasoning about Ontologies

Traditional Description Logics Research

Given an ontology,

• a class is inconsistent if it denotes the empty set in every model,

• a class C is a subclass of D if the extension of C is a subset of the extension of D in
every model,

• two classes are equivalent if they denote the same set in every model,

• a constraint is entailed by an ontology if it holds in every model.

⇒ focus on metadata (“T-Box”); query answering wrt. instances (“A-Box”) did not play a big
role.

51

EXAMPLE: ITALIANS AND ENGLISHMEN

Person

Italian English

Lazy LatinLover Gentleman Hooligan

{disjoint}

{disjoint,covering}

Exercise: write down as concise as possible everything that is implied by this ontology in text,
set theory and first-order logic.

[by Enrico Franconi, REWERSE Summer School 2005]

[see Slide 71 for an excerpt and a relevant proof]

52

.

EXAMPLE: ITALIAN PROFESSORS

Italian

Lazy Mafioso LatinLover ItalianProf

{disjoint,complete}

disjoint

disjoint

Exercise: write down as concise as possible everything that is implied by this ontology in text,
set theory and first-order logic.

[by Enrico Franconi, REWERSE Summer School 2005]

53

EXAMPLE: THE DEMOCRATIC COMPANY

Every employee is also a supervisor. Every supervisor supervises 2 employees.

Supervisor

Employee

0..1

n

↓supervises

Exercise: Consider n = 1 and n = 2. Write down as concise as possible everything that is
implied by this ontology in text, set theory and first-order logic.

[by Enrico Franconi, REWERSE Summer School 2005]

54

EXAMPLE: BIJECTION - HOW MANY NUMBERS

Every natural number is related to its double which is an even number.

NaturalNumber

EvenNumber

1

1

↓has_double

• the classes “NaturalNumber” and “EvenNumber” contain the same number of,

• the same applied to a finite domain implies that NaturalNumber ≡ EvenNumber (which
e.g. holds in the cyclic modulo rings Z3, Z5 etc.).
(note: in these rings, every element is even!)

[by Enrico Franconi, REWERSE Summer School 2005]

55

3.3 Reasoning

• show F |= G: prove that F ∧ ¬G is unsatisfiable:
try to construct an example (“witness”) for F ∧ ¬G by a systematic algorithm.
(below: e.g. using a tableau calculus)

• show satisfiability of a knowledge base/ontology:
try to construct an example.

• answer a query (= a conjunctive formula Q with free variables) against a knowledge base
given as a formula F :
Construct counterexamples for F ∧ ¬Q; each of them is an answer.

⇒ one algorithm is sufficient.

56

RECALL: FIRST ORDER TABLEAU CALCULUS

• Systematic construction of an interpretation of a formula.

• Goal: show that this is not possible. Otherwise a counterexample is generated.

• counterexamples can be interpreted as answers to a query.

Start the tableau with a set F of formulas:

input set F
F for all F ∈ F

The tableau is then extended by expansion rules.

57

Tableau Rules

α-rule (conjunctive): F ∧G
F

G

¬(F ∨G)
¬F
¬G

β-rule (disjunctive): F ∨G
F G

¬(F ∧G)
¬F ¬G

γ-rule (universal): ∀x : F

F [X/x]

¬∃x : F

¬F [X/x]

where X is a new variable.

Closure Rule:
σ(A)

¬σ(A)
⊥

apply σ to the whole tableau.

δ-rule (existential): ∃x : F

F [f(free(T))/x]

¬∀x : F

¬F [f(free(T))/x]

where f is a new Skolem function symbol (after the Norwegian logician Thoralf Skolem)
and T is the current branch of the tableau.

58

Result

Definition 3.1
A branch T in a tableau T is closed, if it contains the formula ⊥.
A tableau T is closed if every branch is closed. ✷

Correctness

Definition 3.2
A Tableau T is satisfiable it there exists an interpretation S = (U, I) such that for every
assignment of the free variables there is a branch T in T such that (S, β) |= T holds. ✷

Theorem 3.1
If a tableau T is satisfiable, and T ′ is obtained from T by application of one of the above
rules, then T ′ is also satisfiable. ✷

59

TABLEAU CALCULUS: EXAMPLE/EXERCISE

Consider Axiomscompany ∧mg(Alice,Sales). (Slides 38 ff.).

