
7.2 OWL

• the OWL versions use certain DL semantics:

• Base: ALCR+ : (i.e., with transitive roles). This logic is called S (reminiscent to its
similarity to the modal logic S).

• roles can be ordered hierarchically (rdfs:subPropertyOf; H).

• OWL Lite: SHIF(D), Reasoning in EXPTIME.

• OWL DL: SHOIN (D), decidable.
Pellet (2007) implements SHOIQ(D). Decidability is in NEXPTIME (combined complexity
wrt. TBox+ABox), but the actual complexity of a given task is constrained by the maximal
used cardinality and use of nominals and inverses and behaves like the simpler classes.

(Ian Horrocks and Ulrike Sattler: A Tableau Decision Procedure for SHOIQ(D); In IJCAI,
2005, pp. 448-453; available via http://dblp.uni-trier.de)

• OWL 2.0 towards SROIQ(D) and more datatypes ...

310

OWL NOTIONS; OWL-DL VS. RDF/RDFS; MODEL VS. GRAPH

• OWL is defined based on (Description Logics) model theory,

• OWL ontologies can be represented by RDF graphs,

• Only certain RDF graphs are allowed OWL-DL ontologies: those, where class names,
property names, individuals etc. occur in a well-organized way.

• Reasoning works on the (Description Logic) model, the RDF graph is only a means to
represent it.
(recall: RDF/RDFS “reasoning” works on the graph level)

311

OWL VOCABULARIES

• An OWL-DL vocabulary V is a 7-tuple (= a sorted vocabulary)
V = (Vcls,Vobjprop,Vdtprop,Vannprop,Vindiv,VDT ,Vlit):

• Vcls is the set of URIs denoting class names,
<http://.../mondial/10/meta#Country>

• Vobjprop is the set of URIs denoting object property names,
<http://.../mondial/10/meta#capital>

• Vdtprop is the set of URIs denoting datatype property names,
<http://.../mondial/10/meta#population>

• (Vannprop is the set of URIs denoting annotation property names,)

• Vindiv is the set of URIs denoting individuals, <http://.../mondial/10/countries/D>

• VDT is the set of URIs denoting datatype names,
<http://www.w3.org/2001/XMLSchema#int>

• Vlit is the set of literals;

• the builtin notions (=URIs) from RDF, RDFS, OWL namespaces do not belong to the
vocabulary of the ontology (they are only used for describing the ontology in RDF).

312

OWL INTERPRETATIONS

Since DL is a subset of FOL, the interpretation of an OWL-DL vocabulary can be given as a
FOL interpretation

I = (Iindiv ∪ Icls ∪ Iobjprop ∪ Idtprop ∪ Iannprop ∪ IDT , Uobj ∪ UDT)

where I interprets the vocabulary as

• Iindiv constant symbols (individuals),

• Icls, IDT unary predicates (classes and datatypes),

• Iobjprop, Idtprop, Iannprop binary predicates (properties),

and the universe U is partitioned into

• an object domain Uobj

• and a data domain UDT (of all values of datatypes).

313

OWL INTERPRETATIONS

The interpretation I is as follows:

Iindiv: each individual a ∈ Vindiv to an object I(a) ∈ Uobj ,

(e.g., I(<http://.../mondial/10/countries/D>) = germany)

Icls: each class C ∈ Vcls to a set I(C) ⊆ Uobj ,

(e.g., germany ∈ I(<http://.../mondial/10/meta#Country>))

IDT : each datatype D ∈ VDT to a set I(D) ⊆ UDT ,

(e.g., I(<http://www.w3.org/2001/XMLSchema#int>) = {. . . ,−2,−1, 0, 1, 2, . . .})

Iobjprop: each object property p ∈ Vobjprop to a binary relation I(p) ⊆ Uobj × Uobj ,

(e.g., (germany, berlin) ∈ I(<http://.../mondial/10/meta#capital>))

Idtprop: each datatype property p ∈ Vdtprop to a binary relation I(p) ⊆ Uobj × UD,

(e.g., (germany, 83536115) ∈ I(<http://.../mondial/10/meta#population>))

Iannprop: each annotation property p ∈ Vannprop to a binary relation I(p) ⊆ U × U .

314

OWL Class Definitions and Axioms (Overview)

• owl:Class

• The properties of an owl:Class (including owl:Restriction) node describe the properties of
that class.
An owl:Class is required to satisfy the conjunction of all constraints (implicit: intersection)
stated about it.
These characterizations are roughly the same as discussed for DL class definitions:

– Constructors: owl:unionOf, owl:intersectionOf, owl:complementOf (ALC)

– Enumeration Constructor: owl:oneOf (enumeration of elements; O)

– Axioms rdfs:subClassOf, owl:equivalentClass,

– Axiom owl:disjointWith (also expressible in ALC: C disjoint with D is equivalent to
C ⊑ ¬D)

315

OWL NOTIONS (CONT’D)

OWL Restriction Classes (Overview)

• owl:Restriction is a subclass of owl:Class, allowing for specification of a constraint on one
property.

• one property is restricted by an owl:onProperty specifier and a constraint on this property:

– (N , Q, F) owl:cardinality, owl:minCardinality or owl:maxCardinality,

– owl:allValuesFrom (∀R.C), owl:someValuesFrom (∃R.C),

– owl:hasValue (O),

– including datatype restrictions for the range (D)

• by defining intersections of owl:Restrictions, classes having multiple such constraints can
be specified.

316

OWL NOTIONS (CONT’D)

OWL Property Axioms (Overview)

• Distinction between owl:ObjectProperty and owl:DatatypeProperty

• from RDFS: rdfs:domain/rdfs:range assertions, rdfs:subPropertyOf

• Axiom owl:equivalentProperty

• Axioms: subclasses of rdf:Property:
owl:TransitiveProperty, owl:SymmetricProperty, owl:FunctionalProperty,
owl:InverseFunctionalProperty (see Slide 332)

OWL Individual Axioms (Overview)

• Individuals are modeled by unary classes

• owl:sameAs, owl:differentFrom, owl:AllDifferent(o1,. . . ,on).

317

FIRST-ORDER LOGIC EQUIVALENTS

OWL : x ∈ C DL Syntax FOL

C C C(x)

intersectionOf(C1, C2) C1 ⊓ . . . ⊓ Cn C1(x) ∧ . . . ∧ Cn(x)

unionOf(C1, C2) C1 ⊔ . . . ⊔ Cn C1(x) ∨ . . . ∨ Cn(x)

complementOf(C1) ¬C1 ¬C1(x)

oneOf(x1, . . . , xn) {x1} ⊔ . . . ⊔ {xn} x = x1 ∨ . . . ∨ x = xn

OWL : x ∈ C,Restriction on P DL Syntax FOL

someValuesFrom(C ′) ∃P.C ′ ∃y : P (x, y) ∧ C ′(y)

allValuesFrom(C ′) ∀P.C ′ ∀y : P (x, y) → C ′(y)

hasValue(y) ∃P.{y} P (x, y)

maxCardinality(n) ≤ n.P ∃≤ny : P (x, y)

minCardinality(n) ≥ n.P ∃≥ny : P (x, y)

cardinality(n) n.P ∃=ny : P (x, y)

318

FIRST-ORDER LOGIC EQUIVALENTS (CONT’D)

OWL Class Axioms for C DL Syntax FOL

rdfs:subClassOf(C1) C ⊑ C1 ∀x : C(x) → C1(x)

equivalentClass(C1) C ≡ C1 ∀x : C(x) ↔ C1(x)

disjointWith(C1) C ⊑ ¬C1 ∀x : C(x) → ¬C1(x)

OWL Individual Axioms DL Syntax FOL

x1 sameAs x2 {x1} ≡ {x2} x1 = x2

x1 differentFrom x2 {x1} ⊑ ¬{x2} x1 6= x2

AllDifferent(x1, . . . , xn)
∧

i 6=j{xi} ⊑ ¬{xj}
∧

i 6=j xi 6= xj

319

FIRST-ORDER LOGIC EQUIVALENTS (CONT’D)

OWL Properties DL Syntax FOL

P P P (x, y)

OWL Property Axioms for P DL Syntax FOL

rdfs:range(C) ⊤ ⊑ ∀P.C ∀x, y : P (x, y) → C(y)

rdfs:domain(C) C ⊒ ∃P.⊤ ∀x, y : P (x, y) → C(x)

subPropertyOf(P2) P ⊑ P2 ∀x, y : P (x, y) → P2(x, y)

equivalentProperty(P2) P ≡ P2 ∀x, y : P (x, y) ↔ P2(x, y)

inverseOf(P2) P ≡ P−
2 ∀x, y : P (x, y) ↔ P2(y, x)

TransitiveProperty P+ ≡ P ∀x, y, z : ((P (x, y) ∧ P (y, z)) → P (x, z))

∀x, z : ((∃y : P (x, y) ∧ P (y, z)) → P (x, z))

FunctionalProperty ⊤ ⊑ ≤1P.⊤ ∀x, y1, y2 : P (x, y1) ∧ P (x, y2) → y1 = y2

InverseFunctionalProperty ⊤ ⊑ ≤1P−.⊤ ∀x, y1, y2 : P (y1, x) ∧ P (y2, x) → y1 = y2

320

SYNTACTICAL REPRESENTATION

• OWL specifications can be represented by graphs: OWL constructs have a
straightforward representation as triples in RDF/XML and N3.

