
7.2 OWL

• the OWL versions use certain DL semantics:

• Base: ALCR+ : (i.e., with transitive roles). This logic is called S (reminiscent to its
similarity to the modal logic S).

• roles can be ordered hierarchically (rdfs:subPropertyOf; H).

• OWL Lite: SHIF(D), Reasoning in EXPTIME.

• OWL DL: SHOIN (D), decidable.
Pellet (2007) implements SHOIQ(D). Decidability is in NEXPTIME (combined complexity
wrt. TBox+ABox), but the actual complexity of a given task is constrained by the maximal
used cardinality and use of nominals and inverses and behaves like the simpler classes.

(Ian Horrocks and Ulrike Sattler: A Tableau Decision Procedure for SHOIQ(D); In IJCAI,
2005, pp. 448-453; available via http://dblp.uni-trier.de)

• OWL 2.0 towards SROIQ(D) and more datatypes ...

281

OWL NOTIONS; OWL-DL VS. RDF/RDFS; MODEL VS . GRAPH

• OWL is defined based on (Description Logics) model theory,

• OWL ontologies can be represented by RDF graphs,

• Only certain RDF graphs are allowed OWL-DL ontologies: those, where class names,
property names, individuals etc. occur in a well-organized way.

• Reasoning works on the (Description Logic) model, the RDF graph is only a means to
represent it.
(recall: RDF/RDFS “reasoning” works on the graph level)

282

OWL VOCABULARIES

• An OWL-DL vocabulary V is a 7-tuple (= a sorted vocabulary)
V = (Vcls,Vobjprop,Vdtprop,Vannprop,Vindiv,VDT ,Vlit):

• Vcls is the set of URIs denoting class names,
<http://.../mondial/10/meta#Country>

• Vobjprop is the set of URIs denoting object property names,
<http://.../mondial/10/meta#capital>

• Vdtprop is the set of URIs denoting datatype property names,
<http://.../mondial/10/meta#population>

• (Vannprop is the set of URIs denoting annotation property names,)

• Vindiv is the set of URIs denoting individuals, <http://.../mondial/10/countries/D>

• VDT is the set of URIs denoting datatype names,
<http://www.w3.org/2001/XMLSchema#int>

• Vlit is the set of literals;

• the builtin notions (=URIs) from RDF, RDFS, OWL namespaces do not belong to the
vocabulary of the ontology (they are only used for describing the ontology in RDF).

283

OWL INTERPRETATIONS

Since DL is a subset of FOL, the interpretation of an OWL-DL vocabulary can be given as a
FOL interpretation

I = (Iindiv ∪ Icls ∪ Iobjprop ∪ Idtprop ∪ Iannprop ∪ IDT , Uobj ∪ UDT)

where I interprets the vocabulary as

• Iindiv constant symbols (individuals),

• Icls, IDT unary predicates (classes and datatypes),

• Iobjprop, Idtprop, Iannprop binary predicates (properties),

and the universe U is partitioned into

• an object domain Uobj

• and a data domain UDT (of all values of datatypes).

284

OWL INTERPRETATIONS

The interpretation I is as follows:

Iindiv: each individual a ∈ Vindiv to an object I(a) ∈ Uobj ,

(e.g., I(<http://.../mondial/10/countries/D>) = germany)

Icls: each class C ∈ Vcls to a set I(C) ⊆ Uobj ,

(e.g., germany ∈ I(<http://.../mondial/10/meta#Country>))

IDT : each datatype D ∈ VDT to a set I(D) ⊆ UDT ,

(e.g., I(<http://www.w3.org/2001/XMLSchema#int>) = {. . . ,−2,−1, 0, 1, 2, . . .})

Iobjprop: each object property p ∈ Vobjprop to a binary relation I(p) ⊆ Uobj × Uobj ,

(e.g., (germany, berlin) ∈ I(<http://.../mondial/10/meta#capital>))

Idtprop: each datatype property p ∈ Vdtprop to a binary relation I(p) ⊆ Uobj × UD,

(e.g., (germany, 83536115) ∈ I(<http://.../mondial/10/meta#population>))

Iannprop: each annotation property p ∈ Vannprop to a binary relation I(p) ⊆ U × U .

285

OWL Class Definitions and Axioms (Overview)

• owl:Class

• The properties of an owl:Class (including owl:Restriction) node describe the properties of
that class.
An owl:Class is required to satisfy the conjunction of all constraints (implicit: intersection)
stated about it.
These characterizations are roughly the same as discussed for DL class definitions:

– Constructors: owl:unionOf, owl:intersectionOf, owl:complementOf (ALC)

– Enumeration Constructor: owl:oneOf (enumeration of elements; O)

– Axioms rdfs:subClassOf, owl:equivalentClass,

– Axiom owl:disjointWith (also expressible in ALC: C disjoint with D is equivalent to
C ⊑ ¬D)

286

OWL NOTIONS (CONT’D)

OWL Restriction Classes (Overview)

• owl:Restriction is a subclass of owl:Class, allowing for specification of a constraint on one
property.

• one property is restricted by an owl:onProperty specifier and a constraint on this property:

– (N , Q, F) owl:cardinality, owl:minCardinality or owl:maxCardinality,

– owl:allValuesFrom (∀R.C), owl:someValuesFrom (∃R.C),

– owl:hasValue (O),

– including datatype restrictions for the range (D)

• by defining intersections of owl:Restrictions, classes having multiple such constraints can
be specified.

287

OWL NOTIONS (CONT’D)

OWL Property Axioms (Overview)

• Distinction between owl:ObjectProperty and owl:DatatypeProperty

• from RDFS: rdfs:domain/rdfs:range assertions, rdfs:subPropertyOf

• Axiom owl:equivalentProperty

• Axioms: subclasses of rdf:Property:
owl:TransitiveProperty, owl:SymmetricProperty, owl:FunctionalProperty,
owl:InverseFunctionalProperty (see Slide 302)

OWL Individual Axioms (Overview)

• Individuals are modeled by unary classes

• owl:sameAs, owl:differentFrom, owl:AllDifferent(o1,. . . ,on).

