
Chapter 3
An Introduction to Formal Logic

Overview

• basic notions of logics: syntax, semantics

• the relational calculus is a specialization of first-order logic, tailored to relational
databases, equivalent to the relational algebra and SQL.
Straightforward: the only structuring means of relational databases are relations – each
relation can be seen as an interpretation of a predicate.

• there exists a declarative semantics,

• given by model theory,

• supported by reasoning methods.
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3.1 Syntax

• first-order language contains a set of distinguished symbols:

– “(” and “)”, logical symbols ¬, ∧, ∨,→, quantifiers ∀, ∃,

– an infinite set of variables X ,Y , X1, X2, . . . .

• An individual first-order language is then given by its signature Σ. Σ contains function
symbols and predicate symbols , each of them with a given arity.

For databases:

• the relation names are the predicate symbols (with arity),
e.g. continent/2, encompasses/3, etc.

• there are only 0-ary function symbols, i.e., constants ,
in a relational database these are only the literal values (numbers and strings).

• thus, the database schema R is the signature.
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Syntax (Cont’d).

Terms

The set of terms over Σ is defined inductively as

• each variable is a term,

• for every function symbol f ∈ Σ with arity n and terms t1, . . . , tn, also f(t1, . . . , tn) is a
term.

0-ary function symbols: c, 1,2,3,4, “Berlin”,. . .

Example: for plus/2, the following are terms: plus(3, 4), plus(plus(1, 2), 4), plus(X, 2).

• ground terms are terms without variables.

For databases:

• since there are no function symbols,

• the only terms are the constants and variables
e.g., 1, 2, “D”, “Germany”, X, Y, etc.
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Syntax (Cont’d): Formulas

Formulas are built inductively (using the above-mentioned special symbols) as follows:

Atomic Formulas

(1) For a predicate symbol (i.e., a relation name) R of arity k, and terms t1, . . . , tk,
R(t1, . . . , tk) is a formula.

(2) (for databases only, as special predicates )
A selection condition is an expression of the form t1 θ t2 where t1, t2 are terms, and θ is
a comparison operator in {=,6=,≤,<,≥,>}.

Every selection condition is a formula.

(both are also called positive literals )

For databases:

• the atomic formulas are the predicates built over relation names and these constants,
e.g.,
continent(“Asia”,4.5E7), encompasses(“R”,“Asia”,X), country(N,CC,Cap,Prov,Pop,A).

• comparison predicates (i.e., the “selection conditions”) are atomic formulas, e.g.,
X = “Asia”, Y > 10.000.000 etc.
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Syntax (Cont’d).

Compound Formulas

(3) For a formula F , also ¬F is a formula. If F is an atom, ¬F is called a negative literal .

(4) For a variable X and a formula F , ∀X : F and ∃X : F are formulas. F is called the scope
of ∃ or ∀, respectively.

(5) For formulas F and G , the conjunction F ∧G and the disjunction F ∨G are formulas.

For formulas F and G, where G (regarded as a string) is contained in F , G is a subformula
of F .

The usual priority rules apply (allowing to omit some parentheses).

• instead of F ∨ ¬G, the implication syntax F ← G or G→ F can be used, and

• (F → G) ∧ (F ← G) is denoted by the equivalence F ↔ G.
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Syntax (Cont’d).

Bound and Free Variables

An occurrence of a variable X in a formula is

• bound (by a quantifier) if the occurrence is in a formula A inside ∃X : A or ∀X : A (i.e., in
the scope of an appropriate quantifier).

• free otherwise, i.e.,if it is not bound by any quantifier.

Formulas without free variables are called closed .

Example:

• continent(“Asia”, X): X is free.

• continent(“Asia”, X) ∧X > 10.000.000: X is free.

• ∃X : (continent(“Asia”, X) ∧X > 10.000.000): X is bound.
The formula is closed.

• ∃X : (continent(X,Y )): X is bound, Y is free.

• ∀Y : (∃X : (continent(X,Y ))): X and Y are bound.
The formula is closed.
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Outlook:

• closed formulas either hold in a database state, or they do not hold.

• free variables represent answers to queries:
?- continent(“Asia”, X) means “for which value x does continent(“Asia”, x) hold?”
Answer: for x = 4.5E7.

• ∃Y : (continent(X,Y )): means
“for which values x is there an y such that continent(x, y) holds? – we are not interested
in the value of y”
The answer are all names of continents, i.e., that x can be “Asia”, “Europe”, or . . .

... so we have to evaluate formulas (“semantics”).
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3.2 Semantics

The semantics of first-order logic is given by first-order structures over the signature:

First-Order Structure

A first-order structure S = (I,D) over a signature Σ consists of a nonempty set D (domain ;
often also denoted by U (universe )) and an interpretation I of the signature symbols over D
which maps

• every constant c to an element I(c) ∈ D,

• every n-ary function symbol f to an n-ary function I(f) : Dn → D

(note that for relational databases, there are no function symbols with arity > 0)

• every n-ary predicate symbol p to an n-ary relation I(p) ⊆ Dn.

General:

• constants are interpreted by elements of the domain

• predicate symbols and function symbols are not mapped to domain objects, but to rela-
tions/functions over the domain.
⇒ we cannot express relations/relationships between predicates/functions.
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First-Order Structures: An Example

Example 3.1 (First-Order Structure)
Signature: constant symbols: zero, one, two, three, four, five

predicate symbols: green/1, red/1, sees/2

function symbols: to right/1, plus/2

Structure S:

1

23

4

5 0

Domain D = {0, 1, 2, 3, 4, 5}

Interpretation of the signature:
I(zero) = 0, I(one) = 1, . . . , I(five) = 5

I(green) = {(2), (5)}, I(red) = {(0), (1), (3), (4)}

I(sees) = {(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)}

I(to right) = { (0) 7→ (1), (1) 7→ (2), (2) 7→ (3),

(3) 7→ (4), (4) 7→ (5), (5) 7→ (0) }

I(plus) = {(n,m) 7→ (n+m) mod 6 | n,m ∈ D}

Terms: one, to right(four), to right(to right(X)), to right(to right(to right(four))),
plus(X, to right(zero)), to right(plus(to right(four), five))

Atomic Formulas: green(1), red(to right(to right(to right(four)))), sees(X,Y ),

sees(X, to right(Z)), sees(to right(to right(four)), to right(one)),
plus(to right(to right(four)), to right(one)) = to right(three) 2
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SUMMARY: NOTIONS FOR DATABASES

• a set R of relational schemata; logically spoken, R is the signature ,

• a database state is a structure S over R

• D contains all domains of attributes of the relation schemata,

• for every single relation schema R = (X̄) where X̄ = {A1, . . . , Ak}, we write
R[A1, . . . , Ak]. k is the arity of the relation name R.

• relation names are the predicate symbols. They are interpreted by relations, e.g.,
I(encompassed)

(which we also write as S(encompassed)).

For Databases:

• no function symbols with arity > 0

• constants are interpreted “by themselves”:
I(4) = 4, I(“Asia”) = “Asia”

• care for domains of attributes.
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Evaluation of Terms and Formulas

Terms and formulas must be evaluated under a given interpretation – i.e., wrt. a given
database state S.

• Terms can contain variables.

• variables are not interpreted by S.

A variable assignment over a universe D is a mapping

β : V ariables→ D

that binds every variable to an element d of the domain.

For a variable assignment β, a variable X, and d ∈ D, the modified variable assignment βd
X

is identical with β except that it assigns d to the variable X:

βd
X =







Y 7→ β(Y ) for Y 6= X ,

X 7→ d otherwise.

Example 3.2
For variables X,Y, Z, β = {X 7→ 1, Y 7→ “Asia”, Z 7→ 3.14} is a variable assignment.

β3
X = {X 7→ 3, Y 7→ “Asia”, Z 7→ 3.14}. 2
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Evaluation of Terms and Formulas

Terms and formulas are interpreted

• under a given interpretation S, and

• wrt. a given variable assignment β.

Every interpretation S together with a variable assignment β induces an evaluation S of terms
and predicates:

• Terms are mapped to elements of the universe: S : TermΣ × β → D

• (Closed) formulas are true or false in a structure: S : FmlΣ × β → {true, false}

For Databases:

• S is a database state.

• Σ is a purely relational signature,

• no function symbols with arity > 0, no nontrivial terms,

• constants are interpreted “by themselves”.
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Evaluation of Terms

S(x, β) := β(x) for any variable x ,

S(c, β) := I(c) for any constant c .

S(f(t1, . . . , tn), β) := (I(f))(S(t1, β), . . . ,S(tn, β))

for any function symbol f ∈ Σ with arity n and terms t1, . . . , tn.

Example 3.3 (Evaluation of Terms)
Consider again Example 3.1.

• For variable-free terms: β = ∅.