• there are several logic-based representations (e.g. Manchester OWL Syntax); TERP
(which can be used with pellet) is a combination of Turtle and Manchester syntax.

• OWL in RDF/XML format: usage of class, property, and individual names:

– as @rdf:about when used as identifier of a subject (owl:Class, rdf:Property and their
subclasses),

– as @rdf:resource as the object of a property.

• some constructs need auxiliary structures (collections):
owl:unionOf, owl:intersectionOf, and owl:oneOf are based on Collections

– representation in RDF/XML by rdf:parseType=”Collection”.

– representation in N3 by (x1 x2 . . . xn)

– as RDF lists: rdf:List, rdf:first, rdf:rest

321

REQUIREMENT

• every entity in an OWL ontology must be explicitly typed (i.e., as a class, an object
property, a datatype property, . . . , or an instance of some class).
(for reasons of space this is not always done in the examples; in general, it may lead to
incomplete results)

322

QUERYING OWL DATA

• queries are atomic and conjunctive DL queries against the underlying OWL-DL model.

• this model can still be seen as a graph:

– many of the edges are those known from the basic RDF graph

– some edges (and collections) are only there for encoding OWL stuff (describing
owl:unionOf, owl:propertyChain etc.) – these should not be queried

• SPARQL-DL is a subset of SPARQL: not every SPARQL query pattern is allowed for use
on an OWL ontology
(but the reasonable ones are, so in practice this is not a problem.)

• the query language SPARQL-DL allows exactly such well-sorted patterns using the
notions of OWL.

323

SOME TBOX-ONLY REASONING EXAMPLES ON SETS

Example: A Simple Paradox

@prefix : <foo://bla/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:Paradox owl:complementOf :Paradox. [Filename: RDF/paradox.n3]

• without reasoner:
jena -t -ol rdf/xml -if paradox.n3

Outputs the same RDF facts in RDF/XML without checking consistency.

• with reasoner:
jena -e -pellet -if paradox.n3

reads the RDF file, creates a model (and checks consistency) and in this case reports
that it is not consistent:
“There is an anonymous individual which is forced to belong to class foo://bla/Paradox
and its complement”

• Note: the reasoner invents an anonymous individual for checking consistency.
The empty interpretation (with empty domain!) would be a model of P ≡6= P .

324

UNION AS A ⊔B ≡ ¬((¬A) ⊓ (¬B)) (DE MORGAN’S RULE)

@prefix : <foo://bla/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:A rdf:type owl:Class. :B rdf:type owl:Class.
:Union1 owl:equivalentClass [owl:unionOf (:A :B)].
:CompA owl:complementOf :A. :CompB owl:complementOf :B.
:IntersectComps owl:equivalentClass [owl:intersectionOf (:CompA :CompB).]
:Union2 owl:complementOf :IntersectComps.
:x rdf:type :A. :x rdf:type :B.
:y rdf:type :CompA. # a negative assertion y not in A would be better -> OWL 2
:y rdf:type :CompB. [Filename: RDF/union.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix : <foo://bla/>
select ?X ?C ?D
from <file:union.n3>
where {{?X rdf:type ?C} UNION {:Union1 owl:equivalentClass ?D}}

[Filename: RDF/union.sparql]

325

EXAMPLE: UNION AND SUBCLASS

@prefix : <foo://bla/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:Male a owl:Class. ## if these lines are missing,
:Female a owl:Class. ## the reasoner complains
:Person owl:equivalentClass [owl:unionOf (:Male :Female)].
:EqToPerson owl:equivalentClass [owl:unionOf (:Female :Male)].
:unknownPerson a [owl:unionOf (:Female :Male)]. [Filename: RDF/union-subclass.n3]

• print class tree (with jena -e -pellet -if union-subclass.n3):

owl:Thing
bla:Person = bla:EqToPerson - (bla:unknownPerson)

bla:Female
bla:Male

• Male and Female are derived to be subclasses of Person.

• Person and EqToPerson are equivalent classes.

• unknownPerson is a member of Person and EqToPerson.

326

Example (Cont’d)

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla/>
select ?SC ?C ?T ?CC ?CD
from <file:union-subclass.n3>
where {{?SC rdfs:subClassOf ?C} UNION

{:unknownPerson rdf:type ?T} UNION
{?CC owl:equivalentClass ?CD}} [Filename: RDF/union-subclass.sparql]

• Note: OWLizations of DL class expressions are always handled as blank nodes, and
used with “owl:equivalentClass”, “rdf:subClassOf”, “rdfs:domain”, “rdfs:range” or “a”.

327

Aside: the same in RDF/XML
(usage of rdf:parseType=“Collection”)

<?xml version="1.0"?>
<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:f="foo://bla/"
xml:base="foo://bla/">

<owl:Class rdf:about="Person">
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="Male"/>
<owl:Class rdf:about="Female"/>
</owl:unionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>
<owl:Class rdf:about="EqToPerson">
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="Female"/>
<owl:Class rdf:about="Male"/>
</owl:unionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>
<f:Person rdf:about="unknownPerson"/>

</rdf:RDF>
[Filename: RDF/union-subclass.rdf]

328

EXERCISE

Consider

<owl:Class rdf:about="C1">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="A"/>
<owl:Class rdf:about="B"/>

</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

and

<owl:Class rdf:about="C2">
<rdfs:subClassOf rdf:resource="A"/>
<rdfs:subClassOf rdf:resource="B"/>

</owl:Class>

• give mathematical characterizations of both cases.

• discuss whether both fragments are equivalent or not.

329

DISCUSSION

• Two classes are equivalent (wrt. the knowledge base) if they have the same interpretation
in every model of the KB.

• C1 is characterized to be the intersection of classes A and B.

• for C2, it is asserted that C2 is a subset of A and that it is a subset of B.

• Thus there can be some c that is in A, B, C1, but not in C2.

• Thus, C1 and C2 are not equivalent.

• C1 is a definition, the statements about C2 are just two constraints (C2 might be empty).

330

DISCUSSION: FORMAL NOTATION

The DL equivalent to the knowledge base (TBox) is

T = {C1 ≡ (A ⊓B) , C2 ⊑ A , C2 ⊑ B}

The First-Order Logic equivalent is

KB = {∀x : A(x) ∧B(x) ↔ C1(x) , ∀x : C2(x) → A(x) ∧B(x)}

Thus, KB |= ∀x : C2(x) → A(x) ∧B(x).

Or, in DL: T |= C2 ⊑ C1.

On the other hand, M = (D, I) with D = {c} and

I(A) = {c}, I(B) = {c}, I(C1) = {c}, I(C2) = ∅

is a model of KB (wrt. first-order logic) and T (wrt. DL) that shows that C1 and C2 are not
equivalent.

331

SUBCLASSES OF PROPERTIES

Triple syntax: some property rdf:type a specific type of property

According to their ranges

• owl:ObjectProperty – subclass of rdf:Property; object-valued (i.e. rdfs:range must be an
Object class)

• owl:DatatypeProperty – subclass of rdf:Property; datatype-valued (i.e. its rdfs:range must
be an rdfs:Datatype)

⇒ OWL ontologies require each property to be typed in such a way!
(for reasons of space sometimes omitted in examples)

According to their Cardinality

• specifying n:1 or 1:n cardinality:
owl:FunctionalProperty, owl:InverseFunctionalProperty

⇒ useful for deriving that objects must be different from each other.

According to their Properties

• owl:TransitiveProperty, owl:SymmetricProperty see later ...

332

FUNCTIONAL CARDINALITY SPECIFICATION

property rdf:type owl:FunctionalProperty

• not a constraint, but

• if such a property results in two things ... these things are inferred to be the same.

@prefix : <foo://bla/names#>.
@prefix persons: <foo://bla/persons/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#>.

:world :has_pope persons:jorgebergoglio .
:world :has_pope [:name "Franziskus"] .
:has_pope rdf:type owl:FunctionalProperty.

