Chapter 7 Ontologies and the Web Ontology Language – OWL

- vocabularies can be defined by RDFS
 - not so much stronger than the ER Model or UML (even weaker: no cardinalities)
 - not only a conceptual model, but a "real language" with a close connection to the data level (RDF)
 - incremental world-wide approach
 - "global" vocabulary can be defined by autonomous partners
- but: still restricted when describing the vocabulary.

274

Ontologies/ontology languages further extend the expressiveness:

- Description Logics
- Topic Maps (in SGML) since early 90s, XTM (XML Topic Maps)
- Ontolingua non-XML approach from the Knowledge Representation area
- OIL (Ontology Inference Layer): initiative funded by the EU programme for Information Society Technologies (project: On-To-Knowledge, 1.2000-10.2002); based on RDF/RDFS
- DAML (Darpa Agent Markup Language; 2000) ... first ideas for a Semantic Web language
- DAML+OIL (Jan. 2001)
- developed into OWL (1st version March 02, finalized Feb. 04)

THREE VARIANTS OF OWL

Several expressiveness/complexity/decidability levels:

- OWL Full: extension of RDF
 - classes can also be regarded as individuals (classes of classes ... higher-order reasoning)
- OWL DL
 - fragment of OWL that fits into the Description Logics Framework
 - decidable reasoning
- OWL Lite
 - subset of OWL DL
 - easier migration from frame-based tools
 (note: F-Logic was a frame-based framework)
 - easier reasoning

276

7.1 Description Logics

- Focus on the description of concepts, not of instances
- Terminological Reasoning
- Origin of DLs: Semantic Networks (graphical formalism)

Notions

- Concepts (= classes),
 note: literal datatypes (string, integer etc.) are not classes in DL and OWL, but data ranges
 - (cf. XML Schema: distinction between simpleTypes and complexTypes)
- Roles (= relationships),
- A Description Logic alphabet consists of a finite set of concept names (e.g. Person, Cat, LivingBeing, Male, Female, ...) and a finite set of role names (e.g., hasChild, marriedTo, ...),
- constructors for drived concepts and roles,
- axioms for asserting facts about concepts and roles.

COMPARISON WITH OTHER LOGICS

Syntax and semantics defined different but similar from first-order logic

- formulas over an alphabet and a small set of additional symbols and combinators
- semantics defined via interpretations of the combinators
- set-oriented, no instance variables
 (FOL: instance-oriented with domain quantifiers)
- family of languages depending on what combinators are allowed.

The base: AL

The usual starting point is AL:

- "attributive language"
- Manfred Schmidt-Schauss and Gert Smolka: Attributive Concept Descriptions with Complements. In Artificial Intelligence 48(1), 1991, pp. 1–26.
- extensions (see later: ALC, ALCQ, ALCQ(D), ALCQI, ALCN etc.)

278

ATOMIC, NAMED CONCEPTS

- atomic concepts, e.g., Person, Male, Female
- the "universal concept" ⊤ (often called "Thing" everything is an instance of Thing)
- the empty concept \perp ("Nothing"). There is no thing that is an instance of \perp .

SET OPERATIONS

- intersection of concepts: $A \sqcap B$
- negation: ¬A
 AL allows only atomic negation.
- union: $A \sqcup B$ Union is not allowed in \mathcal{AL} .

INTENSIONAL CONCEPTS

Concepts (as an intensional characterization of sets of instances) can be described implicitly by their properties (wrt. *roles*).

Let R be a role, C a concept. Then, the expressions $\exists R.C$ and $\forall R.C$ also dscribe concepts (intensionally defined concepts) by constraining the roles:

- Existential quantification: $\exists R.C$ all things that have a *filler* for the role R that is in C. \exists hasChild.Male describes all things that have a male child.
- \mathcal{AL} : only as restricted existential quantification: $\exists R. \top \exists \mathsf{hasChild}. \top \mathsf{describes}$ all things that have a child (formally: that belongs to the concept "Thing").
- Range constraints: $\forall R.C$ \forall hasChild.Male describes all things that have only male children (including those that have no children at all).
- Note that \bot can be used to express non-existence: $\forall R.\bot$ describes all things where all fillers of role R are of the concept \bot (= Nothing) i.e., all things that do not have a filler for the role R.