288

FIRST-ORDER LOGIC EQUIVALENTS

OWL : x ∈ C DL Syntax FOL

C C C(x)

intersectionOf(C1, C2) C1 ⊓ . . . ⊓ Cn C1(x) ∧ . . . ∧ Cn(x)

unionOf(C1, C2) C1 ⊔ . . . ⊔ Cn C1(x) ∨ . . . ∨ Cn(x)

complementOf(C1) ¬C1 ¬C1(x)

oneOf(x1, . . . , xn) {x1} ⊔ . . . ⊔ {xn} x = x1 ∨ . . . ∨ x = xn

OWL : x ∈ C,Restriction on P DL Syntax FOL

someValuesFrom(C ′) ∃P.C ′ ∃y : P (x, y) ∧ C ′(y)

allValuesFrom(C ′) ∀P.C ′ ∀y : P (x, y) → C ′(y)

hasValue(y) ∃P.{y} P (x, y)

maxCardinality(n) ≤ n.P ∃≤ny : P (x, y)

minCardinality(n) ≥ n.P ∃≥ny : P (x, y)

cardinality(n) n.P ∃=ny : P (x, y)

289

FIRST-ORDER LOGIC EQUIVALENTS (CONT’D)

OWL Class Axioms for C DL Syntax FOL

rdfs:subClassOf(C1) C ⊑ C1 ∀x : C(x) → C1(x)

equivalentClass(C1) C ≡ C1 ∀x : C(x) ↔ C1(x)

disjointWith(C1) C ⊑ ¬C1 ∀x : C(x) → ¬C1(x)

OWL Individual Axioms DL Syntax FOL

x1 sameAs x2 {x1} ≡ {x2} x1 = x2

x1 differentFrom x2 {x1} ⊑ ¬{x2} x1 6= x2

AllDifferent(x1, . . . , xn)
∧

i 6=j{xi} ⊑ ¬{xj}
∧

i 6=j xi 6= xj

290

FIRST-ORDER LOGIC EQUIVALENTS (CONT’D)

OWL Properties DL Syntax FOL

P P P (x, y)

OWL Property Axioms for P DL Syntax FOL

rdfs:range(C) ⊤ ⊑ ∀P.C ∀x, y : P (x, y) → C(y)

rdfs:domain(C) C ⊒ ∃P.⊤ ∀x, y : P (x, y) → C(x)

subPropertyOf(P2) P ⊑ P2 ∀x, y : P (x, y) → P2(x, y)

equivalentProperty(P2) P ≡ P2 ∀x, y : P (x, y) ↔ P2(x, y)

inverseOf(P2) P ≡ P−
2 ∀x, y : P (x, y) ↔ P2(y, x)

TransitiveProperty P+ ≡ P ∀x, y, z : ((P (x, y) ∧ P (y, z)) → P (x, z))

∀x, z : ((∃y : P (x, y) ∧ P (y, z)) → P (x, z))

FunctionalProperty ⊤ ⊑ ≤1P.⊤ ∀x, y1, y2 : P (x, y1) ∧ P (x, y2) → y1 = y2

InverseFunctionalProperty ⊤ ⊑ ≤1P−.⊤ ∀x, y1, y2 : P (y1, x) ∧ P (y2, x) → y1 = y2

291

SYNTACTICAL REPRESENTATION

• OWL specifications can be represented by graphs: OWL constructs have a
straightforward representation as triples in RDF/XML and N3.

• there are several logic-based representations (e.g. Manchester OWL Syntax); TERP
(which can be used with pellet) is a combination of Turtle and Manchester syntax.

• OWL in RDF/XML format: usage of class, property, and individual names:

– as @rdf:about when used as identifier of a subject (owl:Class, rdf:Property and their
subclasses),

– as @rdf:resource as the object of a property.

• some constructs need auxiliary structures (collections):
owl:unionOf, owl:intersectionOf, and owl:oneOf are based on Collections

– representation in RDF/XML by rdf:parseType=”Collection”.

– representation in N3 by (x1 x2 . . . xn)

– as RDF lists: rdf:List, rdf:first, rdf:rest

292

REQUIREMENT

• every entity in an OWL ontology must be explicitly typed (i.e., as a class, an object
property, a datatype property, . . . , or an instance of some class).
(for reasons of space this is not always done in the examples; in general, it may lead to
incomplete results)

293

QUERYING OWL DATA

• queries are atomic and conjunctive DL queries against the underlying OWL-DL model.

• this model can still be seen as a graph:

– many of the edges are those known from the basic RDF graph

– some edges (and collections) are only there for encoding OWL stuff (describing
owl:unionOf, owl:propertyChain etc.) – these should not be queried

• SPARQL-DL is a subset of SPARQL: not every SPARQL query pattern is allowed for use
on an OWL ontology
(but the reasonable ones are, so in practice this is not a problem.)

• the query language SPARQL-DL allows exactly such well-sorted patterns using the
notions of OWL.

294

SOME TBOX-ONLY REASONING EXAMPLES ON SETS

EXAMPLE : PARADOX

<?xml version="1.0"?>

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xml:base="foo://bla/">

<owl:Class rdf:about="Paradox">

<owl:complementOf rdf:resource="Paradox"/>

</owl:Class>

</rdf:RDF>
[Filename: RDF/paradox.rdf]

• without reasoner:
jena -t -if paradox.rdf

Outputs the same RDF facts in N3 without checking consistency.

• with reasoner:
jena -e -pellet -if paradox.rdf

reads the RDF file, creates a model (and checks consistency) and in this case reports
that it is not consistent.

295

UNION AS A ⊔B ≡ ¬((¬A) ⊓ (¬B))

@prefix : <foo://bla/>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

:A rdf:type owl:Class. :B rdf:type owl:Class.

:Union1 owl:unionOf (:A :B).

:CompA owl:complementOf :A. :CompB owl:complementOf :B.

:IntersectComps owl:intersectionOf (:CompA :CompB).

:Union2 owl:complementOf :IntersectComps.

:x rdf:type :A. :x rdf:type :B.

:y rdf:type :CompA. # a negative assertion y not in A would be better -> OWL 2

:y rdf:type :CompB. [Filename: RDF/union.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix : <foo://bla/>

select ?X ?C ?D

from <file:union.n3>

where {{?X rdf:type ?C} UNION {:Union1 owl:equivalentClass ?D}}

[Filename: RDF/union.sparql]

296

EXAMPLE : UNION AND SUBCLASS

<?xml version="1.0"?>

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:f="foo://bla/"

xml:base="foo://bla/">

<owl:Class rdf:about="Person">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="Male"/>

<owl:Class rdf:about="Female"/>

</owl:unionOf>

</owl:Class>

<owl:Class rdf:about="EqToPerson">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="Female"/>

<owl:Class rdf:about="Male"/>

</owl:unionOf>

</owl:Class>

<f:Person rdf:about="unknownPerson"/>

</rdf:RDF> [Filename: RDF/union-subclass.rdf]

297

Example (Cont’d)

• print class tree (with jena -e -pellet):

owl:Thing

bla:Person = bla:EqToPerson - (bla:unknownPerson)

bla:Female

bla:Male

• Male and Female are derived to be subclasses of Person.

• Person and EqToPerson are equivalent classes.