[Filename: RDF/popes.n3]

prefix : <foo://bla/names#>
prefix persons: <foo://bla/persons/>
select ?N from <file:popes.n3>
where { persons:jorgebergoglio :name ?N }

[Filename: RDF/popes.sparql]

333

OWL:RESTRICTION – EXAMPLE

• owl:Restriction for ∃p.C and ∀p.C. (cf. earlier examples)

• Definition of “Parent” as Parent ≡ Person ⊓ ∃hasChild.⊤
(can be used for conclusions in both directions),

• Range axiom as constraint: Parent ⊑ ∀hasChild.Person
(use only in the “⇒” direction)

@prefix : <foo://bla#>.
@prefix family: <foo://bla/persons/>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:Parent owl:equivalentClass

[owl:intersectionOf (:Person
[a owl:Restriction;

owl:onProperty :hasChild; owl:minCardinality 1])] .
:Parent rdfs:subClassOf [a owl:Restriction;

owl:onProperty :hasChild; owl:allValuesFrom :Person] .
family:john a :Person; :hasChild family:alice .
family:sue a :Parent . [Filename: RDF/restriction.n3]

334

owl:Restriction – Example (cont’d)

prefix : <foo://bla#>
select ?X ?CC ?Y ?C
from <file:restriction.n3>
where {{?X a :Person; a ?CC} union {?Y :hasChild ?C}} [File: RDF/restriction.sparql]

• How to check whether it knows that Sue has a child?

– ... only implicitly known resources are never contained in SPARQL answers
(impedance mismatch between SPARQL and DL).

– they are only known inside the reasoner.

– for looking inside the reasoner’s “private” knowledge, appropriate auxiliary classes
have to be defined in the OWL ontology which are then queried by SPARQL (as in
many later examples)

• note also the separation of the domain into notions (<foo://bla#>) and instances
(<foo://bla/persons/>).
This will not be cleanly done in the subsequent examples because it costs space.

335

Aside: owl:Restriction as RDF/XML
<?xml version="1.0"?>
<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:f="foo://bla/"
xml:base="foo://bla/">

<owl:Class rdf:about="Parent">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="hasChild"/>
<owl:minCardinality>1</owl:minCardinality>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
<owl:equivalentClass>

</owl:Class>
<f:Person rdf:about="john">

<f:hasChild><f:Person rdf:about="alice"/></f:hasChild>
</f:Person>

</rdf:RDF>
[Filename: RDF/restriction.rdf]

336

RESTRICTIONS (AND OTHER CLASS SPECIFICATIONS) AS SEPARATE

BLANK NODES

Consider the following (bad) specification:

:badIdea a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1.

This is not allowed in OWL-DL.

Correct specification:

:badIdea owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].

Why? ... there are many reasons, for one of them see next slide.

337

Restrictions Only as Blank Nodes (Cont’d)

A class with two such specifications:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla/>.
:badIdea a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1 .
:badIdea a owl:Restriction; owl:onProperty :livesIn; owl:someValuesFrom :GermanCity.

[Filename: RDF/badIdea.n3]

• call jena -t -pellet -if badIdea.n3:

owl:Restriction :hasChild 1

:badIdea

:livesIn :GermanCity

a owl:onProperty owl:minCardinality

owl:onProperty
owl:someValuesFrom

The two restriction specifications are messed up.

338

Restrictions Only as Blank Nodes (Cont’d)

• Thus specify each Restriction specification with a separate blank node:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla/>.
:TwoRestrictions owl:equivalentClass
[owl:intersectionOf
([a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]

[a owl:Restriction; owl:onProperty :livesIn; owl:someValuesFrom :GermanCity])].

[Filename: RDF/twoRestrictions.n3]

The DL equivalent: TwoRestrictions ≡ (∃ hasChild.⊤) ⊓ (∃ livesIn.GermanCity)

Another reason:

:BadSpecOfParent a owl:Restriction;
owl:onProperty :hasChild; owl:minCardinality 1;
rdfs:subClassOf :Person.

... mixes the definition of the Restriction with an assertive axiom:
BSOP ≡ ∃ ≥ 1 hasChild.⊤ ∧ ABDE ⊑ Person
(This expression probably does not meet the original intention – is derives that anything that
has a child is made an instance of class “Person”; cf. Slide 329)

339

MULTIPLE RESTRICTIONS ON A PROPERTY

• “All persons that have at least two children, and one of them is male”

• first: a straightforward wrong attempt

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo://bla/>.
Test: multiple restrictions: the owl:someValuesFrom-condition is then ignored
:HasTwoChildrenOneMale owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild;
owl:someValuesFrom :Male; owl:minCardinality 2]).

:name a owl:FunctionalProperty.
:Male rdfs:subClassOf :Person; owl:disjointWith :Female.
:Female rdfs:subClassOf :Person.
:kate a :Female; :name "Kate"; :hasChild :john.
:john a :Male; :name "John";

:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"].
:sue a :Female; :name "Sue";

:hasChild [a :Female; :name "Anne"], [a :Female; :name "Barbara"].
[Filename: RDF/restriction-double.n3]

prefix : <foo://bla/>
select ?X
from <file:restriction-double.n3>
where {?X a :HasTwoChildrenOneMale}

[Filename: RDF/restriction-double.sparql]

• The the owl:someValuesFrom-condition is ignored in this case (Result: John and Sue).

340

Multiple Restrictions on a Property

• “All persons that have at least two children, and one of them is male”

• to expressed as an intersection of two separate restrictions:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo://bla/>.
:HasTwoChildrenOneMale owl:equivalentClass
[owl:intersectionOf (:Person
[a owl:Restriction; owl:onProperty :hasChild; owl:someValuesFrom :Male]
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 2])].

:name a owl:FunctionalProperty.
:Male rdfs:subClassOf :Person; owl:disjointWith :Female.
:Female rdfs:subClassOf :Person.
:kate a :Female; :name "Kate"; :hasChild :john.
:john a :Male; :name "John";

:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"].
:sue a :Female; :name "Sue";

:hasChild [a :Female; :name "Anne"], [a :Female; :name "Barbara"].
[Filename: RDF/intersect-restrictions.n3]

prefix : <foo://bla/>
select ?X
from <file:intersect-restrictions.n3>
where {?X a :HasTwoChildrenOneMale}

[Filename: RDF/intersect-restrictions.sparql]

• Note: this is different from Qualified Range Restrictions such as “All persons that have at
least two male children” – see Slide 402.

341

USE OF A DERIVED CLASS

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo://bla#>.
:kate :name "Kate"; :hasChild :john.
:john :name "John"; :hasChild :alice.
:alice :name "Alice".
:Parent a owl:Class; owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].

:Grandparent owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasChild; owl:someValuesFrom :Parent].

[Filename: RDF/grandparent.n3]

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix : <foo://bla#>
select ?A ?B
from <file:grandparent.n3>
where {{?A a :Parent} UNION

{?B a :Grandparent} UNION
{:Grandparent rdfs:subClassOf :Parent}}

[Filename: RDF/grandparent.sparql]

342

NON-EXISTENCE OF PROPERTY FILLERS (POSSIBLE SYNTAXES)
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:ChildlessA owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:maxCardinality 0]).
:ChildlessB owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:allValuesFrom owl:Nothing]).
:ParentA owl:intersectionOf (:Person [owl:complementOf :ChildlessA]). ### (*)
:ParentB owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]).
:name a owl:FunctionalProperty.
:john a :Person; :name "John"; :hasChild :alice, :bob.
:sue a :ParentA; :name "Sue".
:george a :Person; a :ChildlessA; :name "George". [Filename: RDF/parents-childless.n3]

• export class tree: ChildlessA and ChildlessB are equivalent,

• ParentA and ParentB are also equivalent

• note: due to the Open World Assumption, only George is definitely known to be childless.

• Persons where parenthood is not known (Alice, Bob) are neither in Childless nor in
Parent!
Note: (*) states “Parent” vs. “Childless” as a disjoint, total partition of “Person”, but it is not
known to which partition Alice and Bob belong. Both would be possible.

