
Semistructured Data and XML 1

1. Unit: Exercises to XML

Information about the XML course can be found at

http://www.stud.informatik.uni-goettingen.de/xml-lecture

Exercise 1.1 (XML-Tree vs Directory-Tree)

Load mondial-europe.xml into xmllint and browse through the directory structure. First, change
into the country element of Germany, then into the city of Göttingen. Then, change into the next
city in the document.
Links to xmllint and the Mondial database can be found at
http://www.stud.informatik.uni-goettingen.de/xml-lecture.

Exercise 1.2 (Student-DTD)

• Write a DTD for XML documents with student data:
name, address and a student id, one or more subjects (computer science, law, chemistry, socio-
logy etc)

• Write an XML document containing student data conforming to the DTD, and check it for
validity using xmllint.

Exercise 1.3 (HTML-XHTML)

• Find a simple HTML document (e.g. your own personal student homepage, or any (simple)
page from the Web) and convert it by hand from HTML to XHTML.

• Check the XHTML document for validity using the XHTML validator
(http://validator.w3.org/detailed.html).

Hint: In your home directory in the CIP pool, there is a directory public html which is your
personal web directory. Files there are accessible via
http://student.ifi.informatik.uni-goettingen.de/~<username>/<filename>.

Yes, this is often a nontrivial piece of work. Most HTML pages are written very unprecise.

Why are the requirements of XML/XHTML so much stricter? The reason is the complexity of the
parser: an HTML parser must be very fault-tolerant, which means that it has a lot more transitions
that cover imprecise HTML; see Exercise 1.4

Exercise 1.4 (HTML-XHTML)

• Consider the following fragmentary XHTML DTD fragment :

<!ELEMENT html (head?,body)>

<!ELEMENT head (#PCDATA)>

<!ELEMENT body (p*)>

<!ELEMENT p (#PCDATA|table)*>

<!ELEMENT table (thead?,tbody)>

<!ELEMENT tbody (tr+)>

<!ELEMENT tr (td+)>

<!ELEMENT td (#PCDATA)>

Give a DFA that accepts the language of that DTD.

• Consider the following example of an HTML fragment (where nearly all closing tags are missing,
and the table markup is far from correct):

Semistructured Data and XML 2

<html>

<head><title>A very unprecise HTML page

<body>

some text

<p>

<table>

<tr> <td> eins.eins <td> eins.zwei

<tr> <td> zwei.eins <td> zwei.zwei

</table>

<p>

and some more text

</html>

Extend your DFA such that it accepts this fragment.

The following DFA can be used to parse and validate XHTML documents wrt. the above language
fragment:

• every column is a subautomaton,

• dashed lines abstract from the structure of the subelements,

• blue lines connecting hierarchical subautomata describe transitions for opening and closing tags.

html head
body p table tbody tr td

head

body

body

<head>

</head>

char

p
<body>

</body>

char

table

<p>

<p>

</p>

</html>

<table>

</table>

thead

tbody

tbody

<tbody>

</tbody>

tr

tr

<tr>

</tr>

td

td

<tr>

<td>

</td>

char

<td>

<tr>

</table>

Simplifications:

• The sub-sutomaton for body must be duplicated for the transition where <html> contains no
head.

• The sub-automaton for thead is omitted (it is also not listed in the DTD).

• The sub-sutomaton for tbody must be duplicated for the transition where <table> contains no
thead.

• The sub-automata for tr, and td must be duplicated for the cycle transitions in the accepting
states of the tbody and tr sub-automata.

• note: black transitions are labeled with the element names (they represent “complex” transitions
inside each level-automaton), while blue (and red, see below) transitions are labeled with the
actual opening and closing tags.

In an implementation, the duplication is replaced by “calling” a subautomaton and maintaining a
return stack.

Semistructured Data and XML 3

For fault-tolerant parsing of HTML, the (red) dotted transitions must be added. They represent
transitions when

• a complete level (tbody) has been omitted, or

• a closing tag has been omitted.

These lines are depicted above in red, dotted:

• opening <tr> tag in <table>: skip <tbody> level. Note that this makes the return with the closing
</tr> nondeterministic – either jump back to the <tbody> level or to the <table> level (thus,
the parser must push down where it came from).

• opening <td> tag in <td> element: implicitly close the </td> element and jumping to the start
of a new <td>.

• opening <tr> tag in <td> element: implicitly close the </td> and the </tr>, jumping to the start
of a new <tr>.

• closing <table> tag in <td> element: implicitly close the </td>, </tr>, and </tbody>, jumping
to the transition that actually closes the <table>.

• opening <p> tag in <p> element: implicitly close the </p> element and jumping to the start of
a new <p>.

• some more ...

