Chapter 11
OWL Profiles, Rule-Based

Reasoning, and Handling
Reasoning with the Jena API

603

TYPES OF REASONING

» DL-Reasoner: Tableau Reasoning, FOL-based

» Rule-Based Reasoning (cf. “Deductive Databases” Lecture)
— RDFS is purely rule-based
— Inverse, Symmetry, and Transitivity are rule-based
— Functionality (maxCard = 1) application for equating objects is rule-based
— the above are all
— Negation in the body: CWA (incl. stratification and WFS) vs. OWA

— Disjunction in the head/choices
(is also needed for cardinalities > 1 and some other things)
= Stable Models

604

DL/Tableaux vs. Deductive Databases/Datalog

» DL-Reasoner: Tableau Reasoning
— can be extended easily with additional Tableau Rules
— main problem: strategies, blocking, ...
— strategies detect where exponential growth of the tableau occurs. Try to keep
polynomial if possible.
» Rule-Based Reasoning (cf. “Deductive Databases” Lecture)
— Prolog/Datalog (Resolution Calculus, “backward-chaining”)

— Bottom-up database completion (“forward-chaining”, T's-operator, optimizations like

“seminaive evaluation”, “magic sets”)

— not restricted to special constructs (like DL/Tableaux), can handle rules in general (cf.
SWRL)

— Specific problems with negation (Closed-World), stratified/well-founded semantics

— disjunction in the head: no classical rules, only via stable models (which is basically
more related to Model Checking and Tableaux)

— well-suited for ABox reasoning (data, databases), less well-suited for TBox reasoning
(theorem proving, ontologies)

605

OWL PROFILES

» recall: OWL Variants:
— OWL Lite (not explicitly discussed on the previous slides ...),
— OWL-DL (equivalent to Description Logics),
— OWL Full (syntax of RDF+RDFS+OWL, semantics undecidable, partially critical)
» From practical considerations, the OWL profiles are more important:
http://www.w3.org/TR/owl2-profiles/

— OWL2-EL.: for ontologies that contain very large numbers of properties and/or classes.
Basic reasoning problems can be performed in time that is polynomial with respect to
the size of the ontology — not to the data

— OWL2-QL: applications that use very large volumes of instance data, and where query
answering is the most important reasoning task. Conjunctive query answering can be
implemented using conventional relational database systems.

— OWL-RL: scalable reasoning without sacrificing too much expressive power. OWL 2
RL reasoning systems can be implemented using rule-based reasoning engines.

— note: none of the profiles is a subset of another

606

OWL2-RL

https://www.w3.org/TR/owl2-profiles/#0WL_2_RL

» OWL2-RL constrains the set of allowed constructs (e.g., no cardinalities other than 0,1,%),
and the usage of constructs.

« An important restriction is the usage in subClassOf axioms:

— Consider that subclass assertions are often used in RDFS:
“p.D C C (domain) and C C Vp.D (range).
Typical OWL usage:
C C Jp.D to assert existential things, needs skolemization, can create infinite chains,

Vp.D C C check whether a universal restriction holds to define a class; needs to prove
non-existence

— OWL2-RL restriction:

= 4p.D only on the subclass side,
« Vp.DD only on the superclass side,
« compatible with RDFS, not with more expressive OWL use.

607

OWL2-RL (cont'd)

» Usage of Complement: only in superclass position classexpr C —D — usage only as
constraint to state what is not allowed

Usage of Union and owl:oneOf only in subclass position:
(C;uCy)E D — CyEDandCy C D, notinthe head as true choice.

« usage of maxCardinality only 0,1 and only on superclass side (as restrictions)
« intersection and dp.obj and dp.value is allowed on both sides

= does not cover everything of OWL Lite (= SHZF, allows Jp.D without restriction) but also
covers parts of OWL DL.

Translation to rules see https://www.w3.org/TR/owl2-profiles/#0WL_2_RL

(Entries prp-npa1l, prp-npa2 seem to be wrong (require (?x a
NegativeObject/DataPropertyAssertion)). For cls-svf-1 and csl-svf-2 consider that 9p.C is
only allowed as subclass axiom 9p.C C D.)