343

NON-EXISTENCE OF PROPERTY FILLERS – OPEN WORLD VS. CLOSED

WORLD

• basically the same, Parent and Childless as classes, more persons,

• the focus is now on the different explicit and implicit knowledge about them:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:Childless owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:maxCardinality 0]).
:Parent owl:intersectionOf (:Person

[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1]).
:name a owl:FunctionalProperty.
:kate a :Person; :name "Kate"; :hasChild :john, :sue.
:john a :Person; :name "John"; :hasChild :alice, :bob.
:alice a :Person; :name "Alice".
:bob a :Person; :name "Bob".
:sue a :Parent; :name "Sue".
:george a :Person; a :Childless; :name "George". [Filename: RDF/childless.n3]

344

prefix : <foo://bla#>
select ?CL ?NCL ?P ?NP ?NHC ?X ?Y from <file:childless.n3>
where { {?CL a :Childless}

union {?NCL a :Person FILTER NOT EXISTS { ?NCL a :Childless}}
union {?P a :Parent}
union {?NP a :Person FILTER NOT EXISTS { ?NP a :Parent}}
union {?X :hasChild ?Y}
union {?NHC a :Person FILTER NOT EXISTS {?NHC :hasChild ?X}}}

[Filename: RDF/childless.sparql]

DL (and OWL) – everything that is done inside the reasoner : open world – monotonic,
SPARQL: closed-world – non-monotonic:

• ?CL: only George is known to be Childless.

• ?NCL: Closed-World-Complement of ?C – all persons where it cannot be proven that they
are childless – “definitely not childless or maybe not childless” – “where it is consistent to
assume that they are not childless” – non-monotonic (all except George).

• Parents ?P: Sue, Kate, John;

• ?NP: Closed-World-Complement of ?P – (“consistent to be non-parents” – George, Alice, Bob)

• ?X, ?Y: only explicitly known parents/children (Sue not mentioned).

• ?NHC: George, Alice, Bob and Sue(!) – no children of them are explicitly known.

345

INVERSE PROPERTIES

• owl:ObjectProperty owl:inverseOf owl:ObjectProperty

• owl:DatatypeProperties cannot have an inverse
(this would define properties of objects, cf. next slide)

@prefix : <foo://bla#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:descendant rdf:type owl:TransitiveProperty.
:hasChild rdfs:subPropertyOf :descendant.
:hasChild owl:inverseOf :hasParent.
:john :hasChild :alice, :bob.
:john :hasParent :kate .

[Filename: RDF/inverse.n3]

prefix : <foo://bla#>
select ?X ?Y
from <file:inverse.n3>
where {?X :descendant ?Y}

[Filename: RDF/inverse.sparql]

346

No Inverses of owl:DatatypeProperties!

• an owl:DatatypeProperty must not have an inverse:

• “:john :age 35” would imply “35 :ageOf :john” which would mean that a literal has a
property, which is not allowed.

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix : <foo://bla#> .
:john :name "John"; :age 35; :hasChild [:name "Alice"], [:name "Bob"; :age 8].
:age a owl:DatatypeProperty.
:hasChild a owl:ObjectProperty.
:parent owl:inverseOf :hasChild.
:ageOf owl:inverseOf :age.

[Filename: RDF/inverseDTProp.n3]

jena -e -pellet -if inverseDTProp.n3
WARN [main] (OWLLoader.java:352) - Unsupported axiom:
Ignoring inverseOf axiom between foo://bla#ageOf (ObjectProperty)
and foo://bla#age (DatatypeProperty)

347

SPECIFICATION OF INVERSE FUNCTIONAL PROPERTIES

• Mathematics: a mapping m is inverse-functional if the inverse of m is functional:
x p y is inverse-functional, if for every y, there is at most one x such that xpy holds.

• Example:

– hasCarCode is functional: every country has one car code,

– hasCarCode is also inverse functional: every car code uniquely identifies a country.

• OWL:
:m-inverse owl:inverseOf :m .
:m-inverse a owl:FunctionalProperty .
not allowed for e.g. mon:carCode a owl:DatatypeProperty:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo:bla#>.
:carCode a owl:DatatypeProperty; rdfs:domain :Country;

owl:inverseOf :isCarCodeOf.
:Germany :carCode "D". [Filename: RDF/noinverse.n3]

• the statement is rejected.

348

OWL:INVERSEFUNCTIONALPROPERTY

• such cases are described with owl:InverseFunctionalProperty

• a property P is an owl:InverseFunctionalProperty if
∀x, y1, y2 : P (y1, x) ∧ P (y2, x) → y1 = y2 holds

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo:bla#>.
:carCode rdfs:domain :Country; a owl:DatatypeProperty;

a owl:FunctionalProperty; a owl:InverseFunctionalProperty.
:name a owl:DatatypeProperty; a owl:FunctionalProperty.
:Germany :carCode "D"; :name "Germany".
:DominicanRepublic :carCode "D"; :name "Dominican Republic".

[Filename: RDF/invfunctional.n3]

• the fragment is detected to be inconsistent.

349

OWL:hasKey (OWL 2)

Declaration of key attributes (k1, . . . , kn) is a relevant issue in data modeling.

• a key allows for unambiguously identifying a resource amongst a certain subset of the
domain,

• in OWL, keys are not restricted to functional properties
(i.e., SQL’s UNIQUE is not required),

• values of key properties may be unknown for some instances; they might even be
forbidden for some elements of the domain (e.g. using owl:maxCardinality 0 or
owl:allValuesFrom owl:Nothing).

• note: InverseFunctionalProperty covers the simple case that n = 1 and the key is global.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo:bla#>.
:name a owl:DatatypeProperty; a owl:FunctionalProperty.
:Country owl:hasKey (:carCode).
:DominicanRepublic a :Country; :carCode "D"; :name "Dominican Republic".
:Germany a :Country; :carCode "D"; :name "Germany". [Filename: RDF/haskey.n3]

• the fragment is inconsistent.

350

OWL:hasKey (OWL 2) for Non-Functional Properties

• keys are not restricted to functional properties:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo:bla#>.
:District owl:hasKey (:code).
:Country owl:hasKey (:code).
:goettingen a :District; :name "Goettingen"; :code "GOE", "DUD", "HMÃĲ".
:leipzig a :District; :name "Leipzig"; :code "L".
:lahndillkreis a :District; :name "Lahn-Dill-Kreis"; :code "LDK", "DIL", "WZ", "L".
:luxembourg a :Country; :name "Luxembourg"; :code "L".

[Filename: RDF/key-mvd.n3]

prefix : <foo:bla#>
select ?D ?N ?C
from <file:key-mvd.n3>
where { ?X a ?D ; :name ?N; :code ?C }

[Filename: RDF/key-mvd.sparql]

• Lahn-Dill-Kreis and Leipzig are identified (LDK had “L” from 1977-1990).

• Luxembourg is not identified with them since the key definitions are local to districts vs.
countries.

351

OWL:hasKey (OWL 2) for Multi-Property-Keys

• consider triples about persons found in different Web sources.

• ABSOLUTELY BUGGY (27.7.2017) – it equates all four persons below:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo:bla#>.
:Person owl:hasKey (:givenName :familyName).
_:b1 a :Person; :givenName "John"; :familyName "Doe"; :age 35 .
_:b2 a :Person; :givenName "John"; :familyName "Doe"; :address "Main Street 1" .
_:b3 a :Person; :givenName "Mary"; :familyName "Doe"; :age 32; :address "Main Street 1" .
_:b4 a :Person; :givenName "Donald"; :familyName "Trump"; :age 70; :address "White House" .

#:age a owl:FunctionalProperty.

[Filename: RDF/haskey2.n3]

prefix : <foo:bla#>
select ?X ?P ?Y
from <file:haskey2.n3>
where {?X a :Person ; ?P ?Y}

[Filename: RDF/haskey2.sparql]

352

NAMED AND UNNAMED RESOURCES

(from the DL reasoner’s perspective)

Named Resources

• resources with explicit global URIs
<http://www.semwebtech.org/mondial/10/country/D>

<foo://bla/bob>

• resources with local IDs/named blank nodes

• unnamed blank nodes

Unnamed (implicit) Resources

• things that exist only implicitly:
John’s child in

:Parent a owl:Class; owl:equivalentClass
[a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].

:john a Parent.

• such resources can even have properties (see next slides).

353

Implicit Resources

• “every person has a father who is a person” and “john is a person”.

• the standard model is infinite:
john, john’s father, john’s father’s father, ...

• pure RDF graphs are always finite,

• only with OWL axioms, one can specify such infinite models,

⇒ they have only finitely many locally to path length n different nodes,

• the reasoner can detect the necessary n (“blocking”, cf. Slides 452 ff) and create “typical”
different structures.

Aside: “standard model” vs “nonstandard model”

• the term “standard model” is not only “what we understand (in this case)”, but is a notion
of mathematical theory which –roughly– means “the simplest model of a specification”

• nonstandard models of the above are those where there is a cycle in the ancestors
relation.
(as the length of the cycle is arbitrary, this would not make it easier for the reasoner -
there is only the possibility to have an owl:sameAs somewhere)

354

Implicit Resources

@prefix : <foo://bla#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:Person owl:equivalentClass [a owl:Restriction;

owl:onProperty :father; owl:someValuesFrom :Person].
:bob :name "Bob"; a :Person; :father :john.
:john :name "John"; a :Person.

