
Chapter 7
Ontologies and the Web Ontology
Language – OWL
• vocabularies can be defined by RDFS

– not so much stronger than the ER Model or UML
(even weaker: no cardinalities)

– not only a conceptual model, but a “real language” with a close connection to the data
level (RDF)

– incremental world-wide approach

– “global” vocabulary can be defined by autonomous partners

• but: still restricted when describing the vocabulary.

274

Ontologies/ontology languages further extend the expressiveness:

• Description Logics

• Topic Maps (in SGML) since early 90s, XTM (XML Topic Maps)

• Ontolingua – non-XML approach from the Knowledge Representation area

• OIL (Ontology Inference Layer): initiative funded by the EU programme for Information
Society Technologies (project: On-To-Knowledge, 1.2000-10.2002); based on RDF/RDFS

• DAML (Darpa Agent Markup Language; 2000) ... first ideas for a Semantic Web language

• DAML+OIL (Jan. 2001)

• developed into OWL (1st version March 02, finalized Feb. 04)

275

THREE VARIANTS OF OWL

Several expressiveness/complexity/decidability levels:

• OWL Full: extension of RDF

– classes can also be regarded as individuals (classes of classes ... higher-order
reasoning)

• OWL DL

– fragment of OWL that fits into the Description Logics Framework

– decidable reasoning

• OWL Lite

– subset of OWL DL

– easier migration from frame-based tools
(note: F-Logic was a frame-based framework)

– easier reasoning

276

7.1 Description Logics

• Focus on the description of concepts, not of instances

• Terminological Reasoning

• Origin of DLs: Semantic Networks (graphical formalism)

Notions

• Concepts (= classes),
note: literal datatypes (string, integer etc.) are not classes in DL and OWL, but data
ranges
(cf. XML Schema: distinction between simpleTypes and complexTypes)

• Roles (= relationships),

• A Description Logic alphabet consists of a finite set of concept names (e.g. Person, Cat,
LivingBeing, Male, Female, . . .) and a finite set of role names (e.g., hasChild, marriedTo,
. . .),

• constructors for drived concepts and roles,

• axioms for asserting facts about concepts and roles.

277

COMPARISON WITH OTHER LOGICS

Syntax and semantics defined different but similar from first-order logic

• formulas over an alphabet and a small set of additional symbols and combinators

• semantics defined via interpretations of the combinators

• set-oriented, no instance variables
(FOL: instance-oriented with domain quantifiers)

• family of languages depending on what combinators are allowed.

The base: AL

The usual starting point is AL:

• “attributive language”

• Manfred Schmidt-Schauss and Gert Smolka: Attributive Concept Descriptions with
Complements. In Artificial Intelligence 48(1), 1991, pp. 1–26.

• extensions (see later: ALC, ALCQ, ALCQ(D), ALCQI, ALCN etc.)

278

ATOMIC, NAMED CONCEPTS

• atomic concepts, e.g., Person, Male, Female

• the “universal concept” > (often called “Thing” – everything is an instance of Thing)

• the empty concept ⊥ (“Nothing”). There is no thing that is an instance of ⊥.

SET OPERATIONS

• intersection of concepts: A uB

• negation: ¬A
AL allows only atomic negation.

• union: A tB

Union is not allowed in AL.

279

INTENSIONAL CONCEPTS

Concepts (as an intensional characterization of sets of instances) can be described implicitly
by their properties (wrt. roles).

Let R be a role, C a concept. Then, the expressions ∃R.C and ∀R.C also dscribe concepts
(intensionally defined concepts) by constraining the roles:

• Existential quantification: ∃R.C – all things that have a filler for the role R that is in C.
∃hasChild.Male describes all things that have a male child.

• AL: only as restricted existential quantification: ∃R.>

∃hasChild.> describes all things that have a child (formally: that belongs to the concept
“Thing”).

• Range constraints: ∀R.C

∀hasChild.Male describes all things that have only male children (including those that
have no children at all).

• Note that ⊥ can be used to express non-existence: ∀R.⊥ describes all things where all
fillers of role R are of the concept ⊥ (= Nothing) – i.e., all things that do not have a filler for
the role R.
∀hasChild.⊥ describes the things that have no children.

280

SEMANTICS OF CONCEPT CONSTRUCTORS

As usual: by interpretations.

An interpretation I consists of the following:

• a domain D,

• for every concept name C: CI ⊆ D is a subset of the domain,

• for every role name R: RI ⊆ D ×D is a binary relation over the domain.

