
Semantic Web 1

1. Unit: Exercises to Semantic Web

Information about the course can be found at

http://http://www.dbis.informatik.uni-goettingen.de/Teaching/SemWeb/

Exercise 1.1 (Win-Move Game: Draw Nodes)

Consider again the Win-Move-Game. There, WinNodes and LoseNodes have been axiomatized.

Is it possible to characterize DrawNodes in OWL?
Consider two alternative variants:

a) use the game axioms/rules to axiomatize DrawNodes explicitly.

b) consider the possible values: win/lost/drawn.

Test both with typical minimal examples and explain the results.

Comparison with the Database Theory lecture: Interpret the results and compare them with the
semantics of the well-founded model and of stable models.

Consider the following example graphs G0, . . .G4:

d01 d03 d13 l13 d24 w32 l43

d02 d04 d05 d12 w12 d23 w22 l32 w42

d11 l12 d22 d21 l22 w31 l42 w41

w11 l11 w21 l21 l31 l41

File: winmove-graphs-draw.n3

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:Node a owl:Class; owl:equivalentClass

[a owl:Class; owl:oneOf

(:d01 :d02 :d03 :d04 :d05

:l11 :l12 :l13 :w11 :w12 :d11 :d12 :d13

:l21 :l22 :w21 :w22 :d21 :d22 :d23 :d24

:l31 :l32 :w31 :w32

:l41 :l42 :w41 :w42 :l43)].

:edge a owl:ObjectProperty; rdfs:domain :Node; rdfs:range :Node.

:out a owl:DatatypeProperty.

2-ary cycle

:d01 a :Node; :out 1; :edge :d02 .

:d02 a :Node; :out 1; :edge :d01 .

3-ary cycle

:d03 a :Node; :out 1; :edge :d04 .

:d04 a :Node; :out 1; :edge :d05 .

Semantic Web 2

:d05 a :Node; :out 1; :edge :d03 .

:l11 a :Node; :out 0 .

:w11 a :Node; :out 1; :edge :l11 .

:d11 a :Node; :out 2; :edge :w11, :d12 .

:d12 a :Node; :out 1; :edge :d11 .

:d13 a :Node; :out 2; :edge :d12, :w12 .

:w12 a :Node; :out 1; :edge :l12 .

:l12 a :Node; :out 0 .

:l13 a :Node; :out 1; :edge :w12 .

:l21 a :Node; :out 0 .

#

:w21 a :Node; :out 1; :edge :l21 .

:d21 a :Node; :out 1; :edge :d23 . #########

:d22 a :Node; :out 1; :edge :d21 .

:d23 a :Node; :out 1; :edge :d22 .

:d24 a :Node; :out 2; :edge :d23, :w22 .

:w22 a :Node; :out 1; :edge :l22 .

:l22 a :Node; :out 0 .

#

:l31 a :Node; :out 0 .

:w31 a :Node; :out 2; :edge :l31, :l32 .

:l32 a :Node; :out 1; :edge :w31 .

:w32 a :Node; :out 1; :edge :l32 .

#

:l41 a :Node; :out 0 .

:w41 a :Node; :out 2; :edge :l41, :w42 .

:l42 a :Node; :out 1; :edge :w41 .

:w42 a :Node; :out 1; :edge :l42 .

:l43 a :Node; :out 1; :edge :w42 .

Consider the following OWL axiomatizations of drawn nodes:

• implicitly: the nodes are partiotioned into Win/Lose/Draw nodes, and

• by the rules: any node from which only win nodes (i.e. where the other player will win) and
also some draw nodes can be reached, are drawn.

File: winmove-draw.n3

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:Node owl:disjointUnionOf (:WinNode :DrawNode :LoseNode).

:DrawNode a owl:Class; owl:intersectionOf (:Node

[a owl:Restriction; owl:onProperty :edge; owl:someValuesFrom :DrawNode]

[a owl:Restriction; owl:onProperty :edge; owl:allValuesFrom

[owl:unionOf (:WinNode :DrawNode)]]).

