
7.2 OWL

• the OWL versions use certain DL semantics:

• Base: ALCR+ : (i.e., with transitive roles). This logic is called S (reminiscent to its
similarity to the modal logic S).

• roles can be ordered hierarchically (rdfs:subPropertyOf; H).

• OWL Lite: SHIF(D), Reasoning in EXPTIME.

• OWL DL: SHOIN (D), decidable.
Pellet (2007) implements SHOIQ(D). Decidability is in NEXPTIME (combined complexity
wrt. TBox+ABox), but the actual complexity of a given task is constrained by the maximal
used cardinality and use of nominals and inverses and behaves like the simpler classes.

(Ian Horrocks and Ulrike Sattler: A Tableau Decision Procedure for SHOIQ(D); In IJCAI,
2005, pp. 448-453; available via http://dblp.uni-trier.de)

• progress in OWL 2.0 towards SROIQ(D) and more datatypes ...

307

OWL NOTIONS

• Classes and Properties are nodes in an RDF model, their characteristics are specified by
OWL properties.

OWL Class Definitions and Axioms (Overview)

• owl:Class

• The properties of an owl:Class (including owl:Restriction) node describe the properties of
that class.
An owl:Class is required to satisfy the conjunction of all constraints (implicit: intersection)
stated by its subelements.
These characterizations are roughly the same as discussed for DL class definitions:

– Constructors: owl:unionOf, owl:intersectionOf, owl:complementOf (ALC)

– Enumeration Constructor: owl:oneOf (enumeration of elements; O)

– Axioms rdfs:subClassOf, owl:equivalentClass,

– Axiom owl:disjointWith (also expressible in ALC: C disjoint with D is equivalent to
C v ¬D)

308

OWL NOTIONS (CONT’D)

OWL Restriction Classes (Overview)

• owl:Restriction is a subclass of owl:Class, allowing for specification of a constraint on one
property.

• one property is restricted by an owl:onProperty specifier and a constraint on this property:

– (N , Q, F) owl:cardinality, owl:minCardinality or owl:maxCardinality,

– owl:allValuesFrom (∀R.C), owl:someValuesFrom (∃R.C),

– owl:hasValue (O),

– including datatype restrictions for the range (D)

• by defining an owl:Restriction as subclass of another owl:Restriction, multiple such
constraints can be defined.

309

OWL NOTIONS (CONT’D)

OWL Property Axioms (Overview)

• atomic constructor: rdf:Property

• from RDFS: rdfs:domain/rdfs:range assertions, rdfs:subPropertyOf

• Axiom owl:equivalentProperty

• Axioms: subclasses of rdf:Property:
owl:TransitiveProperty, owl:SymmetricProperty, owl:FunctionalProperty,
owl:InverseFunctionalProperty (see Slide 238)

OWL Individual Axioms (Overview)

• Individuals are modeled by unary classes

• owl:sameAs, owl:differentFrom, owl:AllDifferent(o1,. . . ,on).

310

FIRST-ORDER LOGIC EQUIVALENTS

OWL : x ∈ C DL Syntax FOL

C C C(x)

intersectionOf(C1, C2) C1 u . . . u Cn C1(x) ∧ . . . ∧ Cn(x)

unionOf(C1, C2) C1 t . . . t Cn C1(x) ∨ . . . ∨ Cn(x)

complementOf(C1) ¬C1 ¬C1(x)

oneOf(x1, . . . , xn) {x1} t . . . t {xn} x = x1 ∨ . . . ∨ x = xn

OWL : x ∈ C, Restriction on P DL Syntax FOL

someValuesFrom(C ′) ∃P.C ′ ∃y : P (x, y) ∧ C ′(y)

allValuesFrom(C ′) ∀P.C ′ ∀y : P (x, y) → C ′(y)

hasValue(y) ∃P.{y} P (x, y)

maxCardinality(n) ≤ n.P ∃≤ny : P (x, y)

minCardinality(n) ≥ n.P ∃≥ny : P (x, y)

cardinality(n) n.P ∃=ny : P (x, y)

311

FIRST-ORDER LOGIC EQUIVALENTS (CONT’D)

OWL Class Axioms for C DL Syntax FOL

rdfs:subClassOf(C1) C v C1 ∀x : C(x) → C1(x)

equivalentClass(C1) C ≡ C1 ∀x : C(x) ↔ C1(x)

disjointWith(C1) C v ¬C1 ∀x : C(x) → ¬C1(x)