∀hasChild. ⊥ describes the things that have no children.

280

SEMANTICS OF CONCEPT CONSTRUCTORS

As usual: by interpretations.

An interpretation \mathcal{I} consists of the following:

- a domain D,
- for every concept name $C: C^{\mathcal{I}} \subseteq \mathcal{D}$ is a subset of the domain,
- for every role name $R: R^{\mathcal{I}} \subseteq \mathcal{D} \times \mathcal{D}$ is a binary relation over the domain.

Structural Induction

- $\bullet \ (A \sqcup B)^{\mathcal{I}} = A^{\mathcal{I}} \cup B^{\mathcal{I}}$
- $\bullet \ (A \sqcap B)^{\mathcal{I}} = A^{\mathcal{I}} \cap B^{\mathcal{I}}$
- $\bullet \ (\neg A)^{\mathcal{I}} = \mathcal{D} \setminus A^{\mathcal{I}}$
- $(\exists R.C)^{\mathcal{I}} = \{x \mid \text{ there is an } y \text{ such that } (x,y) \in R^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}}\}$
- $(\forall R.C)^{\mathcal{I}} = \{x \mid \text{ for all } y \text{ such that } (x,y) \in R^{\mathcal{I}}, y \in C^{\mathcal{I}}\}$

Example

Male $\sqcap \forall$ has Child. Male is the set of all men who have only sons.

STRUCTURE OF A DL KNOWLEDGE BASE

DL Knowledge Base

TBox (schema)

Talks about concepts

 $Man \equiv Human \sqcap Male$

Parent \equiv Human \sqcap ($\exists > 1$ hasChild. \top)

ParentOfSons \equiv Human \sqcap ($\exists \ge 1$ hasChild.Male)

ParentOfOnlySons \equiv Human \sqcap (\forall hasChild.Male)

ABox (data)

Talks about individuals

Person(John), Male(John)

hasChild(John,Alice), age(Alice,10), Female(Alice)

hasChild(John,Bob), age(Bob,8), Male(Bob)

282

THE TBOX: TERMINOLOGICAL AXIOMS

Definitions and assertions (not to be understood as constraints) about concepts:

- concept subsumption: $C \sqsubseteq D$; defining a concept hierarchy. $\mathcal{I} \models C \sqsubseteq D : \Leftrightarrow C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- concept equivalence: $C \equiv D$; often used for defining the left-hand side concept. Semantics: $\mathcal{I} \models C \equiv D :\Leftrightarrow C \sqsubseteq D$ and $D \sqsubseteq C$.
- analogous for role subsumption and role equivalence.

TBox Reasoning

- is a concept *C* satisfiable?
- is $C \sqsubseteq D$ implied by a TBox
- given the definition of a new concept D, classify it wrt. the given concept hierarchy.

THE ABOX: ASSERTIONAL AXIOMS

 contains the facts about instances (using names for the instances) in terms of the basic concepts and roles:

Person(John), Male(John), hasChild(John,Alice)

• contains also knowledge in terms of intensional concepts, e.g., ∃hasChild.Male(John)

TBox + ABox Reasoning

- check consistency between ABox and a given TBox
- ask whether a given instance satisfies a concept C
- ask for all instances that have a given property
- ask for the most specific concepts that an instance satisfies

Note: instances are allowed only in the ABox, not in the TBox.

If instances should be used in the definition of concepts (e.g., "European Country" or "Italian City"), *Nominals* must be used (see later).

284

EXTENSIONS TO \mathcal{AL}

- \mathcal{U} : "union"; e.g. Parent \equiv Father \sqcup Mother.
- C: negation ("complement") of non-atomic concepts.

Person $\neg \neg \exists hasChild. \top$ characterizes the set of persons who have no children (note: open-world semantics of negation!)