• Simple query file:

File: winmove-draw.sparql

Semantic Web 3

prefix : <foo://bla/>

prefix owl: <http://www.w3.org/2002/07/owl#>

select ?W ?L ?D

#from <file:winmove-graph.n3>

from <file:winmove-graph-draws.n3>

from <file:winmove-axioms.n3>

from <file:winmove-closure.n3>

from <file:winmove-draw.n3>

where {{?W a :WinNode} UNION

{?L a :LoseNode} UNION

{?D a :DrawNode}}

order by ?D ?L ?W

Drawn nodes:

Only the three-node-cycles (d03,d04,d05) and (d22,d23,d24, together with d21) in Graphs 0 and
1 are detected. The two-node-cycles are missing. Note also that if one of the characterizations in
winmove-draw.n3 is commented out, no drawn nodes are found at all!

This corresponds to the existence of (total) stable models:

• consider the two-node cycle (d01,d02): there are two total stable models where (i) d01 is won
and d02 is lost, and (ii) d02 is lost and d01 is won.
Correspondingly, in the tableau calculus underlying OWL, there are the above two models.
Thus, d01 cannot be refuted to be non-won or non-lost! The tableau branch cannot be closed,
thus no answer is possible.

• consider the two-node cycle (d03,d04,d05): there is no total stable model. Thus the tableau can
prove that d03 is not won, and not lost, thus it can only be drawn.

In contrast, the negation-by-default in SPARQL’s not exists easily classifies all nodes that cannot
be proven to be won or lost as drawn.

File: winmove-draw-cwa-neg.sparql

prefix : <foo://bla/>

prefix owl: <http://www.w3.org/2002/07/owl#>

select ?W ?L ?D

#from <file:winmove-graph.n3>

from <file:winmove-graph-draws.n3>

from <file:winmove-axioms.n3>

from <file:winmove-closure.n3>

where {{?W a :WinNode} UNION

{?L a :LoseNode} UNION

{?D a :Node . not exists {?D a :WinNode} . not exists {?D a :LoseNode}}}

order by ?D ?L ?W

• negation-by-default covers the “unknown” semantics of the well-founded semantics and of stable
models: if it cannot be proven that a node is won or is lost (in all models), it is drawn.

Note that also in the well-founded/stable models, it is not derived in the model that nodes are
drawn, but only the external interpretation of the models/results yields the conclusion that the
nodes are drawn.

Exercise 1.2 (Male and Female Names)

Consider again the Male and Female Names Example in the lecture.

Semantic Web 4

• The name “Maria” is (mainly by catholics) also used as an additional first name for males, e.g.
Rainer Maria Rilke (German poet, 1875-1926), José Maria Aznar (*1956, Spanish Prime Minis-
ter 1996-2004), cf. also Jean-Marie Le Pen (*1928, French Politician). Discuss the consequences
on the ontology.

• Check what happens with names like “Kim” that can be both male and Female names.

• adding “Maria” as both male and female names would classify Rainer Maria as both male and
female, which has to be disjoint.

⇒ The ontology is inconsistent:

File: maria-male-and-female.n3

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

@prefix : <foo://bla/names#>.

:Male a owl:Class. :Female a owl:Class.

:Person owl:disjointUnionOf (:Male :Female).

:MaleNames a rdfs:Datatype; owl:equivalentClass [a rdfs:Datatype;

owl:oneOf ("Rainer"^^xsd:string "Maria"^^xsd:string)] .

:FemaleNames a rdfs:Datatype; owl:equivalentClass [a rdfs:Datatype;

owl:oneOf ("Anna"^^xsd:string "Maria"^^xsd:string)].

:Male a owl:Class; owl:equivalentClass [owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :name; owl:someValuesFrom :MaleNames])].

:Female a owl:Class; owl:equivalentClass [owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :name; owl:someValuesFrom :FemaleNames])].

:rainermaria a :Person; :name "Rainer"^^xsd:string, "Maria"^^xsd:string.

:maria a :Person; :name "Maria"^^xsd:string.

:annamaria a :Person; :name "Anna"^^xsd:string, "Maria"^^xsd:string.

• ignore “Maria” if another male/female name is given. Then, if (as by German law) it is required
that each person also carries another name hat unambiguously identifies its sex, every person
is classified correctly. But, a person only called “Maria” cannot be classified.

Add “Maria” as “potentially female name”, and use the heuristics that if a person has no male
name, but a potentially female name, is female:

⇒ Rainer Maria is classified as male, Anna Maria is classified as female. But Maria is still not
classified at all!

The reason is the Open World Assumption: it cannot be proven thatMaria is in the complement
of Male, since she may have a male name that is not stored.