OWL Individual Axioms DL Syntax FOL

x1 sameAs x2 {x1} ≡ {x2} x1 = x2

x1 differentFrom x2 {x1} v ¬{x2} x1 6= x2

AllDifferent(x1, . . . , xn)
∧

i 6=j{xi} v ¬{xj}
∧

i 6=j xi 6= xj

312

FIRST-ORDER LOGIC EQUIVALENTS (CONT’D)

OWL Properties DL Syntax FOL

P P P (x, y)

OWL Property Axioms for P DL Syntax FOL

rdfs:range(C) > v ∀P.C ∀x, y : P (x, y) → C(y)

rdfs:domain(C) C w ∃P.> ∀x, y : P (x, y) → C(x)

subPropertyOf(P2) P v P2 ∀x, y : P (x, y) → P2(x, y)

equivalentProperty(P2) P ≡ P2 ∀x, y : P (x, y) ↔ P2(x, y)

inverseOf(P2) P ≡ P−
2 ∀x, y : P (x, y) ↔ P2(y, x)

TransitiveProperty P+ ≡ P ∀x, y, z : ((P (x, y) ∧ P (y, z)) → P (x, z))

∀x, z : ((∃y : P (x, y) ∧ P (y, z)) → P (x, z))

FunctionalProperty > v ≤1P.> ∀x, y1, y2 : P (x, y1) ∧ P (x, y2) → y1 = y2

InverseFunctionalProperty > v ≤1P−.> ∀x, y1, y2 : P (y1, x) ∧ P (y2, x) → y1 = y2

313

REPRESENTATION

• most OWL constructs have a straightforward representation in RDF/XML and N3.

• OWL in RDF/XML format: usage of class, property, and individual names:

– as @rdf:about when used as identifier of a subject (owl:Class, rdf:Property and their
subclasses),

– as @rdf:resource as the object of a property.

• some constructs need auxiliary structures (collections):
owl:unionOf, owl:intersectionOf, and owl:oneOf are based on Collections

– representation in RDF/XML by rdf:parseType=”Collection”.

– representation in N3 by (x1 x2 . . . xn)

– as RDF lists: rdf:List, rdf:first, rdf:rest

314

EXAMPLE : PARADOX

<?xml version="1.0"?>

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xml:base="foo://bla/">

<owl:Class rdf:about="Paradox">

<owl:complementOf rdf:resource="Paradox"/>

</owl:Class>

</rdf:RDF>

[Filename: RDF/paradox.rdf]

• without reasoner:
jena -t -if paradox.rdf

Outputs the same RDF facts in N3 without checking consistency.

• with reasoner:
jena -t -pellet -if paradox.rdf

reads the RDF file, creates a model (and checks consistency) and in this case reports
that it is not consistent.

315

EXAMPLE : UNION AND SUBCLASS ; T-B OX REASONING

<?xml version="1.0"?>

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:f="foo://bla/"

xml:base="foo://bla/">

<owl:Class rdf:about="Person">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="Male"/>

<owl:Class rdf:about="Female"/>

</owl:unionOf>

</owl:Class>

<owl:Class rdf:about="EqToPerson">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="Female"/>

<owl:Class rdf:about="Male"/>

</owl:unionOf>

</owl:Class>

<f:Person rdf:about="unknownPerson"/>

</rdf:RDF> [Filename: RDF/union-subclass.rdf]

316

Example (Cont’d)

• print class tree (with jena -e -pellet):

owl:Thing

bla:Person = bla:EqToPerson - (bla:unknownPerson)

bla:Female

bla:Male

• Male and Female are derived to be subclasses of Person.

• Person and EqToPerson are equivalent classes.

• unknownPerson is a member of Person and EqToPerson.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix : <foo://bla/>

select ?SC ?C ?T ?CC ?CD

from <file:union-subclass.rdf>

where {{?SC rdfs:subClassOf ?C} UNION

{:unknownPerson rdf:type ?T} UNION

{?CC owl:equivalentClass ?CD}} [Filename: RDF/union-subclass.sparql]

317

EXERCISE

Consider

<owl:Class rdf:about="C1">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="A"/>

<owl:Class rdf:about="B"/>

</owl:intersectionOf>

</owl:Class>

and

<owl:Class rdf:about="C2">

<rdfs:subClassOf rdf:resource="A"/>

<rdfs:subClassOf rdf:resource="B"/>

</owl:Class>

• give mathematical characterizations of both cases.

• discuss whether both fragments are equivalent or not.

318

DISCUSSION

• Two classes are equivalent (wrt. the knowledge base) if they have the same interpretation
in every model of the KB.