• unknownPerson is a member of Person and EqToPerson.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix : <foo://bla/>

select ?SC ?C ?T ?CC ?CD

from <file:union-subclass.rdf>

where {{?SC rdfs:subClassOf ?C} UNION

{:unknownPerson rdf:type ?T} UNION

{?CC owl:equivalentClass ?CD}} [Filename: RDF/union-subclass.sparql]

298

EXERCISE

Consider

<owl:Class rdf:about="C1">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="A"/>

<owl:Class rdf:about="B"/>

</owl:intersectionOf>

</owl:Class>

and

<owl:Class rdf:about="C2">

<rdfs:subClassOf rdf:resource="A"/>

<rdfs:subClassOf rdf:resource="B"/>

</owl:Class>

• give mathematical characterizations of both cases.

• discuss whether both fragments are equivalent or not.

299

DISCUSSION

• Two classes are equivalent (wrt. the knowledge base) if they have the same interpretation
in every model of the KB.

• C1 is characterized to be the intersection of classes A and B.

• for C2, it is asserted that C2 is a subset of A and that it is a subset of B.

• Thus there can be some c that is in A, B, C1, but not in C2.

• Thus, C1 and C2 are not equivalent.

300

DISCUSSION: FORMAL NOTATION

The DL equivalent to the knowledge base (TBox) is

T = {C1 ≡ (A ⊓B) , C2 ⊑ A , C2 ⊑ B}

The First-Order Logic equivalent is

KB = {∀x : A(x) ∧B(x) ↔ C1(x) , ∀x : C2(x) → A(x) ∧B(x)}

Thus, KB |= ∀x : C2(x) → A(x) ∧B(x).

Or, in DL: T |= C2 ⊑ C1.

On the other hand, M = (D, I) with D = {c} and

I(A) = {c}, I(B) = {c}, I(C1) = {c}, I(C2) = ∅

is a model of KB (wrt. first-order logic) and T (wrt. DL) that shows that C1 and C2 are not
equivalent.

301

SUBCLASSES OF PROPERTIES

Triple syntax: some property rdf:type a specific type of property

According to their ranges

• owl:ObjectProperty – subclass of rdf:Property; object-valued (i.e. rdfs:range must be an
Object class)

• owl:DatatypeProperty – subclass of rdf:Property; datatype-valued (i.e. its rdfs:range must
be an rdfs:Datatype)

⇒ OWL ontologies require each property to be typed in such a way!
(for reasons of space sometimes omitted in examples)

According to their Cardinality

• specifying n:1 or 1:n cardinality:
owl:FunctionalProperty, owl:InverseFunctionalProperty

⇒ useful for deriving that objects must be different from each other.

According to their Properties

• owl:TransitiveProperty, owl:SymmetricProperty see later ...

302

FUNCTIONAL CARDINALITY SPECIFICATION

property rdf:type owl:FunctionalProperty

• not a constraint, but

• if such a property results in two things ... these things are inferred to be the same.

@prefix : <foo://bla/names#>.

@prefix family: <foo://bla/persons/>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#>.

:world :has_pope family:josephratzinger .

:world :has_pope [:name "Benedikt XVI"] .

:has_pope rdf:type owl:FunctionalProperty.

[Filename: RDF/popes.n3]

prefix : <foo://bla/names#>

prefix family: <foo://bla/persons/>

select ?N from <file:popes.n3>

where { family:josephratzinger :name ?N }

[Filename: RDF/pope.sparql]

303

OWL :RESTRICTION – EXAMPLE

• owl:Restriction for ∃p.C and ∀p.C. (cf. earlier examples)

<?xml version="1.0"?>

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:f="foo://bla/"

xml:base="foo://bla/">

<owl:Class rdf:about="Parent">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Person"/>

<owl:Restriction>

<owl:onProperty rdf:resource="hasChild"/>

<owl:minCardinality>1</owl:minCardinality>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<f:Person rdf:about="john">

<f:hasChild><f:Person rdf:about="alice"/></f:hasChild>

</f:Person>

</rdf:RDF>
[Filename: RDF/restriction.rdf]

prefix : <foo://bla/>

select ?C

from <file:restriction.rdf>

where {:john a ?C}

[Filename: RDF/restriction.sparql]

304

RESTRICTIONS ONLY AS BLANK NODES

Consider the following (bad) specification:

:badIdea a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1.

This is not allowed in OWL-DL.

Correct specification:

:badIdea owl:equivalentClass

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].

Why? ... there are many reasons, for one of them see next slide.

305

Restrictions Only as Blank Nodes (Cont’d)

A class with two such specifications:

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:badIdea a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1 .

:badIdea a owl:Restriction; owl:onProperty :livesIn; owl:someValuesFrom :GermanCity.

[Filename: RDF/badIdea.n3]

• call jena -t -pellet -if badIdea.n3:

owl:Restriction :hasChild 1

:badIdea

:livesIn :GermanCity

a owl:onProperty
owl:minCardinality

owl:onProperty
owl:someValuesFrom

The two restriction specifications are messed up.

306

Restrictions Only as Blank Nodes (Cont’d)

• Thus specify each Restriction specification with a separate blank node:

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:TwoRestrictions owl:equivalentClass

[owl:intersectionOf

([a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]

[a owl:Restriction; owl:onProperty :livesIn; owl:someValuesFrom :GermanCity])].

[Filename: RDF/twoRestrictions.n3]

The DL equivalent: TwoRestrictions ≡ (∃ hasChild.⊤) ⊓ (∃ livesIn.GermanCity)

Another reason:

:AnotherBadDesignExample a owl:Restriction;

owl:onProperty :hasChild; owl:minCardinality 1;

rdfs:subClassOf :Person.

... mixes the definition of the Restriction with an assertive axiom: ABDE ≡ ∃ ≥ 1 hasChild.⊤ ∧
ABDE ⊑ Person

307

MULTIPLE RESTRICTIONS ON A PROPERTY

• “All persons that have at least two children, and one of them is male”

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix : <foo://bla/>.

Test: multiple restrictions: the someValuesFrom-condition is then ignored

:HasTwoChildrenOneMale owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild;

owl:someValuesFrom :Male; owl:minCardinality 2]).

:name a owl:FunctionalProperty.

:Male rdfs:subClassOf :Person; owl:disjointWith :Female.

:Female rdfs:subClassOf :Person.

:kate a :Female; :name "Kate"; :hasChild :john.

:john a :Male; :name "John";

:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"].

:sue a :Female; :name "Sue";

:hasChild [a :Female; :name "Anne"], [a :Female; :name "Barbara"].