[Filename: RDF/fathers-and-forefathers.n3]

prefix : <foo://bla#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?X ?F ?C
from <file:fathers-and-forefathers.n3>
where {{ ?X :father ?F } UNION { ?C a :Person }}

[Filename: RDF/fathers-and-forefathers.sparql]

• Reasoner: works on the model, including blocking, i.e. modulo equivalence up to paths of
length n.

• SPARQL (and SWRL) rules: works on the graph – without the unnamed/implicit resorces.

355

7.3 RDF Graph vs. OWL Model; SPARQL vs. Reasoning

• SPARQL is an RDF (graph) query language

• OWL talks about models.

Consequences (Overview)

⇒ SPARQL queries are answered against the graph of triples

• Some OWL notions are directly represented by triples, such as c a owl:Class.

• Some others are directly supported by special handling in the reasoners,
e.g., c rdfs:subClassOf d and c owl:equivalentClass d.

• some others are only “answered” when given explicitly in the RDF input! The results then
do not incorporate further results that could be found by reasoning!

• OWL notions in the input are often not contained as triples, but are only translated into DL
atoms for the reasoner. (e.g. owl:Restriction definitions)

• Most OWL notions in queries are not “understood” as OWL, but only matched.

• SPARQL answers are only concerned with the graph, not with implicit things that are only
known in the model.

356

ONTOLOGY LEVEL QUERYING

• SPARQL is defined by matching the underlying RDF graph.

• OWL triples are not always part of the RDF graph (they are intended to be translated into
DL definitions in the reasoner)

• for traditional DL notions like

?C a owl:Class
?C a rdfs:subClassOf ?D
?C owl:equivalentClass ?D
?C owl:disjointWith ?D

SPARQL implementations support to translate these internally into DL queries against the
reasoner.

• SPARQL-DL (Sirin, Parsia OWLED 2007 [members of the Pellet team]) is a proposal that
allows certain further OWL built-ins to be queried.

357

Ontology Level Querying - a practical example

Consider again the “Childless” ontology from Slide 344.
Check that Childless ⊓ Parent = ∅ and Person ≡ Childless ⊔ Parent (Partitioning)

• Allowed: (single line empty bindings result means true)
prefix : <foo://bla#>
prefix owl: <http://www.w3.org/2002/07/owl#>
select ?X from <file:childless.n3>
where { :Childless owl:disjointWith :Parent } [Filename: RDF/childless1.sparql]

• Not allowed: complex class expression in the query (empty result since it tries a plain
match with the RDF data)
prefix : <foo://bla#>
prefix owl: <http://www.w3.org/2002/07/owl#>
select ?X from <file:childless.n3>
where { :Person owl:equivalentClass [owl:unionOf (:Childless :Parent)] }

[Filename: RDF/childless2.sparql]

NOT ALLOWED

• instead: add auxiliary class definition to the TBox and export class tree with
jena -e -if childless.n3 childless3.n3 :
@prefix : <foo://bla#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
:UnionCLP owl:equivalentClass [owl:unionOf (:Childless :Parent)] .

[Filename: RDF/childless3.n3]

358

NOT REASONED: OWL:FUNCTIONALPROPERTY

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo:bla#>.
:q a owl:FunctionalProperty.
:p a owl:ObjectProperty; rdfs:domain :D.
:D owl:equivalentClass [a owl:Restriction; owl:onProperty :p;

owl:maxCardinality 1].
:x :p :a, :b. :a owl:differentFrom :b. [Filename:RDF/functional.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo:bla#>
select ?P
from <file:functional.n3>
where { ?P a owl:FunctionalProperty } [Filename:RDF/functional.sparql]

• tries just to match plain { ?P a owl:FunctionalProperty } triples in the RDF graph.
Returns only q.

• does not derive that property q is in fact also functiona.

359

NOT ALLOWED: COMPLEX TERMS IN SPARQL QUERIES

• example: all cities that are a capital

• works well with pellet alone (June 2017); not allowed with Jena

pellet query -query-file countrycaps.sparql \
mondial-europe.n3 mondial-meta.n3 countrycaps.n3

• note: if the answer is empty, check that the mondial-namespace in the used
mondial-meta.n3 is correct.

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://www.semwebtech.org/mondial/10/meta#> .
:CountryCapital owl:intersectionOf

(:City [a owl:Restriction; owl:onProperty :isCapitalOf;
owl:someValuesFrom :Country]). [Filename: RDF/countrycaps.n3]

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <http://www.semwebtech.org/mondial/10/meta#>
select ?N1 ?N2
where {{?X a :CountryCapital; :name ?N1} union

{?Y a [a owl:Restriction; owl:onProperty :isCapitalOf;
owl:someValuesFrom :Country]; :name ?N2}} [Filename:RDF/countrycaps.sparql]

360

NOT ALLOWED: COMPLEX TERMS IN SPARQL QUERIES (CONT’D)

• all organizations whose headquarter city is a capital:

• neither allowed by pellet nor by jena+pellet (June 2017; worked with pellet alone in 2013)

pellet query -query-file organizations-query2.sparql \
mondial-europe.n3 mondial-meta.n3

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <http://www.semwebtech.org/mondial/10/meta#>
select ?A ?H
where {?X a [owl:intersectionOf

(:Organization [a owl:Restriction; owl:onProperty :hasHeadq;
owl:someValuesFrom
[a owl:Restriction; owl:onProperty :isCapitalOf;

owl:someValuesFrom :Country]])];
:abbrev ?A; :hasHeadq ?C . ?C :name ?H . }

[Filename:RDF/organizations-query2.sparql]

361

HOW TO DO IT: SETS OF ANSWERS TO QUERIES AS AD-HOC CONCEPTS

• The result concept (and maybe others) must be added to the ontology.

• Example: all organizations whose headquarter city is a capital:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://www.semwebtech.org/mondial/10/meta#> .
:CountryCapital owl:equivalentClass

[owl:intersectionOf
(:City [a owl:Restriction; owl:onProperty :isCapitalOf;

owl:someValuesFrom :Country])].
<bla:Result> owl:equivalentClass [owl:intersectionOf

(:Organization [a owl:Restriction; owl:onProperty :hasHeadq;
owl:someValuesFrom :CountryCapital])] . [Filename: RDF/organizations-query.n3]

prefix : <http://www.semwebtech.org/mondial/10/meta#>
select ?A ?N
from <file:organizations-query.n3>
from <file:mondial-europe.n3>
from <file:mondial-meta.n3>
where {?X a <bla:Result> . ?X :abbrev ?A . ?X :hasHeadq ?C . ?C :name ?N}

[Filename:RDF/organizations-query.sparql]

362

SPARQL ON THE GRAPH: IMPLICITLY KNOWN RESOURCES

• SPARQL does not return any answer related with nodes (=resources) that are only
implicitly known (=non-named resources)

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:ParentOf12YOChild owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:someValuesFrom :12YOPerson].
:12YOPerson owl:equivalentClass [a owl:Restriction;

owl:onProperty :age; owl:hasValue 12].
[:name "John"; :age 35; a :ParentOf12YOChild;

:hasChild [:name "Alice"; :age 10], [:name "Bob"; :age 8]].
:age rdf:type owl:FunctionalProperty.
:12YOPerson owl:equivalentClass owl:Nothing.

:TwoChildrenParent owl:equivalentClass [a owl:Restriction;
owl:onProperty :hasChild; owl:cardinality 2].

:ThreeChildrenParent owl:equivalentClass [a owl:Restriction;
owl:onProperty :hasChild; owl:minCardinality 3].[Filename: RDF/john-three-children-impl.n3]

363

SPARQL and Non-Named Resources (Cont’d)

• implicit resources exist only on the reasoning level,

• not considered by SPARQL queries:

prefix : <foo://bla#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select ?X ?C ?A ?T
from <file:john-three-children-impl.n3>
where {{ ?X :name "John" . ?X a ?C }

UNION {?X :age ?A} UNION {?T a :12YOPerson}}

[Filename: RDF/john-three-children-impl.sparql]

• John is a ThreeChildrenParent,

• no person known who is 12 years old

• adding :12YOPerson owl:equivalentClass owl:Nothing makes it inconsistent.

• implicity known things are also not considered for the OWL construct owl:hasKey (cf.
Slides 350 and 365) and for SWRL rules (cf. Slides 455 ff).