» The internal rule-based reasoner of Jena goes beyond OWL-RL (and can run into
nontermination, see Slide 617)

608

RULE-BASED REASONING

« cf. Datalog
» first-order: cannot reason about classes (predicate symbols), but only about individuals

» might apply second-order rule patterns e.g. for transitivity, subclass/subproperty,
domain/range (“syntactically second-order”, but actually only a first-order mechanism)
« OWL world: open-world negation, Rules: closed-world negation

= no way out in this issue (recall that well-founded semantics and stable models are also
CWA)

= allow only positive rules
« For rule equivalents to the OWL-RL constructs allowed on OWL-RL see

https://www.w3.org/TR/owl2-profiles/#0WL_2_RL.
Choose those that are needed for a certain problem.

* Rule-based semantics has problems when allowing to derive existential objects: in
OWL-RL class [membership] assertions (c a class), classes of the type dp.C are not
allowed.

 user-defined rules can be added.

609

11.1 Reasoning in Jena

https://jena.apache.org/documentation/inference/

Using an Ontology-Aware Reasoner
« can be used with the OntModel interface

» OntModel provides query/update methods on the level of Classes/Properties/DL-Concepts

* initialize the Model with a certain “OntModelSpec” (= complexity/expressiveness level)
where Jena automatically employs and configures an internal OWL reasoner.

« can also be initialized with “foreign” reasoners that provide Jena adaptation (e.g.
Pellet/Openllet)

Using another Reasoner
» can be used with the InfModel interface
« OntModel is a “subinterface” of InfModel, i.e. OntModel refines/extends InfModel

« combines a (=any) reasoner with an RDF model
— used for “alien” external reasoners
— used for Jena’s (non-ontology-aware) General Rule-Based Reasoner

610

USING PELLET AS REASONER

* Pellet is a tableau-based OWL-DL reasoner which can be used with an OntModel.
Example: Win-Move-Game: Draw Nodes

» Pure OWL cannot populate the DrawNode class

* use procedural programming to add triples (z a :DrawNode) to the model after reasoning
* note: it is not necessary to call prepareModel() explicitly

« Java Code next slide

611

import org.apache.jena.util.FileManager;

import openllet. jena.PelletReasonerFactory;

public class JenaPelletWinMoveDraw {
static String filepath = "/home/may/teaching/SemWeb/RDF/";
public static void main(String[] args){
Model m = FileManager.get().loadModel(filepath + "winmove-axioms.n3");
m.add(FileManager.get () .loadModel(filepath + "winmove-closure.n3"));
m.add(FileManager.get () .loadModel(filepath + "winmove-graph.n3"));
OntModel pelletmodel = ModelFactory.createOntologyModel (PelletReasonerFactory.THE_SPEC, m);

String q = "prefix : <foo://bla#>" +

"construct { ?N a :DrawNode }" +

"where { ?N a :Node . filter not exists { 7N a :WinNode }" +

" filter not exists { ?N a :LoseNode }}";
Query qu = QueryFactory.create(q);
QueryExecution ge = QueryExecutionFactory.create(qu, pelletmodel);

Model resultgraph = ge.execConstruct();
pelletmodel.add(resultgraph) ;

q = "prefix : <foo://bla#>" +
"select ?W 7L 7D " +
"where {{ ?W a :WinNode } union { 7L a :LoseNode } union { 7D a :DrawNode }}";
qu = QueryFactory.create(q);
ge = QueryExecutionFactory.create(qu, pelletmodel);
ResultSet results = ge.execSelect();

ResultSetFormatter.out (results);
} 3 [Filename: Java/JenaPelletWinMoveDraw.java]

612

Insights into derivations in Jena’s InfModel (and OntModel)
* Model getRawModel(): the underlying RDF graph only.
Further methods are only partially (dependent on the reasoner) supported:

* Model getDeductionsModel(): The triples that are added to the base graph due to
reasoning.

Before this operation, all reasoning is evaluated first.
It is not possible to see an “intermediate”, partially on-demand state.

» if getDeductionsModel() does not correctly return all deductions:
model.difference(model.getRawModel()).difference(model.getDeductionsModel())
yields derived statements that are not in the Deductions Model ...

* void setDerivationLogging(boolean logOn)

Switch on/off drivation logging. This can use a lot of space.
* Iterator<Derivation> getDerivation(Statement stmt)

» Derivation:

— printTrace(PrintWriter out, boolean bindings)

 next slide: Java test code with pellet.

