
Semistructured Data and XML 13

3. Unit: XQuery

Information about the XML course, recommended tools as well as the Mondial Database, is found under

http://www.stud.informatik.uni-goettingen.de/xml-lecture

The following exercises mostly use the Mondial database and should be solved
using XQuery.

Exercise 3.1 (Mondial - Maximum Population) Give name and population of the country
with the highest population.

for $ctr in /mondial/country

where($ctr/population = max(/mondial/country/population[last()]))

return

<result>

{$ctr/name}

{$ctr/population[last()]}

</result>

(: the where-clause can also be moved into the XPath part,

although it is harder to understand then :)

for $ctr in /mondial/country[population = max(/mondial/country/population[last()])]

return

<result>

{$ctr/name}

{$ctr/population[last()]}

</result>

(: or, because it is only one country, also a ’let’ can be used: :)

let $ctr := /mondial/country[population = max(/mondial/country/population[last()])]

return

<result>

{$ctr/name}

{$ctr/population[last()]}

</result>

(: or as XPath :)

//country[population = max(//country/population[last()])]/(name|population[last()])

(: Result: China 1360720000 :)

Exercise 3.2 (Mondial - order organizations by inhabitants)

For each organization, return its name and the sum of the population of its members (in descending
order, ignore different member types).

Semistructured Data and XML 14

for $org in //organization

let $sum := sum($org/members/id(@country)/population[last()])

order by $sum descending

return

<result>

<org>{$org/name}</org>

<pop>{$sum}</pop>

</result>

(: a typical for-let-combination :)

(: 168 results :)

(: first result: United Nations, pop = 7.046.917.773 :)

Exercise 3.3 (Mondial - Sunrise in Dakar)

Consider the moment of sunrise in Dakar on 21st of September. Which is the city where the sun
rises next?

let $cities :=

for $c in /mondial//city

where (number($c/longitude) < number(/mondial//city[name = ’Dakar’]/longitude))

return $c

for $city in $cities

where $city/longitude = max($cities/longitude)

return $city

(: another nice example for preparing using a ’let’ :)

(: Ergebnis: Hafnarfjoerdur,IS,Iceland,12000,-22,64 :)

Exercise 3.4 (Mondial - Sharing Waters with Russia)

Which lakes, seas and rivers does Russia share with exactly one other country?

for $water in /mondial//(lake|river|sea)

where $water/id(@country)/name="Russia"

and count($water/id(@country)) = 2

order by $water/name

return

element {$water/name()} {$water/name/text()}

(: result: 16 items :)

(: note the explicit result element constructor :)

(: note: river/located/@country exists only for countries that have provinces! :)

(: Short in XPath :)

/mondial/(sea|river|lake)[located/@country="R"

and count (id(@country)) = 2]/name/text()

(: located/@country=R saves the dereferencing; R has provinces :)

Exercise 3.5 (Mondial - European Countries and Seas) Compute all pairs of european
countries that are adjacent to the same set of seas.

Semistructured Data and XML 15

let $europcountries := /mondial/country[encompassed/id(@continent)/name="Europe"]

for $c1 in $europcountries

let $seas1 := /mondial/sea[id(@country)/@car_code = $c1/@car_code]/name

for $c2 in $europcountries

let $seas2 := /mondial/sea[id(@country)/@car_code = $c2/@car_code]/name

where $c1/name/text() < $c2/name/text()

and exists($seas1) (: not the empty set of seas :)

and deep-equal($seas1,$seas2)

return <result>{$c1/name} {$c2/name} {$seas1}</result>

(: 59 results :

Med.Sea: MC/IT/SLO/HR/BIH/MNE/AL/GR/MAL/CY = 45 Pairs

Black Sea: BG/RO 1 Pair

Baltic: PL/SF/LT/LV/EW 10 Pairs

North: B/NL 1 Pair

Channel: GBG/GBJ 1 Pair

Atl+Med: E/GBZ 1 Pair = 59 Pairs

:)

(: it is also possible to compare the sets item-by-item instead of

using deep-equal (which deep-compares the complete XML sequences

bound to the variables)

Note the implicit set-based comparisons in the ’every’ parts

with $seas1 and $seas2 :)

let $europcountries := /mondial/country[encompassed/id(@continent)/name="Europe"]

for $c1 in $europcountries

let $seas1 := /mondial/sea[id(@country)/@car_code = $c1/@car_code]/name

for $c2 in $europcountries

let $seas2 := /mondial/sea[id(@country)/@car_code = $c2/@car_code]/name

where $c1/name/text() < $c2/name/text()

and exists($seas1)

and (every $s1 in $seas1 satisfies $s1 = $seas2)

and (every $s2 in $seas2 satisfies $s2 = $seas1)

return <result>{$c1/name} {$c2/name} {$seas1}

</result>

(: faster solution: compute seas only once :)

let $tmp :=

for $c in /mondial/country[encompassed/@continent="europe"]

return

<country>

{ $c/name }

<seas>

{ /mondial/sea[id(@country)/@car_code = $c/@car_code]/name }

</seas>

</country>

for $c1 in $tmp, (: runs over the <country> elements in $tmp :)