[Filename: RDF/restriction-double.n3]

prefix : <foo://bla/>

select ?X

from <file:restriction-double.n3>

where {?X a :HasTwoChildrenOneMale}

[Filename: RDF/restriction-double.sparql]

• The the someValuesFrom-condition is ignored in this case (Result: John and Sue).

• Solution: intersection of restrictions

308

MULTIPLE RESTRICTIONS ON A PROPERTY

• “All persons that have at least two children, and one of them is male”

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix : <foo://bla/>.

:HasTwoChildrenOneMale owl:equivalentClass

[owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:someValuesFrom :Male]

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 2])].

:name a owl:FunctionalProperty.

:Male rdfs:subClassOf :Person; owl:disjointWith :Female.

:Female rdfs:subClassOf :Person.

:kate a :Female; :name "Kate"; :hasChild :john.

:john a :Male; :name "John";

:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"].

:sue a :Female; :name "Sue";

:hasChild [a :Female; :name "Anne"], [a :Female; :name "Barbara"].

[Filename: RDF/intersect-restrictions.n3]

prefix : <foo://bla/>

select ?X

from <file:intersect-restrictions.n3>

where {?X a :HasTwoChildrenOneMale}

[Filename: RDF/intersect-restrictions.sparql]

• Note: this is different from Qualified Range Restrictions such as “All persons that have at
least two male children” – see Slide 362.

309

USE OF A DERIVED CLASS

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix : <foo://bla/names#>.

:kate :name "Kate"; :child :john.

:john :name "John"; :child :alice.

:alice :name "Alice".

:Parent a owl:Class; owl:equivalentClass

[a owl:Restriction; owl:onProperty :child; owl:minCardinality 1].

:Grandparent owl:equivalentClass

[a owl:Restriction; owl:onProperty :child; owl:someValuesFrom :Parent].

[Filename: RDF/grandparent.n3]

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix : <foo://bla/names#>

select ?A ?B

from <file:grandparent.n3>

where {{?A a :Parent} UNION

{?B a :Grandparent} UNION

{:Grandparent rdfs:subClassOf :Parent}}

[Filename: RDF/grandparent.sparql]

310

NON-EXISTENCE OF PROPERTY FILLERS

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/names#>.

:kate a :Person; :name "Kate"; :hasChild :john.

:john a :Person; :name "John"; :hasChild :alice, :bob.

:alice a :Person; :name "Alice".

:bob a :Person; :name "Bob".

:name a owl:FunctionalProperty.

:ChildlessA owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:maxCardinality 0]).

:ChildlessB owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:allValuesFrom owl:Nothing]).

:ParentA owl:intersectionOf (:Person [owl:complementOf :ChildlessA]).

:ParentB owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]).

[Filename: RDF/childless.n3]

prefix : <foo://bla/names#>

select ?X ?Y

from <file:childless.n3>

where {{?X a :ChildlessA}

union {?Y a :ParentA}}

[Filename: RDF/childless.sparql]

• export class tree: ChildlessA and ChildlessB are equivalent,

• note: due to the Open World Assumption, both classes are empty.

• Persons where no children are known are neither in ChildlessA or in Parent!

311

INVERSE PROPERTIES

• owl:ObjectProperty owl:inverseOf owl:ObjectProperty

• owl:DatatypeProperties cannot have an inverse
(this would define properties of objects, cf. next slide)

@prefix : <foo://bla/names#> .

@prefix family: <foo://bla/persons/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

family:john :child family:alice, family:bob.

family:john :parent family:kate .

:descendant rdf:type owl:TransitiveProperty.

:child rdfs:subPropertyOf :descendant.

:child owl:inverseOf :parent.

[Filename: RDF/inverse.n3]

prefix : <foo://bla/names#>

select ?X ?Y

from <file:inverse.n3>

where {?X :descendant ?Y}

[Filename: RDF/inverse.sparql]

312

No Inverses of owl:DatatypeProperties!

• an owl:DatatypeProperty must not have an inverse:

• “:john :age 35” would imply “35 :ageOf :john” which would mean that a literal has a
property, which is not allowed.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix : <foo://bla/names#> .

:john :name "John"; :age 35; :child [:name "Alice"], [:name "Bob"; :age 8].

:age a owl:DatatypeProperty.

:child a rdf:Property.

:childOf owl:inverseOf :child.

:ageOf owl:inverseOf :age.

[Filename: RDF/inverseDTProp.n3]

jena -e -pellet -if inverseDTProp.n3

WARN [main] (OWLLoader.java:352) - Unsupported axiom:

Ignoring inverseOf axiom between foo://bla/names#ageOf (ObjectProperty)

and foo://bla/names#age (DatatypeProperty)

313

SPECIFICATION OF INVERSE FUNCTIONAL PROPERTIES

• Mathematics: a mapping m is inverse-functional if the inverse of m is functional:
x p y is inverse-functional, if for every y, there is at most one x such that xpy holds.

• Example:

– hasCarCode is functional: every country has one car code,

– hasCarCode is also inverse functional: every car code uniquely identifies a country.

• OWL:
:m-inverse owl:inverseOf :m .

:m-inverse a owl:FunctionalProperty .

not allowed for e.g. mon:carCode a owl:DatatypeProperty:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo:bla#>.

:carCode a owl:DatatypeProperty; rdfs:domain :Country;

owl:inverseOf :isCarCodeOf.

:Germany :carCode "D". [Filename: RDF/noinverse.n3]

• the statement is rejected.

314

OWL :INVERSEFUNCTIONAL PROPERTY

• such cases are described with owl:InverseFunctionalProperty

• a property P is an owl:InverseFunctionalProperty if
∀x, y1, y2 : P (y1, x) ∧ P (y2, x) → y1 = y2 holds

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo:bla#>.

:carCode rdfs:domain :Country; a owl:DatatypeProperty;

a owl:FunctionalProperty; a owl:InverseFunctionalProperty.

:name a owl:DatatypeProperty; a owl:FunctionalProperty.

:Germany :carCode "D"; :name "Germany".

:DominicanRepublic :carCode "D"; :name "Dominican Republic".

[Filename: RDF/invfunctional.n3]

• the fragment is detected to be inconsistent.

315

OWL: HASKEY (OWL 2)

• description of key attributes (k1, . . . , kn) is a relevant issue in data modeling.
Note that InverseFunctionalProperty covers the simple case that n = 1.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo:bla#>.

:name a owl:DatatypeProperty; a owl:FunctionalProperty.

:Country owl:hasKey (:carCode).

:Germany a :Country; :carCode "D"; :name "Germany".

:DominicanRepublic a :Country; :carCode "D"; :name "Dominican Republic".

:Duesseldorf a :City; :carCode "D"; :name "Duesseldorf".