Does

(∀y, d : (mg(y, d)→ wf(y, d)))∧ (∀x : ∀d : (wf(x, d)→ (Emp(x) ∧Dept(d))))∧mg(Alice,Sales)

imply Emp(Alice)?

see next slide ...

60

Tableau Calculus: Example

∀y, d : (mg(y, d) → wf(y, d))

∀x : ∀d : (wf(x, d) → (Emp(x) ∧ Dept(d)))

mg(Alice,Sales)

¬Emp(Alice) (∗∗)
|

mg(Y1, D1) → wf(Y1, D1)

/

¬mg(Y1, D1)

✷{Y1 → Alice, D1 → Sales}

\
wf(Y1, D1)

wf(Alice,Sales)

|
wf(X2, D2) → (Emp(X2) ∧ Dept(D2)))

/

¬wf(X2, D2)

✷{X2 → Alice, D2 → Sales}

\
Emp(X2) ∧ Dept(D2)

Emp(Alice) ∧ Dept(Sales)

Emp(Alice) (∗∗)
Dept(Sales)

✷(∗∗)

61

EXAMPLE: TABLEAU EXPANSION FOR AN EXISTENTIAL VARIABLE

Consider again the Company scenario. Show: for every employee x, there is an employee y
(x = y allowed) such that sub(x, y) holds. (sketch: for every employee x there is a at least a
“primary” department fdept(x) where this person works, and every department d has a
manager fmg(d) that manages the department and that thus is a subordinate of x.

Note that in case that x works in several departments, any of them can be chosen for fdept(x).
e is subordinate to fmg(fdept(x)).

Tableau: next slide.

62

∀x : (Emp(x) → ∃d : wf(x, d))

∀d : (Dept(d) → ∃m : mg(m,d))

∀x : ∀d : (wf(x, d) → (Emp(x) ∧ Dept(d))) ,

∀x, y, d : wf(x, d) ∧ mg(y, d) → sub(x, y)

∃e : Emp(e) ∧ ¬∃y : sub(e, y) claim – refute it

|
Emp(e0) ∧ ¬∃y : sub(e0, y) e0 from Skolemization

Emp(e0)

¬∃y : sub(e0, y)

¬sub(e0, Y0)

|
Emp(X1) → ∃d : wf(X1, d))

/

¬Emp(X1)

close that only later ...

\
∃d : wf(X1, d))

wf(X1, fdept(X1))

wf(X2, D2) → (Emp(X2) ∧ Dept(D2)))

/

¬wf(X2, D2)

✷ {X2 → X1, D2 → fdept(X1)

\
Emp(X2) ∧ Dept(D2)

Emp(X1)

Dept(fdept(X1))

/

Dept(D3) → ∃m : mg(m,D3))

/

¬Dept(D3)

✷ {D3 → fdept(X1)}

\
∃m : mg(m,D3))

mg(fmgr(D3), D3)

... and now replace D3

/

mg(fmgr(fdept(X1)), fdept(X1))
/

(wf(X4, D4) ∧ mg(Y4, D4)) → sub(X4, Y4)

/

¬(wf(X4, D4) ∧ mg(Y4,D4))

/ \
¬wf(X4, D4) ¬mg(Y4, D4)

✷{X4 → X1,

D4 → fdept(X1)}
✷{Y4 → fmgr(fdept(X1)),

D4 → fdept(X1)}

\
sub(X4, Y4)

sub(X1, fmgr(fdept(X1)))

|
close now everything by

{X1 → e0,
Y0 → fmgr(fdept(e0))}

63

TABLEAU CALCULI: APPLICATION FOR (DATABASE) QUERY ANSWERING

Consider two binary predicates p and q (in a deductive DB context called “EDB” (extensional
database)) and a derived unary predicate r as ∀x : (r(x)↔ ∃y : (p(x, y) ∨ q(x, y))), and the
query ?− r(Z).