Structural Induction

• (A tB)I = AI ∪BI

• (A uB)I = AI ∩BI

• (¬A)I = D \ AI

• (∃R.C)I = {x | there is an y such that (x, y) ∈ RI and y ∈ CI}

• (∀R.C)I = {x | for all y such that (x, y) ∈ RI , y ∈ CI}

Example

Male u ∀hasChild.Male is the set of all men who have only sons.

281

STRUCTURE OF A DL K NOWLEDGE BASE

DL Knowledge Base

TBox (schema)

Talks about concepts

Man ≡ Human u Male

Parent ≡ Human u (∃ ≥ 1 hasChild.>)

ParentOfSons ≡ Human u (∃ ≥ 1 hasChild.Male)

ParentOfOnlySons ≡ Human u (∀ hasChild.Male)

ABox (data)

Talks about individuals

Person(John), Male(John)

hasChild(John,Alice), age(Alice,10), Female(Alice)

hasChild(John,Bob), age(Bob,8), Male(Bob)

282

THE TBOX: TERMINOLOGICAL AXIOMS

Definitions and assertions (not to be understood as constraints) about concepts:

• concept subsumption: C v D; defining a concept hierarchy. I |= C v D :⇔ CI ⊆ DI .

• concept equivalence: C ≡ D; often used for defining the left-hand side concept.
Semantics: I |= C ≡ D :⇔ C v D and D v C.

• analogous for role subsumption and role equivalence.

TBox Reasoning

• is a concept C satisfiable?

• is C v D implied by a TBox

• given the definition of a new concept D, classify it wrt. the given concept hierarchy.

283

THE AB OX: A SSERTIONAL AXIOMS

• contains the facts about instances (using names for the instances) in terms of the basic
concepts and roles:
Person(John), Male(John), hasChild(John,Alice)

• contains also knowledge in terms of intensional concepts, e.g., ∃hasChild.Male(John)

TBox + ABox Reasoning

• check consistency between ABox and a given TBox

• ask whether a given instance satisfies a concept C

• ask for all instances that have a given property

• ask for the most specific concepts that an instance satisfies

Note: instances are allowed only in the ABox, not in the TBox.

If instances should be used in the definition of concepts (e.g., “European Country” or “Italian
City”), Nominals must be used (see later).

284

EXTENSIONS TO AL

• U : “union”; e.g. Parent ≡ Father t Mother.

• C: negation (“complement”) of non-atomic concepts.
Person u ¬∃hasChild.> characterizes the set of persons who have no children (note:
open-world semantics of negation!)

Note: the FOL equivalent would be expressed via variables:
∀x(Childless(x) ↔ (Person(x) ∧ ¬∃y(hasChild(x, y))))

• E : unrestricted existential quantification of the form ∃R.C.
∃hasChild.Male

Note: the FOL equivalent uses variables:
p(x) ↔ ∃y(hasChild(x, y) ∧ male(y))),

or ∃hasChild.hasChild.> for grandparents.

• N : (unqualified) cardinalities of roles (“number restrictions”).
(≥ 3 hasChild.>) for persons who have at least 3 children.

• Q: qualified role restrictions like (≤ 2 hasChild.Male). A weaker form, F , is restricted to
cardinalites 0, 1 and “arbitrary”.

285

THE EXTENDED LANGUAGES

• AL has no “branching” (no union, or any kind of disjunction; so tableau proofs in AL are
linear.
Exercise: show why unrestricted existential quantification ∃R.C in contrast to ∃R.> leads
to branching.

• The logics are named by the letters, e.g. ALUN for AL with union and unqualified
n-cardinalities.

• U and E can be expressed by C.
Thus, ALC is frequently used.

• ALC is the “smallest” Description Logic that is closed wrt. the set operations.

• A frequently used restriction of AL is called FL− (for “Frame-Language”), which is
obtained by disallowing negation completely (i.e., having only positive knowledge).

286

COMPLEXITY AND DECIDABILITY : OVERVIEW

• Logic L2, i.e., FOL with only two (reusable) variable symbols is decidable.

• Full FOL is undecidable.

• DLs: incremental, modular set of semantical notions.

• only part of FOL is required for concept reasoning.

• ALC can be expressed by FOL, but then, the inherent semantics is lost → full FOL
reasoner required.

• Actually, ALC can be encoded in FOL by only using two variables → ALC is decidable.

• Consistency checking of ALC-TBoxes and -ABoxes is PSPACE-complete (proof by
reduction to Propositional Dynamic Logic which is in turn a special case of propositional
multimodal logics).
There are algorithms that are efficient in the average case.