Note: the FOL equivalent would be expressed via variables:

 $\forall x (\mathsf{Childless}(x) \leftrightarrow (\mathsf{Person}(x) \land \neg \exists y (\mathsf{hasChild}(x,y))))$

• \mathcal{E} : unrestricted existential quantification of the form $\exists R.C.$ \exists hasChild.Male

Note: the FOL equivalent uses variables:

 $p(x) \leftrightarrow \exists y (\mathsf{hasChild}(x, y) \land \mathsf{male}(y))$),

or ∃hasChild.hasChild.⊤ for grandparents.

- \mathcal{N} : (unqualified) cardinalities of roles ("number restrictions"). (≥ 3 hasChild. \top) for persons who have at least 3 children.
- Q: qualified role restrictions like (≤ 2 hasChild.Male). A weaker form, \mathcal{F} , is restricted to cardinalites 0, 1 and "arbitrary".

THE EXTENDED LANGUAGES

- \mathcal{AL} has no "branching" (no union, or any kind of disjunction; so tableau proofs in \mathcal{AL} are linear.
 - Exercise: show why unrestricted existential quantification $\exists R.C$ in contrast to $\exists R.\top$ leads to branching.
- The logics are named by the letters, e.g. \mathcal{ALUN} for \mathcal{AL} with union and unqualified n-cardinalities.
- *U* and *E* can be expressed by *C*.
 Thus, *ALC* is frequently used.
- \mathcal{ALC} is the "smallest" Description Logic that is closed wrt. the set operations.
- A frequently used restriction of \mathcal{AL} is called \mathcal{FL}^- (for "Frame-Language"), which is obtained by disallowing negation completely (i.e., having only positive knowledge).

286

COMPLEXITY AND DECIDABILITY: OVERVIEW

- Logic \mathcal{L}^2 , i.e., FOL with only two (reusable) variable symbols is decidable.
- Full FOL is undecidable.
- DLs: incremental, modular set of semantical notions.
- only part of FOL is required for concept reasoning.
- ALC can be expressed by FOL, but then, the inherent semantics is lost → full FOL reasoner required.
- Actually, \mathcal{ALC} can be encoded in FOL by only using two variables $\to \mathcal{ALC}$ is decidable.
- Consistency checking of ALC-TBoxes and -ABoxes is PSPACE-complete (proof by reduction to *Propositional Dynamic Logic* which is in turn a special case of propositional multimodal logics).
 - There are algorithms that are efficient in the average case.
- \mathcal{ALCN} goes beyond \mathcal{L}^2 and PSPACE. Reduction to \mathcal{C}^2 (including "counting" quantifiers) yields decidability, but now in NEXPTIME). There are algorithms for \mathcal{ALCN} and even \mathcal{ALCQ} in PSPACE.

FURTHER EXTENSIONS

- Role Constructors, i.e., derived roles as union or intersection (hasChild \equiv hasSon \cup hasDaughter), concatenation (hasGrandchild \equiv hasChild \circ hasChild), transitive closure (hasDescendant \equiv hasChild $^+$) (indicated by e.g. \mathcal{ALC}_{reg}), and inverse (isChildOf \equiv hasChild $^-$) (\mathcal{I}).
- Data types (indicated by "(D)"), e.g. integers.
 Adult = Person □ ∃age. ≥ 18.
- Nominals (O) allow to use individuals from the ABox also in the TBox.
 GermanCity ≡ ∀inCountry.Germany

They are used in a class constructor like one-of $\{o_1, \ldots, o_n\}$ (for defining enumeration concepts) or in has-value $\{x\}$ for value constraints of properties.

- Role-Value-Maps:
 - Equality Role-Value-Map: $(R_1 = R_2) \equiv \{x \mid R_1(x,y) \leftrightarrow R_2(x,y)\}$. Containment Role-Value-Map: $(R_1 \subseteq R_2) \equiv \{x \mid R_1(x,y) \rightarrow R_2(x,y)\}$. knows \subseteq likes for people who like all people they know.