∀x : (r(x)↔ ∃y : (p(x, y) ∨ q(x, y)))
¬r(Z) add the negated query with a free variable

∀x : (r(x)← ∃y : (p(x, y) ∨ q(x, y))) need only “←” direction to close
∀x : (r(x)→ ∃y : (p(x, y) ∨ q(x, y))) not needed
r(X)← ∃y : (p(X, y) ∨ q(X, y))

r(X)
✷{Z → X} ¬∃y : (p(X, y) ∨ q(X, y))

¬p(X,Y) can be closed with any tuple p(x, y)
¬q(X,Y) can be closed with any tuple q(x, y)

• collect all substitutions that can be used to close the tableau:
ρ[X → Z](π[$1](p) ∪ π[$1](q)) (where $n denotes the nth column)

64

Tableau Calculi for (Database) Query Answering (same example, other way)

Same as before, only that (the same r) is now expressed in Datalog style by two rules:

• different ways how to close the tableau ⇒ union of answer substitutions

∀x, y : (p(x, y)→ r(x))

∀x, y : (q(x, y)→ r(x))

¬r(Z) add the negated query with a free variable
p(X1, Y1)→ r(X1)

q(X2, Y2)→ r(X2)

two possibilities which rule to expand:
the first one with p ...

¬p(X1, Y1)

can be closed with any tuple p(x, y)
r(X1)

✷{Z → X1}
... or the second one with q

¬q(X2, Y2)

can be closed with any tuple q(x, y)
r(X2)

✷{Z → X2}

• again, collect all substitutions that can be used to close the tableau:
ρ[X → Z](π[$1](p)) ∪ ρ[X → Z](π[$1](q)) (again, $n denotes the nth column)

65

Example: Existential Knowledge

• the answer substitution can comprise the application of a Skolem function. Then, the
“answer” can only be described as a thing that satisfies a certain existential formula.

66

Example: Tableau with Existential Knowledge

∀x : (person(x) → (∃y : person(y) ∧ father(x, y)))
∀x, y, z : ((father(x, y) ∧ father(y, z)) → grandfather(x, z))

person(john)
person(jack)

father(john, jack)
Negated query: ¬ grandfather(john, X)

Human-reasoning-inspired proof: Jack’s father is John’s grandfather

person(X1) → (∃y : person(y) ∧ father(X1, y))

¬person(X1)

✷{X1 → jack}
∃y : person(y) ∧ father(X1, y)

person(f(X1)) ∧ father(X1, f(X1))

(father(X2, Y2) ∧ father(Y2, Z2)) → grandfather(X2, Z2)

¬(father(X2, Y2) ∧ father(Y2, Z2))

¬father(X2, Y2)

✷{X2 → john, Y2 → X1 → jack}
¬father(Y2, Z2)

✷{Y2 → jack, Z2 → f(X1) → f(jack)}

grandfather(X2, Z2)

✷{X2 → john, Z2 → f(jack)}

close all with
{X1 → jack, X2 → john, Y2 → X1 → jack, Z2 → f(X1) → f(jack), X → Z2 → f(X1) → f(jack)}.

67

Example: Existential Knowledge

• the answer contains an instance of the introduced skolem function f(_) (which stands for
“father of _”) to describe a person for which no constant identifier is known.

• Are there further answers? - yes:

– instantiate the rule
∀x : (person(x)→ (∃y : person(y) ∧ father(x, y)))
for John, get a new instance of person f(john), instantiate the rule again for f(john)
and get f(f(john)) and grandfather(john, f(f(john))).

– here, functionality of father is required:
∀x, y1, y2 : father(x, y1) ∧ father(x, y2)→ y1 = y2.

– equality must then be used to find a most simple expression for the answers.

• more general case: query ?- grandfather(X,Y) for all answers:

– instantiations of the “father-generating” rule lead to infinitely many father-chains for
every known instance of person (using the skolem function)

– infinitely many answers.

⇒ tableau expansion for only existentially known instances must be blocked when
nothing “relevant” is known about them.

⇒ Preview: SPARQL will not return any answers that contain skolem expressions.