364

[ASIDE/EXAMPLE] OWL:HASKEY AND NON-NAMED RESOURCES

Show that owl:hasKey ignores resources that are only implicitly known (OWL ontology see
next slide):

• create an (infinite) sequence of implicitly known fathers ... all being persons and having
the name “Adam”,

• guarantee that the sequence consists of different objects by making it irreflexive.
(note: Transitivity and Irreflexivity are not allowed together, thus actually only every person
is required to be different from his/her father – the grandfather might be the person again)

365

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo:bla#>.
:Person owl:hasKey (:name) .
:name a owl:DatatypeProperty .
:name a owl:InverseFunctionalProperty . ## that would do it instead of hasKey
:father a owl:FunctionalProperty, owl:IrreflexiveProperty; rdfs:range :Person.
:bob a :Person; :father :john .
:john :name "John" .
:Adam owl:equivalentClass [a owl:Restriction; owl:onProperty :name; owl:hasValue "Adam"] .
:Person rdfs:subClassOf

[a owl:Restriction; owl:onProperty :father; owl:someValuesFrom :Adam].
:JohnAdam owl:equivalentClass [owl:intersectionOf (:Adam

[a owl:Restriction; owl:onProperty :name; owl:hasValue "John"])].
:hasFatherJohnAdam owl:equivalentClass [a owl:Restriction;

owl:onProperty :father; owl:someValuesFrom :JohnAdam] .
:hasGrandpaAdam owl:equivalentClass [a owl:Restriction; owl:onProperty :father;

owl:someValuesFrom [a owl:Restriction; owl:onProperty :father;
owl:someValuesFrom :Adam]].

:AdamFatherAdam owl:equivalentClass [owl:intersectionOf (:Adam
[a owl:Restriction; owl:onProperty :father; owl:someValuesFrom :Adam])] .

[Filename: RDF/forefathers-keys.n3]

366

[ASIDE/EXAMPLE] OWL:HASKEY AND NON-NAMED RESOURCES

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo:bla#>
SELECT ?N ?A ?FA ?AFA ?GPA
FROM <forefathers-keys.n3>
WHERE {{ :bob :father [:name ?N] }

UNION { ?A :name "Adam" } ## error/bug complains about anon(1)
UNION { ?FA a :hasFatherJohnAdam }
UNION { ?AFA a :AdamFatherAdam }
UNION { ?GPA a :hasGrandpaAdam }}

[Filename: RDF/forefathers-keys.sparql]

• implicit nodes are not considered in the answers.

• owl:hasKey is not violated by the fact that several only implicitly known people are named
“Adam”.
Note that John, being Bob’s father, also gets the name “Adam”.

367

[ASIDE/EXAMPLE] OWL:HASKEY AND NON-NAMED RESOURCES

Another example using multi-attribute keys (which could not be replaced by
owl:InverseFunctionalProperty):

• nodes in a (x,y)-coordinate system; consider (10,10)

• insert a pointer to an implicit node (10,10).

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo:bla#>.
:XYThing owl:hasKey (:x :y).
:xy10 a :XYThing; :x 10; :y 10; :text "free".
:XYTen owl:intersectionOf ([a owl:Restriction; owl:onProperty :x; owl:hasValue 10]

[a owl:Restriction; owl:onProperty :y; owl:hasValue 10]
[a owl:Restriction; owl:onProperty :text; owl:hasValue "pointedTo"]).

:pointTo a owl:FunctionalProperty; rdfs:range :XYThing.
:foo a [a owl:Restriction;

owl:onProperty :pointTo; owl:onClass :XYTen; owl:qualifiedCardinality 1].
:foo :pointTo :xyxy. ## functionality of pointTo: makes :xyxy=(10,10) explicit

[Filename: RDF/easykeys-impl.n3]

368

Aside/Example owl:hasKey and Non-Named Resources (Cont’d)

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo:bla#>
SELECT ?CT ?Y ?T ?SameAsxyxy
FROM <easykeys-impl.n3>
WHERE {{ :foo :pointTo [:text ?CT] }

UNION { ?Y :text ?T }
UNION { [:text ?T] }
UNION { :xyxy owl:sameAs ?SameAsxyxy }}

[Filename: RDF/easykeys-impl.sparql]

Implicit nodes are not considered in the answers.

• with last in line in source commented out: not much – the “pointTo” text is not answered,
nothing is :sameAs.

• with last line commented in: the implicit node which is pointed to is equated with :xyxy,
made explicit and then equated also with :xy10.

369

[ASIDE] OWL VS. RDF LISTS

• RDF provides structures for representing lists by triples (cf. Slide 230): rdf:List, rdf:first,
rdf:rest.
These are distinguished classes/properties.

• OWL/reasoners have a still unclear relationship with these:

– use of lists for its internal representation of owl:unionOf, owl:oneOf etc. (that are
actually based on collections),

– do or do not allow the user to query this internal representation,

– ignore user-defined lists over usual resources.

370

[ASIDE] UNIONOF (ETC) AS TRIPLES: LISTS

• owl:unionOf (x y z), owl:oneOf (x y z) is actually only syntactic sugar for RDF lists.

• The following are equivalent:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.

:Male a owl:Class.
:Female a owl:Class.

:Person a owl:Class; owl:unionOf (:Male :Female).
:EqToPerson a owl:Class;

owl:unionOf
[a rdf:List; rdf:first :Male;
rdf:rest [a rdf:List; rdf:first :Female; rdf:rest rdf:nil]].

:x a :Person. [Filename: RDF/union-list.n3]

• jena -t -if union-list.n3: both in usual N3 notation as owl:unionOf (:Male :Female).

371

[ASIDE] UNIONOF (ETC) AS TRIPLES (CONT’D)

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla#>
select ?C
from <file:union-list.n3>
where {:Person owl:equivalentClass ?C}

[Filename: RDF/union-list.sparql]

• jena -q -pellet -qf union-list.sparql: both are equivalent.

prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla#>
select ?P1 ?P2 ?X ?Q ?R ?S ?T
from <file:union-list.n3>
where {{:Person owl:equivalentClass :EqToPerson} UNION

{:Person ?P1 ?X . ?X ?Q ?R . OPTIONAL {?R ?S ?T}} UNION
{:EqToPerson ?P2 ?X . ?X ?Q ?R} . OPTIONAL {?R ?S ?T}} [Filename: RDF/union-list2.sparql]

• both have actually the same list structure
(pellet2/nov 2008: fails; pellet 2.3/sept 2009: fails)

372

[ASIDE] REASONING OVER LISTS (PITFALLS!)

• rdf:first and rdf:rest are (partially) ignored for reasoning (at least by pellet?); they cannot
be used for deriving other properties from it.

• they can even not be used in queries (since pellet2/nov 2008; before it just showed weird
behavior)

prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix owl: <http://www.w3.org/2002/07/owl#>
prefix : <foo://bla#>
select ?X ?Y ?Z
from <file:union-list.n3>
where {?X a rdf:List; rdf:first ?Y .

OPTIONAL {?X rdf:rest ?Z}}
[Filename: RDF/union-list3.sparql]

• jena-tool with pellet2.3: OK.

• pellet2.3: NullPointerException.

373

[Aside] Extension of a class defined by a list

Given an RDF list as below, define an owl:Class :Invited which contains exactly the elements
in the list (i.e., in the above sample data, :alice, :bob, :carol, :dave).

@prefix : <foo:bla#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
Problem: when the real rdf namespace is used, rdf:first/rest are ignored
@prefix rdfL: <http://www.w3.org/1999/02/22-rdf-syntax-nsL#>. # <<<<<<<<<<<<<
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

:Invited a owl:Class.
:InvitationList rdfs:subClassOf rdfL:List.
:list1 a :InvitationList; rdfL:first :alice;

rdfL:rest [a rdfL:List; rdfL:first :bob;
rdfL:rest [a rdfL:List; rdfL:first :carol;

rdfL:rest [a rdfL:List; rdfL:first :dave; rdfL:rest rdf:nil]]].

rest of an InvitationList is also an InvitationList
:InvitationList owl:equivalentClass

[a owl:Restriction;
owl:onProperty rdfL:rest; owl:allValuesFrom :InvitationList],

[a owl:Restriction;
owl:onProperty rdfL:first; owl:allValuesFrom :Invited].

[Filename: RDF/invitation-list.n3]

prefix : <foo:bla#>
select ?I
from <file:invitation-list.n3>
where {?I a :Invited}

[Filename: RDF/invitation-list.sparql]

374

7.4 Nominals: The O in SHOIQ

TBOX VS. ABOX

Description Logics Terminology

Clean separation between TBox and ABox vocabulary:

• TBox: RDFS/OWL vocabulary for information about classes and properties
(further partitioned into definitions and axioms),

• ABox: Domain vocabulary and rdf:type.

