Chapter 5
RDF Schema

Schema Information and Reasoning in an Open World

218

ONTOLOGIES

Schema languages, metadata languages, modeling languages, ontologies ...
Classical Data Models: seen as Specification and Constraints
» every schema description defines a (more or less complete) ontology:
* ER Model (1976, entity types, attributes, relationships with cardinalities),

* UML (1997, classes with subclasses, associations with cardinalities, OCL assertions to
schema components etc.).

Knowledge Representation

Metadata provides additional information about resources of a type, or about a property.
» F-Logic signatures (1989),
* ... RDFS and OWL (Web Ontology Language)

219

SCHEMA INFORMATION IN AN OPEN WORLD

» schema describes
— allowed properties for an object,
— datatype constraints for literal properties [Here: XSD literal types],
— allowed types/classes for reference properties,
— cardinality constraints.
Closed World: Schema as Constraints

» a database must satisfy the constraints. It must be a model of the formulas — the given
data alone must be a model.

Open World: potentially incomplete knowledge
» schema information as additional information

* since the world must be a model of the schema, some information can be derived from
the schema.

» complain only if information is contradictory to the schema.

220

METADATA INFORMATION: TYPES, PROPERTIES, AND ONTOLOGIES

» Types and properties (i.e., everything that is used in a namespace) are not only “names”,
but are resources “somewhere in the Web”, identified by a URI (used in RDF or in XML
via namespaces).

= a domain ontology describes the notions used in a namespace.
Schema and Ontology Information

» what types/classes are there,

* subclass information,

» what properties objects of a given type must/can have,

» to what types some property is applicable and what range it has,

« cardinalities of properties,

* default values,

» that some properties are transitive, symmetric, subproperties of another or excluding
each other etc.

221

REASONING WITH RDF, RDF SCHEMA AND OWL

* theoretical details will be discussed later. The underlying thing is either

— graph completion by rules (RDFS, OWL Lite),
(can be translated to Datalog)

— Description Logic (DL) Reasoning (OWL DL)
(requires a DL reasoner, based on Tableaux techniques)

» there are reasoners available for the Jena Framework:

— an internal one:
jena -q -inf -qf sparql-file
for invoking SPARQL with its internal reasoner
— an external one:
(integrated into the semweb.jar used in the lecture as plug-in)
jena -q -pellet -qf spargl-file
for invoking SPARQL with the Pellet DL reasoner class

— external ones as Web Services ...

222

USE OF THE JENA TOOL

 option “-t": transform (between N3 and RDF/XML)
jena -t -pellet -if rdf-file .
(-t is not complete for checking inconsistencies)

 option “-g”: query
jena -q -pellet [-if rdf-input-file] -gf query-file .

» option “-e”; export the class tree (available only when the pellet reasoner is activated).
Input is an RDF or OWL file:
jena -e -pellet -if rdf-file.
(for checking consistency, use -e)

* [note: since Jan. 2008, the former [-il RDF/XML] for indicating RDF/XML vs N3 input can
be omitted in most cases]

223

PELLET COMMANDLINE FOR SPARQL-DL Q UERIES

» download pellet, set alias for pellet/pellet.sh
* see pellet help for further information

* pellet query -q query-file input-file
— does not use FROM line(s) in SPARQL, input file must be given explicitly,

— only one input file possible.

224

ASIDE: DIG INTERFACE - DESCRIPTION LOGIC IMPLEMENTATION GROUP

* Web page: http://dl.kr.org/dig/

» agreed “tell-and-ask-interface” of DL Reasoners as Web Service:

* tell them the facts and ask them queries, or for the whole inferred model
* e.g. supported by “Pellet”

» URL for download see Lecture Web page

may@dbisO1:~/SemWeb-Tools/pellet-1.3% ./pellet-dig.sh &
PelletDIGServer Version 1.3 (April 17 2006)
Port: 8081

* invoke the SPARQL Jena interface by
jena -q -qf sparql-file -inf -r reasoner-url
(e.g.: http://localhost:8081)

 note: the tell-functionality seems to transfer only part of the knowledge — incomplete
reasoning — currently not recommended.