• C1 is characterized to be the intersection of classes A and B.

• for C2, it is asserted that C1 is a subset of A and that it is a subset of B.

• Thus there can be some c that is in A, B, C1, but not in C2.

• Thus, C1 and C2 are not equivalent.

319

DISCUSSION: FORMAL NOTATION

The DL equivalent to the knowledge base (TBox) is

T = {C1 ≡ (A u B) , C2 v A , C2 v B}

The First-Order Logic equivalent is

KB = {∀x : A(x) ∧ B(x) ↔ C1(x) , ∀x : C2(x) → A(x) ∧ B(x)}

Thus, KB |= ∀x : C2(x) → A(x) ∧ B(x).

Or, in DL: T |= C2 v C1.

On the other hand, M = (D, I) with D = {c} and

I(A) = {c}, I(B) = {c}, I(C1) = {c}, I(C2) = ∅

is a model of KB (wrt. first-order logic) and T (wrt. DL) that shows that C1 and C2 are not
equivalent.

320

OWL :RESTRICTION – EXAMPLE

<?xml version="1.0"?>

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:f="foo://bla/"

xml:base="foo://bla/">

<owl:Class rdf:about="Parent">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Person"/>

<owl:Restriction>

<owl:onProperty rdf:resource="hasChild"/>

<owl:minCardinality>1</owl:minCardinality>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<f:Person rdf:about="john">

<f:hasChild><f:Person rdf:about="alice"/></f:hasChild>

</f:Person>

</rdf:RDF>
[Filename: RDF/restriction.rdf]

prefix : <foo://bla/>

select ?C

from <file:restriction.rdf>

where {:john a ?C}

[Filename: RDF/restriction.sparql]

321

RESTRICTIONS ONLY AS BLANK NODES

Consider the following (bad) specification:

:badIdea a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1.

This is not allowed in OWL-DL.

Correct specification:

:badIdea owl:equivalentClass

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].

Why? ... there are many reasons, for one of them see next slide.

322

Restrictions Only as Blank Nodes (Cont’d)

A class with two such specifications:

owl:Restriction :hasChild 1

:badIdea
a owl:onProperty

owl:minCardinality

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:badIdea a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1.

:badIdea a owl:Restriction; owl:onProperty :livesIn; owl:someValuesFrom :GermanCity.

[Filename: RDF/badIdea.n3]

• call jena -t -pellet -if badIdea.n3:

owl:Restriction :hasChild 1

:badIdea

:livesIn :GermanCity

a owl:onProperty
owl:minCardinality

owl:onProperty
owl:someValuesFrom

The two restriction specifications are messed up.

323

Restrictions Only as Blank Nodes (Cont’d)

• Thus specify each Restriction specification with a separate blank node:

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:TwoRestrictions owl:intersectionOf

([a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]

[a owl:Restriction; owl:onProperty :livesIn; owl:someValuesFrom :GermanCity.]) .

[Filename: RDF/twoRestrictions.n3]

The DL equivalent: TwoRestrictions ≡ (∃ hasChild.>) u (∃ livesIn.GermanCity)

Another reason:

:AnotherBadDesignExample a owl:Restriction;

owl:onProperty :hasChild; owl:minCardinality 1;

rdfs:subClassOf :Person.

... mixes the definition of the Restriction with an axiom; the meaning is unclear (and the
outcome is up to the strategy of the Reasoner). Obviously, the designer intended to specify
an intersection, ABDE ≡ ∃ ≥ 1 hasChild.> u Person, but the DL translation actually
specifies a definition and an assertive axiom: ABDE ≡ ∃ ≥ 1 hasChild.> ∧ ABDE v Person

324

MULTIPLE RESTRICTIONS ON A PROPERTY

• “All persons that have at least two children, and one of them is male”

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix : <foo://bla/>.

Test: multiple restrictions: the cardinality condition is then ignored

:HasTwoChildrenOneMale owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild;

owl:someValuesFrom :Male; owl:minCardinality 2]).

:name a owl:FunctionalProperty.

:Male rdfs:subClassOf :Person; owl:disjointWith :Female.

:Female rdfs:subClassOf :Person.

:kate a :Female; :name "Kate"; :hasChild :john.

:john a :Male; :name "John";

:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"].

:sue a :Female; :name "Sue";

:hasChild [a :Female; :name "Anne"], [a :Female; :name "Barbara"].

