7.2 OWL

« the OWL versions use certain DL semantics:

» Base: ALCx+: (i.e., with transitive roles). This logic is called S (reminiscent to its
similarity to the modal logic 5).

» roles can be ordered hierarchically (rdfs:subPropertyOf; H).
« OWL Lite: SHZF (D), Reasoning in EXPTIME.

« OWL DL: SHOIN (D), decidable.
Pellet (2007) implements SHOZQ(D). Decidability is in NEXPTIME (combined complexity
wrt. TBox+ABox), but the actual complexity of a given task is constrained by the maximal
used cardinality and use of nominals and inverses and behaves like the simpler classes.
(lan Horrocks and Ulrike Sattler: A Tableau Decision Procedure for SHOIQ(D); In IJCAI,
2005, pp. 448-453; available via http://dblp.uni-trier.de)

« OWL 2.0 towards SROZQ(D) and more datatypes ...

310

OWL NoTioNs; OWL-DL vs. RDF/RDFS; MoDEL vs. GRAPH

« OWL is defined based on (Description Logics) model theory,
« OWL ontologies can be represented by RDF graphs,

» Only certain RDF graphs are allowed OWL-DL ontologies: those, where class names,
property names, individuals etc. occur in a well-organized way.

» Reasoning works on the (Description Logic) model, the RDF graph is only a means to
represent it.
(recall: RDF/RDFS “reasoning” works on the graph level)

311

OWL VOCABULARIES

An OWL-DL vocabulary V is a 7-tuple (= a sorted vocabulary)
V= (Vclsa vobjpropa thprop; Vannpropa Vindi’uv VDT) Vlit):

V. IS the set of URIs denoting class names,
<http://.../mondial/10/meta#Country>

Vobjiprop IS the set of URIs denoting object property names,
<http://.../mondial/10/meta#capital>

Varprop 1S the set of URIs denoting datatype property names,
<http://.../mondial/10/meta#population>

(Vannprop 'S the set of URIs denoting annotation property names,)
Vindiv 1S the set of URIs denoting individuals, <http://.../mondial/10/countries/D>

Vpr is the set of URIs denoting datatype names,
<http://www.w3.0rg/2001/XMLSchema#int>

Vi 1s the set of literals;

the builtin notions (=URIs) from RDF, RDFS, OWL namespaces do not belong to the
vocabulary of the ontology (they are only used for describing the ontology in RDF).

312

OWL INTERPRETATIONS

Since DL is a subset of FOL, the interpretation of an OWL-DL vocabulary can be given as a
FOL interpretation

1= (Iindiv U Icls U]objprop U Idtprop U Iannprop U IDT ’ z/{obj) I/{DT)

where [interprets the vocabulary as

indiv cOnstant symbols (individuals),
cls» IpT unary predicates (classes and datatypes),

* Lovjprops Latprop, Lannprop DiNary predicates (properties),

and the universe U is partitioned into

* an object domain Uy,

 and a data domain Up (of all values of datatypes).

313

OWL INTERPRETATIONS

The interpretation I is as follows:

Iz'ndi'u:

Icls:

Ipr:

Iobjprop:

Idtprop:

Icmnprop:

each individual a € V4, t0 @n object I(a) € U,

(e.g., I(<http://.../mondial/10/countries/D>) = germany)

each class C € Vs toaset I(C) C Uy,

(e.g., germany € I(<http://.../mondial/10/meta#Country>))

each datatype D € Vprtoaset I[(D) C Upr,

(e.g., I(<http://www.w3.0org/2001/XMLSchema#int>) = {...,—-2,—1,0,1,2,...})
each object property p € Vopjprop 10 @ binary relation 1(p) C Uypi X Uop;s

(e.g., (germany, berlin) € I(<http://.../mondial/10/meta#tcapital>))

each datatype property p € Vaprop 10 @ binary relation I(p) C Uyp; x Up,

(e.g., (germany, 83536115) € I(<http://.../mondial/10/meta#population>))
each annotation property p € Vannprop 10 @ binary relation I(p) CU x U.

314

OWL Class Definitions and Axioms (Overview)

» owl:Class

» The properties of an owl:Class (including owl:Restriction) node describe the properties of
that class.
An owl:Class is required to satisfy the conjunction of all constraints (implicit: intersection)
stated about it.
These characterizations are roughly the same as discussed for DL class definitions:

— Constructors: owl:unionOf, owl:intersectionOf, owl:complementOf (ALC)

— Enumeration Constructor: owl:oneOf (enumeration of elements; O)

— Axioms rdfs:subClassOf, owl:equivalentClass,

— Axiom owl:disjointWith (also expressible in ALC: C disjoint with D is equivalent to
C C -D)

315

OWL NOTIONS (CONT’D)

OWL Restriction Classes (Overview)

» owl:Restriction is a subclass of owl:Class, allowing for specification of a constraint on one
property.

 one property is restricted by an owl:onProperty specifier and a constraint on this property:
- (N, Q, F) owl:cardinality, owl:minCardinality or owl:maxCardinality,
— owl:allValuesFrom (VR.C), owl:someValuesFrom (3R.C),
— owl:hasValue (0),
— including datatype restrictions for the range (D)

* by defining intersections of owl:Restrictions, classes having multiple such constraints can
be specified.

316

OWL NOTIONS (CONT’D)

OWL Property Axioms (Overview)

» Distinction between owl:ObjectProperty and owl:DatatypeProperty
 from RDFS: rdfs:domain/rdfs:range assertions, rdfs:subPropertyOf
« Axiom owl:equivalentProperty

» Axioms: subclasses of rdf:Property:
owl: TransitiveProperty, owl:SymmetricProperty, owl:FunctionalProperty,
owl:InverseFunctionalProperty (see Slide 332)

OWL Individual Axioms (Overview)
* Individuals are modeled by unary classes

« owl:sameAs, owl:differentFrom, owl:AlIDifferent(o,. . . ,0,).

317

FIRST-ORDER LOGIC EQUIVALENTS

OWL:z e C DL Syntax FOL
C C C(x)
intersectionOf(Cy, Cy) cin...nao, Ci(x) N ... NCp(x)
unionOf(Cy, C2) Ciu...uag, Ci(x) V...V Cp(x)
complementOf(C1) -C4 —C1(x)
oneOf(x1,...,xy) {zi}U...U{zn} z2=21V...VZ=1p
OWL : x € C, Restriction on P DL Syntax FOL
someValuesFrom(C”) apP.C’ dy : P(z,y) N C'(y)
allValuesFrom(C") VP.C' Yy : P(z,y) = C'(y)
hasValue(y) JP{y} P(z,y)
maxCardinality(n) <n.P 35y 2 P(x,y)
minCardinality(n) > n.P 32"y P(x,y)
cardinality(n) n.P ="y : P(z,y)

318

FIRST-ORDER LOGIC EQUIVALENTS (CONT’D)

OWL Class Axioms for C' DL Syntax FOL

rdfs:subClassOf(Ch) CLCC Vo : C(x) — Cq(x)
equivalentClass(Ch) cC=0, Vo : C(z) <> Ci(x)
disjointWith(C1) C C-Cy Vo : C(z) — —Ci(x)
OWL Individual Axioms DL Syntax FOL

x1 sameAs - {z1} = {z2} T1 = To

x1 differentFrom z, {21} C —{x2} T, # T

AIIDifferent(xl, . ,an) /\z;é]{xl} C _|{£Uj} /\i;éj X; 75 Z;

319

FIRST-ORDER LOGIC EQUIVALENTS (CONT’D)

OWL Properties DL Syntax FOL

P p P(z,y)

OWL Property Axioms for P DL Syntax FOL

rdfs:range(C) TCVPC Vz,y:Plz,y) = C(y)

rdfs:domain(C') C2J3PT Va,y:P(z,y) — C(x)
subPropertyOf(P,) PC P Va,y: P(z,y) — Py(z,y)
equivalentProperty(P) P=P Vr,y: P(z,y) <> Py(z,y)

inverseOf(Ps) P=P; Va,y: P(z,y) <> Pa(y,x)
TransitiveProperty pt=p Ve,y,z : ((P(x,y) AN P(y,2)) = P(x,2))

Vo,z: ((Jy: P(x,y) N P(y,2)) = P(x,z2))

FunctionalProperty TC<IPT Vz,y1,y2: P(z,y1) A P(x,y2) = y1 = 2
InverseFunctionalProperty T C <1P~.T Va,y1,y2: P(y1,x) A P(y2,2) = y1 = yo

320

SYNTACTICAL REPRESENTATION

« OWL specifications can be represented by graphs: OWL constructs have a
straightforward representation as triples in RDF/XML and N3.