RDF/RDF/OWL Ontologies

• Syntactically: allow to mix everything in a single set of triples.

• OWL-DL restriction: clean usage of individuals vs. classes

– individuals only in application property triples (ABox)

– classes only in context of RDFS/OWL built-ins (like (X a :Person) or (:hasChild
rdfs:range :Person), etc.) (TBox)

375

Recall: Reification

• Reification treats a class (e.g. :Penguin) or a property as an individual (:Penguin a
:Species)

• reification assigns properties from an application domain to classes and properties.

• useful when talking about metadata notions,

• risk: allows for paradoxes.

NOMINALS

• use individuals (that usually occur only in the ABox) in specific positions in the TBox:

• as individuals (that are often implemented in the reasoner as unary classes) with
[a owl:Restriction; owl:onProperty property ; owl:hasValue object]
(the class of all things such that {?x property object} holds).

• in enumerated classes class owl:oneOf (o1,. . . ,on)
(class is defined to be the set {o1,. . . ,on}).

376

USING NOMINALS: ITALIAN CITIES

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
@prefix it: <foo://bla#>.
it:Italy owl:sameAs <http://www.semwebtech.org/mondial/10/countries/I/>.
it:ItalianCity a owl:Class; owl:intersectionOf

(mon:City
[a owl:Restriction; owl:onProperty mon:cityIn;
owl:hasValue it:Italy]). # Nominal: an individual in a TBox axiom

[Filename: RDF/italiancities.n3]

prefix it: <foo://bla#>
select ?X ?Y
from <file:mondial-meta.n3>
from <file:mondial-europe.n3>
from <file:italiancities.n3>
where {?X a it:ItalianCity} [Filename: RDF/italiancities.sparql]

• the query {?X :cityIn <http://www.semwebtech.org/mondial/10/countries/I/>} would be shorter, but
here a class should be defined for further use ...

377

AN ONTOLOGY IN OWL

Consider the Italian-English-Ontology from Slide 52.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix f: <foo://bla#>.
f:Italian rdfs:subClassOf f:Person;

owl:disjointWith f:English;
owl:unionOf (f:Lazy f:LatinLover).

f:Lazy owl:disjointWith f:LatinLover.
f:English rdfs:subClassOf f:Person.
f:Gentleman rdfs:subClassOf f:English.
f:Hooligan rdfs:subClassOf f:English.
f:LatinLover rdfs:subClassOf f:Gentleman.

[Filename: RDF/italian-english.n3]

Class tree with jena -e:

owl:Thing
bla:Person

bla:English
bla:Hooligan
bla:Gentleman

bla:Italian = bla:Lazy
owl:Nothing = bla:LatinLover

• LatinLover is empty,
thus Italian ≡ Lazy.

378

Italians and Englishmen (Cont’d)

• the conclusions apply to the instance level:

@prefix : <foo://bla#>.
:mario a :Italian.

[Filename: RDF/mario.n3]

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix : <foo://bla#>
select ?C
from <file:italian-english.n3>
from <file:mario.n3>
where {:mario rdf:type ?C} [Filename: RDF/italian-english.sparql]

379

AN ONTOLOGY IN OWL

Consider the Italian-Professors-Ontology from Slide 53.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix it: <foo://bla#>.
it:Bolzano owl:sameAs
<http://www.semwebtech.org/mondial/10/countries/I/provinces/TrentinoAltoAdige/cities/Bolzano/>
it:Italian owl:intersectionOf

(it:Person
[a owl:Restriction; owl:onProperty it:livesIn;
owl:someValuesFrom it:ItalianCity]);

owl:unionOf (it:Lazy it:Mafioso it:LatinLover).
it:Professor rdfs:subClassOf it:Person.
it:Lazy owl:disjointWith it:ItalianProf;

owl:disjointWith it:Mafioso;
owl:disjointWith it:LatinLover.

it:Mafioso owl:disjointWith it:ItalianProf;
owl:disjointWith it:LatinLover.

it:ItalianProf owl:intersectionOf (it:Italian it:Professor).
it:enrico a it:Professor; it:livesIn it:Bolzano. [Filename: RDF/italian-prof.n3]

prefix : <foo://bla#>
select ?C
from <file:italian-prof.n3>
from <file:mondial-meta.n3>
from <file:mondial-europe.n3>
from <file:italiancities.n3>
where {:enrico a ?C}

[Filename: RDF/italian-prof.sparql]

380

ENUMERATED CLASSES: ONEOF

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
<bla:MontanunionMembers> owl:intersectionOf
(mon:Country
[owl:oneOf
(<http://www.semwebtech.org/mondial/10/countries/NL/>
<http://www.semwebtech.org/mondial/10/countries/B/>
<http://www.semwebtech.org/mondial/10/countries/L/>
<http://www.semwebtech.org/mondial/10/countries/F/>
<http://www.semwebtech.org/mondial/10/countries/I/>
<http://www.semwebtech.org/mondial/10/countries/D/>)]).

<bla:Result> owl:intersectionOf (mon:Organization
[a owl:Restriction; owl:onProperty mon:hasMember;
owl:someValuesFrom <bla:MontanunionMembers>]). [Filename: RDF/montanunion.n3]

select ?X
from <file:montanunion.n3>
from <file:mondial-europe.n3>
from <file:mondial-meta.n3>
where {?X a <bla:Result>}

[RDF/montanunion.sparql]

• Query: all organizations that share a member with the Montanunion.

381

oneOf (Example Cont’d)

• previous example: “all organizations that share a member with the Montanunion.”
(DL: x ∈ ∃hasMember.MontanunionMembers)

• “all organizations where all members are also members of the Montanunion.”
(DL: x ∈ ∀hasMember.MontanunionMembers)

• The result is empty (although there is e.g. BeNeLux) due to open world: it is not known
whether there may exist additional members of e.g. BeNeLux.

• Only if the membership of Benelux is “closed”, results can be proven:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
<http://www.semwebtech.org/mondial/10/organizations/Benelux/>
a [a owl:Restriction;

owl:onProperty mon:hasMember; owl:cardinality 3].
<bla:SubsetOfMU> owl:intersectionOf (mon:Organization

[a owl:Restriction; owl:onProperty mon:hasMember;
owl:allValuesFrom <bla:MontanunionMembers>]).

mon:name a owl:FunctionalProperty. # not yet given in the metadata

[Filename: RDF/montanunion2.n3]

select ?X
from <file:montanunion.n3>
from <file:montanunion2.n3>
from <file:mondial-europe.n3>
from <file:mondial-meta.n3>
where {?X a <bla:SubsetOfMU>}

[RDF/montanunion2.sparql]

382

oneOf (Example Cont’d)

• “all organizations that cover all members of the Montanunion.”

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix mon: <http://www.semwebtech.org/mondial/10/meta#>.
<bla:EUMembers> owl:equivalentClass [a owl:Restriction;

owl:onProperty mon:isMember; owl:hasValue
<http://www.semwebtech.org/mondial/10/organizations/EU/>].

[Filename: RDF/montanunion3.n3]

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
select ?X # ?Y ?Z
from <file:montanunion.n3>
from <file:montanunion3.n3>
from <file:mondial-europe.n3>
from <file:mondial-meta.n3>
where {#{?Y a <bla:EUMembers>} UNION {?Z a <bla:MontanunionMembers>} UNION

{<bla:MontanunionMembers> rdfs:subClassOf ?X}}
[Filename: RDF/montanunion3.sparql]

383

ONEOF (EXAMPLE CONT’D)

Previous example:

• only for one organization

• defined a class that contains all members of the organization

• not possible to define a family of classes – one class for each organization.

• this would require a parameterized constructor :

“corg is the set of all members of org”

Second-Order Logic: each organization can be seen as a unary predicate (=set):

∀Org : Org(c) ↔ hasMember(Org, c)
or in F-Logic syntax: C isa Org :- Org:organization[hasMember->C]

yields e.g.

I(eu) = {germany, france, . . .},
I(nato) = {usa, canada, germany, . . .}
Recall that “organization” itself is a predicate:
I(organization) = {eu, nato, . . . , }
So we have again reification: organizations are both first-order-individuals and classes.

384

CONVENIENCE CONSTRUCT: OWL:ALLDIFFERENT

• owl:oneOf defines a class as a closed set;

• in owl:oneOf (x1, . . . , xn), two items may be the same (open world),

owl:AllDifferent

• Triples of the form :a owl:differentFrom :b state that two individuals are different.
For a database with n elements, one needs
(n− 1) + (n− 2) + . . .+ 2 + 1 =

∑
i=1..n i = n · (n+ 1)/2 = O(n2) such statements.