225

5.1 RDF Schema Notions

* RDF is the instance level
* XML: DTDs and XML Schema for describing the structure/schema of the instance

* RDF Schema: stronger than DTD/XML — “semantic-level”

— describe the structure of the RDF instance (i.e. the “schema” of the RDF graph, not of
the RDF/XML file):

— describes the schema semantically in terms of an (lightweight) ontology (OWL
provides then much more features):

= class/subclass
x property/subproperty, domains and ranges

226

PREDEFINED RDFS CLASSES

The obvious ones

rdfs:Resource is “everything”. All things described by RDF are called resources, and are
instances of the class rdfs:Resource. This is the class of everything. All other classes are
subclasses of this class. rdfs:Resource is an instance of rdfs:Class.

rdfs:Class : all things (resources and literals) are of rdf:type of some rdfs:Class.
rdf:Properties have an rdfs:Class as domain and another rdfs:Class or rdfs:Datatype as
range.
mon:Country rdf:type rdfs:Class.

An rdfs:Class is simply a resource X that is of (X rdf:type rdfs:Class). Usually, class
names start with a capital letter.

Later, owl:Class will provide more interesting concepts of intensionally defined classes —
like “the class father is the class of things that are male and have children”.
rdf:Property is a subset of rdfs:Resource that contains all properties.
mon:capital rdf:type rdf:Property.
Usually, property names start with a non-capital letter.
[note: it's rdf:Property, not rdfs:Property!]

227

PREDEFINED RDFS CLASSES

rdfs:Datatype is the class of datatypes.

rdfs:Literal is the subclass of rdfs:Resource that contains all literals (i.e., values of
rdfs:Datatypes).
Literals do (usually) not have a URI, but a literal representation (as already discussed for
integers and strings).

E.g. the following holds

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.
xsd:int rdf:type rdfs:Datatype .

» Note that reification takes place here: rdfs:Datatype is both an instance of and a subclass
of rdfs:Class! Each instance of rdfs:Datatype is a subclass of rdfs:Literal.

228

SEMANTICS OF SUBCLASSES AND SUBPROPERTIES

rdfs:subClassOf specifies that one rdfs:Class is an rdfs:subClassOf another:
for any model M of the RDFS model theory,

M EVC,Cy : (holds(C1, rdfs:subClassOf, Cs) —
(Vx : (holds(zx, rdf:type, Cy) — holds(z, rdf:itype, C5))))

rdfs:subPropertyOf specifies that one rdf:Property is an rdfs:subPropertyOf another:

M =VYPy, Py : (holds(P, rdfs:subPropertyOf, P») —
(Va,y : (holds(z, P1,y) — holds(z, P2,y))))

229

SEMANTICS OF DOMAIN AND RANGE

rdfs:domain specifies that the domain of an rdf:Property is a certain rdfs:Class:

M EVC, P : (holds(P,rdfs:domain, C') —
(Vx : (Jy : holds(x, P,y)) — holds(zx, rdf:type, C)))

rdfs:range specifies that the range of an rdf:Property is a certain rdfs:Class
(note that rdfs:Datatype is a subclass (and an instance) of rdfs:Class):

M E=VC, P : (holds(P,rdfs:range, C) —
(Vy : (3x : holds(x, P,y)) — holds(y, rdf:type, C)))

Exercise

» Give an implementation by Datalog Rules for RDFS constructs.

230

INFERENCE RULES

The above are built-in inference rules of the RDFS Model Theory

until now, the SPARQL query language was applied to pure RDF facts (extensional
knowledge)

for the inference rules (= intensional knowledge), a reasoner is required.

* Queries are then not evaluated against the fact base, but against the model of the
factbase and the rules.

231

SUBCLASS, DOMAIN, RANGE: EXAMPLE

@prefix : <foo://bla/names#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
:has_cat rdfs:domain :Person .
:has_cat rdfs:range :Cat .
:Person rdfs:subClassOf :LivingBeing .
:Cat rdfs:subClassOf :LivingBeing .
<foo://bla/persons/john> :has_cat <foo://bla/cats/garfield>.
<foo://bla/persons/mary> rdf:type :Person.

[Filename: RDF/subclass.n3]

prefix : <foo://bla/names#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select 7X 7T

from <file:subclass.n3>

where {7X rdf:type 7T}

[Filename: RDF/subclass.sparq]l]

* activate the (internal) reasoner when invoking Jena.

232

SUBCLASS, DOMAIN, RANGE: EXAMPLE (CONT'D)

Recall the previous example. Given the following facts:

:has_cat rdfs:domain :Person .