[Filename: RDF/restriction-double.n3]

prefix : <foo://bla/>

select ?X

from <file:restriction-double.n3>

where {?X a :HasTwoChildrenOneMale}

[Filename: RDF/restriction-double.sparql]

• The cardinality condition is ignored in this case (Result: John and Sue).

• Solution: intersection of restrictions

325

MULTIPLE RESTRICTIONS ON A PROPERTY

• “All persons that have at least two children, and one of them is male”

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix : <foo://bla/>.

:HasTwoChildrenOneMale owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:someValuesFrom :Male]

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 2]).

:name a owl:FunctionalProperty.

:Male rdfs:subClassOf :Person; owl:disjointWith :Female.

:Female rdfs:subClassOf :Person.

:kate a :Female; :name "Kate"; :hasChild :john.

:john a :Male; :name "John";

:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"].

:sue a :Female; :name "Sue";

:hasChild [a :Female; :name "Anne"], [a :Female; :name "Barbara"].

[Filename: RDF/intersect-restrictions.n3]

prefix : <foo://bla/>

select ?X

from <file:intersect-restrictions.n3>

where {?X a :HasTwoChildrenOneMale}

[Filename: RDF/intersect-restrictions.sparql]

• Note: this is different from Qualified Range Restrictions such as “All persons that have at
least two male children” – see Slide 358.

326

USE OF A DERIVED CLASS

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix : <foo://bla/names#>.

:kate :name "Kate"; :child :john.

:john :name "John"; :child :alice.

:alice :name "Alice".

:Parent a owl:Class; owl:equivalentClass

[a owl:Restriction; owl:onProperty :child; owl:minCardinality 1].

:Grandparent owl:equivalentClass

[a owl:Restriction; owl:onProperty :child; owl:someValuesFrom :Parent].

[Filename: RDF/grandparent.n3]

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix : <foo://bla/names#>

select ?A ?B

from <file:grandparent.n3>

where {{?A a :Parent} UNION

{?B a :Grandparent} UNION

{:Grandparent rdfs:subClassOf :Parent}}

[Filename: RDF/grandparent.sparql]

327

UNION AS A t B ≡ ¬((¬A) u (¬B))

@prefix : <foo://bla/>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

:A rdf:type owl:Class. :B rdf:type owl:Class.

:Union1 owl:unionOf (:A :B).

:CompA owl:complementOf :A. :CompB owl:complementOf :B.

:IntersectComps owl:intersectionOf (:CompA :CompB).

:Union2 owl:complementOf :IntersectComps.

:x rdf:type :A. :x rdf:type :B.

:y rdf:type :CompA. # a negative assertion y not in A would be better -> OWL 2

:y rdf:type :CompB. [Filename: RDF/union.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix : <foo://bla/>

select ?X ?C ?D

from <file:union.n3>

where {{?X rdf:type ?C} UNION {:Union1 owl:equivalentClass ?D}}

[Filename: RDF/union.sparql]

328

NON-EXISTENCE OF A PROPERTY

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/names#>.

:kate a :Person; :name "Kate"; :hasChild :john.

:john a :Person; :name "John"; :hasChild :alice, :bob.

:alice a :Person; :name "Alice".

:bob a :Person; :name "Bob".

:name a owl:FunctionalProperty.

:ChildlessA owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:maxCardinality 0]).

:ChildlessB owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:allValuesFrom owl:Nothing]).

:ParentA owl:intersectionOf (:Person [owl:complementOf :ChildlessA]).

:ParentB owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]).

[Filename: RDF/childless.n3]

prefix : <foo://bla/names#>

select ?X ?Y

from <file:childless.n3>

where {{?X a :ChildlessA}

union {?Y a :ParentA}}

[Filename: RDF/childless.sparql]

• export class tree: ChildlessA and ChildlessB are equivalent,

• note: due to the Open World Assumption, both classes are empty.

• Persons where no children are known are neither in ChildlessA or in Parent!

329

TBOX VS. AB OX

DL makes a clean separation between TBox and ABox vocabulary:

• TBox: RDFS/OWL vocabulary for information about classes and properties
(further partitioned into definitions and axioms),

• ABox: Domain vocabulary and rdf:type.

RDFS/OWL allows to mix everything in a set of triples.

330

NOMINALS

• use individuals (that usually occur only in the ABox) in the TBox:

• as individuals :Italy (that are often implemented in the reasoner as unary classes) with
property owl:hasValue o
(the class of all things such that {?x property o} holds).

• in enumerated classes class owl:oneOf (o1,. . . ,on)
(class is defined to be the set {o1,. . . ,on}).