68

TABLEAU CALCULI

• intuitive idea

• can be designed in this way for any logic (modal logics, description logics etc.)

• implementations use more efficient heuristics

69

EXAMPLES + EXERCISES

• Consider again the italian-vs-english ontology from Slide 52. Consider the statement “all
Italians are lazy”. Prove it or give a counterexample.

• Consider again the italian-professors ontology from Slide 53. Is there anything interesting
to prove?

[have also a look at the i•com tool at http://www.inf.unibz.it/~franconi/icom which
uses a (hidden) Description Logic prover]

70

Tableau Proof (Example)

Tableau for the italian-vs-english ontology from Slide 52 and
the statement “all Italians are lazy”.

∀x : italian(x) → ¬english(x) [1]

∀x : english(x) → ¬italian(x) [2]

∀x : italian(x) → (lazy(x) ∨ latinlover(x)) [3]

∀x : lazy(x) → ¬latinlover(x)) [4]

∀x : latinlover(x) → ¬lazy(x) [5]

∀x : latinlover(x) → gentleman(x) [6]

∀x : gentleman(x) → english(x) [7]

∃x : italian(x) ∧ ¬lazy(x) [8] (negation of the claim)

| (skolemization of [8])

italian(c) ∧ ¬lazy(c)

italian(c)

¬lazy(c)

| (use [3])

∀x : italian(x) → (lazy(x) ∨ latinlover(x))

italian(X1) → (lazy(X1) ∨ latinlover(X1))

/

¬italian(X1)

✷ {X1 → c}

\
lazy(X1) ∨ latinlover(X1)

lazy(c) ∨ latinlover(c)

/

lazy(c)

✷

\
latinlover(c)

Continue right branch using [6], [7] and finally [1] or [2].

71

FIRST-ORDER LOGIC DECISION PROCEDURES

• calculi (=algorithms) for checking if F |= G

(often by proving that F ∧ ¬G is unsatisfiable)

• write F ⊢C G if calculus C proves that F |= G.

• Correctness of a calculus: F ⊢C G⇒ F |= G

• Completeness of a calculus: F |= G⇒ F ⊢C G

• there are complete calculi and proof procedures for propositional logic (e.g., Tableau
Calculus or Model Checking)

• if a logic is undecidable (like first-order logic) then there cannot be any complete calculus!

What to do?

⇒ use a decidable logic (i.e., weaker than FOL).

⇒ use an undecidable logic and a correct, but incomplete calculus.

72

INFERENCE SYSTEMS

• use inference rules (dt.: Schlussregeln) as patterns

• “Modus Ponens”: head← body , fml , σ(fml)→ σ(body)

σ(head)

• simple case: Datalog-style rules (many other systems use similar derivation rules)

head_atom← atom1, . . . , atomn , ground atom’1, . . . , atom’n , for all i: σ(atomi) = atom’i

σ(head_atom)

• Resolution Calculus:
a clause is a set of literals. Clause resolution takes two clauses that contain contradictory
literals:

ℓ1 ∨ . . . ∨ ℓi ∨ . . . ∨ ℓk , ℓk+1 ∨ . . . ∨ ¬ℓk+j ∨ . . . ∨ ℓk+m , σ(ℓi) = σ(ℓk+j)

σ(ℓ1 ∨ . . . ∨ ℓi−1 ∨ ℓi+1 ∨ . . . ∨ ℓk ∨ ℓk+1 ∨ . . . ∨ ℓk+j−1 ∨ ℓk+j+1 ∨ . . . ∨ ℓk+m)

• simple case: unit resolution: j = m = 1

• since a derivation rule head←body is equivalent to ¬body ∨ head, the bottom-up
evaluation of derivation rules is a special case of resolution.

73

SPECIALIZED INFERENCE RULES

• Modus ponens and resolution are purely syntactical, general-purpose rules that do not
depend on the semantics of the literals.

• Logics can extend them with specialized semantical rules that apply to special
“predicates”.