• S(one, ∅) = I(one) = 1

• S(to right(four), ∅) = I(to right(S(four, ∅)) = I(to right(4)) = 5

• S(to right(to right(to right(four))), ∅) = I(to right(S(to right(to right(four)), ∅))) =

I(to right(I(to right(S(to right(four), ∅))))) =

I(to right(I(to right(I(to right(S(four)), ∅))))) =

I(to right(I(to right(I(to right(4), ∅))))) =

I(to right(I(to right(5)))) = I(to right(0)) = 1 2
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Example 3.3 (Continued)
• Let β = {X 7→ 3}.
S(to right(to right(X)), β) = I(to right(S(to right(X), β))) =

I(to right(I(to right(S(X, β))))) = I(to right(I(to right(β(X))))) =

I(to right(I(to right(3)))) = I(to right(4)) = 5

• Let β = {X 7→ 3}.
S(plus(X, to right(zero)), β) = I(plus(S(X, β),S(to right(zero), β))) =

I(plus(β(X), I(to right(S(zero, β))))) = I(plus(3, I(to right(I(zero))))) =

I(plus(3, I(to right(0)))) = I(plus(3, 1)) = 4 2
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EVALUATION OF FORMULAS

Formulas can either hold, or not hold in a database state.

Truth Value

Let F a formula, S an interpretation, and β a variable assignment of the free variables in F
(denoted by free(F )).

Then we write S |=β F if “F is true in S wrt. β”.

Formally, |= is defined inductively.
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TRUTH VALUES OF FORMULAS : INDUCTIVE DEFINITION

Motivation: variable-free atoms

For an atom R(a1, . . . , ak), where ai, 1 ≤ i ≤ k are constants,

R(a1, . . . , ak) is true in S if and only if (I(a1), . . . , I(ak)) ∈ I(R).

Otherwise, R(a1, . . . , ak) is false in S.

Base Case: Atomic Formulas

The truth value of an atom R(t1, . . . , tk), where ti, 1 ≤ i ≤ k are terms, is given as

S |=β R(t1, . . . , tk) if and only if (S(t1, β), . . . ,S(tk, β)) ∈ I(R) .

For Databases:

• the ti can only be constants or variables.
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TRUTH VALUES OF FORMULAS : INDUCTIVE DEFINITION

• t1 θ t2 with θ a comparison operator in {=,6=,≤,<,≥,>}:
S |=β t1 θ t2 if and only if S(t1, β) θ S(t2, β) holds.

• S |=β ¬G if and only if S 6|=β G.

• S |=β G ∧H if and only if S |=β G and S |=β H.

• S |=β G ∨H if and only if S |=β G or S |=β H.

• (Derived; cf. next slide) S |=β F → G if and only if S |=β ¬F or S |=β G.

• S |=β ∀XG if and only if for all d ∈ D, S |=βd
X
G.

• S |=β ∃XG if and only if for some d ∈ D, S |=βd
X
G.
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Derived Boolean Operators

There are some minimal sets (e.g. {¬,∧, ∃}) of boolean operators from which the others can
be derived:

• The implication syntax F → G is a shortcut for instead of ¬F ∨G (cf. Slide 39):
S |=β F → G if and only if S |=β ¬F or S |=β G.
“whenever F holds, also G holds” – this is called material implication instead of “causal
implication”.
Note: if F implies G causally in a domain, then all models satisfy F → G.

• note that ∧ and ∨ can also be expressed by each other, together with ¬:
F ∧G is equivalent to ¬(¬F ∨ ¬G), and F ∨G is equivalent to ¬(¬F ∧ ¬G).

• The quantifiers ∃ and ∀ are in the same way “dual” to each other:
∃x : F is equivalent to ¬∀x : (¬F ), and ∀x : F is equivalent to ¬∃x : (¬F ).

• Proofs: exercise.
Show e.g. by the definitions that whenever S |=β ∃x : F then S |=β ¬∀x : (¬F ).
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Example 3.4 (Evaluation of Atomic Formulas)
Consider again Example 3.1.

• For variable-free formulas, let β = ∅

• S |=∅ green(one) ⇔ S(one) ∈ I(green) ⇔ (1) ∈ I(green) – which is not the case.
Thus, S 6|=∅ green(one).

• S |=∅ red(to right(to right(to right(three)))) ⇔

(S(to right(to right(to right(three))), ∅)) ∈ I(red) ⇔ (0) ∈ I(red)

which is the case. Thus, S |=∅ red(to right(to right(to right(three)))).

• Let β = {X 7→ 3, Y 7→ 5}.
S |=β sees(X,Y ) ⇔ (S(X, β),S(Y, β)) ∈ I(sees) ⇔ (3, 5) ∈ I(sees)

which is not the case.

• Again, β = {X 7→ 3, Y 7→ 5}.
S |=β sees(X, to right(Y )) ⇔ (S(X, β),S(to right(Y ), β)) ∈ I(sees) ⇔ (3, 0) ∈ I(sees)

which is the case.

• S |=β plus(to right(to right(four)), to right(one)) = to right(three) ⇔

S(plus(to right(to right(four)), to right(one)), ∅) = S(to right(three), ∅) ⇔ 2 = 4

which is not the case. 2
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Example 3.5 (Evaluation of Compound Formulas)
Consider again Example 3.1.

• S |=∅ ∃X : red(X) ⇔

there is a d ∈ D such that S |=∅d
X
red(X) ⇔ there is a d ∈ D s.t. S |={X 7→d} red(X)

Since we have shown above that S |=∅ red(six), this is the case.

• S |=∅ ∀X : green(X) ⇔

for all d ∈ D, S |=∅d
X
green(X) ⇔ for all d ∈ D, S |={X 7→d} green(X)

Since we have shown above that S 6|=∅ green(one) this is not the case.

• S |=∅ ∀X : (green(X) ∨ red(X)) ⇔ for all d ∈ D, S |={X 7→d} (green(X) ∨ red(X)).
One has now to check whether S |={X 7→d} (green(X) ∨ red(X)) for all d ∈ domain.
We do it for d = 3:
S |={X 7→3} (green(X) ∨ red(X)) ⇔

S |={X 7→3} green(X) or S |={X 7→3} red(X) ⇔

(S(X, {X 7→ 3})) ∈ I(green) or (S(X, {X 7→ 3})) ∈ I(red) ⇔

(3) ∈ I(green) or (3) ∈ I(red)

which is the case since (3) ∈ I(red).

• Similarly, S 6|=∅ ∀X : (green(X) ∧ red(X)) 2
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3.3 Model Theory and Logical Entailment

MODEL

• a structure S where a formula F is true, is called a model of the formula.

Databases

• the signature of a (relational) database is a first-order signature

• the possible database states are interpretations of that signature (i.e., assigning a relation
to each relation symbol)

• integrity constraints constrain the “allowed” states

• each integrity constraint can be expressed as a logical formula over the signature

– check constraints like “population ≥ 0”:
∀N,C, Pop,Area, Cap, CapProv : (country(N,C, Pop,Area, Cap, CapProv)→ Pop ≥ 0)

– referential integrity constraints:
∀N,C, Pop,Area, Cap, CapProv : (country(N,C, Pop,Area, Cap, CapProv)→

∃Pop′, Long, Lat : city(Cap,CapProv, C, Pop′, Long, Lat))
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DATABASES VS . KNOWLEDGE BASES

• A database (state) is a relational structure.

We can check if a formula holds there, or for which values of X it holds (which is then a
query).

The semantics of a database is the current database state.

• A (first-order) knowledge base is a set of closed (first-order) formulas. It contains facts,
but also other formulas.

We are interested if a knowledge base K implies a fact or a formula F . This means, if for
all modelsM of K, F must be true inM.

The semantics of a knowledge base (or in general a set of formulas) is the set of all its
models.

• an intermediate form occurs when a database is extended by axiomatic formulas
(subclasses etc.) or rules that can be used to derive additional facts.
Then, the semantics is given by the model(s) of the database state and the rules.
Is the (Semantic Web) more like a database or more like a knowledge base?

56



EXAMPLE : A XIOMATIZATION OF THE “C OMPANY” O NTOLOGY

Consider again the ER diagram from Slide 22.

• give the first-order signature Σ of the ontology,

• formalize the constraints given in the

– subclass constraints

– range and domain constraints

– cardinality constraints

and

– additional constraints/definitions that cannot be expressed by the ER model.

(this set of formulas is called a first-order “theory” or “axiomatization” of the ontology)

• express the instance level as an interpretation of the signature Σ.
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Example: Signature

• Classes are represented by unary predicates: Emp/1, Mgr/1, AMgr/1, TMgr/1, Dept/1.

• Attributes are represented by binary predicates: name/2, salary/2 (optionally, this could
be modeled by unary functions)

• (binary) relationships are represented by binary relationships: wf/2, mg/2, sub/2.

Thus,
Σcompany = {Emp/1, Mgr/1, AMgr/1, TMgr/1, Dept/1, name/2, salary/2, wf/2, mg/2, sub/2}.

Example: Subclass Constraints

∀x : Mgr(x)→ Emp(x) ,

∀x : AMgr(x)→ Mgr(x) ,

∀x : TMgr(x)→ Mgr(x) ,

∀x : Mgr(x)→ (AMgr(x) ∨ TMgr(x)) since declared as covering
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Example: Domain and Range Constraints

∀x : (∃n : name(x, n)→ (Emp(x) ∨ Dept(x))) ,

∀x : (∃s : salary(x, s)→ (Emp(x))) ,

∀x : ∀y : (sub(x, y)→ (Emp(x) ∧Mgr(y))) ,

∀x : ∀d : (wf(x, d)→ (Emp(x) ∧ Dept(d))) ,

∀x : ∀d : (mg(y, d)→ (Mgr(y) ∧ Dept(d))) .