613

public class JenaPelletWinMove {

static String filepath = "/home/may/teaching/SemWeb/RDF/";

public static void main(String[] args){
Model m = FileManager.get().loadModel(filepath + "winmove-axioms.n3");
m.add(FileManager.get () .loadModel(filepath + "winmove-closure.n3"));
m.add(FileManager.get () .loadModel(filepath + "winmove-graph.n3"));
OntModel pelletmodel = ModelFactory.createOntologyModel (PelletReasonerFactory.THE_SPEC, m);
Reasoner pellet = pelletmodel.getReasoner();
pellet.setDerivationLogging(true);
pelletmodel.prepare();

Model dedModel = pelletmodel.getDeductionsModel() ;

if (dedModel == null) System.out.println("DedModel is null"); // it is null ...
else dedModel.write(System.out,"N3");

Model rawModel = pelletmodel.getRawModel();

Model diffModel = pelletmodel.difference(rawModel); // .difference(dedModel);

System.out.println("---- DiffModel: ------—----——————————- ");

diffModel.write(System.out,"N3"); // everything is in the DiffModel

PrintWriter out = new PrintWriter(System.out); // no derivations available
for (StmtIterator i = diffModel.listStatements(null, RDF.type, (RDFNode) null); i.hasNext();
Statement s = i.nextStatement();
out.write("Statement is " + s + "\n");
Iterator <Derivation> ds = pelletmodel.getDerivation(s);
if (ds == null) System.out.println("DerivationsIterator is null");
else for (Iterator<Derivation> i2 = pelletmodel.getDerivation(s); i2.hasNext();) {
Derivation deriv = (Derivation) i2.next();
deriv.printTrace(out, true);

YO} [Filename: Java/JenaPelletWinMove.java]
out.flush(); } }

ol 4
O

Code/Test Example: Pellet, Win-Move-Game
« getDeductionsModel() is null
« conclusions are in diffModel = pelletmodel.difference(rawModel);

* no derivation information available

— Derivation information is especially useful, when an ontology is derived to be
inconsistent

= pellet returns error messages that do not always give good insights where the problem
is located

— the DL-Prover “Hermit” (DL only, no SPARQL) provides better functionality for ontology
management.

615

11.1.1 The Rule-Based OWL Reasoner in Jena

+ Jena’s built-in OntModelSpecs activate the internal rule-based engine with corresponding
specifications

* the most powerful one is OWL_DL_MEM_RULE_INF

https://jena.apache.org/documentation/inference/#owl

» Extends the RDFS reasoner,
“since RDFS is not a subset of the OWL/Lite or OWL/DL languages the Jena
implementation is an incomplete implementation of OWL/full”
... means that OWL Full is an upper bound of it, but it does eben not (really) cover
OWL-DL, nor OWL-Lite, nor OWL-RL.

- call
jena -inf -if dnputfile -qf queryfile

» also available in the Web interface

616

The Rule-Based OWL Reasoner

 Strategy: an instance-based reasoner

» Reasoning about class hierarchy: prove things like “C; C Cy”:

add a “prototypical individual” z¢, (which does not have any other properties) to C4, apply
all rules (model completion), and check whether Cs(x¢,) is concluded.
(These individuals should not longer be visible in user queries since Jena 2.1)

* “The OWL_Mini reasoner ... omits the forward entailments from minCardinality/
someValuesFrom restrictions - that is it avoids introducing bNodes which avoids some
infinite expansions”

... that tells how to trap the “full” OWL_RULE reasoner with “parents”
(cf. Slide 620)

— Tries to provide more than OWL-RL (which excludes SomeValuesFrom specifications
because they introduce implicit objects, which requires a blocking algorithm)

— even OWL Lite includes SomeValuesFrom, even with functionality restriction (SHZ.F).

617

The Rule-Based OWL Reasoner (cont'd)

» OWL_Micro reasoner: “RDFS plus the various property axioms, intersectionOf, unionOf
(partial) and hasValue. It omits the cardinality restrictions and equality axioms, which
enables it to achieve much higher performance.”

* it seems that the OWL_RULE reasoner also ignores cardinalities, including
“minCardinality 1” (example: (parents, 2), and also (parents, 1)).

 “The critical constructs which go beyond OWL/lite and are not supported in the Jena OWL
reasoner are complementOf and oneOf. As noted above the support for unionOf is partial
(due to limitations of the rule based approach) but is useful for traversing class
hierarchies.”
= No negation, very restricted disjunction (not as choice, only as union), no case-based
reasoning

(cf. the parricides, the meals-wine-ontology from Deductive Databases [Exercise], and
win-move)

+ “Even within these constructs rule based implementations are limited in the extent to
which they can handle equality reasoning - propositions provable by reasoning over
concrete and introduced instances are covered but reasoning by cases is not supported.”