Thus, it is necessary to close the name property (PersonWithOneName, PersonWithTwoNames,
etc.).

• Recall that DL can only do monotonic reasoning: Adding another, male, name for Maria

would require to withdraw the default assumption that this person is female.

File: maria-potentially-female.n3

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

@prefix : <foo://bla/names#>.

Semantic Web 5

:Male a owl:Class. :Female a owl:Class.

:Person owl:disjointUnionOf (:Male :Female).

:MaleNames a rdfs:Datatype; owl:equivalentClass [a rdfs:Datatype;

owl:oneOf ("Rainer"^^xsd:string)] .

:FemaleNames a rdfs:Datatype; owl:equivalentClass [a rdfs:Datatype;

owl:oneOf ("Anna"^^xsd:string)].

:PotFemaleNames a rdfs:Datatype; owl:equivalentClass [a rdfs:Datatype;

owl:oneOf ("Maria"^^xsd:string)].

[owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :name; owl:someValuesFrom :MaleNames])]

rdfs:subClassOf :Male.

[owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :name; owl:someValuesFrom :FemaleNames])]

rdfs:subClassOf :Female.

[owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :name; owl:someValuesFrom :PotFemaleNames])]

rdfs:subClassOf :PotFemale.

[owl:intersectionOf (:Person

[owl:complementOf

[a owl:Restriction; owl:onProperty :name; owl:someValuesFrom :MaleNames]]

[a owl:Restriction; owl:onProperty :name; owl:someValuesFrom :PotFemaleNames])]

rdfs:subClassOf :Female.

:rainermaria a :Person; :name "Rainer"^^xsd:string, "Maria"^^xsd:string.

:maria a :Person; :name "Maria"^^xsd:string.

:annamaria a :Person; :name "Anna"^^xsd:string, "Maria"^^xsd:string.

• With a SPARQL query, using its negation-by-default via not bound/not exists, closed world can
be simulated:

File: maria-potentially-female.sparql

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix : <foo://bla/names#>

select ?F ?M

from <file:maria-potentially-female.n3>

where

{{ ?M a :Male }

union

{ ?F a :Female }

union

{ ?F a :PotFemale . not exists { ?F a :Male}}}

• Note: with SPARQL’s CONSTRUCT clause, the result can be turned into a graph (and it can be
written to a file):

File: maria-potentially-female2.sparql

call

jena -q -pellet -qf maria-potentially-female2.sparql -of bla

for output to file.

Semantic Web 6

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix : <foo://bla/names#>

construct {?F a :Female . ?M a :Male}

from <file:maria-potentially-female.n3>

where

{{ ?M a :Male }

union

{ ?F a :Female }

union

{ ?F a :PotFemale . not exists { ?F a :Male}}}

• generates

@prefix : <foo://bla/names#> .

:rainermaria a :Male .

:annamaria a :Female .

:maria a :Female .

⇒ By scripting SPARQL chains, complex tasks can be carried out.

Further comments:

• “Kim” case: “Kim” must be ignored because there is no default for it.

• Further language-based reasoning: in Italian, “Andrea” and “Nicola” are male names, in Ger-
man, both are female names.

Exercise 1.3 (Role Chains: Uncles)

Characterize the uncle relationship as a role chain:

• x’s uncles are the brothers of x’s parents, and

• x’s uncles are husbands of the sisters of x’s parents.

A three-property chain must be described by nesting two ones:

File: uncles.n3

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/names#> .

@prefix family: <foo://bla/persons/> .

[owl:propertyChain (:brotherOf :child)]

rdfs:subPropertyOf :uncleOf.

[owl:propertyChain (:brotherInLawOf :child)]

rdfs:subPropertyOf :uncleOf.

[owl:propertyChain (:married :sisterOf)]

rdfs:subPropertyOf :brotherInLawOf.

:married a owl:SymmetricProperty.

family:john a :Person; :brotherOf family:sue.

family:maggie a :Person; :sisterOf family:sue; :married family:george.

family:sue a :Person; :child family:anne, family:barbara.

:name a owl:FunctionalProperty.

family:anne :name "Anne". family:barbara :name "Barbara".

Semantic Web 7

Note that the above example also uses the symmetry of married

File: uncles.sparql

prefix : <foo://bla/names#>

select ?U ?X

from <file:uncles.n3>

where {?U :uncleOf ?X}

Exercise 1.4 (title)

