
Chapter 5
RDF Schema

Schema Information and Reasoning in an Open World

218

ONTOLOGIES

Schema languages, metadata languages, modeling languages, ontologies ...

Classical Data Models: seen as Specification and Constraints

• every schema description defines a (more or less complete) ontology:

• ER Model (1976, entity types, attributes, relationships with cardinalities),

• UML (1997, classes with subclasses, associations with cardinalities, OCL assertions to
schema components etc.).

Knowledge Representation

Metadata provides additional information about resources of a type, or about a property.

• F-Logic signatures (1989),

• ... RDFS and OWL (Web Ontology Language)

219

SCHEMA INFORMATION IN AN OPEN WORLD

• schema describes

– allowed properties for an object,

– datatype constraints for literal properties [Here: XSD literal types],

– allowed types/classes for reference properties,

– cardinality constraints.

Closed World: Schema as Constraints

• a database must satisfy the constraints. It must be a model of the formulas – the given
data alone must be a model.

Open World: potentially incomplete knowledge

• schema information as additional information

• since the world must be a model of the schema, some information can be derived from
the schema.

• complain only if information is contradictory to the schema.

220

METADATA INFORMATION : TYPES, PROPERTIES, AND ONTOLOGIES

• Types and properties (i.e., everything that is used in a namespace) are not only “names”,
but are resources “somewhere in the Web”, identified by a URI (used in RDF or in XML
via namespaces).

⇒ a domain ontology describes the notions used in a namespace.

Schema and Ontology Information

• what types/classes are there,

• subclass information,

• what properties objects of a given type must/can have,

• to what types some property is applicable and what range it has,

• cardinalities of properties,

• default values,

• that some properties are transitive, symmetric, subproperties of another or excluding
each other etc.

221

REASONING WITH RDF, RDF SCHEMA AND OWL

• theoretical details will be discussed later. The underlying thing is either

– graph completion by rules (RDFS, OWL Lite),
(can be translated to Datalog)

– Description Logic (DL) Reasoning (OWL DL)
(requires a DL reasoner, based on Tableaux techniques)

• there are reasoners available for the Jena Framework:

– an internal one:
jena -q -inf -qf sparql-file

for invoking SPARQL with its internal reasoner

– an external one:
(integrated into the semweb.jar used in the lecture as plug-in)
jena -q -pellet -qf sparql-file

for invoking SPARQL with the Pellet DL reasoner class

– external ones as Web Services ...

222

USE OF THE JENA TOOL

• option “-t”: transform (between N3 and RDF/XML)
jena -t -pellet -if rdf-file .

(-t is not complete for checking inconsistencies)

• option “-q”: query
jena -q -pellet [-if rdf-input-file] -qf query-file .

• option “-e”: export the class tree (available only when the pellet reasoner is activated).
Input is an RDF or OWL file:

jena -e -pellet -if rdf-file.
(for checking consistency, use -e)

• [note: since Jan. 2008, the former [-il RDF/XML] for indicating RDF/XML vs N3 input can
be omitted in most cases]

223

PELLET COMMANDLINE FOR SPARQL-DL Q UERIES

• download pellet, set alias for pellet/pellet.sh

• see pellet help for further information

• pellet query -q query-file input-file

– does not use FROM line(s) in SPARQL, input file must be given explicitly,

– only one input file possible.

224

ASIDE: DIG INTERFACE - DESCRIPTION LOGIC IMPLEMENTATION GROUP

• Web page: http://dl.kr.org/dig/

• agreed “tell-and-ask-interface” of DL Reasoners as Web Service:

• tell them the facts and ask them queries, or for the whole inferred model

• e.g. supported by “Pellet”

• URL for download see Lecture Web page

may@dbis01:~/SemWeb-Tools/pellet-1.3$./pellet-dig.sh &

PelletDIGServer Version 1.3 (April 17 2006)

Port: 8081

• invoke the SPARQL Jena interface by
jena -q -qf sparql-file -inf -r reasoner-url

(e.g.: http://localhost:8081)

• note: the tell-functionality seems to transfer only part of the knowledge → incomplete
reasoning → currently not recommended.

