
Chapter 5
RDF Schema (and a bit of OWL)

Schema Information and Reasoning in an Open World

207

ONTOLOGIES

Schema languages, metadata languages, modeling languages, ontologies ...

Classical Data Models: seen as Specification and Constraints

• every schema description defines a (more or less complete) ontology:

• ER Model (1976, entity types, attributes, relationships with cardinalities),

• UML (1997, classes with subclasses, associations with cardinalities, OCL assertions to
schema components etc.).

Knowledge Representation

Metadata provides additional information about resources of a type, or about a property.

• F-Logic signatures (1989),

• ... RDFS and OWL (Web Ontology Language)

208

SCHEMA INFORMATION IN AN OPEN WORLD

• schema describes

– allowed properties for an object,

– datatype constraints for literal properties [Here: XSD literal types],

– allowed types/classes for reference properties,

– cardinality constraints.

Closed World: Schema as Constraints

• a database must satisfy the constraints. It must be a model of the formulas – the given
data alone must be a model.

Open World: potentially incomplete knowledge

• schema information as additional information

• since the world must be a model of the schema, some information can be derived from
the schema.

• complain only if information is contradictory to the schema.

209

METADATA INFORMATION : TYPES, PROPERTIES, AND ONTOLOGIES

• Types and properties (i.e., everything that is used in a namespace) are not only “names”,
but are resources “somewhere in the Web”, identified by a URI (used in RDF or in XML
via namespaces).

⇒ a domain ontology describes the notions used in a namespace.

Schema and Ontology Information

• what types/classes are there,

• subclass information,

• what properties objects of a given type must/can have,

• to what types some property is applicable and what range it has,

• cardinalities of properties,

• default values,

• that some properties are transitive, symmetric, subproperties of another or excluding
each other etc.

210

REASONING WITH RDF, RDF SCHEMA AND OWL

• theoretical details will be discussed later. The underlying thing is Description Logic (DL)
Reasoning

• there are DL reasoners available for the Jena Framework:

– an internal one:
jena -q -qf sparql-file -inf

for invoking SPARQL with its internal reasoner

– an external one:
(integrated into the semweb.jar used in the lecture as plug-in)
jena -q -qf sparql-file -inf -r pellet

for invoking SPARQL with the Pellet reasoner class

– external ones as Web Services ...

211

ASIDE: DIG INTERFACE - DESCRIPTION LOGIC IMPLEMENTATION GROUP

• Web page: http://dl.kr.org/dig/

• agreed “tell-and-ask-interface” of DL Reasoners as Web Service:

• tell them the facts and ask them queries, or for the whole inferred model

• e.g. supported by “Pellet”

• URL for download see Lecture Web page

may@dbis01:~/SemWeb-Tools/pellet-1.3$./pellet-dig.sh &

PelletDIGServer Version 1.3 (April 17 2006)

Port: 8081

• invoke the SPARQL Jena interface by
jena -q -qf sparql-file -inf -r reasoner-url

(e.g.: http://localhost:8081)

• note: the tell-functionality seems to transfer only part of the knowledge → incomplete
reasoning → currently not recommended.

212

5.1 RDF Schema Notions

• RDF is the instance level

• XML: DTDs and XML Schema for describing the structure/schema of the instance

• RDF Schema: stronger than DTD/XML – “semantic-level”

– describe the structure of the RDF instance (i.e. the “schema” of the RDF graph, not of
the RDF/XML file):

– describes the schema semantically in terms of an (lightweight) ontology (OWL
provides then much more features):

∗ class/subclass
∗ property/subproperty, domains and ranges

213

PREDEFINED RDFS CLASSES

The obvious ones

rdfs:Resource is “everything”. All things described by RDF are called resources, and are
instances of the class rdfs:Resource. This is the class of everything. All other classes are
subclasses of this class. rdfs:Resource is an instance of rdfs:Class.

rdfs:Class : all things (resources and literals) are of rdf:type of some rdfs:Class.
rdf:Properties have an rdfs:Class as domain and another rdfs:Class or rdfs:Datatype as
range.
mon:Country rdf:type rdfs:Class.

An rdfs:Class is simply a resource X that is of (X rdf:type rdfs:Class). Usually, class
names start with a capital letter.

Later, owl:Class will provide more interesting concepts of intensionally defined classes –
like “the class father is the class of things that are male and have children”.

rdf:Property is a subset of rdfs:Resource that contains all properties.

mon:capital rdf:type rdf:Property.

Usually, property names start with a non-capital letter.