Difference to Reification

• Reification treats a class (e.g. :Penguin) or a property as an individual (:Penguin a
:Species)

– without reification, only specific RDFS and OWL properties are allowed for classes
and properties only

– reification assigns properties from an application domain to classes and properties.

• useful when talking about metadata notions,

• risk: allows for paradoxes

331

USING NOMINALS : ITALIAN CITIES

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.

@prefix it: <foo://italian/>.

it:Italy owl:sameAs <http://www.semwebtech.org/mondial/10/countries/I/>.

it:ItalianProvince owl:intersectionOf

(mon:Province

[a owl:Restriction; owl:onProperty mon:isProvinceOf;

owl:hasValue it:Italy]). # Nominal: an individual in a TBox axiom

it:ItalianCity owl:intersectionOf

(mon:City

[a owl:Restriction;

owl:onProperty mon:belongsTo;

owl:someValuesFrom it:ItalianProvince]).
[Filename: RDF/italiancities.n3]

prefix it: <foo://italian/>

select ?X

from <file:mondial-meta.n3>

from <file:mondial-europe.n3>

from <file:italiancities.n3>

where {?X a it:ItalianCity} [Filename: RDF/italiancities.sparql]

332

AN ONTOLOGY IN OWL

Consider the Italian-English-Ontology from Slide 109.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix f: <foo://bla/>.

f:Italian rdfs:subClassOf f:Person;

owl:disjointWith f:English;

owl:unionOf (f:Lazy f:LatinLover).

f:Lazy owl:disjointWith f:LatinLover.

f:English rdfs:subClassOf f:Person.

f:Gentleman rdfs:subClassOf f:English.

f:Hooligan rdfs:subClassOf f:English.

f:LatinLover rdfs:subClassOf f:Gentleman.

[Filename: RDF/italian-english.n3]

Class tree with jena -e:

owl:Thing

bla:Person

bla:English

bla:Hooligan

bla:Gentleman

bla:Italian = bla:Lazy

owl:Nothing = bla:LatinLover

• LatinLover is empty,
thus Italian ≡ Lazy.

333

Italians and Englishmen (Cont’d)

• the conclusions apply to the instance level:

@prefix : <foo://bla/>.

:mario a :Italian.

[Filename: RDF/mario.n3]

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix : <foo://bla/>

select ?C

from <file:italian-english.n3>

from <file:mario.n3>

where {:mario rdf:type ?C} [Filename: RDF/italian-english.sparql]

334

AN ONTOLOGY IN OWL

Consider the Italian-Ontology from Slide 110.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix it: <foo://italian/>.

it:Bolzano owl:sameAs

<http://www.semwebtech.org/mondial/10/countries/I/provinces/TrentinoAltoAdige/cities/Bolzano/>.

it:Italian owl:intersectionOf

(it:Person

[a owl:Restriction; owl:onProperty it:livesIn;

owl:someValuesFrom it:ItalianCity]);

owl:unionOf (it:Lazy it:Mafioso it:LatinLover).

it:Professor rdfs:subClassOf it:Person.

it:Lazy owl:disjointWith it:ItalianProf;

owl:disjointWith it:Mafioso;

owl:disjointWith it:LatinLover.

it:Mafioso owl:disjointWith it:ItalianProf;

owl:disjointWith it:LatinLover.

it:ItalianProf owl:intersectionOf (it:Italian it:Professor).

it:enrico a it:Professor; it:livesIn it:Bolzano. [Filename: RDF/italian-prof.n3]

prefix : <foo://italian/>

select ?C

from <file:italian-prof.n3>

from <file:mondial-meta.n3>

from <file:mondial-europe.n3>

from <file:italiancities.n3>

where {:enrico a ?C}

[Filename: RDF/italian-prof.sparql]

335

ENUMERATED CLASSES : ONEOF

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.

<bla:MontanunionMembers> owl:intersectionOf

(mon:Country

[owl:oneOf

(<http://www.semwebtech.org/mondial/10/countries/NL/>

<http://www.semwebtech.org/mondial/10/countries/B/>

<http://www.semwebtech.org/mondial/10/countries/L/>

<http://www.semwebtech.org/mondial/10/countries/F/>

<http://www.semwebtech.org/mondial/10/countries/I/>

<http://www.semwebtech.org/mondial/10/countries/D/>)]).