• ALCN goes beyond L2 and PSPACE. Reduction to C2 (including “counting” quantifiers)
yields decidability, but now in NEXPTIME). There are algorithms for ALCN and even
ALCQ in PSPACE.

287

FURTHER EXTENSIONS

• Role Constructors, i.e., derived roles as union or intersection
(hasChild ≡ hasSon ∪ hasDaughter), concatenation
(hasGrandchild ≡ hasChild ◦ hasChild), transitive closure (hasDescendant ≡ hasChild+)
(indicated by e.g. ALCreg), and inverse (isChildOf ≡ hasChild−) (I).

• Data types (indicated by “(D)”), e.g. integers.
Adult ≡ Person u ∃age. ≥ 18.

• Nominals (O) allow to use individuals from the ABox also in the TBox.
GermanCity ≡ ∀inCountry.Germany
They are used in a class constructor like one-of{o1,. . . ,on} (for defining enumeration
concepts) or in has-value{x} for value constraints of properties.

• Role-Value-Maps:
Equality Role-Value-Map: (R1 = R2) ≡ {x | R1(x, y) ↔ R2(x, y)}.
Containment Role-Value-Map: (R1 ⊆ R2) ≡ {x | R1(x, y) → R2(x, y)}.
knows ⊆ likes for people who like all people they know.

288

SEMANTICS OF EXTENSIONS

• (≥ nR.C)I = {x | #{y | (x, y) ∈ RI and y ∈ CI} ≥ n},

• (≤ nR.C)I = {x | #{y | (x, y) ∈ RI and y ∈ CI} ≤ n},

• (nR.C)I = {x | #{y | (x, y) ∈ RI and y ∈ CI} = n},

• (R ◦ S)I = {(x, z) | ∃y : (x, y) ∈ RI and (y, z) ∈ SI},

• (R−)I = {(y, x) | (x, y) ∈ RI},

• (R+)I = (RI)+.

• If Nominals are used, I also assigns an element of D to each nominal symbol x.
{i1, . . . , in}

I = {iI1 , . . . , i
I

n
}, and

R.y = {x | {z | (x, z) ∈ RI} = {y}.

289

COMPLEXITY OF EXTENSIONS

• Role constructors: ALCreg, including transitivity, composition and union is
EXPTIME-complete; this stays the same when inverse roles and even cardinalities for
atomic roles are added (ALCQIreg).
Recall that inverse and transitive closure are important for ontologies.

• Combining such composite roles with cardinalities becomes undecidable (encoding in
FOL requires 3 variables).

• Encoding of Role-Value Maps with composite roles in FOL is undecidable (encoding in
FOL requires 3 variables; the logic loses the tree model property).

• ALCQIreg with role-value maps restricted to boolean compositions of basic roles
remains decidable. Decidability is also preserved when role-value-maps are restricted to
functional roles.

290

DESCRIPTION LOGIC MODEL THEORY

The definition is the same as in FOL:

• an interpretation is a model of an ABox A if

– for every atomic concept C and individual x such that C(x) ∈ A, xI ∈ CI , and

– for every atomic role R and individuals x, y such that R(x, y) ∈ A, (xI , yI) ∈ RI .

• note: the interpretation of the non-atomic concepts and roles is given as before,

• all axioms φ of the TBox are satisfied, i.e., I |= φ.

Based on this, DL entailment is also defined as before:

• a set Φ of formulas entails another formula Ψ (denoted by Φ |= ψ), if ΨI = true in all
models of Φ.

291

DECIDABILITY , COMPLEXITY, AND ALGORITHMS

Many DLs are decidable, but in high complexity classes.

• decidability is due to the fact that often local properties are considered, and the
verification proceeds tree-like through the graph without connections between the
branches.

• This locality does not hold for cardinalities over composite roles, and for role-value maps
– these lead to undecidability.

• Reasoning algorithms for ALC and many extensions are based on tableau algorithms,
some use model checking (finite models), others use tree automata.

Three types of Algorithms

• restricted (to polynomial languages) and complete

• expressive logics with complete, worst-case EXPTIME algorithms that solve realistic
problems in “reasonable” time. (Fact, Racer, Pellet)

• more expressive logics with incomplete reasoning.

292

EXAMPLE

• Given facts: Person ≡ Male t Female and Person(unknownPerson).

• Query ?-Male(X) yields an empty answer

• Query ?-Female(X) yields an empty answer

• Query ?-(Male t Female)(X) yields unknownPerson as an answer

• for query answering, all models of the TBox+ABox are considered.

• in some models, the unknownPerson is Male, in the others it is female.

• in all models it is in (Male t Female).

293