These transitions cannot be defined automatically from the DTD specification, but have to be
added manually by the parser designer (presuming that he knows what “shortcuts” the users will
apply). Such “techniques” are in general not acceptable for any DTD – thus, for XML it was
decided to have stricter rules for validation.

Exercise 1.5 (DFAs and DTDs)

Consider the following DTD:

<!ELEMENT date (day,month,year?)>

<!ELEMENT day (#PCDATA)>

<!ELEMENT month (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT a (date*)>

<!ELEMENT b (#PCDATA)>

<!ELEMENT c (b+|(b?,a)*)>

Give a deterministic finite automaton for each element definition which accepts the corresponding
content model and connect the automata to parse XML files according to this DTD.

The part of the automaton for the a and date elements are simple:

Semistructured Data and XML 4

date

<date>

</date>

</date>

day

month

year

<day>

</day>
char

<month>

</month>
char

<year>

</year> char

The part for the c element is much more complicated: note that the DTD is not allowed since it is
not deterministic (where determinism is defined according to the derived automaton), since if first
a b is read, it is not known which branch should be entered, see below:

b

b

b

a

a

a

b

a

Note that the initial state is also an accepting state since
the second branch (b?, a)∗ can be empty.
the automaton shows that there it is nondeterministic if
first, a b is read.
From other lectures, it is known that the automaton can
be transformed into an equivalent deterministic one, that
then also indicates an allowed content model expression.

Transformation: move the b from b?, a out (take care that the second branch can also begin with
an omitted b and then an a, and that it is completely optional!).

b

b

b

a

a

a

b

a

A deterministic content model expression is then
(b, (b ∗ |(a, (b?, a)∗)))) | (a, (b?, a)∗)?.
Note that there are several more equivalent expressions.

The complete automaton is then created by connecting each a step with a copy of the date auto-
maton (copies are needed since the return jump must be deterministic – in reality this is done by
maintaining a stack), and connecting each b step with a #PCDATA automaton.

Exercise 1.6 (Is XML a context-free language?) Consider XML as a formal language.

(a) is the language of all XML documents of a given document type, specified by a DTD that does
not contain any attributes context-free?

(b) consider the case where the DTD contains attributes.

(c) is the language of all well-formed XML documents, without known document type, or with no
document type at all context-free?

Semistructured Data and XML 5

Recall from the Theoretical Computer Science lecture:

• A language is context-free in the sense of the Chomsky hierarchy if there is a context-free
grammar for it.

• A context-free grammar’s productions are of the form A → α1, . . . , αn, with A being a non-
terminal symbol, and α1, . . . , αn being non-terminal and terminal symbols, 1 ≤ n.

• A common way of proving that a language is not context-free is to prove that the pumping
lemma property does not hold.

The Pumping Lemma for context-free Languages (or uvwxy Theorem). For each context-
free language L there is a number n ∈ N such that for all words z ∈ L of length n or longer, there
is some decomposition z = uvwxy such that
(1) |vx| ≥ 1
(2) |vwx| ≤ n
(3) ∀i ∈ N : uviwxiy ∈ L.

Solution. Let Σ = {<, /,>, a, . . . , z, 0, . . . , 9, “ ”} be the (reduced) unicode alphabet of XML. A
DTD consists of a number of element and attlist definitions.

(a) The grammar (recall, without attributes) is as follows:

Define Ldtd for a fixed DTD, which uses a fixed set E1, . . . , En of element names, as a language
over Σ′ = {<,>, /, a, . . . , z, 0, . . . , 9, “ ”, elementname1, . . . , elementnamen} as follows.

Starting rule: S → E1| . . . |En.

For each element definition <!ELEMENT elementnamek EMPTY>, add the rule
Ek → <elementnamek/>.

For each other element definition that uses a non-empty content model <!ELEMENT element-

namek β>, add the rule
Ek → <elementnamek>Cβ</elementnamek>

(Cβ is a new non-terminal that produces expressions according to the content model β).

For every such Cβ , add the corresponding rule for context models (= regular expressions):

if β = (#PCDATA) then add Cβ → P
if β = ANY then add Cβ → E1Cβ | . . . |EnCβ |ǫ
if β = (β1, β2) then add Cβ → Cβ1

Cβ2

if β = (β1|β2) then add Cβ → Cβ1
|Cβ2

if β = (β1∗) then add Cβ → Cβ1
Cβ |ǫ

if β = (β1+) then add Cβ → Cβ1
(Cβ |ǫ)

if β = (β1?) then add Cβ → Cβ1
|ǫ

if β = elementnamem then add Cβ → Em ,
and recursively add the corresponding rules for Cβ1

and Cβ2
.

PCDATA rule: P → ε|“a”P |“b”P | . . . |“z”P |“A”P | . . . |“Z”P |“0”P | . . . |“9”P |“ ”P | . . .

The result is a context-free grammar for Ldtd.