* there are several logic-based representations (e.g. Manchester OWL Syntax); TERP
(which can be used with pellet) is a combination of Turtle and Manchester syntax.
« OWL in RDF/XML format: usage of class, property, and individual names:

— as @rdf:about when used as identifier of a subject (owl:Class, rdf:Property and their
subclasses),

— as @rdf:resource as the object of a property.
« some constructs need auxiliary structures (collections):
owl:unionOf, owl:intersectionOf, and owl:oneOf are based on Collections
— representation in RDF/XML by rdf:parseType="Collection”.
— representation in N3 by (x; X3 ...Xy,)
— as RDF lists: rdf:List, rdf:first, rdf:rest

321

REQUIREMENT

* every entity in an OWL ontology must be explicitly typed (i.e., as a class, an object
property, a datatype property, ..., or an instance of some class).
(for reasons of space this is not always done in the examples; in general, it may lead to
incomplete results)

322

QUERYING OWL DATA

* queries are atomic and conjunctive DL queries against the underlying OWL-DL model.

« this model can still be seen as a graph:
— many of the edges are those known from the basic RDF graph
— some edges (and collections) are only there for encoding OWL stuff (describing
owl:unionOf, owl:propertyChain etc.) — these should not be queried

« SPARQL-DL is a subset of SPARQL: not every SPARQL query pattern is allowed for use
on an OWL ontology
(but the reasonable ones are, so in practice this is not a problem.)

» the query language SPARQL-DL allows exactly such well-sorted patterns using the
notions of OWL.

323

SOME TBOX-ONLY REASONING EXAMPLES ON SETS

Example: A Simple Paradox

@prefix : <foo://bla/>.
O@prefix owl: <http://www.w3.org/2002/07/owl#>.
:Paradox owl:complementOf :Paradox. [Filename: RDF/paradox.n3]

« without reasoner:

jena -t -ol rdf/xml -if paradox.n3

Outputs the same RDF facts in RDF/XML without checking consistency.

« with reasoner:

jena -e -pellet -if paradox.n3

reads the RDF file, creates a model (and checks consistency) and in this case reports
that it is not consistent:

“There is an anonymous individual which is forced to belong to class foo://bla/Paradox
and its complement”

* Note: the reasoner invents an anonymous individual for checking consistency.
The empty interpretation (with empty domain!) would be a model of P =# P.

324

UNION AS AU B = —((-A) M (-B)) (DE MORGAN’S RULE)

@prefix : <foo://bla/>.
Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

:A rdf:type owl:Class. :B rdf:type owl:Class.
:Unionl owl:equivalentClass [owl:unionOf (:A :B) 1].
:CompA owl:complementOf :A. :CompB owl:complement(Of :B.

:IntersectComps owl:equivalentClass [owl:intersectionOf (:CompA :CompB).]

:Union2 owl:complementOf :IntersectComps.

:x rdf:type :A. :x rdf:type :B.

:y rdf:type :CompA. # a negative assertion y not in A would be better -> OWL 2
:y rdf:type :CompB. [Filename: RDF/union.n3]
prefix owl: <http://www.w3.org/2002/07/owl#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix : <foo://bla/>

select ?X 7C 7D

from <file:union.n3> [Filename: RDF/union.sparql]

where {{7X rdf:type 7C} UNION {:Unionl owl:equivalentClass 7D}}

325

EXAMPLE: UNION AND SUBCLASS

Oprefix
Oprefix
Oprefix
:Male a
:Female

:Person

: <foo://bla/>.

rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
owl: <http://www.w3.org/2002/07/owl#>.

owl:Class. ## if these lines are missing,

a owl:Class. ## the reasoner complains

owl:equivalentClass [owl:unionOf (:Male :Female)].

:EqToPerson owl:equivalentClass [owl:unionOf (:Female :Male)].

:unknownPerson a [owl:unionOf (:Female :Male)].

* print class tree (with jena -e -pellet -if union-subclass.n3):

owl:

Thing

bla:Person = bla:EqToPerson - (bla:unknownPerson)

bla:Female
bla:Male

* Male and Female are derived to be subclasses of Person.

» Person and EqToPerson are equivalent classes.

» unknownPerson is a member of Person and EqToPerson.

326

Example (Cont'd)

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix owl: <http://www.w3.org/2002/07/owl#>

prefix :

<foo://bla/>

select ?SC 7?C 7T 7CC 7CD

from <file:union-subclass.n3>

where {{?SC rdfs:subClass0f 7C} UNION
{:unknownPerson rdf:type 7T} UNION

{?CC owl:equivalentClass 7CD}} [Filename: RDF/union-subclass.sparq|]

* Note:

OWLizations of DL class expressions are always handled as blank nodes, and

used with “owl:equivalentClass”, “rdf:subClassOf”, “rdfs:domain”, “rdfs:range” or “a”.

327

[Filename: RDF/union-subclass.n3]

Aside: the same in RDF/XML
(usage of rdf:parseType="Collection”)

<?xml version="1.0"7>
<rdf:RDF xmlns:owl="http://www.w3.o0rg/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf -syntax-ns#"
xmlns:f="foo://bla/"
xml:base="foo://bla/">
<owl:Class rdf:about="Person">
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="Male"/>
<owl:Class rdf:about="Female"/>
</owl:unionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:about="EqToPerson">
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="Female"/>
<owl:Class rdf:about="Male"/>
</owl:unionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<f:Person rdf:about="unknownPerson"/>
</rdf :RDF>

[Filename: RDF/union-subclass.rdf]

328

EXERCISE

Consider

<owl:Class rdf:about="C1">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="A"/>
<owl:Class rdf:about="B"/>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>

and

<owl:Class rdf:about="C2">
<rdfs:subClass0f rdf:resource="A"/>
<rdfs:subClass0f rdf:resource="B"/>
</owl:Class>

« give mathematical characterizations of both cases.

« discuss whether both fragments are equivalent or not.

329

DiSCUSSION

» Two classes are equivalent (wrt. the knowledge base) if they have the same interpretation
in every model of the KB.

« (1 is characterized to be the intersection of classes A and B.

» for C,, it is asserted that C, is a subset of A and that it is a subset of B.
* Thus there can be some cthatis in A, B, Cy, but not in Cs.

» Thus, C; and Cs are not equivalent.

« (1 is a definition, the statements about Cs are just two constraints (C> might be empty).

330

DiscUSSION: FORMAL NOTATION

The DL equivalent to the knowledge base (TBox) is

T:{ClE(AﬂB), CQEA, CQEB}
The First-Order Logic equivalent is
KB ={Vz: A(x) AN B(z) <> Ci(z), Vx:Cy(z)— A(x)AB(x)}

Thus, KB =V : Ca(x) — A(x) A B(x).
Or,inDL: T = C; C (.
On the other hand, M = (D, Z) with D = {¢} and

T(A) = {c}, T(B) = {c}, T(Ch) = {¢}, T(Co) =10

is a model of KB (wrt. first-order logic) and 7 (wrt. DL) that shows that C; and C are not
equivalent.

331

SUBCLASSES OF PROPERTIES

Triple syntax: some property rdf:itype a specific type of property
According to their ranges

» owl:ObjectProperty — subclass of rdf:Property; object-valued (i.e. rdfs:range must be an
Object class)

» owl:DatatypeProperty — subclass of rdf:Property; datatype-valued (i.e. its rdfs:range must
be an rdfs:Datatype)

= OWL ontologies require each property to be typed in such a way!
(for reasons of space sometimes omitted in examples)

According to their Cardinality

» specifying n:1 or 1:n cardinality:
owl:FunctionalProperty, owl:InverseFunctionalProperty

= useful for deriving that objects must be different from each other.

According to their Properties

 owl:TransitiveProperty, owl:SymmetricProperty see later ...

332

FUNCTIONAL CARDINALITY SPECIFICATION

property rdf:type owl:FunctionalProperty

* not a constraint, but

« if such a property results in two things ... these things are inferred to be the same.

@prefix : <foo://bla/names#>.
@prefix persons: <foo://bla/persons/>.
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:world :has_pope persons:jorgebergoglio .
:world :has_pope [:name "Franziskus"]

:has_pope rdf:type owl:FunctionalProperty.