225

5.1 RDF Schema Notions

• RDF is the instance level

• XML: DTDs and XML Schema for describing the structure/schema of the instance

• RDF Schema: stronger than DTD/XML – “semantic-level”

– describe the structure of the RDF instance (i.e. the “schema” of the RDF graph, not of
the RDF/XML file):

– describes the schema semantically in terms of an (lightweight) ontology (OWL
provides then much more features):

* class/subclass

* property/subproperty, domains and ranges

226

PREDEFINED RDFS CLASSES

The obvious ones

rdfs:Resource is “everything”. All things described by RDF are called resources, and are
instances of the class rdfs:Resource. This is the class of everything. All other classes are
subclasses of this class. rdfs:Resource is an instance of rdfs:Class.

rdfs:Class : all things (resources and literals) are of rdf:type of some rdfs:Class.
rdf:Properties have an rdfs:Class as domain and another rdfs:Class or rdfs:Datatype as
range.
mon:Country rdf:type rdfs:Class.

An rdfs:Class is simply a resource X that is of (X rdf:type rdfs:Class). Usually, class
names start with a capital letter.

Later, owl:Class will provide more interesting concepts of intensionally defined classes –
like “the class father is the class of things that are male and have children”.

rdf:Property is a subset of rdfs:Resource that contains all properties.

mon:capital rdf:type rdf:Property.

Usually, property names start with a non-capital letter.

[note: it’s rdf:Property, not rdfs:Property!]

227

PREDEFINED RDFS CLASSES

rdfs:Datatype is the class of datatypes.

rdfs:Literal is the subclass of rdfs:Resource that contains all literals (i.e., values of
rdfs:Datatypes).
Literals do (usually) not have a URI, but a literal representation (as already discussed for
integers and strings).

E.g. the following holds

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
xsd:int rdf:type rdfs:Datatype .

• Note that reification takes place here: rdfs:Datatype is both an instance of and a subclass
of rdfs:Class! Each instance of rdfs:Datatype is a subclass of rdfs:Literal.

228

SEMANTICS OF SUBCLASSES AND SUBPROPERTIES

rdfs:subClassOf specifies that one rdfs:Class is an rdfs:subClassOf another:

for any model M of the RDFS model theory,

M |= ∀C1, C2 : (holds(C1, rdfs:subClassOf, C2) →
(∀x : (holds(x, rdf:type, C1) → holds(x, rdf:type, C2))))

rdfs:subPropertyOf specifies that one rdf:Property is an rdfs:subPropertyOf another:

M |= ∀P1, P2 : (holds(P1, rdfs:subPropertyOf, P2) →
(∀x, y : (holds(x, P1, y) → holds(x, P2, y))))

229

SEMANTICS OF DOMAIN AND RANGE

rdfs:domain specifies that the domain of an rdf:Property is a certain rdfs:Class:

M |= ∀C,P : (holds(P, rdfs:domain, C) →
(∀x : (∃y : holds(x, P, y)) → holds(x, rdf:type, C)))

rdfs:range specifies that the range of an rdf:Property is a certain rdfs:Class
(note that rdfs:Datatype is a subclass (and an instance) of rdfs:Class):

M |= ∀C,P : (holds(P, rdfs:range, C) →
(∀y : (∃x : holds(x, P, y)) → holds(y, rdf:type, C)))

Exercise

• Give an implementation by Datalog Rules for RDFS constructs.

230

INFERENCE RULES

• The above are built-in inference rules of the RDFS Model Theory

• until now, the SPARQL query language was applied to pure RDF facts (extensional
knowledge)

• for the inference rules (= intensional knowledge), a reasoner is required.

• Queries are then not evaluated against the fact base, but against the model of the
factbase and the rules.

231

SUBCLASS , DOMAIN , RANGE : EXAMPLE

@prefix : <foo://bla/names#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

:has_cat rdfs:domain :Person .

:has_cat rdfs:range :Cat .

:Person rdfs:subClassOf :LivingBeing .

:Cat rdfs:subClassOf :LivingBeing .

<foo://bla/persons/john> :has_cat <foo://bla/cats/garfield>.

<foo://bla/persons/mary> rdf:type :Person.

[Filename: RDF/subclass.n3]

prefix : <foo://bla/names#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?X ?T

from <file:subclass.n3>

where {?X rdf:type ?T}

[Filename: RDF/subclass.sparql]

• activate the (internal) reasoner when invoking Jena.

232

SUBCLASS , DOMAIN , RANGE : EXAMPLE (CONT’D)

Recall the previous example. Given the following facts:

:has_cat rdfs:domain :Person .