[note: it’s rdf:Property, not rdfs:Property!]

214

PREDEFINED RDFS CLASSES

rdfs:Datatype is the class of datatypes.

rdfs:Literal is the subclass of rdfs:Resource that contains all literals (i.e., values of
rdfs:Datatypes).
Literals do (usually) not have a URI, but a literal representation (as already discussed for
integers and strings).

E.g. the following holds

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
xsd:int rdf:type rdfs:Datatype .
“42”̂ <̂http://www.w3.org/2001/XMLSchema#int>rdf:type xsd:int.

• There is another rdfs:Datatype: rdf:XMLLiteral which will be discussed later for RDF/XML.

• Note that reification takes place here: rdfs:Datatype is both an instance of and a subclass
of rdfs:Class! Each instance of rdfs:Datatype is a subclass of rdfs:Literal.

215

SEMANTICS OF SUBCLASSES AND SUBPROPERTIES

rdfs:subClassOf specifies that one rdfs:Class is an rdfs:subClassOf another:

for any model M of the RDFS model theory,

M |= ∀C1, C2 : (holds(C1, rdfs:subClassOf, C2) →

(∀x : (holds(x, rdf:type, C1) → holds(x, rdf:type, C2))))

rdfs:subPropertyOf specifies that one rdf:Property is an rdfs:subPropertyOf another:

M |= ∀P1, P2 : (holds(P1, rdfs:subPropertyOf, P2) →

(∀x, y : (holds(x, P1, y) → holds(x, P2, y))))

216

SEMANTICS OF DOMAIN AND RANGE

rdfs:domain specifies that the domain of an rdf:Property is a certain rdfs:Class:

M |= ∀C, P : (holds(P, rdfs:domain, C) →

(∀x : (∃y : holds(x, P, y)) → holds(x, rdf:type, C)))

rdfs:range specifies that the range of an rdf:Property is a certain rdfs:Class:

M |= ∀C, P : (holds(P, rdfs:range, C) →

(∀y : (∃x : holds(x, P, y)) → holds(y, rdf:type, C)))

217

INFERENCE RULES

• The above are built-in inference rules of the RDFS Model Theory

• until now, the SPARQL query language was applied to pure RDF facts (extensional
knowledge)

• for the inference rules (= intensional knowledge), a reasoner is required.

• Queries are then not evaluated against the fact base, but against the model of the
factbase and the rules.

218

SUBCLASS , DOMAIN , RANGE : EXAMPLE

@prefix : <foo://bla/names#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

:has_cat rdfs:domain :Person .

:has_cat rdfs:range :Cat .

:Person rdfs:subClassOf :LivingBeing .

:Cat rdfs:subClassOf :LivingBeing .

<foo://bla/persons/john> :has_cat <foo://bla/cats/garfield>.

<foo://bla/persons/mary> rdf:type :Person.

[Filename: RDF/subclass.n3]

prefix : <foo://bla/names#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?X ?T

from <file:subclass.n3>

where {?X rdf:type ?T}

[Filename: RDF/subclass.sparql]

• activate the (internal) reasoner when invoking Jena.

219

SUBCLASS , DOMAIN , RANGE : EXAMPLE (CONT’D)

Recall the previous example. Given the following facts:

:has_cat rdfs:domain :Person .

:has_cat rdfs:range :Cat .

:Person rdfs:subClassOf :LivingBeing .

:Cat rdfs:subClassOf :LivingBeing .

<foo://bla/persons/john> :has_cat <foo://bla/cats/garfield>.

<foo://bla/persons/mary> rdf:type :Person.

The domain/range information does not act as a constraint, but as information. From that
knowledge, the following facts can be inferred :

• :has cat implies that the subject (John) is a Person, and the object (Garfield) is a cat,

• both are thus LivingBeings.

220

INCONSISTENT INFORMATION

@prefix : <foo://bla/names#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

:age rdfs:range xsd:int.

<foo://bla/cats/garfield> rdf:type :Cat.

<foo://bla/persons/john> :age <foo://bla/cats/garfield>.

[Filename: RDF/range-constraint.n3]

prefix : <foo://bla/names#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix xsd: <http://www.w3.org/2001/XMLSchema#>

select ?X

from <file:range-constraint.n3>

where {{?X rdf:type :Cat} . {?X rdf:type xsd:int} }

[Filename: RDF/range-constraint.sparql]

• the outcome depends on the reasoner that is used. Pellet ignores the assignment of an
object to a DatatypeProperty (which means that it derives that age is a
DatatypeProperty!).