• The –purely syntactical– convenience construct

[a owl:AllDifferent; owl:members (r1 r2 . . . rn)]

provides a shorthand notation.

– it is immediately translated into the set of all statements
{ri owl:differentFrom rj | i 6= j ∈ 1..n}

– [a owl:AllDifferent; owl:members (...)]
is to be understood as a (blank node) that acts as a specification that the listed things
are different that does not actually exist in the model.

385

[SYNTAX] OWL:ALLDIFFERENT IN RDF/XML

<?xml version="1.0"?>
<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:f="foo://bla#" xml:base="foo://bla#">

<owl:Class rdf:about="Foo">
<owl:equivalentClass> <owl:Class>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="a"/> <owl:Thing rdf:about="b"/>
<owl:Thing rdf:about="c"/> <owl:Thing rdf:about="d"/>

</owl:oneOf>
</owl:Class> </owl:equivalentClass>

</owl:Class>
<owl:AllDifferent> <!-- use like a class, but is only a shorthand -->

<owl:members rdf:parseType="Collection">
<owl:Thing rdf:about="a"/> <owl:Thing rdf:about="b"/>
<owl:Thing rdf:about="c"/> <owl:Thing rdf:about="d"/>

</owl:members>
</owl:AllDifferent>
<owl:Thing rdf:about="a"> <owl:sameAs rdf:resource="b"/> </owl:Thing>
</rdf:RDF>

[Filename: RDF/alldiff.rdf]

prefix : <foo://bla#>
prefix owl:

<http://www.w3.org/2002/07/owl#>
select ?X ?P ?P2 ?V
from <file:alldiff.rdf>
where {?X a owl:AllDifferent ;

?P [?P2 ?V]}

[Filename: RDF/alldiffxml.sparql]

• AllDifferent is only intended as a kind of command to the application to add all pairwise
“different-from” statements, it does not actually introduce itself as triples:

• querying {?X a owl:AllDifferent} is actually not intended.

386

[SYNTAX] OWL:ALLDIFFERENT IN N3

Example:

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:Foo owl:equivalentClass [owl:oneOf (:a :b :c :d)].
both the following syntaxes are equivalent and correct:
[a owl:AllDifferent; owl:members (:a :b)].
[] a owl:AllDifferent; owl:members (:c :d).
:a owl:sameAs :b.
:b owl:sameAs :d.

[Filename: RDF/alldiff.n3]

prefix : <foo://bla#>
select ?X ?Y
from <file:alldiff.n3>
where {?X a owl:AllDifferent ; ?P [?P2 ?V]}

[Filename: RDF/alldiff.sparql]

387

ONEOF: A TEST

• owl:oneOf defines a “closed set” (use with anonymous class; see below):

• note that in owl:oneOf (x1, . . . , xn), two items may be the same (open world),

• optional owl:AllDifferent to guarantee that (x1, . . . , xn) are pairwise distinct.

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:Person owl:equivalentClass [owl:oneOf (:john :alice :bob)].
:john owl:sameAs :alice. # to show that it is consistent that they are the same
[] a owl:AllDifferent; owl:members (:john :alice :bob). # to guarantee distinctness
:name a owl:FunctionalProperty. # this also guarantees distinctness ;)
:john :name "John".
:alice :name "Alice".
:bob :name "Bob".
:d a :Person.
:d owl:differentFrom :john, :alice.
:d owl:differentFrom :bob. ### adding this makes the ontology inconsistent

[Filename: RDF/three.n3]

• Who is :d?

388

oneOf: a Test (cont’d)

Who is :d?

• check the class tree:
bla:Person - (bla:bob, bla:alice, bla:d, bla:john)
The class tree does not indicate which of the “four” identifiers are the same.

• and ask it:
prefix : <foo://bla#>
select ?N
from <file:three.n3>
where {:d :name ?N}

[Filename: RDF/three.sparql]
The answer is ?N/“Bob”.

389

7.5 Closing Parts of the Open World

• “forall items” is only applicable if additional items can be excluded (⇒ locally closed
predicate/property),

• often, RDF data is generated from a database,

• certain predicates can be closed by defining restriction classes with maxCardinality.

390

OWL:ALLVALUESFROM

@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
[a :Male; a :ThreeChildrenParent; :name "John";

:hasChild [a :Female; :name "Alice"], [a :Male; :name "Bob"],
[a :Female; :name "Carol"]].

[a :Female; a :TwoChildrenParent; :name "Sue";
:hasChild [a :Female; :name "Anne";], [a :Female; :name "Barbara"]].

:name a owl:FunctionalProperty.
:OneChildParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:cardinality 1].
:TwoChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:cardinality 2].
:ThreeChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:cardinality 3].
:OnlyFemaleChildrenParent owl:equivalentClass [a owl:Restriction;

owl:onProperty :hasChild; owl:allValuesFrom :Female].

[Filename: RDF/allvaluesfrom.n3]

prefix : <foo://bla#>
select ?N
from <file:allvaluesfrom.n3>
where {?X :name ?N .
?X a :OnlyFemaleChildrenParent}

[Filename: RDF/allvaluesfrom.sparql]

391

EXAMPLE: WIN-MOVE-GAME IN OWL

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.

:Node a owl:Class; owl:equivalentClass
[a owl:Class; owl:oneOf (:a :b :c :d :e :f :g :h :i :j :k :l :m)].

:edge a owl:ObjectProperty; rdfs:domain :Node; rdfs:range :Node.
:out a owl:DatatypeProperty.
:a a :Node; :out 2; :edge :b, :f.
:b a :Node; :out 3; :edge :c, :g, :k.
:c a :Node; :out 2; :edge :d, :l.
:d a :Node; :out 1; :edge :e.
:e a :Node; :out 1; :edge :a.
:f a :Node; :out 0 .
:g a :Node; :out 2; :edge :i, :h.
:h a :Node; :out 1; :edge :m.
:i a :Node; :out 1; :edge :j.
:j a :Node; :out 0 .
:k a :Node; :out 0 .
:l a :Node; :out 1; :edge :d.
:m a :Node; :out 1; :edge :h. [Filename: RDF/winmove-graph.n3]

a b k

f e c g

d l h i

m j

392

Win-Move-Game in OWL – the Game Axioms

“If a player cannot move, he loses.”

Which nodes are WinNodes, which one are LoseNodes (i.e., the player who has to move
wins/loses)?

• if a player can move to some LoseNode (for the other), he will win.

• if a player can move only to WinNodes (for the other), he will lose.

• recall that there can be nodes that are neither WinNodes nor LoseNodes.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.

:WinNode a owl:Class; owl:intersectionOf (:Node
[a owl:Restriction; owl:onProperty :edge; owl:someValuesFrom :LoseNode]).

:LoseNode a owl:Class; owl:intersectionOf (:Node
[a owl:Restriction; owl:onProperty :edge; owl:allValuesFrom :WinNode]).

[Filename: RDF/winmove-axioms.n3]

393

Win-Move-Game in OWL – Closure

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <foo://bla#>.
:DeadEndNode a owl:Class; rdfs:subClassOf :Node;

owl:equivalentClass [a owl:Restriction; owl:onProperty :out; owl:hasValue 0],
[a owl:Restriction; owl:onProperty :edge; owl:cardinality 0].

:OneExitNode a owl:Class; rdfs:subClassOf :Node;
owl:equivalentClass [a owl:Restriction; owl:onProperty :out; owl:hasValue 1],

[a owl:Restriction; owl:onProperty :edge; owl:cardinality 1].
:TwoExitsNode a owl:Class; rdfs:subClassOf :Node;

owl:equivalentClass [a owl:Restriction; owl:onProperty :out; owl:hasValue 2],
[a owl:Restriction; owl:onProperty :edge; owl:cardinality 2].

:ThreeExitsNode a owl:Class; rdfs:subClassOf :Node;
owl:equivalentClass [a owl:Restriction; owl:onProperty :out; owl:hasValue 3],

[a owl:Restriction; owl:onProperty :edge; owl:cardinality 3].

[Filename: RDF/winmove-closure.n3]

394

Win-Move-Game in OWL: DeadEndNodes

Prove that DeadEndNodes are LoseNodes:

• obvious: Player cannot move from there

• exercise: give a formal (Tableau) proof

• The OWL Reasoner does it:

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix : <foo://bla#>
select ?X
from <file:winmove-axioms.n3>
from <file:winmove-closure.n3>
where {:DeadEndNode rdfs:subClassOf :LoseNode}

[Filename: RDF/deadendnodes.sparql]

The answer contains an (empty) tuple which means “yes”.

395