$c2 in $tmp

where $c1/name/text() < $c2/name/text()

and $c2/seas/name and $c2/seas/name (: only the nonempty ones are of interest :)

and deep-equal($c1/seas,$c2/seas)

Semistructured Data and XML 16

return <result>{$c1/name} {$c2/name} {$c1/seas}</result>

Exercise 3.6 (Mondial - The Caribbean)

How many countries are adjacent to (or ecompassed by) the the Caribbean Sea? How much area
do they cover altogether?

let $countries := /mondial/sea[name="Caribbean Sea"]/id(@country)

return

<result>

{$countries/name}

<area> {sum($countries/@area)} </area>

</result>

(: result: 33 countries, 4.745858E6 sqkm :)

Exercise 3.7 (“Every” and “Some” - a Comparison)
Consider again Exercise 3.28. Solve each of the below queries by using the “every ... satisfies” or
“some ... satisfies” construct. Give also an XPath 1.0 solution if possible. Discuss the alternative
variants.

• Give the names of all organizations that have at least one european member country.

• Give the names of all organizations that have no european member countries.

• Give the names of all organizations that have only member countries that are (at least partly)
located in Europe.

• Give the names of all organizations where all european countries which are members of at least

10 organizations are members.

(: some europeans: 129 results -- three variants: :)

/mondial/organization

[members/id(@country)/encompassed/id(@continent)/name="Europe"]/name

/mondial/organization

[some $c in members/id(@country)/encompassed/id(@continent)

satisfies $c/name="Europe"]/name

for $org in /mondial/organization

let $con := $org/members/id(@country)/encompassed/id(@continent)

where some $c in $con satisfies $c/name = "Europe"

return <answer>

{$org/name}

{$con/name}

</answer>

(: no europeans: 39 results

Semistructured Data and XML 17

note that a country might be in europe and also on another continent (R,TR) :)

/mondial/organization

[not (members/id(@country)/encompassed/id(@continent)/name="Europe")]/name

/mondial/organization

[every $c in members/id(@country)/encompassed/id(@continent)

satisfies $c/name!="Europe"]/name

for $org in /mondial/organization

where every $c in $org/members/id(@country)

satisfies (every $cont in $c/encompassed/id(@continent)

satisfies $cont/name != "Europe")

return $org/name

(: only europeans: 11 hits

Note: different results can be due to ‘‘only countries that are

completely in Europe’’ vs. countries that are at least partly in

Europe’’ :)

(: the pure XPath variant is hard to read: :)

/mondial/organization

[not (members/id(@country)[not(encompassed/id(@continent)/name = "Europe")])]/name

/mondial/organization

[every $c in members/id(@country)

satisfies $c/encompassed/id(@continent)/name="Europe"]/name

(: the explit every-some makes it easy to understand :)

/mondial/organization

[every $c in members/id(@country)

satisfies (some $cont in $c/encompassed/id(@continent)

satisfies $cont/name="Europe")]/name

for $o in /mondial/organization

where every $c in $o/members/id(@country)

satisfies (some $cont in $c/encompassed/id(@continent)

satisfies $cont/name="Europe")

return $o/name

(: all europeans with >= 10 memberships: 5 hits

International Criminal Police Organization

International Federation of Red Cross and Red Crescent Societies

Organization for Security and Cooperation in Europe

Organization for the Prohibition of Chemical Weapons

United Nations

let $europeancountries :=

Semistructured Data and XML 18

/mondial/country[

count(id(@memberships)) >= 10 and

encompassed/id(@continent)/name="Europe"]

for $org in /mondial/organization

where every $c in $europeancountries satisfies

$c = $org/members/id(@country)

return $org/name

(: SQL relational devision style with not(exists)-not(exists)

for $org in /mondial/organization

where not

(/mondial/country[

count(id(@memberships)) > 10 and

encompassed/id(@continent)/name="Europe"

and not (.= $org/members/id(@country))])

return $org/name

(: here: NO WAY IN XPATH SINCE JOIN IS NEEDED INSIDE NOT/NOT) :)

(: THE FOLLOWING ILLUSTRATES THE PROBLEM :)

/mondial/organization

[not

(/mondial/country[

count(id(@memberships)) > 1 and

encompassed/id(@continent)/name="Europe"

and not (COUNTRY = ORG/members/id(@country))])]/name

Discussion:

• “some ... satisfies” is redundant since the XPath set comparison has implicit existential
semantics

• “every ... satisfies” is nice syntactic sugar, but can also be replaced by “not some (not

...)” or even “not (not ...)”. The latter is also the usual way to solve such things in SQL.

• the 4th query, there is no way to transform it into XPath because a join condition is needed in
the inner subquery, which requires variables.