<bla:Result> owl:intersectionOf (mon:Organization

[a owl:Restriction; owl:onProperty mon:hasMember;

owl:someValuesFrom <bla:MontanunionMembers>]). [Filename: RDF/montanunion.n3]

select ?X

from <file:montanunion.n3>

from <file:mondial-europe.n3>

from <file:mondial-meta.n3>

where {?X a <bla:Result>}

[RDF/montanunion.sparql]

• Query: all organizations that share a member with the Montanunion.

336

ONEOF (EXAMPLE CONT’D)

• previous example: “all organizations that share a member with the Montanunion.”
(DL: x ∈ ∃hasMember.MontanunionMembers)

• “all organizations where all members are also members of the Montanunion.”
(DL: x ∈ ∀hasMember.MontanunionMembers)

The result is empty (although there is e.g. BeNeLux) due to open world: it is not known
whether there may exist additional members of e.g. BeNeLux.
Only if the membership is “closed”, results can be proven:

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.

<http://www.semwebtech.org/mondial/10/organizations/Benelux/>

a [a owl:Restriction;

owl:onProperty mon:hasMember; owl:cardinality 3].

<bla:SupersetOfMU> owl:intersectionOf (mon:Organization

[a owl:Restriction; owl:onProperty mon:hasMember;

owl:allValuesFrom <bla:MontanunionMembers>]).

mon:name a owl:FunctionalProperty. # not yet given in the metadata

[Filename: RDF/montanunion2.n3]

select ?X

from <file:montanunion.n3>

from <file:montanunion2.n3>

from <file:mondial-europe.n3>

from <file:mondial-meta.n3>

where {?X a <bla:SupersetOfMU>}

[RDF/montanunion2.sparql]

337

ONEOF (EXAMPLE CONT’D)

• “all organizations that cover all members of the Montanunion.”
(DL: x ∈ ∀hasMember.MontanunionMembers)
owl:oneOf is closed, so there is no problem with the universal quantifier.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.

<bla:EUMembers> owl:equivalentClass [a owl:Restriction;

owl:onProperty mon:isMember; owl:hasValue

<http://www.semwebtech.org/mondial/10/organizations/EU/>].

[Filename: RDF/montanunion3.n3]

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

select ?X # ?Y ?Z

from <file:montanunion.n3>

from <file:montanunion3.n3>

from <file:mondial-europe.n3>

from <file:mondial-meta.n3>

where {#{?Y a <bla:EUMembers>} UNION {?Z a <bla:MontanunionMembers>} UNION

{<bla:MontanunionMembers> rdfs:subClassOf ?X}} [RDF/montanunion3.sparql]

338

ONEOF (EXAMPLE CONT’D)

Previous example:

• only for one organization

• defined a class that contains all members of the organization

• not possible to define a family of classes – one class for each organization.

• this would require a parameterized constructor :

“corg is the set of all members of org”

Second-Order Logic: each organization can be seen as a unary predicate (=set):

∀Org : Org(c) ↔ hasMember(Org, c)
or in F-Logic syntax: C isa Org :- Org:organization[hasMember->C]

yields e.g.

I(eu) = {germany, france, . . .},
I(nato) = {usa, canada, germany, . . .}

Recall that “organization” itself is a predicate:
I(organization) = {eu, nato, . . . , }

So we have again reification: organizations are both first-order-individuals and classes.

339

CONVENIENCE CONSTRUCT: OWL :A LL DIFFERENT

• owl:oneOf defines a class as a closed set;

• in owl:oneOf (x1, . . . , xn), two items may be the same (open world),

owl:AllDifferent

• Triples of the form :a owl:differentFrom :b state that two individuals are different.
For a database with n elements, one needs
(n − 1) + (n − 2) + . . . + 2 + 1 =

∑
i=1..n i = n · (n + 1)/2 = O(n2) such statements.

• The –purely syntactical– convenience construct

[a owl:AllDifferent; owl:members (r1 r2 . . . rn)]

provides a shorthand notation.

– it is immediately translated into the set of all statements
{ri owl:differentFrom rj | i 6= j ∈ 1..n}

– [a owl:AllDifferent; owl:members (...)]
is to be understood as a (blank node) that acts as a specification that the listed things
are different that does not actually exist in the model.