[Filename: RDF/haskey.n3]

• the fragment is inconsistent.

316

OWL: HASKEY (OWL 2)

• keys can also be used to detect that two resources (e.g. described by different Web
sources) are actually the same:

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo:bla#>.

:Person owl:hasKey (:givenName :familyName).

_:b1 a :Person; :firstName "John"; :familyName "Doe"; :age 32 .

_:b2 a :Person; :firstName "John"; :familyName "Doe"; :address "Main Street 1" .

[Filename: RDF/haskey2.n3]

prefix : <foo:bla#>

select ?X ?P ?Y

from <file:haskey2.n3>

where {?X a :Person ; ?P ?Y}

[Filename: RDF/haskey2.sparql]

317

NAMED AND UNNAMED RESOURCES

(from the DL reasoner’s perspective)

Named Resources

• resources with explicit global URIs
<http://www.semwebtech.org/mondial/10/country/D>

<foo://bla/bob>

• resources with local IDs/named blank nodes

• unnamed blank nodes

Unnamed (implicit) Resources

• things that exist only implicitly:
John’s child in

:Parent a owl:Class; owl:equivalentClass

[a owl:Restriction; owl:onProperty :child; owl:minCardinality 1].

:john a Parent.

• such resources can even have properties (see next slides).

318

Implicit Resources

• “every person has a father who is a person” and “john is a person”.

• the standard model is infinite:
john, john’s father, john’s father’s father, ...

• pure RDF graphs are always finite,

• only with OWL axioms, one can specify such infinite models,

⇒ they have only finitely many locally to path length n different nodes,

• the reasoner can detect the necessary n (“blocking”, cf. Slides 410 ff) and create “typical”
different structures.

Aside: “standard model” vs “nonstandard model”

• the term “standard model” is not only “what we understand (in this case)”, but is a notion
of mathematical theory which –roughly– means “the simplest model of a specification”

• nonstandard models of the above are those where there is a cycle in the ancestors
relation.
(as the length of the cycle is arbitrary, this would not make it easier for the reasoner -
there is only the possibility to have an owl:sameAs somewhere)

319

Implicit Resources

@prefix : <foo://bla/names#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

:Person owl:equivalentClass [a owl:Restriction;

owl:onProperty :father; owl:someValuesFrom :Person].

:bob :name "Bob"; a :Person; :father :john.

:john :name "John"; a :Person.

[Filename: RDF/fathers-and-forefathers.n3]

prefix : <foo://bla/names#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?X ?F ?C

from <file:fathers-and-forefathers.n3>

where {{ ?X :father ?F } UNION { ?C a :Person }}

[Filename: RDF/fathers-and-forefathers.sparql]

• Reasoner: works on the model, including blocking, i.e. modulo equivalence up to paths of
length n.

• SPARQL (and SWRL) rules: works on the graph – without the unnamed/implicit resorces.

320

7.3 RDF Graph vs. OWL Model; SPARQL vs. Reasoning

• SPARQL is an RDF (graph) query language

• OWL talks about models.

Consequences (Overview)

⇒ SPARQL queries are answered against the graph of triples

• Some OWL notions are directly represented by triples, such as c a owl:Class.

• Some others are directly supported by special handling in the reasoners,
e.g., c rdfs:subClassOf d and c owl:equivalentClass d.

• some others are only “answered” when given explicitly in the RDF input! The results then
do not incorporate further results that could be found by reasoning!

• OWL notions in the input are often not contained as triples, but are only translated into DL
atoms for the reasoner. (e.g. owl:Restriction definitions)

• Most OWL notions in queries are not “understood” as OWL, but only matched.

• SPARQL answers are only concerned with the graph, not with implicit things that are only
known in the model.

321

NOT REASONED: OWL :FUNCTIONAL PROPERTY

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo:bla#>.

:p a owl:ObjectProperty; rdfs:domain :D.

:D owl:equivalentClass [a owl:Restriction; owl:onProperty :p;

owl:maxCardinality 1].

:x :p :a, :b. :a owl:differentFrom :b.

[Filename:RDF/functional.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix : <foo:bla#>

select ?P

from <file:functional.n3>

where {{ ?X :p ?Y } UNION {?P a owl:FunctionalProperty }}

[Filename:RDF/functional.sparql]

• SPARQL-DL (Sirin, Parsia OWLED 2007) is a proposal that allows certain OWL built-ins
to be queried.

322

NOT ALLOWED: C OMPLEX TERMS IN SPARQL Q UERIES

• example: all cities that are a capital

• runs both with pellet and jena (Feb. 2013):

pellet query -query-file countrycaps.sparql \

mondial-europe.n3 mondial-meta.n3 countrycaps.n3

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <http://www.semwebtech.org/mondial/10/meta#> .

:CountryCapital owl:intersectionOf

(:City [a owl:Restriction; owl:onProperty :isCapitalOf;

owl:someValuesFrom :Country]). [Filename: RDF/countrycaps.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix : <http://www.semwebtech.org/mondial/10/meta#>

select ?N1 ?N2

where {{?X a :CountryCapital; :name ?N1} union

{?Y a [a owl:Restriction; owl:onProperty :isCapitalOf;

owl:someValuesFrom :Country]; :name ?N2}} [Filename:RDF/countrycaps.sparql]

• 53 answers, column ?N1 is filled, ?N2 is null.

323

NOT ALLOWED: C OMPLEX TERMS IN SPARQL Q UERIES (CONT’D)

• all organizations whose headquarter city is a capital:

• use pellet! jena does not support this (Feb. 2013):

pellet query -query-file organizations-query2.sparql \

mondial-europe.n3 mondial-meta.n3

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix : <http://www.semwebtech.org/mondial/10/meta#>

select ?A ?H

where {?X a [owl:intersectionOf

(:Organization [a owl:Restriction; owl:onProperty :hasHeadq;

owl:someValuesFrom

[a owl:Restriction; owl:onProperty :isCapitalOf;

owl:someValuesFrom :Country]])];

:abbrev ?A; :hasHeadq ?C . ?C :name ?H . }

[Filename:RDF/organizations-query2.sparql]

• 35 answers.

324

ANSWER SETS TO QUERIES AS AD-HOC CONCEPTS

• all organizations whose headquarter city is a capital:

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <http://www.semwebtech.org/mondial/10/meta#> .

:CountryCapital owl:equivalentClass

[owl:intersectionOf

(:City [a owl:Restriction; owl:onProperty :isCapitalOf;

owl:someValuesFrom :Country])].