[Filename: RDF/popes.n3]

prefix : <foo://bla/names#>
prefix persons: <foo://bla/persons/>
select ?N from <file:popes.n3>

where { persons:jorgebergoglio :name 7N }

[Filename: RDF/popes.sparql]

333

OWL:RESTRICTION — EXAMPLE

» owl:Restriction for 9p.C' and Vp.C. (cf. earlier examples)

« Definition of “Parent” as Parent = Person M JhasChild. T
(can be used for conclusions in both directions),

« Range axiom as constraint: Parent = VhasChild.Person
(use only in the “=-" direction)

@prefix : <foo://bla#>.
@prefix family: <foo://bla/persons/>.
Oprefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:Parent owl:equivalentClass
[owl:intersection0f (:Person
[a owl:Restriction;

owl:onProperty :hasChild; owl:minCardinality 1])]
:Parent rdfs:subClass0f [a owl:Restriction;

owl:onProperty :hasChild; owl:allValuesFrom :Person]
family:john a :Person; :hasChild family:alice .

family:sue a :Parent . [Filename: RDF/restriction.n3]

334

owl:Restriction — Example (cont'd)

prefix : <foo://bla#>

select 7X 7CC 7Y 7C

from <file:restriction.n3>

where {{?X a :Person; a ?CC} union {?Y :hasChild ?C}} [File: RDF/restriction.sparq|]

» How to check whether it knows that Sue has a child?
— ... only implicitly known resources are never contained in SPARQL answers
(impedance mismatch between SPARQL and DL).
— they are only known inside the reasoner.
— for looking inside the reasoner’s “private” knowledge, appropriate auxiliary classes

have to be defined in the OWL ontology which are then queried by SPARQL (as in
many later examples)

* note also the separation of the domain into notions (<foo://bla#>) and instances
(<foo://bla/persons/>).
This will not be cleanly done in the subsequent examples because it costs space.

335

Aside: owl:Restriction as RDF/XML

<?xml version="1.0"7>
<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://wuw.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns:f="foo://bla/"
xml :base="foo://bla/">
<owl:Class rdf:about="Parent">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="hasChild"/>
<owl:minCardinality>1</owl:minCardinality>
</owl:Restriction>
</owl:intersection0f>
</owl:Class>
<owl:equivalentClass>
</owl:Class>
<f:Person rdf:about="john">
<f:hasChild><f:Person rdf:about="alice"/></f:hasChild>
</f:Person>

</rdf :RDF> [Filename: RDF/restriction.rdf]

336

RESTRICTIONS (AND OTHER CLASS SPECIFICATIONS) AS SEPARATE
BLANK NODES

Consider the following (bad) specification:

:badIdea a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1.

This is not allowed in OWL-DL.

Correct specification:

:badIdea owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].

Why? ... there are many reasons, for one of them see next slide.

337

Restrictions Only as Blank Nodes (Cont’d)

A class with two such specifications:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
Oprefix : <foo://bla/>.
:badIdea a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1 .

:badIdea a owl:Restriction; owl:onProperty :livesIn; owl:someValuesFrom :GermanCity.

[Filename: RDF/badldea.n3]
+ call jena -t -pellet -if badldea.n3:

owl:someValuesFrom
owl:onProperty

The two restriction specifications are messed up.

338

Restrictions Only as Blank Nodes (Cont'd)

» Thus specify each Restriction specification with a separate blank node:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla/>.
:TwoRestrictions owl:equivalentClass
[owl:intersectionOf
([a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]

[a owl:Restriction; owl:onProperty :livesIn; owl:someValuesFrom :GermanCity])].

[Filename: RDF/twoRestrictions.n3]

The DL equivalent: TwoRestrictions = (3 hasChild.T) 1 (3 livesIn.GermanCity)

Another reason:

:BadSpecOfParent a owl:Restriction;
owl:onProperty :hasChild; owl:minCardinality 1;
rdfs:subClass0f :Person.

... mixes the definition of the Restriction with an assertive axiom:

BSOP = 3 > 1 hasChild. T A ABDE C Person

(This expression probably does not meet the original intention — is derives that anything that
has a child is made an instance of class “Person”; cf. Slide 329)

339

MULTIPLE RESTRICTIONS ON A PROPERTY

» “All persons that have at least two children, and one of them is male”

» first: a straightforward wrong attempt

Oprefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo://bla/>.

Test: multiple restrictions: the owl:someValuesFrom-condition is then ignored

:HasTwoChildrenOneMale owl:intersectionOf (:Person prefix : <foo://bla/>

select 7X

from <file:restriction-double.n3>
where {?X a :HasTwoChildrenOneMale}

[a owl:Restriction; owl:onProperty :hasChild;

owl:someValuesFrom :Male; owl:minCardinality 2]).

:name a owl:FunctionalProperty. [Filename: RDF/restriction-double.sparql]

:Male rdfs:subClass0f :Person; owl:disjointWith :Female.

:Female rdfs:subClass0f :Person.

:kate a :Female; :name "Kate"; :hasChild :john.

:john a :Male; :name "John";
:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"].

:sue a :Female; :name "Sue"; [Filename: RDF/restriction-double.n3]
:hasChild [a :Female; :name "Anne"], [a :Female; :name "Barbara"].

» The the owl:someValuesFrom-condition is ignored in this case (Result: John and Sue).

340

Multiple Restrictions on a Property
« “All persons that have at least two children, and one of them is male”

* to expressed as an intersection of two separate restrictions:

@prefix owl: <http://www.w3.org/2002/07/owl#>. prefix : <foo://bla/>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.|Select 7%

. from <file:intersect-restrictions.n3>
Oprefix : <foo://bla/>. where {?X a :HasTwoChildrenOneMale}

:HasTwoChildrenOneMale owl:equivalentClass [Filename: RDF/intersect-restrictions.sparq|]
[owl:intersection0f (:Person
[a2 owl:Restriction; owl:onProperty :hasChild; owl:someValuesFrom :Malel
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 2]) J].
:name a owl:FunctionalProperty.
:Male rdfs:subClass0f :Person; owl:disjointWith :Female.
:Female rdfs:subClassOf :Person.
:kate a :Female; :name "Kate"; :hasChild :john.
:john a :Male; :name "John";
:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"].
:sue a :Female; :name "Sue"; [Filename: RDF/intersect-restrictions.n3]
:hasChild [a :Female; :name "Anne"], [a :Female; :name "Barbara"].

 Note: this is different from Qualified Range Restrictions such as “All persons that have at
least two male children” — see Slide 402.

341

USE OF A DERIVED CLASS

@prefix owl: <http://www.w3.org/2002/07/owl#>.

Q@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo://bla#>.

:kate :name "Kate"; :hasChild :john.
:john :name "John"; :hasChild :alice.
:alice :name "Alice".

:Parent a owl:Class; owl:equivalentClass

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].
:Grandparent owl:equivalentClass

[a owl:Restriction; owl:onProperty :hasChild; owl:someValuesFrom :Parent].

[Filename: RDF/grandparent.n3]

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix : <foo://bla#>

select 7A 7B

from <file:grandparent.n3>

where {{7A a :Parent} UNION

{?B a :Grandparent} UNION

{:Grandparent rdfs:subClassOf :Parent}}
[Filename: RDF/grandparent.sparql]

342

NON-EXISTENCE OF PROPERTY FILLERS (POSSIBLE SYNTAXES)

Oprefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.

:ChildlessA owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:maxCardinality 0]).
:ChildlessB owl:intersectionOf (:Person
[a owl:Restriction; owl:onProperty :hasChild; owl:allValuesFrom owl:Nothing]).
:ParentA owl:intersection0f (:Person [owl:complementOf :ChildlessA]). ### (*)
:ParentB owl:intersectionOf (:Person
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]).
:name a owl:FunctionalProperty.
:john a :Person; :name "John"; :hasChild :alice, :bob.
:sue a :ParentA; :name "Sue".

:george a :Person; a :ChildlessA; :name "George". [Filename: RDF/parents-childless.n3]
« export class tree: ChildlessA and ChildlessB are equivalent,

« ParentA and ParentB are also equivalent

* note: due to the Open World Assumption, only George is definitely known to be childless.

» Persons where parenthood is not known (Alice, Bob) are neither in Childless nor in
Parent!

Note: (*) states “Parent” vs. “Childless” as a disjoint, total partition of “Person”, but it is not
known to which partition Alice and Bob belong. Both would be possible.

343

NON-EXISTENCE OF PROPERTY FILLERS — OPEN WORLD VS. CLOSED
WORLD

« basically the same, Parent and Childless as classes, more persons,

« the focus is now on the different explicit and implicit knowledge about them:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:Childless owl:intersection0f (:Person
[2 owl:Restriction; owl:onProperty :hasChild; owl:maxCardinality 0]).
:Parent owl:intersectionOf (:Person
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]).
:name a owl:FunctionalProperty.
:kate a :Person; :name "Kate"; :hasChild :john, :sue.
:john a :Person; :name "John"; :hasChild :alice, :bob.
:alice a :Person; :name "Alice".
:bob a :Person; :name "Bob".

:sue a :Parent; :name "Sue".