288

SEMANTICS OF EXTENSIONS

- $\bullet \ (\geq nR.C)^{\mathcal{I}} = \{x \ | \ \#\{y \ | \ (x,y) \in R^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}}\} \geq n\},$
- $\bullet \ (\leq nR.C)^{\mathcal{I}} = \{x \mid \#\{y \mid (x,y) \in R^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}}\} \leq n\},$
- $\bullet \ (nR.C)^{\mathcal{I}} = \{x \ | \ \#\{y \ | \ (x,y) \in R^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}}\} = n\},$
- $(R \circ S)^{\mathcal{I}} = \{(x, z) \mid \exists y : (x, y) \in R^{\mathcal{I}} \text{ and } (y, z) \in S^{\mathcal{I}}\},$
- $\bullet \ (R^-)^{\mathcal{I}} = \{ (y,x) \ | \ (x,y) \in R^{\mathcal{I}} \},$
- $\bullet \ (R^+)^{\mathcal{I}} = (R^{\mathcal{I}})^+.$
- If Nominals are used, $\mathcal I$ also assigns an element of $\mathcal D$ to each nominal symbol x.

$$\{i_1, \dots, i_n\}^{\mathcal{I}} = \{i_1^{\mathcal{I}}, \dots, i_n^{\mathcal{I}}\}, \text{ and } R.y = \{x \mid \{z \mid (x, z) \in R^{\mathcal{I}}\} = \{y\}.$$

COMPLEXITY OF EXTENSIONS

- Role constructors: \mathcal{ALC}_{reg} , including transitivity, composition and union is EXPTIME-complete; this stays the same when inverse roles and even cardinalities for *atomic* roles are added (\mathcal{ALCQI}_{reg}).
 - Recall that inverse and transitive closure are important for ontologies.
- Combining such *composite* roles with cardinalities becomes undecidable (encoding in FOL requires 3 variables).
- Encoding of Role-Value Maps with composite roles in FOL is undecidable (encoding in FOL requires 3 variables; the logic loses the *tree model property*).
- \mathcal{ALCQI}_{reg} with role-value maps restricted to boolean compositions of *basic* roles remains decidable. Decidability is also preserved when role-value-maps are restricted to functional roles.

290

DESCRIPTION LOGIC MODEL THEORY

The definition is the same as in FOL:

- an interpretation is a model of an ABox A if
 - for every atomic concept C and individual x such that $C(x) \in A$, $x^{\mathcal{I}} \in C^{\mathcal{I}}$, and
 - for every atomic role R and individuals x,y such that $R(x,y)\in A$, $(x^{\mathcal{I}},y^{\mathcal{I}})\in R^{\mathcal{I}}$.
- note: the interpretation of the non-atomic concepts and roles is given as before,
- all axioms ϕ of the TBox are satisfied, i.e., $\mathcal{I} \models \phi$.

Based on this, DL entailment is also defined as before:

• a set Φ of formulas entails another formula Ψ (denoted by $\Phi \models \psi$), if $\Psi^{\mathcal{I}} =$ true in all models of Φ .

DECIDABILITY, COMPLEXITY, AND ALGORITHMS

Many DLs are decidable, but in high complexity classes.

- decidability is due to the fact that often *local* properties are considered, and the verification proceeds tree-like through the graph without connections between the branches.
- This locality does not hold for cardinalities over composite roles, and for role-value maps
 these lead to undecidability.
- Reasoning algorithms for ALC and many extensions are based on tableau algorithms, some use model checking (finite models), others use tree automata.

Three types of Algorithms

- restricted (to polynomial languages) and complete
- expressive logics with complete, worst-case EXPTIME algorithms that solve realistic problems in "reasonable" time. (Fact, Racer, Pellet)
- · more expressive logics with incomplete reasoning.

292

EXAMPLE

- Given facts: Person \equiv Male \sqcup Female and Person(unknownPerson).
- Query ?-Male(X) yields an empty answer
- Query ?-Female(X) yields an empty answer
- Query ?-(Male

 Female)(X) yields unknownPerson as an answer
- for guery answering, all models of the TBox+ABox are considered.
- in some models, the unknownPerson is Male, in the others it is female.
- in all models it is in (Male

 ⊢ Female).