:has_cat rdfs:range :Cat .

:Person rdfs:subClassOf :LivingBeing .

:Cat rdfs:subClassOf :LivingBeing .

<foo://bla/persons/john> :has_cat <foo://bla/cats/garfield>.
<foo://bla/persons/mary> rdf:type :Person.

The domain/range information does not act as a constraint, but as information. From that
knowledge, the following facts can be inferred:

 :has_cat implies that the subject (John) is a Person, and the object (Garfield) is a cat,

 both are thus LivingBeings.

233

SUBPROPERTIES

» outlook: combine it with owl: TransitiveProperty.

@prefix : <foo://bla/names#>
@prefix person: <foo://bla/persons/>
Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
O@prefix owl: <http://www.w3.org/2002/07/owl#>.

person:john :child person:alice, person:bob.

person:kate :child person: john.

:child rdfs:subProperty0f :descendant.

:descendant rdf:type owl:TransitiveProperty.

[Filename: RDF/descendants.n3]

prefix : <foo://bla/names#>
select 7?X 7Y
from <file:descendants.n3>

where {?X :descendant 7Y}

[Filename: RDF/descendants.sparql]

234

5.2 Datatypes

Strings: xsd:string (by default, every string literal is handled as a string)

XML Schema Simple Types xsd:int etc. can be used.

standard notations for numeric values do not need annotation.

* required etc. for time/date values.

Further datatypes can be defined in OWL.
» Can be used in the TBox and in the ABox (with rdfs:range).
Representation in the TBox

 declare xsd prefix/entity as <http://www.w3.0rg/2001/XMLSchema#>

* N3: p :birthday ‘“1999-12-31""" "xsd:date .
b mon:longitude 13" "xsd:int

b mon:longitude 13 .

* RDF/XML: <mon:longitude rdf:datatype=‘‘&¢xsd;int’’>13</mon:longitude>

235

DATATYPES: DATE

* use notation from XML/XML Schema for xsd:date/time/datetime

Q@prefix : <foo://bla#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
O@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
:birthdate rdfs:range xsd:date.
:john a :Person; :name "John"; :age 32;
:birthdate "1970-12-31"""xsd:date
:alice a :Person; :name "Alice"; :birthdate "2000-01-01"""xsd:date

[Filename: RDF/datatype-date.n3]

« if "xsd:date is omitted, the ontology is detected to be inconsistent!

prefix : <foo://bla#>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
select 7X 7P 7Y
from <file:datatype-date.n3>
where {{:john 7P 7Y} UNION
{?X :birthdate ?Y . FILTER (?Y > "1999-12-31"~"xsd:date)}}

[RDF/datatype-date.sparq]l]

236

STRING DATATYPES: ESCAPING

e asusualwith "...\" ...", or

* using """ as delimiter, escaping inside is not necessary:

Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix p: <foo://bla/names#> .
@prefix : <foo://bla/persons/> .
:john a p:Person ;
p:nickname "John \"The Hero\" Doe";
p:homepage """<ht:html xmlns:ht="http://www.w3.org/1999/xhtml">
<ht:body><ht:1i>bla</ht:1i></ht:body>
</ht:html>"""~~rdf:XMLLiteral. [Filename: RDF/string-datatypes.n3]

prefix : <foo://bla/persons/>
select 7X 7P 7Y
from <file:string-datatypes.n3>

where {:john 7P 7Y} [Filename: RDF/string-datatypes.sparql]

237

DATATYPES

* it also accepts non-existing datatypes:

Q@prefix : <foo://bla#> .

O@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
:john a :Person; :name "John";

:age "35"""xsd:integer, "36"""xsd:bla, 37, "38".

[Filename: RDF/datatype-casting.n3]

* use jena -t for transform.

prefix : <foo://bla#> Y comment

select 7Y “38” | string in standard notation

from <file:datatype-casting.n3> 37 integer in standard notation

where {:john :age 7Y} “36"" <http://www.w3.0rg/2001/XMLSchema#bla>
[RDF/datatype-casting.sparq|l] 35 | integer in standard notation

238

COMPARISON

SQL
 gueries only against the database (no intensional knowledge),
* equivalent to tree expressions in relational algebra, based on set theory,
» formal semantics can be given purely syntactically with the algebra,

= in the DB lecture, we did not need logic.

 equivalent to the relational calculus, semantics of queries can be given by the calculus.
Equivalent to nonrecursive Datalog (cf. Slide 102) with “negation as failure” (top-down)
stratification (bottom-up).