618

The Rule-Based OWL Reasoner (cont’d)

Note: Datalog with well-founded semantics, which is polynomial, solves win-move (but not the
others).

» the OWL_RULE-Reasoner does not support cardinalities that are necessary to close the
“edge” relation.

 even with this, testing membership in AllValuesFrom(edge, LoseNode) would not be
possible/easy: [if find-n-edges-to-“lose” then “win”] could be encoded in a set of rules, but
the well-founded evaluation is hard.

619

SOMEVALUESFROM — TRAPPING THE OWL REASONER

Recall the example for the blocking strategy (Slide 519): every person has two parents, which
are again persons.

* jena -q -pellet -qf infinite-parents.sparql ... pellet correctly does the blocking,
* jena -q -inf -qf infinite-parents.sparql runs forever.

+ Aside: when deleting the last 2 lines from infinite-parents.sparql
(HasParent = JhasParent. T), the computation finishes with the same output as pellet (and
some blanknodes).
The still existing Person = 3=2hasParent.T is ignored. Replacing this by
Person C 3='hasParent. T (cardinality 1) leads to some more blank nodes, but
Person C JhasParent.Person (someValuesFrom Person) again fails.

The OWL_Mini Reasoner: ignores SomeValuesFrom

» With the OWL_Mini Reasoner, the example runs, but the SomeValuesFrom is completely
ignored: Nobody is a HasParent (because then, its definition is empty).
Java code see next slide.

620

import org.apache. jena.ontology.OntModelSpec;
import org.apache.jena.query.Query;

import org.apache.jena.query.QueryExecution;

import org.apache.jena.query.QueryExecutionFactory;
import org.apache.jena.query.QueryFactory;

import org.apache.jena.query.ResultSet;

import org.apache. jena.query.ResultSetFormatter;
import org.apache.jena.rdf.model.Model;

import org.apache. jena.rdf.model.ModelFactory;

import org.apache.jena.util.FileManager;

public class JenaIntRuleMicro {

static String filepath = "/home/may/teaching/SemWeb/RDF/";

public static void main(String[] args){
Model m = FileManager.get().loadModel(filepath + "infinite-parents.n3");
OntModel ontmodel = ModelFactory.createOntologyModel (OntModelSpec.OWL_MEM_RULE_INF, m);
// OntModel ontmodel =
// ModelFactory.createOntologyModel (OntModelSpec.OWL_MEM_MICRO_RULE_INF, m);
ontmodel.prepare() ;
System.out.println(" ... prepared the model ...");

String q = "prefix : <foo://bla#> " +
"select 7?A 7C ?X " +
"where {{?A a :Parent} UNION {?C a :HasParent} UNION {:kate :parent 7X}}";

Query qu = QueryFactory.create(q);
QueryExecution ge = QueryExecutionFactory.create(qu, ontmodel);
ResultSet results = ge.execSelect();

ResultSetFormatter.out (results); [Filename. Java/JenalntRU|eMicr0.jaV3.]
}}

o<l

Code/Test Example: Deduction tracing in the Jena Rule-Based OWL Reasoner

next slide: Java test example for tracing deductions (transitivity: descendants)

getDeductionsModel() contains lots of trivial OWL axioms.

useful conclusions (and lots of other conclusions) are in diffModel =
ont.difference(rawModel).difference(dedModel);

* no derivation information available.

Further evaluation of its functionality: Exercise.

622

static String filepath = "/home/may/teaching/SemWeb/RDF/";

public static void main(String[] args){
Model m = FileManager.get().loadModel(filepath + "descendants.n3");
OntModel ontmodel = ModelFactory.createOntologyModel (OntModelSpec.OWL_DL_MEM_RULE_INF, m);
Reasoner reasoner = ontmodel.getReasoner();

reasoner.setDerivationLogging(true) ;

Model dedModel = ontmodel.getDeductionsModel();
if (dedModel == null) System.out.println("DedModel is null"); // it is null ...

else dedModel.write(System.out,"N3"); // viele triviale OWL-Axiome im DedModel
Model rawModel = ontmodel.getRawModel() ;
Model diffModel = ontmodel.difference(rawModel) .difference(dedModel);
System.out.println("---- DiffModel: ----------———————————- ")
diffModel .write(System.out,"N3"); // vieles, incl die sinnvollen Ergebnisse im DiffModel