Example: Cardinality Constraints

∀m : (TMgr(m)→ ∃d : mg(m, d)) ,

∀m, d1, d2 : ((mg(m, d1) ∧mg(m, d2))→ d1 = d2) ,

∀d : (Dept(d)→ ∃m : mg(m, d)) ,

∀d,m1,m2 : ((mg(m1, d) ∧mg(m2, d))→ m1 = m2) ,

∀d : (Dept(d)→ ∃x : wf(x, d)) ,

∀x : (Emp(x)→ ∃d : wf(x, d)) ,

∀x : ((∃d1, d2, d3, d4 : wf(x, d1) ∧ wf(x, d2) ∧ wf(x, d3) ∧ wf(x, d4))→

(d1 = d2 ∨ d1 = d3 ∨ d1 = d4 ∨ d2 = d3 ∨ d2 = d4 ∨ d3 = d4))
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Example: Further Constraints

• a person is subordinate to the manager of each department he/she works for:

∀x, y, d : wf(x, d) ∧mg(y, d) ∧ x 6= y → sub(x, y)

• should we have mg ⊆ wf, or mg ∩ wf = ∅?
The first is OK: ∀y, d : mg(y, d)→ wf(y, d)

• cardinality of “subordinate”? “Every employee has a boss”

∀x : Emp(x)→ ∃y : sub(x, y)

– this causes a semantical problem with the boss: an infinite chain is needed - leading
either to only infinite models, or a cycle.

– add axioms that guarantee transitivity and irreflexivity for “subordinate”:
∀x : ¬sub(x, x) and ∀x, y, z : (sub(x, y) ∧ sub(y, z)→ sub(x, z).
Then the set of axioms has only one model: Emp is empty, everything is empty.

– add an axiom that guarantees that the company has at least one employee:
∃x : Emp(x) – then the set of axioms is unsatisfiable.

– such investigations help to validate an ontology.
Ontology design tools allow to check for inconsistency, empty classes etc.
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Axiomatization of the “company” scenario

Denote the conjunction of the above formulas by Axiomscompany.

• For any database/knowledge base S using this scenario, S |= Axiomscompany is
required.

• a database then described the individuals and their individual properties in this world.
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Example: Instances

• The signature is extended by constant symbols for all named elements of the domain:

Σmy company := Σcompany ∪ {Alice/f0, Bob/f0, John/f0, Mary/f0, Tom/f0, . . . , Sales/f0, . . . }

(Note: the signature symbols are capitalized, wereas alice, bob etc denote the elements
of the domain).

• first-order structure S = (I,D) as ...

• Domain D = {alice, bob, john, mary, tom, larry, sales, prod, mgm}

• map constant symbols (nullary function symbols) to D:
I(Alice) = alice, I(Bob) = bob, . . . , I(Sales) = sales, . . ..

• map unary predicates to subsets of the domain D:
I(Emp) = {alice, bob, john, mary, tom, larry}, I(Mgr) = . . . , I(Dept) = . . . , . . .,

• map binary predicates to subsets of D ×D:

I(wf) = {(alice, sales), (mary, sales), (larry, sales), (bob, prod), (bob, sales),

(tom, prod), (john, mgm) }
I(mg), I(sub), I(name), I(salary) see Slide 24.
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Example: Instances (Cont’d)

The axiomatization of “my company” with the given individuals is then given as the
conjunction of

• all above constraints (general axiomatization of a company) and

• literal formulas describing the individuals:

Axiomscompany . . . ∧ Emp(Alice) ∧ Emp(Bob) ∧ . . . ∧ Dept(Sales) ∧ . . . ∧Mgr(Alice) ∧ . . . ∧

wf(Alice,Sales) ∧ . . . ∧mg(Alice,Sales) ∧ . . . ∧ sub(Mary,Alice) ∧ . . ..

Example: Instances (Alternative)

• alternatively, instead of a signature extensions, all individuals can be described by
existentially quantified variables:

Axiomscompany ∧

∃alice, bob, . . . , sales, . . . : (name(alice, “Alice”)∧. . .∧Emp(alice)∧Emp(bob)∧. . .∧Dept(sales)∧
. . . ∧Mgr(alice) ∧ . . . ∧ wf(alice, sales) ∧ . . . ∧mg(alice, sales) ∧ . . . ∧ sub(mary, alice) ∧ . . .)
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LOGICAL ENTAILMENT

Definition 3.1
Let F and G two (closed) formulas over a signature Σ. We write

F |= G (F logically entails G)

when for each interpretation S over Σ, if S |= F then also S |= G. 2

Example

∀x : ((p(x)→ q(x)) ∧ (q(x)→ r(x)))) |= ∀x : (p(x)→ r(x))

Logical Entailment as Proof

• usually F is a “large” conjunctive formula, containing the specification, and G is a “claim”
to be shown to be a logical consequence of F .
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LOGICAL ENTAILMENT IN A KNOWLEDGE BASE

• for a FOL knowledge base, it is not always necessary to give all facts explicitly,

• axioms and some “basic” facts are often sufficient,

• further facts can be proven/added to the KB by logical entailment,

• further universally quantified formulas can be derived,

• entailment is also relevant when verifying consistency (satisfiability) of an ontology
specification.

(most of this: see later)

HOW TO PROVE ENTAILMENT ?

• it is not necessary (and not possible) to compute all models to check if something holds,

• it is sufficient to prove by symbolic reasoning if a formula is implied by a knowledge base.
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LOGICAL ENTAILMENT : EXAMPLE

Consider Axiomscompany ∧mg(Alice,Sales).

Does Emp(Alice) hold in each model S = (D, I) (= is it logically entailed)?

• S |= mg(Alice,Sales) implies (I(Alice), I(Sales)) ∈ I(mg), i.e., (alice, sales) ∈ I(mg).

• S |= ∀y, d : mg(y, d)→ wf(y, d) (axiom)
implies that for all d1, d2 ∈ D, S |={y/d1,d/d2} mg(y, d)→ wf(y, d) which means that if
S |={y/d1,d/d2} mg(y, d), then also S |={y/d1,d/d2} wf(y, d). The former is equivalent to
(d1, d2) ∈ I(mg) that we have shown above for (alice, sales). Thus, we know that
(alice, sales) ∈ I(wf).

• With the same argument as above, use the axiom
S |= ∀x : ∀d : (wf(x, d)→ (Emp(x) ∧ Dept(d))) for concluding that alice ∈ I(Emp) which
means that S |= Emp(Alice).

How to use Entailment?

• “manual” mathematical proof, using the semantic level.

• use algorithms for deriving entailed facts or formulas, or for checking entailment by
automated, symbolic reasoning.
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VALIDITY AND DECIDABILITY

• preferably use a decidable logic/formalism

• with a complete calculus/reasoning mechanism

• Propositional logic: decidable

• First-order logic: undecidable

• Horn subset (= positive rules, with a special model theory) of FOL: decidable
with negation in the body: still decidable

• 2-variable-subset of FOL: decidable

• Description Logic subsets of FOL: range from decidable to undecidable
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3.4 DB vs. KB: Closed World vs. Open World

Consider the following formula F :

F ≡ person(“John”, 35) ∧ person(“Alice”, 10) ∧ person(“Bob”, 8) ∧

∧ person(“Carol”, 12) ∧ person(“Jack”, 65) ∧

∧ child(“John”, “Alice”) ∧ child(“John”, “Bob”) ∧

∀X,Y : (∃Z : (child(Z,X) ∧ child(Z, Y ) ∧X 6= Y )→ sibling(X,Y ))

• Does child(“John”, “Bob”) hold? – obviously yes.

• Does G:≡sibling(“Alice”, “Bob”) hold?

– (Relational) Database: sibling is a view. The answer is “yes”.

– FOL KB: for all modelsM of F , G holds. Thus, F |= sibling(“Alice”, “Bob”).

• What about G:≡sibling(“Alice”, “Carol”)?

– (Relational) Database: no. For the database state D, D 6|= sibling(“Alice”, “Carol”).

– FOL KB: there is a modelM1 of F , whereM1 6|= G, but there is also a modelM2 of
F , whereM2 |= G (e.g., add the tuple (“John”, “Carol”) to the interpretation of child).

For the Web, child(“John”, “Carol”) can e.g. be contributed by another Web Source.
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DB VS. KB: C LOSED WORLD VS . OPEN WORLD

• What about G :≡ child(“John”, “Jack”)?

– (Relational) Database: no. For the database state D, D 6|= child(“John”, “Jack”).

– FOL KB: there is a modelM1 of F , whereM1 6|= G, but there is also a modelM2 of
F , whereM2 |= G.

• Obviously, the KB does not know that a child cannot be older than its parents.

Add a constraint to F , obtaining F ′:

F ′ :≡ F ∧ ∀P,C,A1, A2, : (person(P,A1) ∧ person(C,A2) ∧ child(P,C))→ A1 > A2

– database: this assertion would prevent to add child(“John”, “Jack”) to the database.