RDFS + SPARQL

only restricted negation

RDFS: built-in rules (positive, recursive Datalog)

SPARQL: positive, nonrecursive Datalog

intuitive bottom-up semantics

239

RDFS AXIOMATIC TRIPLES

See RDF Semantics and Model Theory, http://www.w3.org/TR/rdf -mt.

Axioms: expected to hold in any RDFS model:

rdf :type rdfs:domain rdfs:Resource .
rdfs:domain rdfs:domain rdf:Property .
rdfs:range rdfs:domain rdf:Property .
rdfs:subProperty0f rdfs:domain rdf:Property .
rdfs:subClass0f rdfs:domain rdfs:Class .

rdf:type rdfs:range rdfs:Class .
rdfs:domain rdfs:range rdfs:Class .
rdfs:range rdfs:range rdfs:Class .
rdfs:subProperty0f rdfs:range rdf:Property .
rdfs:subClass0f rdfs:range rdfs:Class .

rdfs:Datatype rdfs:subClassOf rdfs:Class .

... and some more.

240

UsING RDF IN THE WORLD WIDE WEB

The (Semantic) Web is not seen as a collection of documents, but as a collection of
correlated information (described via documents)

using RDF, everybody can make statements about any resource
(cf. link-bases in XLink)

— incremental, world wide data and meta-data
— distributed RDFS,
— distributed RDF,

— often using only virtual resources (URISs).
* not assumed that complete information about any resource is available.

» Open world, no notion of (implicit) negation.

241

REASONING BASED ON RDFS

RDF/RDFS model theory as above,

rather simple Datalog rules, graph completion,

» queries: against the (completed) graph by matching (SPARQL).

» incomplete knowledge when reasoning: “open world assumption”
Further Aspects

* potentially inconsistent information;

» statements can be equipped with probabilities or labeled as opinions;
fuzzy reasoning, belief revision ...

* ... lots of artificial intelligence applications ...

242

EXAMPLE/EXERCISE

Consider again the employee-manages-departments example (Slide 23).
* Give the RDF Graph.

* give the N3 triples and feed them into the Jena tool.

243

ADDITIONAL RDF/RDFS VOCABULARY

The rdf/rdfs namespaces provide some more vocabulary:

Like most data models, RDF provides a representation for Collections:

» Collections: rdf:Alt, rdf :Bag, rdf :Seq, rdf : List are collections.
Lists have properties rdf : first (a resource) and rdf :rest (a list). Others have
properties _1, _2, ...that refer to their members.

* (rdfs:Container, rdfs:member, rdfs:ContainerMembershipProperty)

... these are partially used implicitly (e.qg., collections in owl:intersectionOf, owl:OneOf), but
often not supported by OWL reasoners if used explicitly (see Slides 402 ff.).

244

EXAMPLE: THE MONDIAL ONTOLOGY

See mondial.n3, mondial-europe.n3 and mondial-meta.n3 on the Web page.

Note that it is highly redundant: defining just rdfs:domain and rdfs:range of properties implies
most of the classes (and also most of the rdfs:type relationships in mondial.n3).

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select 7X

from <file:mondial.n3>

from <file:mondial-meta.n3>

where {7X rdf:type mon:Country}

[Filename: RDF/mondial-meta-query.sparql]

* activate Jena with reasoner (if mondial.n3 is too big, use mondial-europe.n3 instead)
Mondial is not an interesting example for RDFS (and OWL):

* it's mainly data, no intensional knowledge, no complex ontology

« for that reason it is a good example for SQL and XML.

* RDFS and OWL is interesting when information is combined and additional knowledge
can be derived.

245

Developing Ontologies
* have an idea of the required concepts and relationships (ER, UML, ...),
» generate a (draft) n3 or RDF/XML instance,

» write a separate file for the metadata,

load it into Jena with activating a reasoner.

If the reasoner complains about an inconsistent ontology, check the metadata file alone. If
this is consistent, and it complains only when also data is loaded:

— it may be due to populating a class whose definition is inconsistent and that thus must
be empty.

— often it is due to wrong datatypes. Recall that datatype specification is not interpreted
as a constraint (that is violated for a given value), but as additional knowledge.

246