PrintWriter out = new PrintWriter(System.out);
for (StmtIterator i = diffModel.listStatements(null,
ontmodel.getProperty("foo://bla/meta#descendant"),
(RDFNode) null); i.hasNext();) {
Statement s = i.nextStatement();
out.write("Statement is " + s + "\n");
Iterator <Derivation> ds = ontmodel.getDerivation(s);
if (ds == null) System.out.println("DerivationsIterator is null");
else for (Iterator<Derivation> i2 = ontmodel.getDerivation(s); i2.hasNext();) {

Derivation deriv = (Derivation) i2.next();

deriv.printTrace(out, true); // derivations are not null, but empty
3
out.flush(); . . .
1 [Filename: Java/JenalntRuleDeductions.java]
623

11.1.2 The Generic Rule-Based Reasoner in Jena

« allows three types of rule handling (cf. Lecture “Deductive Databases”):

— forwards-chaining bottom-up (7's-style; efficient well-known RETE algorithm)
« if @ ground instance of the rule body matches facts in the DB, the instance of the
head atom is derived to extend the RDF graph with additional derived facts.
= with hybrid rules (cf. Slide 634; rules whose head is a (backward) rule): derive
additional rules that extend the program
— backwards-chaining top-down (Prolog-SLG resolution, basically like XSB including
tabling etc.)
= if the rule head matches a query, it is tried to find answers for the body (whose
atoms may be basic predicates or match the heads of other rules)
— hybrid: backward-and-forward mixed. The user can for each rule define how it should
be interpreted. (default configuration)

Call with semweb.jar - command line arguments
* -if, -q, -gf as usual
« -rf rulefile

« -fw, -bw, -bwfw or -hybrid

624

Basic Rule Syntax: File or String with ...

* https://jena.apache.org/documentation/inference/#RULEsyntax

rulesas ‘[head <- body]” or ‘[body -> head]”
or “head<-body.” or “body ->head. (asin Datalog),
— -fw reasoner interprets only “->” rules, multiple head atoms are allowed (left-to-right exec
— -bw reasoner interprets all rules (handle then as backward rules, Prolog-style),
— -hybrid interprets both types in 2 stages: fw first, then afterwards bw
* triple patterns as “(s p 0)” with variables ?x as in SPARQL; equal(?x,?y)

e “?x a ?¢” is not understood, use “?x rdf:type ?c” instead
(note: using “a” does not cause an error message, but simply nothing is matched)

» body: lessThan(?x,?y), sum(?a,?b,?c) (if safe, cf. Deductive Databases lecture), now(),

« only in forward rules:
— body: constructors like strConcat(...,?res), uriConcat(...,?res), makeSkolem(...)
— updates like remove(n) in the head (removes ground instance of the n-th body term),

 handling/iterating over RDF lists,

* no aggregation (?)

625

Rules Example

@prefix : <http://www.semwebtech.org/mondial/10/meta#>.
[(?x rdf:type :Bigcountry)
<-

(?x rdf:type :Country), (?x :population ?p), greaterThan(7p, 10000000)]

[Filename: RDF/rule-bigcountries-bw.rl]

@prefix : <http://www.semwebtech.org/mondial/10/meta#>.
[(?x rdf:type :Country), (?x :population 7p), greaterThan(7p, 10000000)
->

(?x rdf:type :Bigcountry)] [Filename: RDF/rule-bigcountries-fw.rl]

prefix : <http://www.semwebtech.org/mondial/10/meta#>
select 7C 7N

from <file:mondial-europe.n3>

where { 7C a :Country .

optional {?C a :Bigcountry; :name 7N}}

[Filename: RDF/rule-bigcountries.sparql]

jena -if mondial-europe.n3 -rf rule-bigcountries-bw.rl \
-gf rule-bigcountries.sparql -bw

626

Rules Example

@prefix : <http://www.semwebtech.org/mondial/10/meta#>
[(?x rdf:type :Country), (?x :population ?p), greaterThan(?p, 10000000),
strConcat('A','B',7res) ### to test strConcat in fwd/bwd eval
-> (?x rdf:type :Bigcountry), (7x :testprop ?res)]
[(?x :bigneighborwith 7y)
<- (7x rdf:type :Bigcountry), (7x :neighbor 7y), (?7y rdf:type :Bigcountry)]

[Filename: RDF/rule-neighbor-bigcountries.rl]

prefix : <http://www.semwebtech.org/mondial/10/meta#>
select 7N 7X 7TT
from <file:mondial-europe.n3>
where {{ <http://www.semwebtech.org/mondial/10/countries/D/>
:bigneighborwith ?X }
union { ?C a :Bigcountry; :name ?N OPTIONAL { ?C :testprop ?TT}}
} [Filename: RDF/rule-neighbor-bigcountries.sparql]