– class hierarchy: classes and subclasses, transitivity

– signatures

– cardinalities

Examples: Default Logic (Reiter, 1980; only built-in reasoning), Description Logics (late
1980s; only built-in reasoning), F-Logic (Kifer, Lausen, 1989; Datalog style + built-in),
Hybrid Logics (combining Description Logics with derivation)

• the latter built-in axioms for certain fixed notions are referred to as “the model theory of a
certain logic”.

74

SUMMARY

Above: short introduction to some Knowledge Representation formalisms:

• Derivation Rules

• Automated Reasoning

Semantic Web Reasoning

• use mechanisms of logics and “Artificial Intelligence” invented in the 60s-90s

• disappointment about AI in the 90s:

– promised too much (expert systems etc.)

– often worked only for toy examples

• further investigations in the 90s

– better understanding of decidable and tractable fragments (“tractable” = polynomial
complexity) and efficiency issues

• design Semantic Web technology according to these investigations.

75

LEVELS OF INFERENCE

In the following, three levels of inference and knowledge modeling are combined:

1. The underlying inference system:
choice of certain underlying expressive logics with their built-in model theory

• First-order logic: quite expressive, generic model theory

• Description logics:
– less expressive (only unary and binary predicates, quite restricted construction of

formulas)
– some built-in notions + model theory
– user can exploit these notions

2. a domain ontology (= formulas in the underlying logic that express global properties and
constraints of the domain)
[mainly describing the classes and properties; optionally some “important” individuals]

3. facts that describe a certain state
[the “Web contents”, talking about individuals; incomplete knowledge]

76

DATA FORMAT AND REASONING FOR THE SEMANTIC WEB

• data model: intuitive modeling capabilities on the conceptual level

• describe data and metadata
⇒ metadata notions are also objects of the domain of discourse.

• tailored to the Web: multiple sources describe the same things, semantic interoperability

• data format/representation: syntactic interoperability/data exchange in the Web required.
⇒ Unicode, preferably an XML representation (then, no special parser is needed).
(cf. Unicode serialization/representation of the XML tree model)
for the new data model, an XML-tree representation will be one possible representation of
the data model.

• reasoning: decidable fragment of FOL vs. undecidable FOL vs. even more
expressiveness (reasoning about metadata)

77

ASIDE: WHY “FIRST-ORDER”-LOGIC?

Recall:

• there is a domain D. Functions and precidates talk about elements of D.

• there is no way to talk about functions or predicates.

Higher-Order-Logics

• the elements of the domain D are “first-order things”

• sets, functions and predicates are “second-order things”

• predicates about predicates are higher-order things

• higher-order logics can be used for reasoning about metadata

Example

• Transitivity as a property of predicates is second order:
∀p : transitive(p)→ (∀x, z : (∃y : (p(x, y) ∧ p(y, z))→ p(x, z)))

Note that transitivity of a certain predicate is first-order:
∀x, z : ((∃y : (ancestor(x, y) ∧ ancestor(y, z)))→ ancestor(x, z))

78

Aside: Induction Axiom as Example for Second Order Logic

• a well-founded domain d (i.e., a finite set of minimal elements (for which min(d,x) holds)
from which the domain can be enumerated by a successor predicate
(Natural numbers: 1, succ(i,i+1))

• well-founded: unary 2nd-order predicate over sets

∀p, d : (well-founded(d) ∧ (∀x : min(d, x)→ p(x)) ∧ (∀x, y : p(x) ∧ succ(x, y)→ p(y)))→
(∀x : d(x)→ p(x))

For natural numbers:

∀p : (p(1) ∧ (∀x : p(x)→ p(x+ 1)))→ (∀x ∈ IN : p(x))

79

Aside: Paradoxes can be formulated in 2nd Order Logic

“X is the set of all sets that do not contain themselves”

X = {z : z /∈ z}

A set “is” a unary predicate: X(z) holds if z is an element of X
(for example, classes, i.e., Person(x), City(x))

Logical characterization of X: X(z)↔ ¬X(z),

applied to X: X(X)↔ ¬X(X).

... can neither be true nor false.

How to avoid paradoxes

Paradoxes can be avoided if each variable either ranges over first-order things (elements of
the domain) or over second-order things (predicates).

80