Exercise 3.8 (Mondial - Biggest Cities) For each country with at least 3 cities, compute
the sum of the inhabitants of the three biggest cities.

for $country in /mondial//country[count(.//city) > 2]

let $cities_pops :=

(for $c in $country//city[population]

let $pnum := number($c/population[last()])

order by $pnum descending

return $c/population[last()]

)

return

<result>

{$country/name}

<three-cities>

{sum($cities_pops[position()<=3])}

</three-cities>

Semistructured Data and XML 19

</result>

(: - note that the intermediate result $cities_pops is an ordered

sequence of nodes

- take only cities that have a population entry :)

(: Result: 117 items, Albania, 611257 :)

(: In XML it is also possible to return the names of the largest three

cities, and the sum of their population: :)

(: xs:int used since fn:number does not work :)

for $country in /mondial//country[count(.//city) > 2]

let $cities :=

(for $c in $country//city[population]

order by xs:int($c/population[last()]) descending

return $c

)

return

<result>

{$country/name}

<three-cities>

{$cities[position()=1]/name[1]}

{$cities[position()=2]/name[1]}

{$cities[position()=3]/name[1]}

<sum>{sum($cities[position()<=3]/population[last()])}</sum>

</three-cities>

</result>

Exercise 3.9 (Mondial - Cities population above average)

Give all cities that have more inhabitants than the average of all cities in that country.

(: result: 213 countries :)

(: first, just have a look for all countries (some have no city

that ist bigger than average)

for $country in /mondial/country[.//city/population]

let $cities := $country//city[population]

let $pops := $cities/population[last()]

let $avg_pop := sum($pops) div count($pops)

let $bigcities := $country//city[number(./population[last()]) > number($avg_pop)]

return

<result>

<country>{$country/name/text()}</country>

<average>{$avg_pop}</average>

<cities>{$bigcities/name[1]}</cities>

</result>

(: now to the desired output: all cities :)

for $c in //country[count(city/population/text())=count(city)]

Semistructured Data and XML 20

(: some countries have cities with two population numbers :)

let $avg := avg($c//city/population[last()]/text())

for $cty in $c//city[population[last()] > $avg]

return

<city>

{$c/name}

<avg>{$avg}</avg>

{$cty/name[1]}

{$cty/population[last()]}

</city>

(: 620 such cities :)

Exercise 3.10 (Hamlet - Anzahl SPEECHes) Create an HTML table which lists for every
person (use the //PERSONAE list at the beginning of the XML document) how many speeches he/she
gives.

(: Note: for some persons like Claudius, SPEECHES lists "King Claudius" :)

<html>

<table>

{

for $p in //PERSONA/text()

let $person :=

if (contains($p,",")) then substring-before($p,",")

else $p

where //SPEECH[some $x in ./SPEAKER satisfies contains($x,$person)]

return

<tr>

<td>

{ $person }

</td>

<td>

{ count(//SPEECH[some $x in ./SPEAKER satisfies contains($x,$person)]) }

</td>

</tr>

}

</table>

</html>

Exercise 3.11 (Mondial & Hamlet)

Which countries (from Mondial) are mentioned in “Hamlet”? Give also the corresponding LINEs.
Do the same for the cities. Where’s a problem?

(: use Hamlet as context document and access Mondial from the Web :)

for $name in doc(’http://www.dbis.informatik.uni-goettingen.de/Mondial/mondial.xml’)//country/name

(: where contains(/,$name) return $name -- checks only for occurrence :)

for $line in //LINE

where contains($line,$name)

return <result>{$name/text, $line}</result>

Semistructured Data and XML 21

(: use Hamlet as context document and access Mondial from the Web :)

for $name in doc(’http://www.dbis.informatik.uni-goettingen.de/Mondial/mondial.xml’)//city/name

(: where contains(/,$name) -- checks only for occurrence :)

for $line in //LINE

where contains($line,$name)

return <result>{$name/text(), $line}</result>

Some city names occur as sub-words (like “Bern” in “Bernardo”, “Gent” in “Gentlemen”). Thus,
it must be checked for whole words (capitalization already guarantees the beginning of a word, but
the end, including “end of string” must be checked):

for $name in doc(’http://www.dbis.informatik.uni-goettingen.de/Mondial/mondial.xml’)//city/name

for $line in //LINE[contains(.,$name)]

(: the [contains ...] is now redundant, but makes it much more efficient

since ’contains’ is cheaper to evaluate than regex matching :)

where matches($line,concat($name,"\s")) (: regex matching: whitespace :)

or matches($line,concat($name,"$")) (: regex matching: end of string :)

or contains($line,concat($name,"."))

or contains($line,concat($name,";"))

or contains($line,concat($name,":"))

or contains($line,concat($name,",")) (: and maybe some more :)

return <result>{$name/text(), $line}</result>

Exercise 3.12 (User-defined Function: Functional Programming – Faculty)

Write a recursive function that computes the faculty of a natural number.

(:call saxonXQ faculty.xq x=5 :)

declare variable $x external;

declare function local:faculty($n as xs:integer) as xs:integer

{ if ($n=1) then 1

else $n* local:faculty($n - 1)

};

local:faculty($x)