« -bwfw/hybrid fill both (also when union line commented out) and sets :testprop
« -fw fills only “Bigcountry” (?N) (i.e., ignores backward rules)

+ -bw fills both, but ignores the strConcat literal in the fwd rule, does not fill :textprop

627

Rules Example

« same rule, other directions:

@prefix : <http://www.semwebtech.org/mondial/10/meta#>
[(?x rdf:type :Bigcountry)
<- (7?x rdf:type :Country) , (7x :population 7p), greaterThan(7p, 10000000)]

[(?x rdf:type :Bigcountry), (7x :neighbor ?7y), (7y rdf:type :Bigcountry)
-> (7x :bigneighborwith ?y)] [Filename: RDF/rule-neighbor-bigcountries?.rl]

« -bw fills both (i.e. also evaluates forward rules, then in backward direction)
* -bwiw fills only “Bigcountry” (?N)

- -fw fills nothing, (ignores backward rules, and the “lower” rule is backward)

628

Reasoners’ Behavior

* Leveling of the hybrid reasoner:
— forward rules first (filling “views”)

— backwards rules afterwards
« Backward-chaining reasoner also evaluates forward rules, then in backward direction,
» Forward-chaining reasoner ignores backward rules.
Including other rule sets
» @include <otherrulefile> in the rule file.

* instead of <otherrulefile>, also keywords RDFS, OWL, OWLMini, and OWLMicro are
allowed to preload the respective rule sets.

Loading Rules in Java
* List<Rule> rules = Rule.rulesFromURL(http:-URL or file);

» String ruleSrc = “list of rules as string”
List rules = Rule.parseRules(rulesSrc);

629

Tabling

 Analogously to Prolog/Datalog: In top-down/backward evaluation, intermediate results
are cached (“tabled”).
This is especially necessary for stratified negation, but also more efficient whenever some
subgoal can be reused.

- tableAll(), table(P). If any property is tabled, goals such as (?A, ?P, ?X) will all be tabled
because the property variable might match one of the tabled properties.

« Syntaxinrulefile: [-> tableAll() 1 or [-> table(:bigneighborwith)]

« The tabled results of each query are kept indefinitely. Queries can exploit all of the results
of the subgoals involved in previous queries. In essence we build up a closure of the data
set in response to successive queries.

* tabling: reset()

» When the inference model is updated by adding or removing statements all tabled results
are discarded by an internal reset() and the next query will rebuild the tabled results from
scratch.

« Java Code next slides. Tabling of backward reasoning is not stored in the
DeductionModel.

630

import org.apache.jena.rdf.model.InfModel;

import org.apache. jena.rdf.model.Model;

import org.apache. jena.rdf.model.ModelFactory;

import org.apache. jena.reasoner.rulesys.GenericRuleReasoner;
import org.apache.jena.reasoner.rulesys.Rule;

import org.apache.jena.util.FileManager;

public class JenaRules {
static String filepath = "/home/may/teaching/SemWeb/RDF/";
public static void main(String[] args){
// Model model = ModelFactory.createDefaultModel();
Model m = FileManager.get().loadModel(filepath + "mondial-europe.n3");
List<Rule> rules = Rule.rulesFromURL(filepath + "rule-neighbor-bigcountries.rl");
GenericRuleReasoner reasoner = new GenericRuleReasoner (rules);
reasoner.setMode (GenericRuleReasoner .HYBRID) ;
InfModel model = ModelFactory.createInfModel(reasoner, m) ;
String q = "prefix mon: <http://www.semwebtech.org/mondial/10/meta#>" +
"select 7N 7X" +
" where {{ ?Z" + // <http://www.semwebtech.org/mondial/10/countries/D/>" +
" mon:bigneighborwith 7X }" +
" union { ?C a mon:Bigcountry; mon:name 7N }}";
Query qu = QueryFactory.create(q);
QueryExecution ge = QueryExecutionFactory.create(qu, model);
ResultSet results = ge.execSelect();
ResultSetFormatter.out (System.out, results, qu);

model.getDeductionsModel () .write(System.out,"N3");
} [Filename: Java/JenaRules.java]