– for the KB, F ′ |= ¬child(“John”, “Jack”) allows to infer that Jack is not the child of John.

Such information can be given with the ontology of a domain.
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DB VS. KB: C LOSED WORLD VS . OPEN WORLD

• the Database Model Theory is called “Closed World”: things that are not known to hold
are assumed not to hold.

• the FOL semantics is called “Open World”: things that are not known to be true or false
are considered to be possible.

CONSEQUENCES ON NEGATION

• in databases there is no explicit negation. It is not necessary to specify that Jack is not a
child of John.

• in a KB, it would be necessary to state ... ∧ ¬child(“John”, X) for all persons who are
known not to be children of John.
Additional constraints: extend the ontology, e.g., by stating that a person has exactly two
parents – then all others cannot be parents – works only for persons whose parents are
known. Similarly for the “age” constraint from the previous slide.

• note that the semantics of universal quantification (∀) is also effected: ∀X : φ is equivalent
to ¬∃X : ¬φ.
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REASONING IN PRESENCE OF NEGATION

Obtaining new information (e.g., by finding another Web Source) has different effects on
Open vs. Closed world:

• Closed world: conclusions drawn before – “Carol is not a child of John”, or “John has
exactly two children” from less information can become invalid.

This kind of reasoning is nonmonotonic

• Open world: everything which is not known explicitly is taken into account to be possible
(by considering all possible models).

This kind of reasoning is monotonic:

Knowledge1 ⊆ Knowledge2 ⇒ Conclusions1 ⊆ Conclusions2

• Open World can be combined with other forms of nonmonotonic reasoning, e.g., Defaults:
“usually, birds can fly”. Knowing that Tweety is a bird allows to conclude that it flies.

Obtaining the information that Tweety is a penguin (which can usually not fly) leads to
invalidation of this conclusion.

The current Semantic Web research mainstream prefers Open World without default
reasoning.

71

COMPARISON , MOTIVATION ETC .

Database vs. FOL
Relational relational tuples SQL queries closed world
Databases schema

FOL signature facts S |= φ? (yes/no or answer mostly: open world
(predicates (atoms) ψ |= φ? variable bindings) sometimes
+functions) closed world

Situations and tasks
Given what to do how?

facts/database does p(. . .) hold in the DB? by combining data
SQL query

facts+constraints additionally: equivalent to first
(SQL assertions or test if constraints situation (query for
FOL formulas) satisfied violating tuples)

facts (DB) does p(. . .) hold DB+views
rules (KB) in DB+rules? application of rules

facts (DB) is a formula φ reasoning,
knowledge base KB entailed by DB+KB? entailment,
as FOL formulas KB |= φ?
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3.5 Databases: Formulas as Queries in a Closed World

Formulas can be seen as queries against a given database state:

• For a formula F with free variables X1, . . . , Xn, n ≥ 1, we write F (X1, . . . , Xn).

• each formula F (X1, . . . , Xn) defines – dependent on a given interpretation S – an
answer relation S(F (X1, . . . , Xn)).

The answer set to F (X1, . . . , Xn) wrt. S is the set of tuples (a1, . . . , an), ai ∈ D,
1 ≤ i ≤ n, such that F is true in S when assigning each of the variables Xi to the
constant ai, 1 ≤ i ≤ n.

Formally:

S(F ) = {(β(X1), . . . , β(Xn)) | S |=β F where β is a variable assignment of free(F )}.

• for n = 0, the answer to F is true if S |=∅ F for the empty variable assignment ∅;
the answer to F is false if S 6|=∅ F for the empty variable assignment ∅.
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Example 3.6
Consider the MONDIAL schema.

• Which cities (CName, Country) have at least 1.000.000 inhabitants?

F (CN,C) = ∃ Pr, Pop, L1, L2 (city(CN,C, Pr, Pop, L1, L2)∧ Pop ≥ 1000000)

• Which countries (CName) belong to Europe?

F (CName) = ∃ CCode, Cap, Capprov, Pop,A,ContName,ContArea

(country(CName,CCode, Cap, Capprov, Pop,A) ∧

continent(ContName,ContArea) ∧

ContName = ’Europe’ ∧ encompasses(ContName,CCode) )
2
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CONJUNCTIVE QUERIES

... the above ones were conjunctive queries:

• use only logical conjunction of positive literals
(i.e., no disjunction, universal quantification, negation)

• conjunctive queries play an important role in database optimization and research.
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Playing with Relational Facts

The F-Logic system “Florid” (F-Logic Reasoning in Databases) can be used for evaluating
conjunctive queries over a relational database:

• installed in the CIP pool (see lecture Web page for details)

• use mondial-rel-facts.flp, a relational representation of Mondial.

> florid mondial-rel-facts.flp

// reads and parses the file that contains the facts.

This is Florid, Version 4.0 <21/09/06> // it’s its 4th life now.

Type ’sys.help.’ for further information.

?- sys.eval. // evaluates the facts and adds it to the knowledge base

?- country(A,B,C,D,E,F).

// answers ...

// use don’t care variables for projection: exists _Cap, _CapProv,... :

?- country(N,CC,_Cap,_CapProv,_A,_P).

?- sys.eval.

?- sys.end. // to leave it
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Example 3.7
• Again, relational division ...

Which organizations have at least one member on each continent

F (Abbrev) = ∃O,HeadqN,HeadqC,HeadqP,Est :

(organization(O,Abbrev,HeadqN,HeadqC,HeadqP,Est)∧

∀Cont : ((∃ContArea : continent(Cont, ContArea))→

∃Country, Perc, Type : (encompasses(Country, Cont, Perc) ∧

is member(Country,Abbrev, Type))))

• Negation
All pairs (country, organization) such that the country is a member in the organization,
and all its neighbors are not.

F (CCode,Org) = ∃CName,Cap, Capprov, Pop,Area, Type :

(country(CName,CCode, Cap, Capprov, Pop,Area)∧

is member(CCode,Org, Type) ∧

∀CCode′ : (∃Length : sym borders(CCode, CCode′, Length)→

¬∃Type′ : is member(CCode′, Org, Type′)))

2
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RELATIONAL QUERY FORMALISMS : COMPARISON OF THE ALGEBRA AND

THE CALCULUS

Calculus: The semantics (= answer) of a query in the relational calculus is defined via the
truth value of a formula wrt. an interpretation

“model-theoretic , declarative Semantics”.

Algebra: The semantics is given by evaluating an algebraic expression (i.e., an operator tree)

“algebraic Semantics” (it is also declarative).
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EXAMPLE : EXPRESSING ALGEBRA OPERATIONS IN THE CALCULUS

Consider relation schemata R[A,B], S[B,C], T [A] and U [A,B].

• Projection π[A]R:
F (X) = ∃Y R(X,Y )

• Selection σ[A = B]R:
F (X,Y ) = R(X,Y ) ∧X = Y

• Join R ./ S:
F (X,Y, Z) = R(X,Y ) ∧ S(Y, Z)

• Union R ∪ U :
F (X,Y ) = R(X,Y ) ∨ U(X,Y )

• Difference R− U :
F (X,Y ) = R(X,Y ) ∧ ¬U(X,Y )

• Division R÷ T :

F (Y ) = ∀X : (T (X)→ R(X,Y )) or F (Y ) = ¬∃X : (T (X) ∧ ¬R(X,Y ))
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SAFETY AND DOMAIN-INDEPENDENCE

• If the domain D is infinite, the answer relations to some expressions of the calculus can
be infinite!

Example 3.8
Let

F (X) = ¬R(X),

(“give me all a such that R(a) does not hold”)
where S(R) = {1}.

S(F ) = D \ {1}, which can be infinite (depending on what D is). 2

Example 3.9
Let

F (X,Z) = ∃Y (R(X,Y ) ∨ S(Y, Z)),

Consider S(R) = {(1, 1)}, arbitrary S(S) (even empty).

Which Z? 2
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Example 3.10
Consider a database of persons:

married(X,Y): X is married with Y.

F (X) = ¬married(john,X) ∧ ¬(X = john).

What is the answer?

• Consider D = {john,mary}, S(married) = {(john,mary), (mary, john)}.
S(F ) = ∅.

– there is no person (except John) who is not married with John

– all persons are married with John??? 2

• Consider D = {john,mary, sue}, S(married) = {(john,mary), (mary, john)}.
S(F ) = {sue}.

The answer depends not only on the database, but on the domain (that is a purely logical
notion)

Obviously, it is meant “All persons in the database who are not married with john”.
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Active Domain

Requirement: the answer to a query depends only on

• constants given in the query

• constants in the database

Definition 3.2
Given a formula F of the relational calculus and a database state S, DOM(F ) contains

• all constants in F ,

• and all constants in S(R) where R is a relation name that occurs in F .

DOM(F ) is called the active domain of F . 2

DOM(F ) is finite.
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Domain-Independence

Formulas in the relational calculus are required to be domain-independent :

Definition 3.3
A formula F (X1, . . . , Xn) is domain-independent if for all D ⊇ DOM(F ),

S(F ) = {(β(X1), . . . , β(Xn)) | S |=β F, β(Xi) ∈ DOM(F ) for all 1 ≤ i ≤ n}

= {(β(X1), . . . , β(Xn)) | S |=β F, β(Xi) ∈ D for all 1 ≤ i ≤ n}.
2

It is undecidable whether a formula F is domain-independent!
(follows from Rice’s Theorem).