:george a :Person; a :Childless; :name "George". [Filename: RDF/childless.n3]

344

prefix : <foo://bla#>
select 7CL ?NCL 7P 7?NP ?NHC 7X ?Y from <file:childless.n3>
where { {7CL a :Childless}
union {?NCL a :Person FILTER NOT EXISTS { ?NCL a :Childless}}
union {7P a :Parent}
union {?NP a :Person FILTER NOT EXISTS { 7?NP a :Parent}}
union {7X :hasChild ?Y} [Filename: RDF/childless.sparq]]
union {?NHC a :Person FILTER NOT EXISTS {?NHC :hasChild ?X}}}

DL (and OWL) — everything that is done inside the reasoner: open world — monotonic,
SPARQL: closed-world — non-monotonic:

« ?CL: only George is known to be Childless.

» ?NCL: Closed-World-Complement of ?C — all persons where it cannot be proven that they
are childless — “definitely not childless or maybe not childless” — “where it is consistent to
assume that they are not childless” — non-monotonic (all except George).

* Parents ?P: Sue, Kate, John;

» ?NP: Closed-World-Complement of ?P — (“consistent to be non-parents”— George, Alice, Boh

« ?X, ?Y: only explicitly known parents/children (Sue not mentioned).

» ?NHC: George, Alice, Bob and Sue(!) — no children of them are explicitly known.

345

~—

INVERSE PROPERTIES

« owl:ObjectProperty owl:inverseOf owl:ObjectProperty

+ owl:DatatypeProperties cannot have an inverse
(this would define properties of objects, cf. next slide)

@prefix : <foo://bla#> .

O@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schemai#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

:descendant rdf:type owl:TransitiveProperty.

:hasChild rdfs:subProperty0f :descendant. prefix : <foo://bla#>
:hasChild owl:inverseOf :hasParent. select ?X ?Y
:john :hasChild :alice, :bob. from <file:inverse.n3>
:john :hasParent :kate . where {?X :descendant 7Y}
[Filename: RDF/inverse.n3] [Filename: RDF/inverse.sparql]
346

No Inverses of owl:DatatypeProperties!
+ an owl:DatatypeProperty must not have an inverse:

+ “;john :age 35” would imply “35 :ageOf :john” which would mean that a literal has a
property, which is not allowed.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix : <foo://bla#>

:john :name "John"; :age 35; :hasChild [:name "Alice"], [:name "Bob"; :age 8].
:age a owl:DatatypeProperty.
:hasChild a owl:0ObjectProperty.
:parent owl:inverseOf :hasChild.
:age0f owl:inverseOf :age.

[Filename: RDF/inverseDTProp.n3]

jena -e -pellet -if inverseDTProp.n3

WARN [main] (OWLLoader.java:352) - Unsupported axiom:

Ignoring inverseOf axiom between foo://bla#age0f (ObjectProperty)
and foo://blat#age (DatatypeProperty)

347

SPECIFICATION OF INVERSE FUNCTIONAL PROPERTIES

» Mathematics: a mapping m is inverse-functional if the inverse of m is functional:

x p y is inverse-functional, if for every y, there is at most one = such that xpy holds.
« Example:

— hasCarCode is functional: every country has one car code,

— hasCarCode is also inverse functional: every car code uniquely identifies a country.
« OWL:

:m-inverse owl:inverseOf :m .

:m-inverse a owl:FunctionalProperty
not allowed for e.g. mon:carCode a owl:DatatypeProperty:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
O@prefix owl: <http://www.w3.org/2002/07/owl#>.
Oprefix : <foo:bla#>.
:carCode a owl:DatatypeProperty; rdfs:domain :Country;
owl:inverse(Of :isCarCodeOf.
:Germany :carCode "D". [Filename: RDF/noinverse.n3]

« the statement is rejected.

348

OWL:INVERSEFUNCTIONALPROPERTY

+ such cases are described with owl:InverseFunctionalProperty

 a property P is an owl:InverseFunctionalProperty if
Vo, y1,y2 P(yl,.flf) A P(yz,fﬁ) — Y1 = Y2 holds

O@prefix rdfs: <http://www.w3.org/2000/01/rdf-schemai#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
Oprefix : <foo:bla#>.
:carCode rdfs:domain :Country; a owl:DatatypeProperty;

a owl:FunctionalProperty; a owl:InverseFunctionalProperty.
:name a owl:DatatypeProperty; a owl:FunctionalProperty.
:Germany :carCode "D"; :name "Germany".

:DominicanRepublic :carCode "D"; :name "Dominican Republic".

[Filename: RDF/invfunctional.n3]

+ the fragment is detected to be inconsistent.

349

OWL:hasKey (OWL 2)
Declaration of key attributes (k1, ..., k,) is a relevant issue in data modeling.

« a key allows for unambiguously identifying a resource amongst a certain subset of the

domain,

» in OWL, keys are not restricted to functional properties
(i.e., SQLs UNIQUE is not required),

» values of key properties may be unknown for some instances; they might even be

forbidden for some elements of the domain (e.g. using owl:maxCardinality 0 or
owl:allValuesFrom owl:Nothing).

 note: InverseFunctionalProperty covers the simple case that n = 1 and the key is global.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schemai#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

Oprefix : <foo:bla#>.

:name a owl:DatatypeProperty; a owl:FunctionalProperty.

:Country owl:hasKey (:carCode).

:DominicanRepublic a :Country; :carCode "D"; :name "Dominican Republic".
:Germany a :Country; :carCode "D"; :name "Germany". [Filename: RDF/haskey.n3]

« the fragment is inconsistent.

350

OWL:hasKey (OWL 2) for Non-Functional Properties
* keys are not restricted to functional properties:

@prefix owl: <http://www.w3.org/2002/07/owl#>.

Oprefix : <foo:bla#>.

:District owl:hasKey (:code).

:Country owl:hasKey (:code).

:goettingen a :District; :name "Goettingen"; :code "GOE", "DUD", "HMAL" .
:leipzig a :District; :name "Leipzig"; :code "L".

:lahndillkreis a :District; :name "Lahn-Dill-Kreis"; :code "LDK", "DIL", "WZ",

:luxembourg a :Country; :name "Luxembourg"; :code "L".

IILll .

[Filename: RDF/key-mvd.n3]

prefix : <foo:bla#>
select 7D 7N 7C
from <file:key-mvd.n3>

where { ?X a ?D ; :name ?N; :code 7C }

[Filename: RDF/key-mvd.sparql]
 Lahn-Dill-Kreis and Leipzig are identified (LDK had “L” from 1977-1990).

« Luxembourg is not identified with them since the key definitions are local to districts vs.

countries.

351

OWL:hasKey (OWL 2) for Multi-Property-Keys
» consider triples about persons found in different Web sources.

« ABSOLUTELY BUGGY (27.7.2017) — it equates all four persons below:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
Oprefix : <foo:bla#>.

:Person owl:hasKey (:givenName :familyName) .

_:bl a :Person; :givenName "John"; :familyName "Doe"; :age 35 .

_:b2 a :Person; :givenName "John"; :familyName "Doe"; :address "Main Street 1"

_:b3 a :Person; :givenName "Mary"; :familyName "Doe"; :age 32; :address "Main Street (1"

_:b4d a :Person; :givenName "Donald"; :familyName "Trump"; :age 70; :address "White House
#:age a owl:FunctionalProperty.

[Filename: RDF/haskey2.n3]

prefix : <foo:bla#>

select 7X 7P 7Y

from <file:haskey2.n3>

where {?X a :Person ; 7P 7Y}

[Filename: RDF/haskey?2.sparql]

352

NAMED AND UNNAMED RESOURCES

(from the DL reasoner’s perspective)

Named Resources

« resources with explicit global URIs
<http://www.semwebtech.org/mondial/10/country/D>
<foo://bla/bob>

» resources with local IDs/named blank nodes
« unnamed blank nodes

Unnamed (implicit) Resources

* things that exist only implicitly:
John’s child in
:Parent a owl:Class; owl:equivalentClass

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].

:john a Parent.

« such resources can even have properties (see next slides).

353

Implicit Resources
* “every person has a father who is a person” and “john is a person”.

* the standard model is infinite:
john, john’s father, john’s father’s father, ...

» pure RDF graphs are always finite,
« only with OWL axioms, one can specify such infinite models,
= they have only finitely many locally to path length n different nodes,

+ the reasoner can detect the necessary n (“blocking”, cf. Slides 452 ff) and create “typical”
different structures.

Aside: “standard model” vs “nonstandard model”

« the term “standard model” is not only “what we understand (in this case)”, but is a notion
of mathematical theory which —roughly— means “the simplest model of a specification”

» nonstandard models of the above are those where there is a cycle in the ancestors
relation.
(as the length of the cycle is arbitrary, this would not make it easier for the reasoner -
there is only the possibility to have an owl:sameAs somewhere)

354

Implicit Resources

@prefix : <foo://bla#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

:Person owl:equivalentClass [a owl:Restriction;
owl:onProperty :father; owl:someValuesFrom :Person].