:has_cat rdfs:range :Cat .

:Person rdfs:subClassOf :LivingBeing .

:Cat rdfs:subClassOf :LivingBeing .

<foo://bla/persons/john> :has_cat <foo://bla/cats/garfield>.

<foo://bla/persons/mary> rdf:type :Person.

The domain/range information does not act as a constraint, but as information. From that
knowledge, the following facts can be inferred :

• :has_cat implies that the subject (John) is a Person, and the object (Garfield) is a cat,

• both are thus LivingBeings.

233

SUBPROPERTIES

• outlook: combine it with owl:TransitiveProperty.

@prefix : <foo://bla/names#> .

@prefix person: <foo://bla/persons/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

person:john :child person:alice, person:bob.

person:kate :child person:john.

:child rdfs:subPropertyOf :descendant.

:descendant rdf:type owl:TransitiveProperty.

[Filename: RDF/descendants.n3]

prefix : <foo://bla/names#>

select ?X ?Y

from <file:descendants.n3>

where {?X :descendant ?Y}

[Filename: RDF/descendants.sparql]

234

5.2 Datatypes

• Strings: xsd:string (by default, every string literal is handled as a string)

• XML Schema Simple Types xsd:int etc. can be used.

• standard notations for numeric values do not need annotation.

• required etc. for time/date values.

• Further datatypes can be defined in OWL.

• Can be used in the TBox and in the ABox (with rdfs:range).

Representation in the TBox

• declare xsd prefix/entity as <http://www.w3.org/2001/XMLSchema#>

• N3: p :birthday “1999-12-31”ˆˆxsd:date .

b mon:longitude 13ˆˆxsd:int .

b mon:longitude 13 .

• RDF/XML: <mon:longitude rdf:datatype=“&xsd;int”>13</mon:longitude>

235

DATATYPES : DATE

• use notation from XML/XML Schema for xsd:date/time/datetime

@prefix : <foo://bla#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

:birthdate rdfs:range xsd:date.

:john a :Person; :name "John"; :age 32;

:birthdate "1970-12-31"^^xsd:date .

:alice a :Person; :name "Alice"; :birthdate "2000-01-01"^^xsd:date .

[Filename: RDF/datatype-date.n3]

• if ˆ̂ xsd:date is omitted, the ontology is detected to be inconsistent!

prefix : <foo://bla#>

prefix xsd: <http://www.w3.org/2001/XMLSchema#>

select ?X ?P ?Y

from <file:datatype-date.n3>

where {{:john ?P ?Y} UNION

{?X :birthdate ?Y . FILTER (?Y > "1999-12-31"^^xsd:date)}}

[RDF/datatype-date.sparql]

236

STRING DATATYPES : ESCAPING

• as usual with "...\" ...", or

• using """ as delimiter, escaping inside is not necessary:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix p: <foo://bla/names#> .

@prefix : <foo://bla/persons/> .

:john a p:Person ;

p:nickname "John \"The Hero\" Doe";

p:homepage """<ht:html xmlns:ht="http://www.w3.org/1999/xhtml">

<ht:body><ht:li>bla</ht:li></ht:body>

</ht:html>"""^^rdf:XMLLiteral. [Filename: RDF/string-datatypes.n3]

prefix : <foo://bla/persons/>

select ?X ?P ?Y

from <file:string-datatypes.n3>

where {:john ?P ?Y} [Filename: RDF/string-datatypes.sparql]

237

DATATYPES

• it also accepts non-existing datatypes:

@prefix : <foo://bla#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

:john a :Person; :name "John";

:age "35"^^xsd:integer, "36"^^xsd:bla, 37, "38".

[Filename: RDF/datatype-casting.n3]

• use jena -t for transform.

prefix : <foo://bla#>

select ?Y

from <file:datatype-casting.n3>

where {:john :age ?Y}

[RDF/datatype-casting.sparql]

Y comment

“38” string in standard notation

37 integer in standard notation

“36”̂ <̂http://www.w3.org/2001/XMLSchema#bla>

35 integer in standard notation

238

COMPARISON

SQL

• queries only against the database (no intensional knowledge),

• equivalent to tree expressions in relational algebra, based on set theory,

• formal semantics can be given purely syntactically with the algebra,

⇒ in the DB lecture, we did not need logic.

• equivalent to the relational calculus, semantics of queries can be given by the calculus.
Equivalent to nonrecursive Datalog (cf. Slide 102) with “negation as failure” (top-down)
stratification (bottom-up).