631
ugenericrulerneasoner reasoner = new yenericrulereasoner rules);

reasoner.setMode (GenericRuleReasoner .HYBRID) ;
reasoner.setDerivationLogging(true) ;
InfModel model = ModelFactory.createInfModel(reasoner, m) ;
String q = "prefix mon: <http://www.semwebtech.org/mondial/10/meta#>" +
"select 7N 7X" +
" where {{ <http://www.semwebtech.org/mondial/10/countries/D/>" +
" mon:bigneighborwith 7X }" +
" union { ?C a mon:Bigcountry; mon:name 7N }}";
Query qu = QueryFactory.create(q);
QueryExecution ge = QueryExecutionFactory.create(qu, model);
ResultSet results = ge.execSelect();
ResultSetFormatter.out (System.out, results, qu);

Model dedModel = model.getDeductionsModel() ;
Model rawModel = model.getRawModel();
Model diffModel = model.difference(rawModel) .difference(dedModel); // = bwd derivations

System.out.println("---- Derivations (in the DedModel) : ---------—--—————————- ")s
dedModel .write(System.out,"N3");
System.out.println("---- Derivations (in the DiffModel) : ----------—--c——- ")

PrintWriter out = new PrintWriter(System.out);
for (StmtIterator i = diffModel.listStatements(null,
model.getProperty("http://www.semwebtech.org/mondial/10/meta#fbigneighborwith"),
(RDFNode) null); i.hasNext();) {
Statement s = i.nextStatement();
out.write("Statement is " + s + "\n");
for (Iterator<Derivation> i2 = model.getDerivation(s); i2.hasNext();) {
Derivation deriv = (Derivation) i2.next();
deriv.printTrace(out, true); [Filename: Java/JenaRulesDedModel.java]
}}
out.flush(); } } 632

Insights into derivations with the GenericRuleReasoner (Hybrid)

* Model getDeductionsModel():

— even if no query is stated, the full deductive closure inc. backward chaining rules is
evaluated when executing such model operations.

— getDeductionsModel() contains only for forward rule firings. This allows the forward
rules to be used separately as if they were rewrite transformation rules (create new
graph without old).

— Facts derived by the backward-chaining rules: intermediate results are tabled
(internally), and added to the InfModel, but neither in the rawModel nor in the
deductionsModel.

— For all derived facts, derivation trees (their T7'5-derivation) are available.

Forward rules fire on ontology updates

» With the forward chaining reasoner, if the InfModel is changed (add or remove triples)
through the API, this triggers rule evaluations incrementally (RETE algorithm).

633

HYBRID RULES:
GENERATION OF NEW RULES BY FORWARD RULES GENERATING RULES

» Forward rules are allowed to create new rules (only backward rules) in their heads.
(Then, use the “[...]” syntax for rules to allow for nesting)

» mostly used to break down second-order patterns to first order instantiations (like e.g.,
the transitivity pattern):

634

Example 1
Consider the case of rdfs:subPropertyOf assertions:

[(?7a 7q ?b) <- (7p rdfs:subProperty0f 7q), (?7a 7p 7b) .]

as a backward rule. For every (sub)goal of the form | (?x anyprop ?v) |, the head will match,

and the subgoal is replaced by | (?p rdfs:subPropertyOf anyprop), (?x ?p ?v) |, usually only for
finding out that anyprop does not have subproperties.

Thus, the application cases can be restricted as follows: Add a hybrid rule whose outer,
forward rule, “fires” for each (p rdfs:subProperty ¢) fact and creates a partial instance of the
above rule:

[(?p rdfs:subProperty0f 7q), notEqual(?p,?q) -> [(7a ?q 7b) <- (7a 7p 7b)]]
Thus, for, e.g., a statement (:cityIn rdfs:subPropertyOf :locatedIn) it will add the rule
[(?a :locatedIn 7b) <- (7a :cityIn 7b)]

which matches only subgoals of the form (?x :locatedIn ?c).

Example 2: Transitivity

Transitivity is a typical “syntactically second-order propery” which can be mapped to its
first-order instantiated pattern. — Exercise.

635

Example 3: Property Chains
The “Property Chain/Role Chain” pattern is another example for such a hybrid rule:

* the owl:PropertyChain construct (cf. Slide 502) is internally (and in RDF/XML, see
Slide 503) mapped to an RDF list, but this is immediately “consumed” by the parser and
appropriate knowledge is added to the model.

[owl:propertyChain (:brother0f :hasChild)]
rdfs:subProperty0f :uncleOf.