:bob :name "Bob"; a :Person; :father :john.

:john :name "John"; a :Person.

[Filename: RDF/fathers-and-forefathers.n3]

prefix : <foo://bla#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select 7?X 7F 7C

from <file:fathers-and-forefathers.n3>

where {{ 7X :father 7F } UNION { 7?C a :Person }}
[Filename: RDF/fathers-and-forefathers.sparql]

» Reasoner: works on the model, including blocking, i.e. modulo equivalence up to paths of
length n.

« SPARQL (and SWRL) rules: works on the graph — without the unnamed/implicit resorces.

355

7.3 RDF Graph vs. OWL Model; SPARQL vs. Reasoning

SPARQL is an RDF (graph) query language
OWL talks about models.

Consequences (Overview)

=

SPARQL queries are answered against the graph of triples
Some OWL notions are directly represented by triples, such as ¢ a owl:Class.

Some others are directly supported by special handling in the reasoners,
e.g., ¢ rdfs:subClassOf d and ¢ owl:equivalentClass d.

some others are only “answered” when given explicitly in the RDF input! The results then
do not incorporate further results that could be found by reasoning!

OWL notions in the input are often not contained as triples, but are only translated into DL
atoms for the reasoner. (e.g. owl:Restriction definitions)

Most OWL notions in queries are not “understood” as OWL, but only matched.

SPARQL answers are only concerned with the graph, not with implicit things that are only
known in the model.

356

ONTOLOGY LEVEL QUERYING

SPARQL is defined by matching the underlying RDF graph.

OWL triples are not always part of the RDF graph (they are intended to be translated into
DL definitions in the reasoner)

for traditional DL notions like

?C a owl:Class

?C a rdfs:subClass0f 7D

?C owl:equivalentClass 7D

?C owl:disjointWith 7D
SPARQL implementations support to translate these internally into DL queries against the
reasoner.

SPARQL-DL (Sirin, Parsia OWLED 2007 [members of the Pellet team]) is a proposal that
allows certain further OWL built-ins to be queried.

357

Ontology Level Querying - a practical example

Consider again the “Childless” ontology from Slide 344.
Check that Childless M Parent = () and Person = Childless LI Parent (Partitioning)

« Allowed: (single line empty bindings result means true)

prefix : <foo://bla#>

prefix owl: <http://www.w3.org/2002/07/owl#>

select 7X from <file:childless.n3>

where { :Childless owl:disjointWith :Parent }[Filename: RDF/childless1.sparql]

* Not allowed: complex class expression in the query (empty result since it tries a plain
match with the RDF data)

prefix : <foo://bla#> [Filename: RDF/childless2.sparql]
prefix owl: <http://www.w3.org/2002/07/owl#>
select ?X from <file:childless.n3> NOT ALLOWED

where { :Person owl:equivalentClass [owl:unionOf (:Childless :Parent)] }

« instead: add auxiliary class definition to the TBox and export class tree with
jena -e -if childless.n3 childless3.n3:

Cprefix : <foo://bla#>. [Filename: RDF/childless3.n3]
@prefix owl: <http://www.w3.org/2002/07/owl#>.

:UnionCLP owl:equivalentClass [ow%&ynionﬂf (:Childless :Parent)]

NOT REASONED: oOWL:FUNCTIONALPROPERTY

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

Oprefix : <foo:bla#>.

:q a owl:FunctionalProperty.

:p a owl:0bjectProperty; rdfs:domain :D.

:D owl:equivalentClass [a owl:Restriction; owl:onProperty :p;

owl:maxCardinality 1].

:x :p :a, :b. :a owl:differentFrom :b. [Filename:RDF/functional.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo:bla#>
select 7P

from <file:functional.n3>

where { 7P a owl:FunctionalProperty } [Filename:RDF/functional.sparql]

« tries just to match plain { ?P a owl:FunctionalProperty } triples in the RDF graph.
Returns only g.

 does not derive that property q is in fact also functiona.

359

NOT ALLOWED: CompPLEX TERMS IN SPARQL QUERIES

« example: all cities that are a capital

» works well with pellet alone (June 2017); not allowed with Jena
pellet query -query-file countrycaps.sparql \

mondial-europe.n3 mondial-meta.n3 countrycaps.n3

« note: if the answer is empty, check that the mondial-namespace in the used
mondial-meta.n3 is correct.

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://www.semwebtech.org/mondial/10/meta#> .
:CountryCapital owl:intersectionOf
(:City [a owl:Restriction; owl:onProperty :isCapitalOf;
owl:someValuesFrom :Country]). [Filename: RDF/countrycaps.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <http://www.semwebtech.org/mondial/10/metat>
select 7N1 7N2
where {{7X a :CountryCapital; :name ?N1} union
{?Y a [a owl:Restriction; owl:onProperty :isCapitalOf;
owl:someValuesFrom :Country]; :name ?N2}} [Filename:RDF/countrycaps.sparql]

360

NOT ALLOWED: ComPLEX TERMS IN SPARQL QUERIES (CONT’D)

« all organizations whose headquarter city is a capital:

« neither allowed by pellet nor by jena+pellet (June 2017; worked with pellet alone in 2013)

pellet query -query-file organizations-query2.sparql \

mondial-europe.n3 mondial-meta.n3

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <http://www.semwebtech.org/mondial/10/meta#>
select 7A 7H
where {?X a [owl:intersectionOf
(:0rganization [a owl:Restriction; owl:onProperty :hasHeadq;
owl:someValuesFrom
[a owl:Restriction; owl:onProperty :isCapitalOf;
owl:someValuesFrom :Country] 1) 1;
:abbrev ?7A; :hasHeadq 7?C . 7?C :name 7H . }

[Filename:RDF/organizations-query2.sparql]

361

How TO DO IT: SETS OF ANSWERS TO QUERIES AS AD-HOC CONCEPTS

» The result concept (and maybe others) must be added to the ontology.

« Example: all organizations whose headquarter city is a capital:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://www.semwebtech.org/mondial/10/meta#> .
:CountryCapital owl:equivalentClass
[owl:intersectionOf
(:City [a owl:Restriction; owl:onProperty :isCapitalOf;
owl:someValuesFrom :Country])].
<bla:Result> owl:equivalentClass [owl:intersectionOf
(:0rganization [a owl:Restriction; owl:onProperty :hasHeadq;
owl:someValuesFrom :CountryCapitall)] . [Filename: RDF/organizations-query.n3]

prefix : <http://www.semwebtech.org/mondial/10/meta#>

select 7A 7N

from <file:organizations-query.n3>

from <file:mondial-europe.n3>

from <file:mondial-meta.n3> [Filename:RDF/organizations-query.sparq|]
where {7X a <bla:Result> . 7X :abbrev 7A . 7X :hasHeadq ?C . 7C :name 7N}

362

SPARQL ON THE GRAPH: IMPLICITLY KNOWN RESOURCES

« SPARQL does not return any answer related with nodes (=resources) that are only
implicitly known (=non-named resources)

Oprefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:Parent0f12Y0Child owl:equivalentClass [a owl:Restriction;
owl:onProperty :hasChild; owl:someValuesFrom :12Y0OPerson].
:12Y0Person owl:equivalentClass [a owl:Restriction;
owl:onProperty :age; owl:hasValue 12].
[:name "John"; :age 35; a :Parent0f12Y0Child;
:hasChild [:name "Alice"; :age 10], [:name "Bob"; :age 8]].
:age rdf:type owl:FunctionalProperty.
:12Y0Person owl:equivalentClass owl:Nothing.

:TwoChildrenParent owl:equivalentClass [a owl:Restriction;
owl:onProperty :hasChild; owl:cardinality 2].
:ThreeChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:minCardinality ?&Henanux RDF/john-three-children-impl.n3]

363

SPARQL and Non-Named Resources (Cont'd)
* implicit resources exist only on the reasoning level,

* not considered by SPARQL queries:

prefix : <foo://bla#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select 7?X 7C 7A 7T

from <file:john-three-children-impl.n3>

where {{ ?X :name "John" . ?X a 7C }

UNION {?X :age 7A} UNION {7T a :12YOPerson}}

[Filename: RDF/john-three-children-impl.sparq|]
« John is a ThreeChildrenParent,
* no person known who is 12 years old
* adding :12Y0Person owl:equivalentClass owl:Nothing makes it inconsistent.

« implicity known things are also not considered for the OWL construct owl:hasKey (cf.
Slides 350 and 365) and for SWRL rules (cf. Slides 455 ff).