340

[SYNTAX] OWL :A LL DIFFERENT IN RDF/XML

<?xml version="1.0"?>

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:f="foo://bla/" xml:base="foo://bla/">

<owl:Class rdf:about="Foo">

<owl:equivalentClass> <owl:Class>

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="a"/> <owl:Thing rdf:about="b"/>

<owl:Thing rdf:about="c"/> <owl:Thing rdf:about="d"/>

</owl:oneOf>

</owl:Class> </owl:equivalentClass>

</owl:Class>

<owl:AllDifferent> <!-- use like a class, but is only a shorthand -->

<owl:members rdf:parseType="Collection">

<owl:Thing rdf:about="a"/> <owl:Thing rdf:about="b"/>

<owl:Thing rdf:about="c"/> <owl:Thing rdf:about="d"/>

</owl:members>

</owl:AllDifferent>

<owl:Thing rdf:about="a"> <owl:sameAs rdf:resource="b"/> </owl:Thing>

</rdf:RDF>

[Filename: RDF/alldiff.rdf]

prefix : <foo://bla/>

prefix owl:

<http://www.w3.org/2002/07/owl#>

select ?X ?Y

from <file:alldiff.rdf>

where {?X a :Foo}

[Filename: RDF/alldiffxml.sparql]

• AllDifferent is only intended as a kind of command to the application to add all pairwise
“different-from” statements, it does not actually introduce itself as triples:

• trying to add things like {?X a owl:AllDifferent} to the query results in an error.

341

[SYNTAX] OWL :A LL DIFFERENT IN N3

Example:

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:Foo owl:equivalentClass [owl:oneOf (:a :b :c :d)].

noth the following syntax are equivalent and correct:

[a owl:AllDifferent; owl:members (:a :b)].

[] a owl:AllDifferent; owl:members (:c :d).

:a owl:sameAs :b.

:b owl:sameAs :d.

[Filename: RDF/alldiff.n3]

prefix : <foo://bla/>

select ?X ?Y

from <file:alldiff.n3>

where {?X a :Foo} [Filename: RDF/alldiff.sparql]

342

ONEOF: A TEST

• owl:oneOf defines a “closed set” (use with anonymous class; see below):

• note that in owl:oneOf (x1, . . . , xn), two items may be the same (open world),

• optional owl:AllDifferent to guarantee that (x1, . . . , xn) are pairwise distinct.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:Person owl:equivalentClass [owl:oneOf (:john :alice :bob)].

:john owl:sameAs :alice. # to show that it is consistent that they are the same

[] a owl:AllDifferent; owl:members (:john :alice :bob). # to guarantee distinctness

:name a owl:FunctionalProperty. # this also guarantees distinctness ;)

:john :name "John".

:alice :name "Alice".

:bob :name "Bob".

:d a :Person.

:d owl:differentFrom :john; owl:differentFrom :alice.

:d owl:differentFrom :bob. ### adding this makes the ontology inconsistent

[Filename: RDF/three.n3]

• Who is :d?

343

oneOf: a Test (cont’d)

Who is :d?

• check the class tree:
bla:Person - (bla:bob, bla:alice, bla:d, bla:john)

• and ask it:
prefix : <foo://bla/>

select ?N

from <file:three.n3>

where {:d :name ?N}

[Filename: RDF/three.sparql]

The answer is ?N/“Bob”.

344

ANSWER SETS TO QUERIES AS AD-HOC CONCEPTS

• all organizations whose headquarter city is a capital:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <http://www.semwebtech.org/mondial/10/meta#> .

:CountryCapital owl:intersectionOf

(:City [a owl:Restriction; owl:onProperty :isCapitalOf;

owl:someValuesFrom :Country]).

<bla:Result> owl:intersectionOf

(:Organization [a owl:Restriction; owl:onProperty :hasHeadq;

owl:someValuesFrom :CountryCapital]). [Filename: RDF/organizations-query.n3]

prefix : <http://www.semwebtech.org/mondial/10/meta#>

select ?A ?N

from <file:organizations-query.n3>

from <file:mondial-europe.n3>

from <file:mondial-meta.n3>

where {?X a <bla:Result> . ?X :abbrev ?A . ?X :hasHeadq ?C . ?C :name ?N}

[Filename:RDF/organizations-query.sparql]

345

HOW TO DEAL WITH OWL :ALLVALUES FROM IN AN OPEN WORLD?

• “forall items” is only applicable if additional items can be excluded (⇒ locally closed
predicate/property),

• often, RDF data is generated from a database,

• certain predicates can be closed by defining restriction classes with maxCardinality.

346

OWL :ALLVALUES FROM

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/names#>.

[a :Male; a :ThreeChildrenParent; :name "John";

:child [a :Female; :name "Alice"], [a :Male; :name "Bob"],

[a :Female; :name "Carol"]].

[a :Female; a :TwoChildrenParent; :name "Sue";

:child [a :Female; :name "Anne";], [a :Female; :name "Barbara"]].

:name a owl:FunctionalProperty.

:OneChildParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :child; owl:cardinality 1].

:TwoChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :child; owl:cardinality 2].

:ThreeChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :child; owl:cardinality 3].

:OnlyFemaleChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :child; owl:allValuesFrom :Female].

[Filename: RDF/allvaluesfrom.n3]

prefix : <foo://bla/names#>

select ?N

from <file:allvaluesfrom.n3>

where {?X :name ?N .

?X a :OnlyFemaleChildrenParent}

[Filename: RDF/allvaluesfrom.sparql]

347

EXAMPLE : W IN-MOVE-GAME IN OWL

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:Node a owl:Class; owl:equivalentClass

[a owl:Class; owl:oneOf (:a :b :c :d :e :f :g :h :i :j :k :l :m)].

:edge a owl:ObjectProperty; rdfs:domain :Node; rdfs:range :Node.

:out a owl:DatatypeProperty.

:a a :Node; :out 2; :edge :b, :f.

:b a :Node; :out 3; :edge :c, :g, :k.

:c a :Node; :out 2; :edge :d, :l.

:d a :Node; :out 1; :edge :e.

:e a :Node; :out 1; :edge :a.

:f a :Node; :out 0.

:g a :Node; :out 2; :edge :i, :h.

:h a :Node; :out 1; :edge :m.

:i a :Node; :out 1; :edge :j.

:j a :Node; :out 0.

:k a :Node; :out 0.

:l a :Node; :out 1; :edge :d.

:m a :Node; :out 1; :edge :h.
[Filename: RDF/winmove-graph.n3]

a b k

f e c g

d l h i

m j

348

Win-Move-Game in OWL – the Game Axioms

“If a player cannot move, he loses.”

Which nodes are WinNodes, which one are LoseNodes (i.e., the player who has to move
wins/loses)?

• if a player can move to some LoseNode (for the other), he will win.

• if a player can move only to WinNodes (for the other), he will lose.

• recall that there can be nodes that are neither WinNodes nor LoseNodes.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:WinNode a owl:Class; owl:intersectionOf (:Node

[a owl:Restriction; owl:onProperty :edge; owl:someValuesFrom :LoseNode]).

:LoseNode a owl:Class; owl:intersectionOf (:Node

[a owl:Restriction; owl:onProperty :edge; owl:allValuesFrom :WinNode]).

[Filename: RDF/winmove-axioms.n3]

349

Win-Move-Game in OWL – Closure

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla/>.

:DeadEndNode a owl:Class; rdfs:subClassOf :Node;

owl:equivalentClass [a owl:Restriction; owl:onProperty :out; owl:hasValue 0],

[a owl:Restriction; owl:onProperty :edge; owl:cardinality 0].

:OneExitNode a owl:Class; rdfs:subClassOf :Node;

owl:equivalentClass [a owl:Restriction; owl:onProperty :out; owl:hasValue 1],

[a owl:Restriction; owl:onProperty :edge; owl:cardinality 1].

:TwoExitsNode a owl:Class; rdfs:subClassOf :Node;

owl:equivalentClass [a owl:Restriction; owl:onProperty :out; owl:hasValue 2],

[a owl:Restriction; owl:onProperty :edge; owl:cardinality 2].

:ThreeExitsNode a owl:Class; rdfs:subClassOf :Node;

owl:equivalentClass [a owl:Restriction; owl:onProperty :out; owl:hasValue 3],

[a owl:Restriction; owl:onProperty :edge; owl:cardinality 3].

[Filename: RDF/winmove-closure.n3]

350

Win-Move-Game in OWL: DeadEndNodes

Prove that DeadEndNodes are LoseNodes:

• obvious: Player cannot move from there

• exercise: give a formal (Tableau) proof

• The OWL Reasoner does it:

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix : <foo://bla/>

select ?X

from <file:winmove-axioms.n3>

from <file:winmove-closure.n3>

where {:DeadEndNode rdfs:subClassOf :LoseNode}

[Filename: RDF/deadendnodes.sparql]

The answer contains an (empty) tuple which means “yes”.

351

Win-Move-Game in OWL

prefix : <foo://bla/>

select ?W ?L ?DE

from <file:winmove-graph.n3>

from <file:winmove-axioms.n3>

from <file:winmove-closure.n3>

where {{?W a :WinNode} UNION

{?L a :LoseNode} UNION

{?DE a :DeadEndNode}}

[Filename: RDF/winmove.sparql]

Exercise

• Is it possible to characterize DrawNodes in OWL?

352