Instead, (syntactical) safety is required for queries:

• stronger condition

• can be tested algorithmically

Idea: every formula guarantees that variables can only be bound to values from the database
or that occur in the formula.
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Safety

Definition 3.4
A formula F is (syntactically) safe if and only if it satisfies the following conditions:

1. F does not contain ∀ quantifiers. (for formal simplicity. Replace ∀XG by ¬∃X¬G)

2. if F1 ∨ F2 is a subformula of F , then F1 and F2 must have the same free variables.

3. for all maximal conjunctive subformulas F1 ∧ . . . ∧ Fm,m ≥ 1 of F :

All free variables must be bounded [German: “bounded” = “beschränkt” im Gegensatz zu
“bound” = “gebunden” bei Quantoren und Variablenbindungen].

• there must be at least one conjunct for every variable that bounds it:

• if a conjunct Fj is neither a comparison, nor a negated formula, any free variable in Fj

is bounded,

• if a conjunct Fj is of the form X = a or a = X with a a constant, then X is bounded,

• if a conjunct Fj is of the form X = Y or Y = X and Y is bounded, then X is also
bounded.

(a subformula G of a formula F is a maximal conjunctive subformula , if there is no
conjunctive subformula H of F such that G is a subformula of H). 2
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Example 3.11
• R(X,Z) ∨X = Y is not safe

• R(X,Y ) ∨X = Y is not safe: X = Y is a maximal conjunctive subformula where none of
the variables is bounded

• R(X,Y ) ∧X = Y is safe: R(X,Y ) bounds X and Y for the whole (conjunctive) formula.

• R(X,Y ) ∧X = Z is safe: R(X,Y ) bounds X and Y, then X = Z also bounds Z.

• R(X,Y, Z) ∧ ¬(S(X,Y ) ∨ T (Y, Z)) is not safe, but the logically equivalent formula

R(X,Y, Z) ∧ ¬S(X,Y ) ∧ ¬T (Y, Z)

is safe. 2

Summary

• safety is defined purely syntactically

• safety can be tested effectively

• safety implies domain-independence
(proof by induction on the number of maximal conjunctive subformulas).
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3.6 Datalog Knowledge Bases

A Datalog “knowledge base” K consists of

• facts: p(c1, . . . , cn)

• Rules of the form p(X1, . . . , Xk)← ∃Xk+1, . . . , Xn : Q(X1, . . . , Xn)

where p is a k-ary predicate and Q is a conjunctive (positive!) query.

– means: “whenever Q(X1, . . . , Xn) holds for some Xk+1, . . . , Xn in my database, also
p(X1, . . . , Xk) is assumed to hold”.

– SQL equivalent: p is a view.
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SEMANTICS

Usually, the signature Σ is partitioned in two sets:

• ΣEDB: predicates that occur only in the body of rules
(“extensional database” – the interpretation of these predicates is given as facts in the
knowledge base)

• ΣIDB: predicates that occur in the head (and possibly also in the body) of rules
(“intensional database” – the interpretation of these predicates is derived from the rules)

Interpretations and Models

• the domain/universe of a Datalog knowledge base K is the active domain of the
database, i.e., the set of constants that occur in the facts and rules (called “Herbrand
universe” after a the French logician Jacques Herbrand)

• for any model S of K:

– S |= p(c1, . . . , cn) for each fact in K,

– S |= ∀X1, . . . , Xk : ((∃Xk+1, . . . , Xn : Q(X1, . . . , Xn))→ p(X1, . . . , Xk)).
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Recursive Datalog

• Recursive Datalog: head predicate allowed to occur in the body

Transitive Closure

• tc(x,y)← p(x,y).
tc(x,y)← ∃ z: tc(x,z) ∧ tc(z,y).

?- sys.load@("mondial-rel-facts.flp").

borders(Y,X,Z) :- borders(X,Y,Z). // make it symmetric.

?- sys.strat.doIt. // actually not necessary

reachable(X,Y) :- borders(X,Y,_).

reachable(X,Y) :- reachable(X,Z), borders(Z,Y,_).

?- sys.eval.

?- reachable("D",X).

?- reachable("D","THA").

?- reachable("D","USA").

[Filename: FL/ex-transitiveclosure.flp]

... so far: intuitive idea “derive head if body holds”.
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SEMANTICS OF QUERIES WRT. A DATALOG KNOWLEDGE BASE

The formal semantics is given by Herbrand Interpretations:

Herbrand Interpretation

• Recall First-Order Logic interpretations S = (D, I):
0-ary constant symbols are interpreted by elements from the domain, e.g.,
I(john) = john ∈ D.

• Herbrand Interpretation: function symbols are “interpreted by themselves”: I(a) = a,
where a is an element of the Herbrand Domain.

(aside: same for terms: function symbols are also “interpreted by themselves – this is the
base for the semantics of Prolog. Datalog has no (non-0-ary) function symbols)

Predicate symbols are actually interpreted by the Herbrand Interpretation:

A Herbrand Interpretation H to a program P is a set of ground atoms over the Herbrand
Universe of P . (it is very similar to a “(relational) database” over identifiers.)

Example

{country(a, vienna, 83850,8023244), country(d, berlin, 356910, 83536115), border(a,d,784),
border(a,h,366), ...}
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Application of Rules on a Herbrand Interpretation

Consider a positive program (i.e., rules without negation).

• facts of the form p(a1, . . . , an) can also be seen as rules:

p(a1, . . . , an) :- true

“if true holds (which is always the case) then also p(a1, . . . , an) must hold”.

• Application of Rules:

Example: reachable(X,Y) :- reachable(X,Z), borders(Z,Y, ).

– General: a substitution σ is a mapping that maps terms to terms.

– Here: we need only substitutions that map variables to 0-ary function symbols
(constants):

The set of ground facts that is derivable by a rule H ← C1 ∧ . . . ∧ Ck wrt. a given
Herbrand Interpretation H is formally specified as follows:

{σ(B): σ is a ground substitution and there is a rule

B ← C1 ∧ . . . ∧ Ck in P such that σ(C1), . . . , σ(Ck) ∈ H}

Example: reachable(X,Y) :- reachable(X,Z), borders(Z,Y, )
with σ = {X 7→ d, Z 7→ bg, Y 7→ gr}
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Semantics of Queries wrt. a Datalog Knowledge Base

Consider a positive program (i.e., rules without negation).

• (ground (i.e. without variables)) facts of the form p(a1, . . . , an),

• (non-ground) rules of the form head :- body.

For a set I of ground atoms,

TP (I) := {σ(B): σ is a ground substitution and there is a rule
B ← C1 ∧ . . . ∧ Ck in P such that σ(C1), . . . , σ(Ck) ∈ I}

T 0
P (I) := I

T 1
P (I) := TP (I)

Tn+1
P (I) := TP (Tn

P (I))

Tω
P (I) :=

⋃

n∈IN

Tn
P (I)

• Tω
P := Tω

P (∅),

• The set Tω
P contains all ground facts that can be derived from the program.
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Example/Exercise

Consider the following program (including facts and rules):

P = { border(a, d). border(a, h). border(a, i). border(d, f). border(i, f).

border(ch, f). border(ch, a). border(ch, d). border(ch, i). border(e, f). border(p, e).

border(h, ua). border(ua, r). border(ra, br). border(bol, ra). border(bol, br).

border(Y,X) :- border(X,Y ).

reachable(X,Y ) :- border(X,Y ).

reachable(X,Y ) :- reachable(X,Z), border(Z, Y ). }

• Give T 0
P (∅), T 1

P (∅), T 2
P (∅), . . . , Tω

P (∅).

• for any derived fact reachable(c1, c2) ∈ T
ω
P (∅), characterize the least i such that

reachable(c1, c2) ∈ T
i
P (∅).
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MINIMAL MODEL

For a positive Datalog program P , the minimal model is defined as the minimal model that
satisfies the conditions given on Slide 86:

Theorem 3.1
For a positive Datalog program P and its minimal model M,

• M |= p(c1, . . . , cn)⇔ p(c1, . . . , cn) ∈ Tω
P .

• M |= p(c1, . . . , cn) if and only if for all models S of P , S |= p(c1, . . . , cn). 2

Note:

• TP is monotonous, i.e., if I1 ⊆ I2 then TP (I1) ⊆ TP (I2).

Negation

• The TP evaluation is not applicable for rules with negation in the body.

• Consider the previous example extended by the rule
{ unreachable(X,Y ) :- country(X) ∧ country(Y ) ∧ ¬reachable(X,Y ). }.
How would the TP evaluation proceed for it?

93

DECISION PROCEDURES

Given: a positive Datalog program P

Question: does p(c1, . . . , cn) hold?

• bottom-up computation of TP provides a correct and complete (wrt. the minimal model)
procedure for checking if some fact holds in the minimal model.

Extended question (query):

for which elements x1, . . . , xn does p(x1, . . . , xn) hold can also be answered.

Every atom that is true in the minimal model has a “proof history” (tree) via the rules and facts
that have been used for deriving it.