364

[ASIDE/EXAMPLE] OWL:HASKEY AND NON-NAMED RESOURCES

Show that owl:hasKey ignores resources that are only implicitly known (OWL ontology see
next slide):

« create an (infinite) sequence of implicitly known fathers ... all being persons and having
the name “Adam”,

 guarantee that the sequence consists of different objects by making it irreflexive.
(note: Transitivity and Irreflexivity are not allowed together, thus actually only every person
is required to be different from his/her father — the grandfather might be the person again)

365

@prefix owl: <http://www.w3.org/2002/07/owl#>.
Q@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
Oprefix : <foo:bla#>.
:Person owl:hasKey (:name)
:name a owl:DatatypeProperty .
:name a owl:InverseFunctionalProperty . ## that would do it instead of hasKey
:father a owl:FunctionalProperty, owl:IrreflexiveProperty; rdfs:range :Person.
:bob a :Person; :father :john .
:john :name "John"
:Adam owl:equivalentClass [a owl:Restriction; owl:onProperty :name; owl:hasValue "Adam
:Person rdfs:subClassOf
[a owl:Restriction; owl:onProperty :father; owl:someValuesFrom :Adam].

:JohnAdam owl:equivalentClass [owl:intersectionOf (:Adam

[a owl:Restriction; owl:onProperty :name; owl:hasValue "John"])].
:hasFatherJohnAdam owl:equivalentClass [a owl:Restriction;

owl:onProperty :father; owl:someValuesFrom :JohnAdam]
:hasGrandpaAdam owl:equivalentClass [a owl:Restriction; owl:onProperty :father;

owl:someValuesFrom [a owl:Restriction; owl:onProperty :father;

owl:someValuesFrom :Adam]].

:AdamFatherAdam owl:equivalentClass [owl:intersectionOf (:Adam

[a owl:Restriction; owl:onProperty :father; owl:someValuesFrom :Adam])]

[Filename: RDF/forefathers-keys.n3]

366

[ASIDE/EXAMPLE] OWL:HASKEY AND NON-NAMED RESOURCES

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo:bla#>
SELECT 7N 7A 7FA 7AFA 7GPA
FROM <forefathers-keys.n3>
WHERE {{ :bob :father [:name 7N] }
UNION { 7A :name "Adam" } ## error/bug complains about anon(1)
UNION { ?FA a :hasFatherJohnAdam }
UNION { 7AFA a :AdamFatherAdam }
UNION { ?GPA a :hasGrandpaAdam }}

[Filename: RDF/forefathers-keys.sparql]
« implicit nodes are not considered in the answers.

» owl:hasKey is not violated by the fact that several only implicitly known people are named
“Adam”.
Note that John, being Bob’s father, also gets the name “Adam”.

367

[ASIDE/EXAMPLE] OWL:HASKEY AND NON-NAMED RESOURCES

Another example using multi-attribute keys (which could not be replaced by
owl:InverseFunctionalProperty):

* nodes in a (x,y)-coordinate system; consider (10,10)

* insert a pointer to an implicit node (10,10).

O@prefix owl: <http://www.w3.org/2002/07/owl#>.
Oprefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
Oprefix : <foo:bla#>.
:XYThing owl:hasKey (:x :y).
:xy10 a :XYThing; :x 10; :y 10; :text "free".
:XYTen owl:intersectionO0f ([a owl:Restriction; owl:onProperty :x; owl:hasValue 10]
[a owl:Restriction; owl:onProperty :y; owl:hasValue 10]
[a owl:Restriction; owl:onProperty :text; owl:hasValue "pointedTo"]).
:pointTo a owl:FunctionalProperty; rdfs:range :XYThing.
:foo a [a owl:Restriction;
owl:onProperty :pointTo; owl:onClass :XYTen; owl:qualifiedCardinality 1].
:foo :pointTo :xyxy. ## functionality of pointTo: makes :xyxy=(10,10) explicit

[Filename: RDF/easykeys-impl.n3]

368

Aside/Example owl:hasKey and Non-Named Resources (Cont'd)

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo:bla#>
SELECT 7CT 7Y 7T 7SameAsxyxy
FROM <easykeys-impl.n3>
WHERE {{ :foo :pointTo [:text 7CT] }
UNION { ?Y :text 7T }
UNION { [:text ?T] }
UNION { :xyxy owl:sameAs 7SameAsxyxy }}

[Filename: RDF/easykeys-impl.sparql]
Implicit nodes are not considered in the answers.

« with last in line in source commented out: not much — the “pointTo” text is not answered,
nothing is :sameAs.

« with last line commented in: the implicit node which is pointed to is equated with :xyxy,
made explicit and then equated also with :xy10.

369

[AsIDE] OWL vs. RDF LisTS

» RDF provides structures for representing lists by triples (cf. Slide 230): rdf:List, rdf:first,
rdf:rest.
These are distinguished classes/properties.

« OWL/reasoners have a still unclear relationship with these:

— use of lists for its internal representation of owl:unionOf, owl:oneOf etc. (that are
actually based on collections),

— do or do not allow the user to query this internal representation,

— ignore user-defined lists over usual resources.

370

[ASIDE] UNIONOF (ETC) AS TRIPLES: LISTS

« owl:unionOf (x y z), owl:oneOf (x y z) is actually only syntactic sugar for RDF lists.

 The following are equivalent:

O@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.

:Male a owl:Class.

:Female a owl:Class.

:Person a owl:Class; owl:unionOf (:Male :Female).
:EqToPerson a owl:Class;
owl:unionOf
[a rdf:List; rdf:first :Male;
rdf:rest [a rdf:List; rdf:first :Female; rdf:rest rdf:nil]].
:X a :Person. [Filename: RDF/union-list.n3]

* jena -t -if union-list.n3: both in usual N3 notation as owl:unionOf (:Male :Female).

371

[ASIDE] UNIONOF (ETC) AS TRIPLES (CONT’D)

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla#>
select 7C

from <file:union-list.n3>

where {:Person owl:equivalentClass 7C}

[Filename: RDF/union-list.sparql]

* jena -q -pellet -gf union-list.sparql: both are equivalent.

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla#>
select ?7P1 7P2 7X 7Q 7R 7S 7T
from <file:union-list.n3>
where {{:Person owl:equivalentClass :EqToPerson} UNION
{:Person 7P1 7X . 7X 7Q 7R . OPTIONAL {?R 7S ?T}} UNION
{:EqToPerson 7P2 7X . 7X 7Q 7R} . OPTIONAL {?R 7S 7T}} [Filename: RDF/union-list2.sparq|]

* both have actually the same list structure
(pellet2/nov 2008: fails; pellet 2.3/sept 2009: fails)

372

[ASIDE] REASONING OVER LISTS (PITFALLS!)

« rdf:first and rdf:rest are (partially) ignored for reasoning (at least by pellet?); they cannot
be used for deriving other properties from it.

+ they can even not be used in queries (since pellet2/nov 2008; before it just showed weird
behavior)

prefix rdf:
<http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>
prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla#>
select 7X 7Y 7Z
from <file:union-list.n3>
where {?X a rdf:List; rdf:first 7Y .
OPTIONAL {7X rdf:rest 7Z}}

[Filename: RDF/union-list3.sparq(]
* jena-tool with pellet2.3: OK.

« pellet2.3: NullPointerException.

373

[Aside] Extension of a class defined by a list

Given an RDF list as below, define an owl:Class :Invited which contains exactly the elements
in the list (i.e., in the above sample data, :alice, :bob, :carol, :dave).

Oprefix : <foo:bla#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

Problem: when the real rdf namespace is used, rdf:first/rest are ignored
@prefix rdfL: <http://www.w3.org/1999/02/22-rdf-syntax-nsL#>. # <<<LKLLLLLLLKLKL
Oprefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>. -
P P & prefix : <foo:bla#>
?
:Invited a owl:Class. select 71
:InvitationList rdfs:subClass0Of rdfL:List. from <file:invitation-list.n3>
:listl a :InvitationList; rdfL:first :alice; where {?7I a :Invited}
rdfL:rest [a rdfL:List; rdfL:first :bob; [Filename: RDF/invitation-list.sparq|l]

rdfL:rest [a rdfL:List; rdfL:first :carol;
rdfL:rest [a rdfL:List; rdfL:first :dave; rdfL:rest rdf:nill]].

rest of an InvitationList is also an InvitationList
:InvitationList owl:equivalentClass
[a owl:Restriction;
owl:onProperty rdfL:rest; owl:allValuesFrom :InvitationList],

[a owl:Restriction;

owl:onProperty rdfL:first; owl:allValuesFrom :Invited].

[Filename: RDF/invitation-list.n3]

374

7.4 Nominals: The O in SHOIQ

TBox vs. ABox

Description Logics Terminology

Clean separation between TBox and ABox vocabulary:

» TBox: RDFS/OWL vocabulary for information about classes and properties
(further partitioned into definitions and axioms),

« ABox: Domain vocabulary and rdf:type.
RDF/RDF/OWL Ontologies
 Syntactically: allow to mix everything in a single set of triples.