221

SUBPROPERTIES

• outlook: combine it with owl:TransitiveProperty.

@prefix : <foo://bla/names#> .

@prefix person: <foo://bla/persons/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

person:john :child person:alice, person:bob.

person:kate :child person:john.

:child rdfs:subPropertyOf :descendant.

:descendant rdf:type owl:TransitiveProperty.

[Filename: RDF/descendants.n3]

prefix : <foo://bla/names#>

select ?X ?Y

from <file:descendant.n3>

where {?X :descendant ?Y}

[Filename: RDF/descendants.sparql]

222

COMPARISON

SQL

• queries only against the database (no intensional knowledge),

• equivalent to tree expressions in relational algebra, based on set theory,

• formal semantics can be given purely syntactically with the algebra,

⇒ in the DB lecture, we did not need logic.

• equivalent to the relational calculus, semantics of queries can be given by the calculus.
Equivalent to nonrecursive Datalog (cf. Slide 95) with “negation as failure” (top-down)
stratification (bottom-up).

SPARQL + RDFS

• only restricted negation

• RDFS: built-in rules (positive, recursive Datalog)

• requires fixpoint computation (recursion by subclasses and subproperties)

• SPARQL: positive, nonrecursive Datalog

• intuitive bottom-up semantics

223

RDFS AXIOMATIC TRIPLES

See RDF Semantics and Model Theory, http://www.w3.org/TR/rdf-mt.

Axioms: expected to hold in any RDFS model:

rdf:type rdfs:domain rdfs:Resource .

rdfs:domain rdfs:domain rdf:Property .

rdfs:range rdfs:domain rdf:Property .

rdfs:subPropertyOf rdfs:domain rdf:Property .

rdfs:subClassOf rdfs:domain rdfs:Class .

rdf:type rdfs:range rdfs:Class .

rdfs:domain rdfs:range rdfs:Class .

rdfs:range rdfs:range rdfs:Class .

rdfs:subPropertyOf rdfs:range rdf:Property .

rdfs:subClassOf rdfs:range rdfs:Class .

rdfs:Datatype rdfs:subClassOf rdfs:Class .

... and some more.

224

USING RDF IN THE WORLD WIDE WEB

• The (Semantic) Web is not seen as a collection of documents, but as a collection of
correlated information (described via documents)

• using RDF, everybody can make statements about any resource
(cf. link-bases in XLink)

– incremental, world wide data and meta-data

– distributed RDFS,

– distributed RDF,

– often using only virtual resources (URIs).

• not assumed that complete information about any resource is available.

• Open world, no notion of (implicit) negation.

225

REASONING BASED ON RDFS

• RDF/RDFS model theory as above.

• incomplete knowledge when reasoning: “open world assumption”

• potentially even inconsistent information;

• statements can be equipped with probabilities or labeled as opinions;
fuzzy reasoning, belief revision ...

... lots of artificial intelligence applications ...

... but there is even more.

226

EXAMPLE /EXERCISE

Consider again the employee-manages-departments example (Slide 22).

• Give the RDF Graph.

• give the N3 triples and feed them into the Jena tool.

227

ADDITIONAL RDF/RDFS VOCABULARY

The rdf/rdfs namespaces provide some more vocabulary:

• Collections: rdf:Alt, rdf:Bag, rdf:Seq, rdf:List are collections.
Lists have properties rdf:first (a resource) and rdf:rest (a list). Others have
properties 1, 2, . . . that refer to their members.

• (rdfs:Container, rdfs:member, rdfs:ContainerMembershipProperty)

... that are not considered in this lecture. We see it as a model for representing facts as triples.

228

5.2 Some simple OWL Notions

• so far: RDFS allows for specification of subclasses, subproperties, domain and range

• simple, intuitive, nevertheless problematic (paradoxes).

• development of RDFS and OWL (Web Ontology Language) was not well-defined.

• OWL does not build upon RDFS

– some OWL notions extend RDFS notions,

– some RDFS notions are not contained in OWL,

– OWL itself comes in three (incremental) variants.

... this will be analyzed later.

Let’s continue with some more intuitive and pragmatic notions contributed by OWL.

• OWL Namespace: <http://www.w3.org/2002/07/owl# >

229

SUBCLASSES OF PROPERTIES

Triple syntax: some property rdf:type a specific type of property

According to their ranges

• owl:ObjectProperty – subclass of rdf:Property; object-valued (i.e. rdfs:range must be an
Object class)

• owl:DatatypeProperty – subclass of rdf:Property; datatype-valued (i.e. its rdfs:range must
be an rdfs:Datatype)

... both are not really interesting to derive new things.