(b) There are two issues to consider: (i) attributes in general, and (iii) specifics of IDREF/IDREFS.

For (ii), for every <!ATTLIST elementnamei attr i,1 ...attr i,m(i) > declaration, every permutation
π of the attributes attr i,1, . . . , attr i,m(i) must be allowed in the corresponding grammar rule for
Ei, e.g.

Ek → <elementnamek attrk,π(1)=“P” . . . attrk,π(m(k))=“P”>Cβ</elementnamek>.

Semistructured Data and XML 6

If instead of only CDATA attributes, also NMTOKEN/NMTOKENS are allowed, use a rule
for NM (without whitespace) and NMS similar to P .

So far, the grammar is still context-free.

If ID/IDREFS with their uniqueness and reference properties have to be verified, these features
go beyond the expressiveness of context-free grammars. Actually, the context-free grammar
together with a dictionary (to store IDs and check their uniqueness) and a postprocessing run
(to check IDREFS that may be forward-references) is used.

(c) Let Lxml = { <ω1 . . . ωk>α1 . . . αm</ω1 . . . ωk> |
ω1 ∈ {a, . . . , z, A, . . . , Z},
ω2, . . . , ωk ∈ {a, . . . , z, A, . . . , Z, 0, . . . , 9, , . . .},
α1, . . . , αm ∈ {ε} ∪ CHAR ∪ Lxml}

,

(well-formed XML without attributes, note the recursive definition of Lxml).

Show the via pumping lemma that Lxml is not context-free.

To prove: For all n ∈ N, there is a word z ∈ Lxml with length |z| ≥ n, for all decompositions
z = uvwxy:
(1): |vx| = 0 or (2): |vwx| > n or (3): ∃i ∈ N : uviwxiy /∈ Lxml.

As usual for such proofs, one does not consider the most general case, but a carefully chosen
(usually quite simple) word:

Let z =< a . . . a
︸ ︷︷ ︸

n×

b . . . b
︸ ︷︷ ︸

n×

>< /a . . . a
︸ ︷︷ ︸

n×

b . . . b
︸ ︷︷ ︸

n×

>.

Assuming |vx| ≥ 1 and |vwx| ≤ n, there are three possible cases:

– vwx ⊆ opening tag or vwx ⊆ closing tag :⇒ uv2wx2y /∈ L.
(duplication takes place either inside the opening tag or inside the closing tag → do not
match any more)

– v ∩ {>,<, /} 6= ∅ or x ∩ {>,<, /} 6= ∅ :⇒ uv2wx2y /∈ L.
(one of v or x duplicates inside the opening or closing tag, the other one duplicates something
with the “></”)

– v ⊆ opening tag ∧ x ⊆ closing tag:
|vwx| ≤ n ⇒ v = b . . . b, x = a . . . a ⇒
uvwxy = < a . . . ab . . . b

︸ ︷︷ ︸

u

b . . . b
︸ ︷︷ ︸

v

b . . . b >< /a . . . a
︸ ︷︷ ︸

w

a . . . a
︸ ︷︷ ︸

x

a . . . ab . . . b >
︸ ︷︷ ︸

y

⇒

uv2wx2y =< a . . . a
︸ ︷︷ ︸

n

b . . . b
︸ ︷︷ ︸

n+|v|

>< /a . . . a
︸ ︷︷ ︸

n+|x|

b . . . b
︸ ︷︷ ︸

n

>/∈ Lxml .

Comments on the Pumping Lemma Proof. The sample instance of the proof is chosen
carefully: a simple instance. This serves not primarily to have a simple proof, but to know enough
about the instance to show that every split into vwx yields a word not in Lxml.

What happens, if it is known that the length of element names is constrained by some maximum
m?
The proof fails, because it works only for n ≤ m/2. Note that this only means that this Pumping
Lemma proof fails, but yet nothing about Lxml/max in general. Maybe there is another Pumping
Lemma proof? Or is Lxml/max context-free?

Actually, under this restriction it is context-free. A grammar can obviously be given by instantiating
the rule for elements for any m-letter string abc that is allowed for element names:

S → <abc>S</abc> for every m-letter string abc that is allowed for element names
S → P | ǫ. (P for characters as before)

Comments. Thus, parsing an XML document is much easier if a DTD is provided.

Semistructured Data and XML 7

This theoretical consideration has important practical consequences: scanning any XML document
once for the used element names is sufficient to instantiate an appropriate context-free grammar
(i.e., using exactly these element names for abc above).

If an XML document is processed, where no DTD is provided, the parsing is theoretically based on
generating this context-free grammar on-the-fly by instantiating the ANY rule for every element
name that is known so far.

Actually, this is again encoded in a stream processing that reads the plain text input character by
character and determines element names, attribute names, values etc., and does the parsing (and
often already the intended processing).