• an atom can be proven if it matches the head of a rule and all of the body atoms can be
proven. Apply recursively.
Note that multiple rule heads can match.

Top-down Decision Procedure

A “top-down” decision procedure does not compute the whole model, but starts with the claim
and the knowledge base:

• resolution calculus
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RESOLUTION CALCULUS

The “Prolog” (Programming in Log ic) language uses a restricted reasoning method, called
resolution: (here presented in s simplified version restricted to facts)

• rules of the form h(x̄)← b1(x̄), b2(x̄), . . . , bn(x̄)

• equivalent to Horn Clauses h(x̄) ∨ ¬b1(x) ∨ ¬b2(x̄) ∨ . . . ∨ ¬bn(x̄)

(Disjunction with only one positive literal; generalized Horn Clauses may have several
positive literals)

• positive facts p(c̄).

• given: a “program” P of rules and facts, and a claimed fact p(c̄). Show: P |= p(c̄)?

• idea: for each clause, at least one literal must be satisfied.

• strategy: use unary clauses that match a literal in another one to “delete” the latter,

• try to derive the empty clause: then it is shown that P ∪ {¬p(c̄)} is unsatisfiable, i.e.,
P |= p(c̄),

• equivalent to minimal model semantics.
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RESOLUTION CALCULUS : EXAMPLE

Consider the rule

subordinate(x, y)← works-for(x, d) ∧manages(y, d)

(forget about x 6= y for now)

The clause is
{subordinate(X,Y ),¬works-for(X,D),¬manages(Y,D)}

Consider the (unary) fact clauses {works-for(mary,sales)} and {manages(alice,sales)}.

Does subordinate(mary,alice) hold?

{¬sub(m,a)} {sub(X,Y ), ¬wf(X,D), ¬mg(Y ,D)} {wf(m,s)} {mg(a,s)}

{¬wf(m,D), ¬mg(a,D)}

{X → m, Y → a}

{¬mg(a,s)}
{D → s}

2

(any other order of applications is also correct, but taking a unary negative clause is the most
goal-driven strategy)
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ASIDE: FULL PROLOG

• first-order logic includes function symbols

• not just matching, but unification of terms (that contain variables somewhere)

• derives the empty clause and an answer substitution
e.g. when asking ?-subordinate(X,alice).

X/mary

X/bob

• uses backtracking:

– if search for an answer is not successful, try another way,

– if an answer is found, report it and try another way,

– generates a proof search tree.

• Prolog Programming goes even further: “cut” and “fail” to control the exploration of the
search space.

⇒ theory and artificial intelligence lecture.
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NEGATION IN THE BODY

• rule body is allowed to contain also negative literals.

• Safety requirement: every variable that occurs in a negative literal must also occur in a
positive one.

Intuitive Semantics

• p(x)← in domain(x) ∧ ¬q(x).
“for all x for that q(x) cannot be derived, one can conclude p(x)”.

• unreachable(X,Y ) :- country(X) ∧ country(Y ) ∧ ¬reachable(X,Y ).

Formal Semantics

• The plain TP operator is not suitable: In the first “round” things are false that will become
true later

⇒ “wait” before using negative literals until this predicate is completely computed.
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NEGATION IN THE BODY: STRATIFICATION

• p depends on q if there is a rule with p in the head and q positively in the body,

• p depends negatively on q if there is a rule with p in the head and q negatively in the body,

• if the dependency graph does not contain a negative cycle, then there exists a simple,
intuitive semantics:

Stratification

• define strata S0, . . . , Sn ⊂ ΣP such that

– S0: predicate symbols that do not depend negatively on any other predicate symbol

– Si+1: predicate symbols that depend negatively only on predicate symbols in
S0, . . . , Si.

– if such a stratification is possible, a Datalog program P is called stratifiable.

– allows to compute extensions of all p ∈ Si incrementally (bottom-up).

• Stratification applies Closed World reasoning to the EDB of a Datalog knowledge base
(Negation as Failure in Prolog).
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Stratified Nonrecursive Datalog with Negation

• Nonrecursive Datalog with (stratified) negation (see later for details about negation) is
equivalent to the relational algebra

• we now can express division:
(recall: division is defined in the relational algebra by two negations)

Organizations that have at least one member on each continent:

?- sys.load@("mondial-rel-facts.flp").

has_member_on(Org,Cont) :- is_member(C,Org,_Type), encompasses(C,Cont,_Perc).

?- sys.strat.doIt.

not_result(Org) :- organization(Org,_,_,_,_,_), continent(Cont,_Area),

not has_member_on(Org,Cont).

?- sys.strat.doIt.

result(Org) :- organization(Org,_,_,_,_,_), not not_result(Org).

?- sys.strat.doIt.

?- result(Org).

[Filename: FL/ex-division.flp]

• compare with expressing this query in SQL.
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EXAMPLE

The knowledge base consists of facts + rules (= definitions of derived notions), e.g., what
“landlocked” means:

• (ground) facts: literals over constants
country(germany, “Germany”, “D”, 356910, 83536115, berlin)
(“extensional knowledge”)

• (non-ground) rules (i.e., can contain constants and variables) (“intensional knowledge”)
located-at-sea(C) :- country(C), sea(S,...), located(C,S).
landlocked(C) :- country(C), ¬ located-at-sea(C).
note: landlocked belongs to stratum S1

• queries can be stated also against derived predicates:
?- landlocked(C), country(C, , , A, , ), A < 100000.
e.g. yields C/switzerland

Exercise

Define the ontology of relationships (dt.: Verwandtschaftsbeziehungen) between persons as a
Datalog KB.
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ASIDE: PLAYING WITH FLORID – AGGREGATION

• Syntax:
result-var = agg{ var [group-by-vars]; query(that binds var and group-by-vars)}

• operators: count, min, max, avg, sum.

?- sys.load@("mondial-rel-facts.flp").

citypop(C,P) :- country(_,C,_,_,_,_),

P= sum{ Pop [C]; city(_CN, C, _, Pop, _, _)}.

?- sys.eval.

?- citypop(C,P).

[Filename: FL/ex-aggregation.flp]

• Note: aggregation operations also require stratifications – the predicates used in the
subquery must be computed before.
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NEGATION IN THE BODY: CYCLIC NEGATIVE DEPENDENCIES

A program whose dependency graph contains a negative cycle cannot be stratified. There is
no minimal model.

• Consider the program P = {p(b)← ¬p(a)} (without any assured facts). It has two models
MS = {p(b)} andMI = {p(a)}. Both are minimal.

Which of the models is “preferable”, given P as a knowledge base?

• stratification is not applicable

• well-founded semantics (still polynomial)

• stable semantics (answer set programming) (exponential)

• the rule is logically equivalent to p(a) ∨ p(b) – but as a rule, it can be read to have a more
“directed” meaning:
“if p(a) cannot be shown, then assume p(b)”.

⇒ ((not only) database) theory lecture
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Example: Win-Move-Game

• 2 players,

• places on a board that are connected by (directed) moves (relation “move(x,y)”),

• first player puts a pebble on a position,

• players alternately move the pebble from x to a connected y,

• if a player cannot move, he loses.

• Question: which positions are “winning” positions, “losing” position, or “drawn” positions?

The following program completely “describes” the game:

win(X) :- move(X,Y), not win(Y).

lose(X) :- not win(X).

Exercise:

• analyze the game given by move(1,2) and move(2,3).

• give sample situations with won, lost, and drawn positions.

• characterize the effect of cycles.
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RESTRICTIONS OF THE DATALOG /MINIMAL MODEL SEMANTICS

Given a positive Datalog program P , the minimal model and the above procedure cannot
decide the following:

• for a given FOL formula φ, does φ hold in all models of P?

• if p(c1, . . . , cn) can not be confirmed by the minimal or stratified model, this does not
mean, that there is no model of P where p(c1, . . . , cn) holds.
Even more, any positive fact can be added to a positive program without being
inconsistent.

Closed-World-Assumption (CWA)

• For all facts that are not given in the database and that are not derivable, it is assumed
that they do not hold (more explicitly: that their negation holds).

• CWA not appropriate in the Web: for things that I do not find in the Web, simply nothing is
said.
[Example: travel planning]
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3.7 First-Order Logic and Ontologies

Consider the “company” ontology (cf. Slide 22).

• give the first-order signature Σ of the ontology,

• formalize the constraints given in the

– subclass constraints

– range and domain constraints

– cardinality constraints

and

– additional constraints/definitions that cannot be expressed by the ER model.

(this set of formulas is called a first-order “theory” or “axiomatization” of the ontology)

• express the instance level as an interpretation of the signature Σ.
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FIRST-ORDER LOGIC AND ONTOLOGIES : EXAMPLE

Theory of the “Company” Example:

• Axioms: see Slides 57

Instance level:

• give only base facts (here: name, salary, works-for and manages)

• derive the other relations (and classes as unary relations) logically (cf. Slide 66).

Example/Exercise

Prove the derivation from Slide 66 by using the tableau calculus (Slide 114).
[Proof see Slide 118]
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REASONING ABOUT ONTOLOGIES

Given an ontology,

• a class is inconsistent if it denotes the empty set in every model,

• a class C is a subclass of D if the extension of C is a subset of the extension of D in
every model,

• two classes are equivalent if they denote the same set in every model,

• a constraint is entailed by an ontology if it holds in every model.