According to their Properties

• owl:TransitiveProperty, owl:SymmetricProperty

According to their Cardinality

• specifying n:1 or 1:n cardinality:
owl:FunctionalProperty, owl:InverseFunctionalProperty

230

TRANSITIVE AND SYMMETRIC PROPERTIES

• transitive: ancestors (cf. Slide 222), train connections etc.

• symmetric: married

@prefix : <foo://bla/names#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#>.

[:name "John"; :married [:name "Mary"]] .

:married rdf:type owl:SymmetricProperty.

[Filename: RDF/symmetric-married.n3]

prefix : <foo://bla/names#>

select ?X ?Y

from <file:symmetric-married.n3>

where { [:name ?X ; :married [:name ?Y]] }

[Filename: RDF/symmetric-married.sparql]

231

FUNCTIONAL CARDINALITY SPECIFICATION

a property rdf:type owl:FunctionalProperty

• not a constraint, but

• if such a property results in two things ... these things are inferred to be the same.

@prefix : <foo://bla/names#>.

@prefix person: <foo://bla/persons/>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#>.

:world :has_pope person:josephratzinger .

:world :has_pope [:name "Benedikt XVI"] .

:has_pope rdf:type owl:FunctionalProperty.

[Filename: RDF/popes.n3]

prefix : <foo://bla/names#>

prefix person: <foo://bla/persons/>

select ?N from <file:popes.n3>

where { person:josephratzinger :name ?N }

[Filename: RDF/pope.sparql]

232

INVERSE PROPERTIES

• some property owl:inverseOf some property

@prefix : <foo://bla/names#> .

@prefix person: <foo://bla/persons/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

person:john :child person:alice, person:bob.

person:john :parent person:kate .

:ancestor rdf:type owl:TransitiveProperty.

:child rdfs:subPropertyOf :ancestor.

:child owl:inverseOf :parent.

[Filename: RDF/inverse.n3]

prefix : <foo://bla/names#>

select ?X ?Y

from <file:inverse.n3>

where {?X :ancestor ?Y}

[Filename: RDF/inverse.sparql]

233

Wrap-up

• So far, a reasonable expressiveness for data+schema is provided by RDF, RDFS and
simple OWL constructs.

• The rest of OWL will not allow for new concepts, but for a more expressive description of
the ones already described by RDFS.

• Graph data model, expressed by triples (the canonical way to express a graph with
labeled edges)

– nodes are individuals, classes, and properties

– edge labels are properties (and thus also nodes)

• N3 normal form, several abbreviated/nested forms allowed.

• RDFS and OWL semantics tailored to “Open World”, as (inconsistency)-tolerant as
possible,

• mapping to first-order logic preferable (decidable Description Logic fragments),

• no negative information? This must be given very explicit as knowledge.

• note: in model theory, from “false”, everything follows. Thus, do not derive “false” as long
as possible. Be tolerant.

234

EXAMPLE : THE MONDIAL ONTOLOGY

See mondial.n3, mondial-europe.n3 and mondial-meta.owl on the Web page.

Note that it is highly redundant: defining just rdfs:domain and rdfs:range of properties implies
most of the classes (and also most of the rdfs:type relationships in mondial.n3).

prefix mon: <http://www.semwebtech.de/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?X

from <file:mondial.n3>

from <file:mondial-meta.n3>

where {?X rdf:type mon:Country}

[Filename: RDF/mondial-meta-query.sparql]

• activate Jena with reasoner (if mondial.n3 is too big, use mondial-europe.n3 instead)

Mondial is not an interesting example for RDFS (and OWL):

• it’s mainly data, no intensional knowledge, no complex ontology

• for that reason it is a good example for SQL and XML.

• RDFS and OWL is interesting when information is combined and additional knowledge
can be derived.

235

Developing Ontologies

• have an idea of the required concepts and relationships (ER, UML, ...),

• generate a (draft) n3 or RDF/XML instance,

• write a separate file for the metadata,

• load it into Jena with activating a reasoner.

• If the reasoner complains about an inconsistent ontology, check the metadata file alone. If
this is consistent, and it complains only when also data is loaded:

– it may be due to populating a class whose definition is inconsistent and that thus must
be empty.

– often it is due to wrong datatypes. Recall that datatype specification is not interpreted
as a constraint (that is violated for a given value), but as additional knowledge.

236