» OWL-DL restriction: clean usage of individuals vs. classes
— individuals only in application property triples (ABox)

— classes only in context of RDFS/OWL built-ins (like (X a :Person) or (:hasChild
rdfs:range :Person), etc.) (TBox)

375

Recall: Reification

* Reification treats a class (e.g. :Penguin) or a property as an individual (:Penguin a
:Species)

« reification assigns properties from an application domain to classes and properties.
« useful when talking about metadata notions,

» risk: allows for paradoxes.

NOMINALS

« use individuals (that usually occur only in the ABox) in specific positions in the TBox:

« as individuals (that are often implemented in the reasoner as unary classes) with
[a owl:Restriction; owl:onProperty property; owl:hasValue object]
(the class of all things such that {?x property object} holds).

* in enumerated classes class owl:oneOf (04,...,0,)
(class is defined to be the set {04,...,0,}).

376

USING NOMINALS: ITALIAN CITIES

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
@prefix it: <foo://bla#>.
it:Italy owl:sameAs <http://www.semwebtech.org/mondial/10/countries/I/>.
it:ItalianCity a owl:Class; owl:intersectionOf
(mon:City
[a owl:Restriction; owl:onProperty mon:cityIn;

owl:hasValue it:Italy]). # Nominal: an individual in a TBox axiom

[Filename: RDF/italiancities.n3]

prefix it: <foo://bla#>
select 7X 7Y

from <file:mondial-meta.n3>
from <file:mondial-europe.n3>

from <file:italiancities.n3>

where {7X a it:ItalianCity} [Filename: RDF/italiancities.sparql]

* the query {?X :cityln <http://www.semwebtech.org/mondial/10/countries/I/>} would be shorter, but

here a class should be defined for further use ...

377

AN ONTOLOGY IN OWL

Consider the ltalian-English-Ontology from Slide 52.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix f: <foo://bla#>.
f:Italian rdfs:subClass0f f:Person;

owl:disjointWith f:English;

Class tree with jena -e:
owl:Thing
bla:Person
bla:English
bla:Hooligan

owl:union0f (f:Lazy f:LatinLover).
bla:Gentleman

f:Lazy owl:disjointWith f:LatinLover.

f:English rdfs:subClass0f f:Person. bla:Italian = bla:Lazy
f:Gentleman rdfs:subClass0f f:English. owl:Nothing = bla:LatinLover
f:Hooligan rdfs:subClass0f f:English. « LatinLover is empty.
f:LatinLover rdfs:subClass0f f:Gentleman. thus ltalian = Lazv.

[Filename: RDF/italian-english.n3]

378

ltalians and Englishmen (Cont’d)

+ the conclusions apply to the instance level:

@prefix : <foo://bla#>.

:mario a :Italian.

[Filename: RDF/mario.n3]

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix : <foo://bla#>

select 7C

from <file:italian-english.n3>

from <file:mario.n3>

where {:mario rdf:type ?C} [Filename: RDF/italian-english.sparql]

379

AN ONTOLOGY IN OWL

Consider the Italian-Professors-Ontology from Slide 53.

it

it:

it:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
Q@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix it: <foo://bla#>.

it:

Bolzano owl:sameAs

<http://www.semwebtech.org/mondial/10/countries/I/provinces/TrentinoAltoAdige/cities/Bo
it:

Italian owl:intersectionOf
(it:Person prefix : <foo://bla#>

[a owl:Restriction; owl:onProperty it:livesIn; select 7C

owl:someValuesFrom it:ItalianCity]); from <file:italian-prof.n3>
owl:unionOf (it:Lazy it:Mafioso it:LatinLover). from <file:mondial-meta.n3>
:Professor rdfs:subClass0Of it:Person. from <file:mondial-europe.n3>
Lazy owl:disjointWith it:ItalianProf; from <file:italiancities.n3>
owl:disjointWith it:Mafioso; where {:enrico a 7C}

owl:disjointWith it:LatinLover. [Filename: RDF/italian-prof.sparql]
Mafioso owl:disjointWith it:ItalianProf;

owl:disjointWith it:LatinLover.

1z

Bno/:

it:ItalianProf owl:intersectionOf (it:Italian it:Professor).
it:enrico a it:Professor; it:livesIn it:Bolzano. [Filename: RDF/italian-prof.n3]
380

ENUMERATED CLASSES: ONEOF

<bla:MontanunionMembers> owl:intersectionOf
(mon:Country

[owl:oneOf

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
Q@prefix owl: <http://www.w3.org/2002/07/owl#>.
Q@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.

select 7X
from <file:montanunion.n3>

)) from <file:mondial-europe.n3>
(<http://www.semwebtech.org/mondial/10/countries/NL/>

from <file:mondial-meta.n3>
<http://www.semwebtech.org/mondial/10/countries/B/>

where {?X a <bla:Result>}

<http://www.semwebtech.org/mondial/10/countries/L/>
<http://www.semwebtech.org/mondial/10/countries/F/>
<http://www.semwebtech.org/mondial/10/countries/I/>
<http://www.semwebtech.org/mondial/10/countries/D/>)]).

[RDF/montanunion.sparql]

<bla:Result> owl:intersectionOf (mon:Organization

[a owl:Restriction; owl:onProperty mon:hasMember;

owl:someValuesFrom <bla:MontanunionMembers>]). [Filename: RDF/montanunion.n3]

Query: all organizations that share a member with the Montanunion.

381

oneOf (Example Cont'd)

* previous example: “all organizations that share a member with the Montanunion.”
(DL: x € dhasMember.MontanunionMembers)

“all organizations where all members are also members of the Montanunion.”
(DL: z € YhasMember.MontanunionMembers)

The result is empty (although there is e.g. BeNelLux) due to open world: it is not known
whether there may exist additional members of e.g. BeNelLux.

Only if the membership of Benelux is “closed”, results can be proven:

Q@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
<http://www.semwebtech.org/mondial/10/organizations/Benelux/>

a [a owl:Restriction; select 7X
owl:onProperty mon:hasMember; owl:cardinality 3]. |from <file:montanunion.n3>
<bla:Subset0fMU> owl:intersection0f (mon:Organization from <file:montanunion2.n3>
[a owl:Restriction; owl:onProperty mon:hasMember; from <file:mondial-europe.n3>
owl:allValuesFrom <bla:MontanunionMembers>]). from <file:mondial-meta.n3>
mon:name a owl:FunctionalProperty. # not yet given in thf yhere {?X a <bla:SubsetOfMU>}

[Filename: RDF/montanunion2.n3] [RDF/montanunion2.sparql]

382

oneOf (Example Cont’d)

« “all organizations that cover all members of the Montanunion.”

O@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

O@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.

<bla:EUMembers> owl:equivalentClass [a owl:Restriction;
owl:onProperty mon:isMember; owl:hasValue

<http://www.semwebtech.org/mondial/10/organizations/EU/>].

[Filename: RDF/montanunion3.n3]

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

select 7X # 7Y 7Z

from <file:montanunion.n3>

from <file:montanunion3.n3>

from <file:mondial-europe.n3>

from <file:mondial-meta.n3>

where {#{7Y a <bla:EUMembers>} UNION {?Z a <bla:MontanunionMembers>} UNION
{<bla:MontanunionMembers> rdfs:subClass0f 7X}}

[Filename: RDF/montanunion3.sparq|]

383

ONEOF (EXAMPLE CONT’D)

Previous example:
« only for one organization
« defined a class that contains all members of the organization
* not possible to define a family of classes — one class for each organization.

« this would require a parameterized constructor:
“corg I8 the set of all members of org”
Second-Order Logic: each organization can be seen as a unary predicate (=set):

VYOrg : Org(c) <> hasMember(Org, c)

orin F-Logic syntax: C isa Org :- Org:organization[hasMember->C]
yields e.g.

I(eu) = {germany, france, ...},

I(nato) = {usa, canada, germany, . ..}

Recall that “organization” itself is a predicate:

I(organization) = {eu,nato, ..., }

So we have again reification: organizations are both first-order-individuals and classes.

384

CONVENIENCE CONSTRUCT: OWL:ALLDIFFERENT

» owl:oneOf defines a class as a closed set;
* in owl:oneOf (x4, ..., X,), two items may be the same (open world),

owl:AllDifferent

« Triples of the form :a owl:differentFrom :b state that two individuals are different.
For a database with n elements, one needs
m—1)4+Mn-2)+...42+1=>) i=mn-(n+1)/2 = 0(n?) such statements.

1=1..n
» The —purely syntactical- convenience construct
[a owl:AllDifferent; owl:members (r1 7o ...7,)]
provides a shorthand notation.