<bla:Result> owl:equivalentClass [owl:intersectionOf

(:Organization [a owl:Restriction; owl:onProperty :hasHeadq;

owl:someValuesFrom :CountryCapital])] . [Filename: RDF/organizations-query.n3]

prefix : <http://www.semwebtech.org/mondial/10/meta#>

select ?A ?N

from <file:organizations-query.n3>

from <file:mondial-europe.n3>

from <file:mondial-meta.n3>

where {?X a <bla:Result> . ?X :abbrev ?A . ?X :hasHeadq ?C . ?C :name ?N}

[Filename:RDF/organizations-query.sparql]

325

SPARQL ON THE GRAPH

• SPARQL does not return any answer related with nodes (=resources) that are only
implicitly known (=non-named resources)

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

prefix : <foo://bla/names#>

:ParentOf12YOChild owl:equivalentClass [a owl:Restriction;

owl:onProperty :child; owl:someValuesFrom :12YOPerson].

:12YOPerson owl:equivalentClass [a owl:Restriction;

owl:onProperty :age; owl:hasValue 12].

[:name "John"; :age 35; a :ParentOf12YOChild;

:child [:name "Alice"; :age 10], [:name "Bob"; :age 8]].

:age rdf:type owl:FunctionalProperty.

:12YOPerson owl:equivalentClass owl:Nothing.

:TwoChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :child; owl:cardinality 2].

:ThreeChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :child; owl:minCardinality 3]. [Filename: RDF/john-three-children-impl.n3]

326

SPARQL and Non-Named Resources (Cont’d)

• implicit resources exist only on the reasoning level,

• not considered by SPARQL queries:

prefix : <foo://bla/names#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?X ?C ?A ?T

from <file:john-three-children-impl.n3>

where {{ ?X :name "John" . ?X a ?C }

UNION {?X :age ?A} UNION {?T a :12YOPerson}}

[Filename: RDF/john-three-children-impl.sparql]

• John is a ThreeChildrenParent,

• no person known who is 12 years old

• adding :12YOPerson owl:equivalentClass owl:Nothing makes it inconsistent.

• same applies to owl:hasKey (cf. Slides 316 and 328) and SWRL rules (cf. Slides 413 ff).

327

OWL :HASKEY AND NON-NAMED RESOURCES

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix : <foo:bla#>.

:XYThing owl:hasKey (:x :y).

:pointTo rdfs:range :XYThing.

:xy10 a :XYThing; :x 10; :y 10; :text "free".

:XYTen owl:intersectionOf

([a owl:Restriction; owl:onProperty :x; owl:hasValue 10]

[a owl:Restriction; owl:onProperty :y; owl:hasValue 10]

[a owl:Restriction; owl:onProperty :text; owl:hasValue "pointedTo"]).

:foo a [a owl:Restriction;

owl:onProperty :pointTo; owl:onClass :XYTen; owl:qualifiedCardinality 1].

forces implicit existence of a node (10,10,"pointedTo").

Make this implicit node named by forcing "another" node pointed to

from :tenTen without any properties: via hasKey, xyxy = xy10

:foo :pointTo :xyxy. [Filename: RDF/easykeys-impl.n3]

328

OWL :HASKEY AND NON-NAMED RESOURCES (CONT’D)

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix : <foo:bla#>

SELECT ?CT ?Y ?T ?SameAsxyxy

FROM <easykeys-impl.n3>

WHERE {{ :foo :pointTo [:text ?CT] }

UNION { ?Y :text ?T }

UNION { [:text ?T] }

UNION { :xyxy owl:sameAs ?SameAsxyxy }}

[Filename: RDF/easykeys-impl.sparql]

• as long as the relevant node is only implicit (although quite some information about it is
known), it is not considered in the answers.

329

[A SIDE] OWL VS. RDF L ISTS

• RDF provides structures for representing lists by triples (cf. Slide 218): rdf:List, rdf:first,
rdf:rest.
These are distinguished classes/properties.

• OWL/reasoners have a still unclear relationship with these:

– use of lists for its internal representation of owl:unionOf, owl:oneOf etc. (that are
actually based on collections),

– do or do not allow the user to query this internal representation,

– ignore user-defined lists over usual resources.

330

UNIONOF (ETC) AS TRIPLES : L ISTS

• owl:unionOf (x y z), owl:oneOf (x y z) is actually only syntactic sugar for RDF lists.

• The following are equivalent:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:Male a owl:Class.

:Female a owl:Class.

:Person a owl:Class; owl:unionOf (:Male :Female).

:EqToPerson a owl:Class;

owl:unionOf

[a rdf:List; rdf:first :Male;

rdf:rest [a rdf:List; rdf:first :Female; rdf:rest rdf:nil]].

:x a :Person. [Filename: RDF/union-list.n3]

• jena -t -if union-list.n3: both in usual N3 notation as owl:unionOf (:Male :Female).

331

UNIONOF (ETC) AS TRIPLES (CONT’D)

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix : <foo://bla/>

select ?C

from <file:union-list.n3>

where {:Person owl:equivalentClass ?C}

[Filename: RDF/union-list.sparql]

• jena -q -pellet -qf union-list.sparql: both are equivalent.

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix : <foo://bla/>

select ?P1 ?P2 ?X ?Q ?R ?S ?T

from <file:union-list.n3>

where {{:Person owl:equivalentClass :EqToPerson} UNION

{:Person ?P1 ?X . ?X ?Q ?R . OPTIONAL {?R ?S ?T}} UNION

{:EqToPerson ?P2 ?X . ?X ?Q ?R} . OPTIONAL {?R ?S ?T}} [Filename: RDF/union-list2.sparql]

• both have actually the same list structure
(pellet2/nov 2008: fails; pellet 2.3/sept 2009: fails)

332

REASONING OVER L ISTS (PITFALLS !)

• rdf:first and rdf:rest are (partially) ignored for reasoning (at least by pellet?); they cannot
be used for deriving other properties from it.

• they can even not be used in queries (since pellet2/nov 2008; before it just showed weird
behavior)

prefix rdf:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix : <foo://bla/>

select ?X ?Y ?Z

from <file:union-list.n3>

where {?X a rdf:List; rdf:first ?Y .

OPTIONAL {?X rdf:rest ?Z}}

[Filename: RDF/union-list3.sparql]

• jena-tool with pellet2.3: OK.

• pellet2.3: NullPointerException.

333

Extension of a class defined by a list

Given an RDF list as below, define an owl:Class :Invited which contains exactly the elements
in the list (i.e., in the above sample data, :alice, :bob, :carol, :dave).

@prefix : <foo:bla#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

Problem: when the real rdf namespace is used, rdf:first/rest are ignored

@prefix rdfL: <http://www.w3.org/1999/02/22-rdf-syntax-nsL#>. # <<<<<<<<<<<<<

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

:Invited a owl:Class.