« For an independent rule-based handling, use another suitable presentation by RDF
triples that connect the chain property with its constituents.
Note that these triples connect properties, so they are not common RDF properties, but
must be declared as owl:AnnotationProperties, which are ignored by OWL reasoning, but
nevertheless accessible for graph-level queries with SPARQL and in rule bodies:

:propchainFirst a owl:AnnotationProperty.
:propchainSecond a owl:AnnotationProperty.

:hasUncle :propchainFirst :hasParent ; :propchainSecond :hasSibling .

» The forward rule pattern must then match the above and generate appropriately
instantiated backward rules, here

[(?X :uncleOf 7?7Z) <- (?X :brother0f ?Y, ?Y :hasChild 7Z) 1]

636

Example: Property Chains (cont'd)

@prefix owl: <http://www.w3.org/2002/07/owl#>.
Oprefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix : <foo://bla#>.
:john :hasChild :bob; :hasSibling :paul, [].
:hasSibling a owl:SymmetricProperty.
:paul a [a owl:Restriction; owl:onProperty :hasChild; owl:minCardinality 1].
:hasChild owl:inverse(Of :hasParent.
:propchainFirst a owl:AnnotationProperty.
:propchainSecond a owl:AnnotationProperty.
:hasUncle :propchainFirst :hasParent ; :propchainSecond :hasSibling .

[Filename: RDF/uncle-rule-rl.n3]

@prefix : <foo://bla#>.
@include <OWL>.
[(?r :propchainFirst 7p), (?r :propchainSecond ?7q) ->
[(7x ?r ?7y) <- (?x 7p ?z) (7z ?q 7y)]] [Filename: RDF/uncle-rule-rl.rI]

prefix : <foo://bla#>
select 7P 7U
where { 7P :hasUncle ?7U } [Filename: RDF/uncle-rule-rl.sparql]

call: jena -hybrid -if uncle-rule-rl.n3 -rf uncle-rule-rl.rl -gf uncle-rule-rl.sparq|

637

Functors in Rules [additional syntax, ignore]
Functor syntax within rules does allow creation of nested “data structures”: f(a,b, ¢, d)

» Datalog: allows arbitrary n-ary predicate symbols in rule heads (EDB)

« RDF: allows only triples,
complex relationships cannot be described in a single atom,
— requires several triples for reification

» Functors: auxiliary syntactical sugar allowed to create in heads of forward rules and in
rule bodies.

=- such terms are internal to the rule evaluation,
finally there must be a rule that creates triple instances into the graph.

« functor terms may be nested.

638

Generic Rule Reasoner + OWL/RDEFES rules
https://jena.apache.org/documentation/inference/#RDFSPlusRules
» use the GenericRuleReasoner to combine rules for RDFS or OWL and user-defined rules:

reasoner.setOWLTranslation(true) ;

reasoner.setTransitiveClosureCaching(true) ;

« default Jena RDFS and OWL rulesets use the Hybrid rule engine. The hybrid engine is
itself layered, forward rules do not see the results of any backward rules.

« all inferences that must be seen by the RDF/OWL rules must be forward, all the
inferences which need the results of the RDFS/OWL rules must be backward.
— “complete” RDF graph by forward-chaining rules (like uncleOf etc.)

— then fwd-bwd predefined OWL rules,

— further backward-chaining rules building upon OWL conclusions.

Conclusion
» Rules cannot have negative literals in the body

= the rules implementing the OWL fragment can also not use negation
(OWL has open world, rules have closed world)

* ... not more than positive Datalog restricted to triples??

639

Chapter 12
Conclusion and Outlook

What should have been learnt:

« Formal Logic: interpretations, model theory, first-order logic
» Deductive systems: Datalog, minimal model semantics
* reasoning: tableau calculi

+ RDF as a special, simple data model; URls
representations: Turtle and RDF/XML

» DL as another logic, Open World
 “database” vs. “knowledge base”

« OWL as “DL alive”

640

SEMANTIC WEB DATA: XML; RDF AND OWL

In contrast to XPath/XQuery, XSLT, XML Schema, XLink etc., RDF and OWL are not
languages ‘inside” the XML world, but are concepts of their own that have - incidentally- also
an XML syntax.

The combination of XML data and RDF/RDFS/OWL concepts is the base for the Semantic
Web.

A Semantic Web application e.g. exists of

+ a “central” portal that uses the following things:

a set of ontological (OWL, RDFS) sources,

a set of RDF sources,
* reasoning (using OWL and RDFS information),

 a semantical description of itself for allowing others to use it.

641