108



EXAMPLE : ITALIANS AND ENGLISHMEN

Person

Italian English

Lazy LatinLover Gentleman Hooligan

{disjoint}

{disjoint,covering}

Exercise: write down as concise as possible everything that is implied by this ontology in text,
set theory and first-order logic.

[by Enrico Franconi, REWERSE Summer School 2005]

[see Slide 126 for an excerpt and a relevant proof]
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.

EXAMPLE : ITALIAN PROFESSORS

Italian

Lazy Mafioso LatinLover ItalianProf

{disjoint,complete}

disjoint

disjoint

Exercise: write down as concise as possible everything that is implied by this ontology in text,
set theory and first-order logic.

[by Enrico Franconi, REWERSE Summer School 2005]
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EXAMPLE : THE DEMOCRATIC COMPANY

Every employee is also a supervisor. Every supervisor supervises 2 employees.

Supervisor

Employee

0..1

n

↓supervises

Exercise: Consider n = 1 and n = 2. Write down as concise as possible everything that is
implied by this ontology in text, set theory and first-order logic.

[by Enrico Franconi, REWERSE Summer School 2005]
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EXAMPLE : B IJECTION - HOW MANY NUMBERS

Every natural number is related to its double which is an even number.

NaturalNumber

EvenNumber

1

1

↓has double

• the classes “NaturalNumber” and “EvenNumber” contain the same number of,

• the same applied to a finite domain implies that NaturalNumber ≡ EvenNumber (which
e.g. holds in the cyclic modulo rings Z3, Z5 etc.).
(note: in these rings, every element is even!)

[by Enrico Franconi, REWERSE Summer School 2005]
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3.8 Reasoning

• Resolution calculus works only for clauses (extended Horn fragment).

• show F |= G: prove that F ∧ ¬G is unsatisfiable:
try to construct an example (“witness”) for F ∧ ¬G by a systematic algorithm.
(below: e.g. using a tableau calculus)

• show satisfiability of a knowledge base/ontology:
try to construct an example.

• answer a query (= a conjunctive formula Q with free variables) against a knowledge base
given as a formula F :
Construct counterexamples for F ∧ ¬Q; each of them is an answer.

⇒ one algorithm is sufficient.
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FIRST ORDER TABLEAU CALCULUS

• Systematic construction of an interpretation of a formula.

• Goal: show that this is not possible. Otherwise a counterexample is generated.

• counterexamples can be interpreted as answers to a query.

Start the tableau with an set F of formulas:

input set F

F for all F ∈ F

The tableau is then extended by expansion rules.
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TABLEAU RULES

α-rule (conjunctive): F ∧G

F

G

¬(F ∨G)

¬F

¬G

β-rule (disjunctive): F ∨G

F G

¬(F ∧G)

¬F ¬G

γ-rule (universal): ∀x : F

F [X/x]

¬∃x : F

¬F [X/x]

where X is a new variable.

Closure Rule:
σ(A)

¬σ(A)

⊥

apply σ to the whole tableau.

δ (existential): ∃x : F

F [f(free(T ))/x]

¬∀x : F

¬F [f(free(T ))/x]

where f is a new Skolem function symbol (after the Norwegian logician Thoralf Skolem)
and T is the current branch of the tableau.
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RESULT

Definition 3.5
A branch T in a tableau T is closed, if it contains the formula ⊥.
A tableau T is closed if every branch is closed. 2

CORRECTNESS

Definition 3.6
A Tableau T is satisfiable it there exists an interpretation S = (U, I) such that for every
assignment of the free variables there is a branch T in T such that (S, β) |= T holds. 2

Theorem 3.2
If a tableau T is satisfiable, and T ′ is obtained from T by application of one of the above
rules, then T ′ is also satisfiable. 2

Examples, Proof: to do in the lecture, sketch of two cases on Slide 117.

Issues: completeness of the method (only possible for decidable logics) and termination of
the algorithm: how to detect when a tableau cannot be closed, and to restrict the expansion to
promising rule applications.
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CORRECTNESS OF THE FOL TABLEAU CALCULUS : PROOF SKETCH

Assume T satisfiable; T ′ obtained from applying a tableau rule. We show only two cases:

• Disjunction: Application of the rule to a formula of the form A ∨B. There is an
interpretationM such that for each assignments β of free variables, there is some branch
T (= the set of formulas on this branch) such thatM |=β T . If T is not the branch of T
that is extended in this step, T does not change. Otherwise, M |=β A ∨B . By definition,
M |=β A orM |=β B. Thus, for (at least one) one of the two branches, T ∗

1 or T ∗
2 obtained

from the application,M |=β T
∗.

• Existential: Application of the rule to a formula of the form ∃y : F (X1, . . . , Xn, y) to a
branch T . Again, consider any β (which assigns β(X1), . . . , β(Xn) to the free variables in
F ) such thatM |=β T .

This means, for every β(X1), . . . , β(Xn), there is some element of the universe that “fits”
for the existential formula. Extend the signature with a new n-ary “Skolem” function fF

that takes the values of X1, . . . , Xn as input and is interpreted to return the appropriate
element (and that returns an arbitrary value for those β′ whereM 6|=β′ T ).

The extended branch T ∗ appends F (X1, . . . , Xn, fF (X1, . . . , Xn)) to T .

For the extended interpretationM′ (which is the same asM except for the new function),
M′ |=β T

∗ wheneverM |=β T .
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TABLEAU CALCULUS : EXAMPLE

Proof of the derivation from Slide 66: Does

(∀y, d : (mg(y, d)→ wf(y, d)))∧ (∀x : ∀d : (wf(x, d)→ (Emp(x) ∧Dept(d))))∧mg(Alice,Sales)

imply Emp(Alice)?

see next slide ...
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Tableau Calculus: Example

∀y, d : (mg(y, d) → wf(y, d))

∀x : ∀d : (wf(x, d) → (Emp(x) ∧ Dept(d)))

mg(Alice, Sales)

¬Emp(Alice) (∗∗)

|

mg(Y1, D1) → wf(Y1, D1)

/

¬mg(Y1, D1)

2{Y1 → Alice, D1 → Sales}

\

wf(Y1, D1)

wf(Alice, Sales)

|

wf(X2, D2) → (Emp(X2) ∧ Dept(D2)))

/

¬wf(X2, D2)

2{X2 → Alice, D2 → Sales}

\

Emp(X2) ∧ Dept(D2)

Emp(Alice) ∧ Dept(Sales)

Emp(Alice) (∗∗)

Dept(Sales)

2(∗∗)
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EXAMPLE : TABLEAU EXPANSION FOR AN EXISTENTIAL VARIABLE

Consider again the Company scenario. Show: for every employee x, there is an employee y
(x = y allowed) such that sub(x, y) holds. (sketch: for every employee x there is a at least a
“primary” department fdept(x) where this person works, and every department d has a
manager fmg(d) that manages the department and that thus is a subordinate of x.

Note that in case that x works in several departments, any of them can be chosen for fdept(x).
e is subordinate to fmg(fdept(x)).

Tableau: next slide.
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∀x : (Emp(x) → ∃d : wf(x, d))

∀d : (Dept(d) → ∃m : mg(m, d))

∀x : ∀d : (wf(x, d) → (Emp(x) ∧ Dept(d))) ,

∀x, y, d : wf(x, d) ∧ mg(y, d) → sub(x, y)

∃e : Emp(e) ∧ ¬∃y : sub(e, y) claim – refute it

|

Emp(e0) ∧ ¬∃y : sub(e0, y) e0 from Skolemization

Emp(e0)

¬∃y : sub(e0, y)

¬sub(e0, Y0)

|

Emp(X1) → ∃d : wf(X1, d))
/

¬Emp(X1)

close that only later ...

\

∃d : wf(X1, d))

wf(X1, fdept(X1))

wf(X2, D2) → (Emp(X2) ∧ Dept(D2)))

/

¬wf(X2, D2)

2 {X2 → X1, D2 → fdept(X1)

\

Emp(X2) ∧ Dept(D2)

Emp(X1)

Dept(fdept(X1))

/

Dept(D3) → ∃m : mg(m, D3))

/

¬Dept(D3)

2 {D3 → fdept(X1)}

\

∃m : mg(m, D3))

mg(fmgr(D3), D3)

... and now replace D3

/

mg(fmgr(fdept(X1)), fdept(X1))
/

(wf(X4, D4) ∧ mg(Y4, D4)) → sub(X4, Y4)

/

¬(wf(X4, D4) ∧ mg(Y4, D4))

/ \

¬wf(X4, D4) ¬mg(Y4, D4)

2{X4 → X1,

D4 → fdept(X1)}

2{Y4 → fmgr(fdept(X1)),

D4 → fdept(X1)}

\

sub(X4, Y4)

sub(X1, fmgr(fdept(X1)))

|

close now everything by

{X1 → e0,
Y0 → fmgr(fdept(e0))}
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A NON-CLOSED TABLEAU AND UNIVERSAL QUANTIFICATION

Is the axiom ∀x : ¬(p(x) ∧ q(x)) together with the “database” {p(a), q(b)} consistent?

p(a)

q(b)

∀x : ¬(p(x) ∧ q(x))

¬(p(X1) ∧ q(X1))

/

¬p(X1)

2 {X1 → a}

\

¬q(X1)

¬q(a)

¬(p(X2) ∧ q(X2))

/

¬p(X2)

¬p(b)

\

¬q(X2)

2 {X2 → b}

• there is no way to close the tableau

• its non-closed path describes a model of the input formula
(where ¬q(a) and ¬p(b) hold which are not specified in the database – open world
reasoning)
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TABLEAU CALCULI : A PPLICATION FOR QUERY ANSWERING

Consider the database {∀x : (p(x)→ q(x)), p(a), q(b)} and the query ?− q(X).