:InvitationList rdfs:subClassOf rdfL:List.

:list1 a :InvitationList; rdfL:first :alice;

rdfL:rest [a rdfL:List; rdfL:first :bob;

rdfL:rest [a rdfL:List; rdfL:first :carol;

rdfL:rest [a rdfL:List; rdfL:first :dave; rdfL:rest rdf:nil]]].

rest of an InvitationList is also an InvitationList

:InvitationList owl:equivalentClass

[a owl:Restriction;

owl:onProperty rdfL:rest; owl:allValuesFrom :InvitationList],

[a owl:Restriction;

owl:onProperty rdfL:first; owl:allValuesFrom :Invited].

[Filename: RDF/invitation-list.n3]

prefix : <foo:bla#>

select ?I

from <file:invitation-list.n3>

where {?I a :Invited}

[Filename: RDF/invitation-list.sparql]

334

7.4 Nominals: The O in SHOIQ

TBOX VS. AB OX

DL makes a clean separation between TBox and ABox vocabulary:

• TBox: RDFS/OWL vocabulary for information about classes and properties
(further partitioned into definitions and axioms),

• ABox: Domain vocabulary and rdf:type.

RDFS/OWL allows to mix everything in a set of triples.

335

NOMINALS

• use individuals (that usually occur only in the ABox) in the TBox:

• as individuals :Italy (that are often implemented in the reasoner as unary classes) with
property owl:hasValue o
(the class of all things such that {?x property o} holds).

• in enumerated classes class owl:oneOf (o1,. . . ,on)
(class is defined to be the set {o1,. . . ,on}).

Difference to Reification

• Reification treats a class (e.g. :Penguin) or a property as an individual (:Penguin a
:Species)

– without reification, only specific RDFS and OWL properties are allowed for classes
and properties only

– reification assigns properties from an application domain to classes and properties.

• useful when talking about metadata notions,

• risk: allows for paradoxes

336

USING NOMINALS : ITALIAN CITIES

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.

@prefix it: <foo://italian/>.

it:Italy owl:sameAs <http://www.semwebtech.org/mondial/10/countries/I/>.

it:ItalianProvince owl:intersectionOf

(mon:Province

[a owl:Restriction; owl:onProperty mon:isProvinceOf;

owl:hasValue it:Italy]). # Nominal: an individual in a TBox axiom

it:ItalianCity owl:intersectionOf

(mon:City

[a owl:Restriction;

owl:onProperty mon:belongsTo;

owl:someValuesFrom it:ItalianProvince]).
[Filename: RDF/italiancities.n3]

prefix it: <foo://italian/>

select ?X

from <file:mondial-meta.n3>

from <file:mondial-europe.n3>

from <file:italiancities.n3>

where {?X a it:ItalianCity} [Filename: RDF/italiancities.sparql]

337

AN ONTOLOGY IN OWL

Consider the Italian-English-Ontology from Slide 52.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix f: <foo://bla/>.

f:Italian rdfs:subClassOf f:Person;

owl:disjointWith f:English;

owl:unionOf (f:Lazy f:LatinLover).

f:Lazy owl:disjointWith f:LatinLover.

f:English rdfs:subClassOf f:Person.

f:Gentleman rdfs:subClassOf f:English.

f:Hooligan rdfs:subClassOf f:English.

f:LatinLover rdfs:subClassOf f:Gentleman.

[Filename: RDF/italian-english.n3]

Class tree with jena -e:

owl:Thing

bla:Person

bla:English

bla:Hooligan

bla:Gentleman

bla:Italian = bla:Lazy

owl:Nothing = bla:LatinLover

• LatinLover is empty,
thus Italian ≡ Lazy.

338

Italians and Englishmen (Cont’d)

• the conclusions apply to the instance level:

@prefix : <foo://bla/>.

:mario a :Italian.

[Filename: RDF/mario.n3]

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix : <foo://bla/>

select ?C

from <file:italian-english.n3>

from <file:mario.n3>

where {:mario rdf:type ?C} [Filename: RDF/italian-english.sparql]

339

AN ONTOLOGY IN OWL

Consider the Italian-Ontology from Slide 53.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix it: <foo://italian/>.

it:Bolzano owl:sameAs

<http://www.semwebtech.org/mondial/10/countries/I/provinces/TrentinoAltoAdige/cities/Bolzano/>

it:Italian owl:intersectionOf

(it:Person

[a owl:Restriction; owl:onProperty it:livesIn;

owl:someValuesFrom it:ItalianCity]);

owl:unionOf (it:Lazy it:Mafioso it:LatinLover).

it:Professor rdfs:subClassOf it:Person.

it:Lazy owl:disjointWith it:ItalianProf;

owl:disjointWith it:Mafioso;

owl:disjointWith it:LatinLover.

it:Mafioso owl:disjointWith it:ItalianProf;

owl:disjointWith it:LatinLover.

it:ItalianProf owl:intersectionOf (it:Italian it:Professor).

it:enrico a it:Professor; it:livesIn it:Bolzano. [Filename: RDF/italian-prof.n3]

prefix : <foo://italian/>

select ?C

from <file:italian-prof.n3>

from <file:mondial-meta.n3>

from <file:mondial-europe.n3>

from <file:italiancities.n3>

where {:enrico a ?C}

[Filename: RDF/italian-prof.sparql]

340

ENUMERATED CLASSES : ONEOF

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.

<bla:MontanunionMembers> owl:intersectionOf

(mon:Country

[owl:oneOf

(<http://www.semwebtech.org/mondial/10/countries/NL/>

<http://www.semwebtech.org/mondial/10/countries/B/>

<http://www.semwebtech.org/mondial/10/countries/L/>

<http://www.semwebtech.org/mondial/10/countries/F/>

<http://www.semwebtech.org/mondial/10/countries/I/>

<http://www.semwebtech.org/mondial/10/countries/D/>)]).

<bla:Result> owl:intersectionOf (mon:Organization

[a owl:Restriction; owl:onProperty mon:hasMember;

owl:someValuesFrom <bla:MontanunionMembers>]). [Filename: RDF/montanunion.n3]

select ?X

from <file:montanunion.n3>

from <file:mondial-europe.n3>

from <file:mondial-meta.n3>

where {?X a <bla:Result>}

[RDF/montanunion.sparql]

• Query: all organizations that share a member with the Montanunion.

341

oneOf (Example Cont’d)

• previous example: “all organizations that share a member with the Montanunion.”
(DL: x ∈ ∃hasMember.MontanunionMembers)

• “all organizations where all members are also members of the Montanunion.”
(DL: x ∈ ∀hasMember.MontanunionMembers)

• The result is empty (although there is e.g. BeNeLux) due to open world: it is not known
whether there may exist additional members of e.g. BeNeLux.

