
4. Unit: [Lab Course] Reasoners, Rules & Ontology Updates

4.1. Unit: Reasoners & Rules

Exercise 4.1 This exercise is like an experiment in a chemical lab course (but there are no explo-
sions, except from maybe null pointers):

• Run the examples from the lecture that need a reasoner both with activating (i) Pellet (which
is an OWL-DL Reasoner that solves most of the exercises), and (ii) Jena’s internal Rule-based
(OWL-RL?) reasoner.

• do not use the Web Service, but use the jar from command line. (note that calls of the form

user@foo> time java -cp ... ...

also return the time needed for execution)

• do a kind of a protocol report that compares the results.

• try to explain discrepancies whenever they occur, and also explain how the reasoner solves the
exercise if it comes to the same result.

Exercise 4.2 Express the food-wine-example from the “Deductive Databases” lecture in OWL.
Run it both with pellet, and with the internal Jena reasoner.

(DB-Lecture slides from https://www.dbis.informatik.uni-goettingen.de/Lectures/, some-
where around Slide 658).

Exercise 4.3 (Hybrid Rules – FUNKTIONIERT NICHT?) Transitivity is a “syntactically
second-order property” which can be mapped to its first-order instantiated pattern.

Use a hybrid rule to apply transitivity for

• mon:reachable as transitive closure of the (symmetrically stored) mon:neighbor relationship, and

• mon:transitiveFlowsInto as transitive closure for the mon:flowsInto relationship.

• State a SPARQL query against the result that answers all countries that are reachable from
Germany,

• State a SPARQL query that computes the length of the total river network for all rivers that
flow directly into some sea.

4.2. Unit: Ontology Updates

Exercise 4.4 (Close-the-World: Win-Move) For the win-move-game in the lecture, for every
node, the out-degree was given explicitly, and the file "winmove-closure.n3" contained additional
auxiliary classes.

Goal: write a java class that needs as input only "winmove-axioms.n3" and a graph consisting only
of edges and nodes. The class should then automatically define the required auxiliary classes and
make each node a member of the appropriate one.

• write an appropriate method closeWorld(URI property, OntClass class) that takes a property
and a (domain) class and adds all necessary information to close the property wrt. this class.
This method should be called as closeWorld(<foo://bla#edge>, <foo://bla#Node>).

• experiment with different input win-move graphs (maybe the ones from the DD/SemWeb ex-
ercises.

• Optional: if you know some good graph visualization program, visualize the outcome with it.



Exercise 4.5 (Close-the-World: Mondial) Goal: check with Mondial which organizations are
subsets of others (e.g., BeNeLux is a subset of the NATO, EU, and UN).

• load mondial-europe into a model.

• state a SPARQL SELECT query that outputs for each organization its name and the number
of members.

• derive from this a SPARQL CONSTRUCT query that creates all classes ∃=nhasMember.⊤ that
describe things with n members that are needed. make each organization a member of the
appropriate class.

• define for each organization a class Omembers, e.g. EUmembers, that contains all is members.

• state a SPARQL query that returns all pairs O1, O2 of organizations such that O1members
rdfs:subClassOf O2members.

• verify your solution by stating a suitable simple SPARQL query against mondial.n3.

Exercise 4.6 (Planning) The “furniture” example of the lecture (Slide 512 ff.) can be seen as a
small planning problem:

• consider the input as “furniture truck unloaded, where to place the pieces in the house?”

• There is some furniture given/already placed, and the reasoner concludes for some elements
(here: the table) where they have to be placed.

• For the other ones (the three beds), there are different possibilities.

• How can these possibilities be computed (consider that this is not StableModels)?

• Choose one of the possibilities where to put it, update the ontology accordingly, and ask the
reasoner for the consequences. If there are still several solutions choose again.

• program it in a general way such that it can be applied to arbitrarily big furniture problems.

• Extend the scenario with three plants Plant(yucca), Plant(bonsai), and Plant(efeu) and a music
instrument Instrument(piano). It is known that in the livingroom, there is a plant, and in each
the bedroom and the guestroom, there is either a plant or a music instrument.
Where is the third plant placed logically?
Compute the solutions in this case.

[Filename: rooms.n3]

[Filename: FurnitureSome.java]

[Filename: FurnitureAllSolutions.java]

Exercise 4.7 (OWL Ontology to Relational Schema) This is a long-term real-world-exercise
to be done in several steps.

Consider the transformation from an ER model to a relational model. An OWL ontology like
mondial-meta.n3 contains more information than an ER model. So it is possible to derive a
relational schema from it algorithmically.

How to do that? You can use Java/Jena, SPARQL queries, and create appropriate auxiliary classes.
Use mondial-er.n3 from https://www.dbis.informatik.uni-goettingen.de/RDF2Rel/ addi-
tionally. It uses owl:AnnotationProperties to distinguish between different types of classes:

• er:Concrete: the classes for which relational tables should be created.

• er:Abstract: classes for which no tables should be created.

• er:Interface: classes that are not from the main geo domain, but rather general geometrical
notions.

The solution should work for general ontologies, not only for the Mondial example.



As a very first step, create inverse-definitions automatically for all properties that do not yet have
some and add them to the ontology.

First bigger step: compute all pairs (class, property) such that instances of an er:Concrete class

might have property. At first sight, class ⊑ domain(property) looks reasonable. This would not
consider that e.g. mountains might have a lastEruption property from their Volcano subclass. What
is the correct condition? How to verify it with OWL/SPARQL?

What are the next steps?