∀x : (p(x)→ q(x))

p(a)

q(b)

¬q(X) add the negated query with a free variable

• collect all substitutions of X that can be used to close the tableau.

• note: the substitution can comprise a the application of a Skolem function. Then, the
“answer” can only be described as a thing that satisfied a certain existential formula.

Consider ∀x : (person(x)→ (∃y : person(y) ∧ father(x, y))),
∀x, y, z : ((father(x, y) ∧ father(y, z))→ grandfather(x, z)),
person(john), person(jack), father(john,jack) and the query ?- grandfather(john,X).
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TABLEAU CALCULI

• intuitive idea

• can be designed in this way for any logic (modal logics, description logics etc.)

• implementations use more efficient heuristics
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EXAMPLES + EXERCISES

• Consider again the italian-vs-english ontology from Slide 109. Consider the statement “all
Italians are lazy”. Prove it or give a counterexample.

• Consider again the italian-professors ontology from Slide 110. Is there anything
interesting to prove?

[have also a look at the i•com tool at http://www.inf.unibz.it/~franconi/icom which
uses a (hidden) Description Logic prover]
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Tableau Proof (Example)

Tableau for the italian-vs-english ontology from Slide 109 and
the statement “all Italians are lazy”.

∀x : italian(x) → ¬english(x) [1]

∀x : english(x) → ¬italian(x) [2]

∀x : italian(x) → (lazy(x) ∨ latinlover(x)) [3]

∀x : lazy(x) → ¬latinlover(x)) [4]

∀x : latinlover(x) → ¬lazy(x) [5]

∀x : latinlover(x) → gentleman(x) [6]

∀x : gentleman(x) → english(x) [7]

∃x : italian(x) ∧ ¬lazy(x) [8] (negation of the claim)

| (skolemization of [8])

italian(c) ∧ ¬lazy(c)

italian(c)

¬lazy(c)

| (use [3])

∀x : italian(x) → (lazy(x) ∨ latinlover(x))

italian(X1) → (lazy(X1) ∨ latinlover(X1))

/

¬italian(X1)

2 {X1 → c}

\

lazy(X1) ∨ latinlover(X1)

lazy(c) ∨ latinlover(c)

/

lazy(c)

2

\

latinlover(c)

Continue right branch using [6], [7] and finally [1] or [2].
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FIRST-ORDER LOGIC DECISION PROCEDURES

• calculi (=algorithms) for checking if F |= G

(often by proving that F ∧ ¬G is unsatisfiable)

• write F `C G if calculus C proves that F |= G.

• Correctness of a calculus: F `C G⇒ F |= G

• Completeness of a calculus: F |= G⇒ F `C G

• there are complete calculi and proof procedures for propositional logic (e.g., Tableau
Calculus or Model Checking)

• if a logic is undecidable (like first-order logic) then there cannot be any complete calculus!

What to do?

⇒ use a decidable logic (i.e., weaker than FOL).

⇒ use an undecidable logic and a correct, but incomplete calculus.
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INFERENCE SYSTEMS

• use inference rules (dt.: Schlussregeln) as patterns

• “Modus Ponens”: head← body , fml , σ(fml)→ σ(body)

σ(head)

• simple case: Datalog-style rules (many other systems use similar derivation rules)

head atom← atom1, . . . , atomn , ground atom’1, . . . , atom’n , for all i: σ(atomi) = atom’i

σ(head atom)

• Resolution Calculus:
a clause is a set of literals. Clause resolution takes two clauses that contain contradictory
literals:

`1 ∨ . . . ∨ `i ∨ . . . ∨ `k , `k+1 ∨ . . . ∨ ¬`k+j ∨ . . . ∨ `k+m , σ(`i) = σ(`k+j)

σ(`1 ∨ . . . ∨ `i−1 ∨ `i+1 ∨ . . . ∨ `k ∨ `k+1 ∨ . . . ∨ `k+j−1 ∨ `k+j+1 ∨ . . . ∨ `k+m)

• simple case: unit resolution: j = m = 1

• since a derivation rule head←body is equivalent to ¬body ∨ head, the bottom-up
evaluation of derivation rules is a special case of resolution.
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SPECIALIZED INFERENCE RULES

• Modus ponens and resolution are purely syntactical, general-purpose rules that do not
depend on the semantics of the literals.

• Logics can extend them with specialized semantical rules that apply to special
“predicates”.

– class hierarchy: classes and subclasses, transitivity

– signatures

– cardinalities

Examples: Default Logic (Reiter, 1980; only built-in reasoning), Description Logics (late
1980s; only built-in reasoning), F-Logic (Kifer, Lausen, 1989; Datalog style + built-in),
Hybrid Logics (combining Description Logics with derivation)

• the latter built-in axioms for certain fixed notions are referred to as “the model theory of a
certain logic”.
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SUMMARY

Above: short introduction to some Knowledge Representation formalisms:

• Derivation Rules

• Automated Reasoning

Semantic Web Reasoning

• use mechanisms of logics and “Artificial Intelligence” invented in the 60s-90s

• disappointment about AI in the 90s:

– promised too much (expert systems etc.)

– often worked only for toy examples

• further investigations in the 90s

– better understanding of decidable and tractable fragments (“tractable” = polynomial
complexity) and efficiency issues

• design Semantic Web technology according to these investigations.
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LEVELS OF INFERENCE

In the following, three levels of inference and knowledge modeling are combined:

1. The underlying inference system:
choice of certain underlying expressive logics with their built-in model theory

• First-order logic: quite expressive, no built-in model theory

• Description logics:

– less expressive (only unary and binary predicates, quite restricted construction of
formulas)

– some built-in notions + model theory
– user can exploit these notions

2. a domain ontology (= formulas in the underlying logic that express global properties and
constraints of the domain)
[mainly describing the classes and properties; optionally some “important” individuals]

3. facts that describe a certain state
[the “Web contents”, talking about individuals; incomplete knowledge]
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DATA FORMAT AND REASONING FOR THE SEMANTIC WEB

• data model: intuitive modeling capabilities on the conceptual level

• describe data and metadata
⇒ metadata notions are also objects of the domain of discourse.

• tailored to the Web: multiple sources describe the same things, semantic interoperability

• data format/representation: syntactic interoperability/data exchange in the Web required.
⇒ ASCII, preferably an XML representation (then, no special parser is needed).
note: for XML, the ASCII was a serialization/representation of the XML tree model
for the new data model an XML-tree representation will be one possible representation of
the data model.

• reasoning: decidable fragment of FOL vs. undecidable FOL vs. even more
expressiveness (reasoning about metadata)
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ASIDE: WHY “F IRST-ORDER”-L OGIC?

Recall:

• there is a domain D. Functions and precidates talk about elements of D.

• there is no way to talk about functions or predicates.

Higher-Order-Logics

• the elements of the domain D are “first-order things”

• sets, functions and predicates are “second-order things”

• predicates about predicates are higher-order things

• higher-order logics can be used for reasoning about metadata

Example

• Transitivity as a property of predicates is second order:
∀p : transitive(p)→ (∀x, z : (∃y : (p(x, y) ∧ p(y, z))→ p(x, z)))

Note that transitivity of a certain predicate is first-order:
∀x, z : ((∃y : (ancestor(x, y) ∧ ancestor(y, z)))→ ancestor(x, z))
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Aside: Induction Axiom as Example for Second Order Logic

• a well-founded domain d (i.e., a finite set of minimal elements (for which min(d,x) holds)
from which the domain can be enumerated by a successor predicate
(Natural numbers: 1, succ(i,i+1))

• well-founded: unary 2nd-order predicate over sets

∀p, d : (well-founded(d) ∧ (∀x : min(d, x)→ p(x)) ∧ (∀x, y : p(x) ∧ succ(x, y)→ p(y)))→

(∀x : d(x)→ p(x))

For natural numbers:

∀p : (p(1) ∧ (∀x : p(x)→ p(x+ 1)))→ (∀x ∈ IN : p(x))
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Aside: Paradoxes can be formulated in 2nd Order Logic

“X is the set of all sets that do not contain themselves”

X = {z : z /∈ z}

A set “is” a unary predicate: X(z) holds if z is an element of X
(for example, classes, i.e., Person(x), City(x))

Logical characterization of X: X(z)↔ ¬X(z),

applied to X: X(X)↔ ¬X(X).

... can neither be true nor false.

How to avoid paradoxes

Paradoxes can be avoided if each variable either ranges over first-order things (elements of
the domain) or over second-order things (predicates).
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