• Only if the membership of Benelux is “closed”, results can be proven:

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.

<http://www.semwebtech.org/mondial/10/organizations/Benelux/>

a [a owl:Restriction;

owl:onProperty mon:hasMember; owl:cardinality 3].

<bla:SubsetOfMU> owl:intersectionOf (mon:Organization

[a owl:Restriction; owl:onProperty mon:hasMember;

owl:allValuesFrom <bla:MontanunionMembers>]).

mon:name a owl:FunctionalProperty. # not yet given in the metadata

[Filename: RDF/montanunion2.n3]

select ?X

from <file:montanunion.n3>

from <file:montanunion2.n3>

from <file:mondial-europe.n3>

from <file:mondial-meta.n3>

where {?X a <bla:SubsetOfMU>}

[RDF/montanunion2.sparql]

342

oneOf (Example Cont’d)

• “all organizations that cover all members of the Montanunion.”

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.

<bla:EUMembers> owl:equivalentClass [a owl:Restriction;

owl:onProperty mon:isMember; owl:hasValue

<http://www.semwebtech.org/mondial/10/organizations/EU/>].

[Filename: RDF/montanunion3.n3]

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

select ?X # ?Y ?Z

from <file:montanunion.n3>

from <file:montanunion3.n3>

from <file:mondial-europe.n3>

from <file:mondial-meta.n3>

where {#{?Y a <bla:EUMembers>} UNION {?Z a <bla:MontanunionMembers>} UNION

{<bla:MontanunionMembers> rdfs:subClassOf ?X}} [RDF/montanunion3.sparql]

343

ONEOF (EXAMPLE CONT’D)

Previous example:

• only for one organization

• defined a class that contains all members of the organization

• not possible to define a family of classes – one class for each organization.

• this would require a parameterized constructor :

“corg is the set of all members of org”

Second-Order Logic: each organization can be seen as a unary predicate (=set):

∀Org : Org(c) ↔ hasMember(Org, c)
or in F-Logic syntax: C isa Org :- Org:organization[hasMember->C]

yields e.g.

I(eu) = {germany, france, . . .},
I(nato) = {usa, canada, germany, . . .}
Recall that “organization” itself is a predicate:
I(organization) = {eu, nato, . . . , }
So we have again reification: organizations are both first-order-individuals and classes.

344

CONVENIENCE CONSTRUCT: OWL :A LL DIFFERENT

• owl:oneOf defines a class as a closed set;

• in owl:oneOf (x1, . . . , xn), two items may be the same (open world),

owl:AllDifferent

• Triples of the form :a owl:differentFrom :b state that two individuals are different.
For a database with n elements, one needs
(n− 1) + (n− 2) + . . .+ 2 + 1 =

∑
i=1..n i = n · (n+ 1)/2 = O(n2) such statements.

• The –purely syntactical– convenience construct

[a owl:AllDifferent; owl:members (r1 r2 . . . rn)]

provides a shorthand notation.

– it is immediately translated into the set of all statements
{ri owl:differentFrom rj | i 6= j ∈ 1..n}

– [a owl:AllDifferent; owl:members (...)]
is to be understood as a (blank node) that acts as a specification that the listed things
are different that does not actually exist in the model.

345

[SYNTAX] OWL :A LL DIFFERENT IN RDF/XML

<?xml version="1.0"?>

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:f="foo://bla/" xml:base="foo://bla/">

<owl:Class rdf:about="Foo">

<owl:equivalentClass> <owl:Class>

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="a"/> <owl:Thing rdf:about="b"/>

<owl:Thing rdf:about="c"/> <owl:Thing rdf:about="d"/>

</owl:oneOf>

</owl:Class> </owl:equivalentClass>

</owl:Class>

<owl:AllDifferent> <!-- use like a class, but is only a shorthand -->

<owl:members rdf:parseType="Collection">

<owl:Thing rdf:about="a"/> <owl:Thing rdf:about="b"/>

<owl:Thing rdf:about="c"/> <owl:Thing rdf:about="d"/>

</owl:members>

</owl:AllDifferent>

<owl:Thing rdf:about="a"> <owl:sameAs rdf:resource="b"/> </owl:Thing>

</rdf:RDF>

[Filename: RDF/alldiff.rdf]

prefix : <foo://bla/>

prefix owl:

<http://www.w3.org/2002/07/owl#>

select ?X ?P ?P2 ?V

from <file:alldiff.rdf>

where {?X a owl:AllDifferent ;

?P [?P2 ?V]}

[Filename: RDF/alldiffxml.sparql]

• AllDifferent is only intended as a kind of command to the application to add all pairwise
“different-from” statements, it does not actually introduce itself as triples:

• querying {?X a owl:AllDifferent} is actually not intended.

346

[SYNTAX] OWL :A LL DIFFERENT IN N3

Example:

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:Foo owl:equivalentClass [owl:oneOf (:a :b :c :d)].

both the following syntaxes are equivalent and correct:

[a owl:AllDifferent; owl:members (:a :b)].

[] a owl:AllDifferent; owl:members (:c :d).

:a owl:sameAs :b.

:b owl:sameAs :d.

[Filename: RDF/alldiff.n3]

prefix : <foo://bla/>

select ?X ?Y

from <file:alldiff.n3>

where {?X a owl:AllDifferent ; ?P [?P2 ?V]} [Filename: RDF/alldiff.sparql]

347

ONEOF: A TEST

• owl:oneOf defines a “closed set” (use with anonymous class; see below):

• note that in owl:oneOf (x1, . . . , xn), two items may be the same (open world),

• optional owl:AllDifferent to guarantee that (x1, . . . , xn) are pairwise distinct.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:Person owl:equivalentClass [owl:oneOf (:john :alice :bob)].

:john owl:sameAs :alice. # to show that it is consistent that they are the same

[] a owl:AllDifferent; owl:members (:john :alice :bob). # to guarantee distinctness

:name a owl:FunctionalProperty. # this also guarantees distinctness ;)

:john :name "John".

:alice :name "Alice".

:bob :name "Bob".

:d a :Person.

:d owl:differentFrom :john, :alice.

:d owl:differentFrom :bob. ### adding this makes the ontology inconsistent

[Filename: RDF/three.n3]

• Who is :d?

348

oneOf: a Test (cont’d)

Who is :d?

• check the class tree:
bla:Person - (bla:bob, bla:alice, bla:d, bla:john)

• and ask it:
prefix : <foo://bla/>

select ?N

from <file:three.n3>

where {:d :name ?N}

[Filename: RDF/three.sparql]

The answer is ?N/“Bob”.

349