— itis immediately translated into the set of all statements
{r; owldifferentFrom r; | i # j € 1..n}

— [a owl:AllDifferent; owl:members (...)]
is to be understood as a (blank node) that acts as a specification that the listed things
are different that does not actually exist in the model.

385

[SYNTAX] OWL:ALLDIFFERENT IN RDF/XML

<?xml version="1.0"7>

xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-
xmlns:f="foo://bla#" xml:base="foo://bla#">
<owl:Class rdf:about="Foo">
<owl:equivalentClass> <owl:Class>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="a"/> <owl:Thing rdf:
<owl:Thing rdf:about="c"/> <owl:Thing rdf:
</owl:one0f>
</owl:Class> </owl:equivalentClass>
</owl:Class>
<owl:AllDifferent> <!-- use like a class, but
<owl:members rdf:parseType="Collection">
<owl:Thing rdf:about="a"/> <owl:Thing rdf
<owl:Thing rdf:about="c"/> <owl:Thing rdf
</owl:members>
</owl:AllDifferent>

</rdf :RDF>

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

syntax-ns#"

prefix : <foo://bla#>

prefix owl:
<http://wuw.w3.org/2002/07/owl#>

select ?X 7P 7P2 7V

about="b"/> from <file:alldiff.rdf>

about="d"/> where {7?X a owl:AllDifferent ;

7P [7P2 7V1}

[Filename: RDF/alldiffxml.sparql]

is only a shorthand -->

:about="b"/>
:about="d"/>

<owl:Thing rdf:about="a"> <owl:sameAs rdf:resource="b"/> </owl:Thing>

[Filename: RDF/alldiff.rdf]
« AlIDifferent is only intended as a kind

of command to the application to add all pairwise

“different-from” statements, it does not actually introduce itself as triples:

 querying {?X a owl:AllDifferent} is actually not intended.

386

[SYNTAX] OW

L:ALLDIFFERENT IN N3

Example:

@prefix : <foo://bla#>.

:Foo owl:equivalentClass [owl:oneOf (

[a owl:AllDifferent; owl:members (:a
[] a owl:AllDifferent; owl:members (:c
:a owl:samels :b.

:b owl:sameAs :d.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

ta :b :c :d)].

both the following syntaxes are equivalent and correct:

:b)].
:d).

[Filename: RDF/alldiff.n3]

prefix : <foo://bla#>

select 7X 7Y

from <file:alldiff.n3>

where {?X a owl:AllDifferent ; 7P [7P2

?v]}

[Filename: RDF/alldiff.sparql]

387

ONEOF: A TEST

» owl:oneOf defines a “closed set” (use with anonymous class; see below):
* note that in owl:oneOf (x4, ..., x,), two items may be the same (open world),

« optional owl:AllDifferent to guarantee that (x4, ..., x,,) are pairwise distinct.

O@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla#>.

:Person owl:equivalentClass [owl:oneOf (:john :alice :bob) J.

:john owl:sameAs :alice. # to show that it is consistent that they are the same
[l a owl:AllDifferent; owl:members (:john :alice :bob). # to guarantee distinctness
:name a owl:FunctionalProperty. # this also guarantees distinctness ;)

:john :name "John".

:alice :name "Alice".

:bob :name "Bob".

:d a :Person.

:d owl:differentFrom :john, :alice.

:d owl:differentFrom :bob. ### adding this makes the ontology inconsistent

[Filename: RDF/three.n3]
* Who is :d?

388

oneOf: a Test (cont’d)
Who is :d?

» check the class tree:
bla:Person - (bla:bob, bla:alice, bla:d, bla:john)
The class tree does not indicate which of the “four” identifiers are the same.

« and ask it:

prefix : <foo://bla#>
select 7N

from <file:three.n3>
where {:d :name 7N}
[Filename: RDF/three.sparql]
The answer is ?N/“Bob”.

389

7.5 Closing Parts of the Open World

- “forall items” is only applicable if additional items can be excluded (= locally closed
predicate/property),

« often, RDF data is generated from a database,

» certain predicates can be closed by defining restriction classes with maxCardinality.

390

OWL:ALLVALUESFROM

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
[a :Male; a :ThreeChildrenParent; :name "John";
:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"],
[a :Female; :name "Carol"]l].
[a :Female; a :TwoChildrenParent; :name "Sue";
:hasChild [a :Female; :name "Anne";], [a :Female; :name "Barbara"l].
:name a owl:FunctionalProperty.

:OneChildParent owl:equivalentClass [a owl:RePrefix : <foo://bla#>
owl:onProperty :hasChild; owl:cardinality 1 select 7N

from <file:allvaluesfrom.n3>
:TwoChildrenParent owl:equivalentClass [a owl * vart
]]] where {7X :name 7N .
owl:onProperty :hasChild; owl:cardinality 2 ,

?X a :0OnlyFemaleChildrenParent}
:ThreeChildrenParent owl:equivalentClass [a Owrrmeses

llename: RDOF/allvaluesfrom.sparql]
owl:onProperty :hasChild; owl:cardinality 3].

:OnlyFemaleChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:allValuesFrom :Female].

[Filename: RDF/allvaluesfrom.n3]

391

EXAMPLE: WIN-MOVE-GAME IN OWL

o
e
t

:Node;
:Node;
:Node;
:Node;
:Node;
:Node;
:Node;
:Node;
:Node;
:Node;
:Node;
:Node;
:Node;

R R P

.
PP PP

B b ow

:out
:out
:out
rout
:out
:out
:out
:out
:out
:out
:out
:out

:out

2;

e we we

we

we

we

we

B =, O O Fr F NO P, P N W

we

:edge :b,
tedge :c, :
:d, :1.
e.

a.

:edge

redge :
redge :

redge :i

:Node a owl:Class; owl:equivalentClass

[a owl:Class; owl:oneOf (:a :b :c :d

a owl:DatatypeProperty.

:edge :m

redge :j

redge :
redge :

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix : <foo://bla#>.

te :f :g :h i :j :k :1 :m)].
:edge a owl:0bjectProperty; rdfs:domain :Node; rdfs:range :Node.

[Filename: RDF/winmove-graph.n3]

392

Win-Move-Game in OWL — the Game Axioms

“If a player cannot move, he loses.”

Which nodes are WinNodes, which one are LoseNodes (i.e., the player who has to move

wins/loses)

?

« if a player can move to some LoseNode (for the other), he will win.

« if a player can move only to WinNodes (for the other), he will lose.

 recall that there can be nodes that are neither WinNodes nor LoseNodes.

Oprefix :

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schemai#>.
O@prefix owl: <http://www.w3.org/2002/07/owl#>.
<foo://blat>.

:WinNode a owl:Class; owl:intersectionOf (:Node
[a owl:Restriction; owl:onProperty :edge; owl:someValuesFrom :LoseNode]).
:LoseNode a owl:Class; owl:intersectionOf (:Node

[a owl:Restriction; owl:onProperty :edge; owl:allValuesFrom :WinNodel).

[Filename: RDF/winmove-axioms.n3]

393

Win-Move-Game in OWL — Closure

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
Q@prefix owl: <http://www.w3.org/2002/07/owl#>.
O@prefix : <foo://bla#>.
:DeadEndNode a owl:Class; rdfs:subClass0Of :Node;
owl:equivalentClass [a owl:Restriction; owl:onProperty
[a owl:Restriction; owl:onProperty
:OneExitNode a owl:Class; rdfs:subClass0f :Node;
owl:equivalentClass [a owl:Restriction; owl:onProperty
[a owl:Restriction; owl:onProperty
:TwoExitsNode a owl:Class; rdfs:subClass0f :Node;
owl:equivalentClass [a owl:Restriction; owl:onProperty
[a owl:Restriction; owl:onProperty
:ThreeExitsNode a owl:Class; rdfs:subClass0f :Node;
owl:equivalentClass [a owl:Restriction; owl:onProperty

[a owl:Restriction; owl:onProperty

Oprefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

:out; owl:hasValue 0],

:edge; owl:cardinality O].

:out; owl:hasValue 1],

tedge; owl:cardinality 1].

:out; owl:hasValue 2],

:edge; owl:cardinality 2].

:out; owl:hasValue 3],

:edge; owl:cardinality 3].

[Filename: RDF/winmove-closure.n3]

394

Win-Move-Game in OWL: DeadEndNodes

Prove that DeadEndNodes are LoseNodes:
« obvious: Player cannot move from there
« exercise: give a formal (Tableau) proof

 The OWL Reasoner does it:

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix : <foo://bla#>

select 7X

from <file:winmove-axioms.n3>

from <file:winmove-closure.n3>

where {:DeadEndNode rdfs:subClass0f :LoseNode}

[Filename: RDF/deadendnodes.sparql]

The answer contains an (empty) tuple which means “yes”.

395