RDFS + SPARQL

• only restricted negation

• RDFS: built-in rules (positive, recursive Datalog)

• SPARQL: positive, nonrecursive Datalog

• intuitive bottom-up semantics

239

RDFS AXIOMATIC TRIPLES

See RDF Semantics and Model Theory, http://www.w3.org/TR/rdf-mt.

Axioms: expected to hold in any RDFS model:

rdf:type rdfs:domain rdfs:Resource .

rdfs:domain rdfs:domain rdf:Property .

rdfs:range rdfs:domain rdf:Property .

rdfs:subPropertyOf rdfs:domain rdf:Property .

rdfs:subClassOf rdfs:domain rdfs:Class .

rdf:type rdfs:range rdfs:Class .

rdfs:domain rdfs:range rdfs:Class .

rdfs:range rdfs:range rdfs:Class .

rdfs:subPropertyOf rdfs:range rdf:Property .

rdfs:subClassOf rdfs:range rdfs:Class .

rdfs:Datatype rdfs:subClassOf rdfs:Class .

... and some more.

240

USING RDF IN THE WORLD WIDE WEB

• The (Semantic) Web is not seen as a collection of documents, but as a collection of
correlated information (described via documents)

• using RDF, everybody can make statements about any resource
(cf. link-bases in XLink)

– incremental, world wide data and meta-data

– distributed RDFS,

– distributed RDF,

– often using only virtual resources (URIs).

• not assumed that complete information about any resource is available.

• Open world, no notion of (implicit) negation.

241

REASONING BASED ON RDFS

• RDF/RDFS model theory as above,

• rather simple Datalog rules, graph completion,

• queries: against the (completed) graph by matching (SPARQL).

• incomplete knowledge when reasoning: “open world assumption”

Further Aspects

• potentially inconsistent information;

• statements can be equipped with probabilities or labeled as opinions;
fuzzy reasoning, belief revision ...

• ... lots of artificial intelligence applications ...

242

EXAMPLE /EXERCISE

Consider again the employee-manages-departments example (Slide 23).

• Give the RDF Graph.

• give the N3 triples and feed them into the Jena tool.

243

ADDITIONAL RDF/RDFS VOCABULARY

The rdf/rdfs namespaces provide some more vocabulary:

Like most data models, RDF provides a representation for Collections:

• Collections: rdf:Alt, rdf:Bag, rdf:Seq, rdf:List are collections.
Lists have properties rdf:first (a resource) and rdf:rest (a list). Others have
properties _1, _2, . . . that refer to their members.

• (rdfs:Container, rdfs:member, rdfs:ContainerMembershipProperty)

... these are partially used implicitly (e.g., collections in owl:intersectionOf, owl:OneOf), but
often not supported by OWL reasoners if used explicitly (see Slides 402 ff.).

244

EXAMPLE : THE MONDIAL ONTOLOGY

See mondial.n3, mondial-europe.n3 and mondial-meta.n3 on the Web page.

Note that it is highly redundant: defining just rdfs:domain and rdfs:range of properties implies
most of the classes (and also most of the rdfs:type relationships in mondial.n3).

prefix mon: <http://www.semwebtech.org/mondial/10/meta#>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?X

from <file:mondial.n3>

from <file:mondial-meta.n3>

where {?X rdf:type mon:Country}

[Filename: RDF/mondial-meta-query.sparql]

• activate Jena with reasoner (if mondial.n3 is too big, use mondial-europe.n3 instead)

Mondial is not an interesting example for RDFS (and OWL):

• it’s mainly data, no intensional knowledge, no complex ontology

• for that reason it is a good example for SQL and XML.

• RDFS and OWL is interesting when information is combined and additional knowledge
can be derived.

245

Developing Ontologies

• have an idea of the required concepts and relationships (ER, UML, ...),

• generate a (draft) n3 or RDF/XML instance,

• write a separate file for the metadata,

• load it into Jena with activating a reasoner.

• If the reasoner complains about an inconsistent ontology, check the metadata file alone. If
this is consistent, and it complains only when also data is loaded:

– it may be due to populating a class whose definition is inconsistent and that thus must
be empty.

– often it is due to wrong datatypes. Recall that datatype specification is not interpreted
as a constraint (that is violated for a given value), but as additional knowledge.

246

