
Chapter 12
Between Relational Data and XML

Data integration between “Legacy Systems” and XML databases

• Note: “legacy” now means SQL ...

Mixing everything up ...

Access to data stored in relational databases by

• using an XML environment (e.g., saxon) and mapping relational data from a remote SQL
database (e.g. Oracle) to XML, and working with it.

• using XML-world concepts and languages in an SQL environment, e.g. for exchanging
data in XML format (again, e.g., Oracle).

(Note that IBM DB2/XML Extender and MS SQL Server provide similar functionality)

595

12.1 Publishing/Mapping Relational Data in XML

Several generic mappings are possible:

Consider country(name: “Germany”, code: “D”, population: 83536115, area: 356910)

• tables, rows, and subelements

<table name="country">
<row><name>Germany</name><code>D</code>

<population>83536115</population><area>356910</area></row>
:

</table>

• tuples with subelements

<country><name>Germany</name><code>D</code>
<population>83536115</population><area>356910</area></country>

:

• analogous with XML attributes

• advantage with subelements (vs. attributes): SQL values can also be object types
(mapped to XML) and XMLType contents!

596

Example: HTTP-based XML access to Oracle [Oracle 10/11, ∼2006]

The whole database is mapped (virtually) to XML:

<SCHMIDT> -- user name as root element
<COUNTRY> -- all names are capitalized

<ROW><NAME>Germany</NAME><CODE>D</CODE>
<POPULATION>83536115</POPULATION><AREA>356910</AREA></ROW>

:
</COUNTRY>
:

</SCHMIDT>

Access by extended URL notation:

• URL: computer :port /oradb/user /tablename/ROW[condition]

• capitalize user, table and attribute names

• URL must select a single element (whole table, or single row)

ap34.ifi...:8080/oradb/DUMMY/COUNTRY %% show page source
ap34.ifi...:8080/oradb/DUMMY/COUNTRY/ROW[CODE='D']
ap34.ifi...:8080/oradb/DUMMY/COUNTRY/ROW[CODE='D']/NAME
ap34.ifi...:8080/oradb/DUMMY/COUNTRY/ROW[CODE='D']/NAME/text()

597

Generic Mappings (Cont’d)

Up to now: mapping of materialized base tables.
Problem: how to map the result of a query with computed columns?
SELECT Name, Population/Area FROM country

• tables, rows, and subelements:
the DTD is independent from the relational schema
metadata is contained in the attributes
(“JDBC-style” processing of result sets)

<table name="country">
<row><column name="name">Germany</column>

<column name="population/area">83536115</column>
<column name="area">234.05473</column>

</row>
:

</table>

• another “most generic mapping” as (object, property, value) to be discussed later ...

Additionally: often, tools define their own access functionality ...

598

ACCESS TO SQL DATABASES WITH SAXON-XSLT (SAXONEE)

• uses JDBC technology for remote access (at least for Java XSL tools)

• defines namespace “sql”

• <sql:connect> with attributes “database” (JDBC url), “driver” (JDBC driver)
returns a JDBC connection object as a value of type “external object” that can be bound
to a variable, e.g. $connection.
Note: there can be several connections at the same time.

• <sql:query> with following attributes allows to state an SQL query whose result is
generically mapped to XML:

– connection

– table: ... the “FROM” clause

– column: ... the “SELECT” clause

– where: optional condition

– row-tag: tag to be used for rows (default: “row”)

– col-tag: tag to be used for columns (default: “col”)

result is a collection of <row> ... </row> elements that can e.g. be bound to a variable.

599

Administrative Parameters

<xsl:stylesheet
xmlns:sql="http://saxon.sf.net/sql"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"
extension-element-prefixes="sql">

<!-- insert your database details here, or supply them in parameters -->
<xsl:param name="driver" select="'oracle.jdbc.driver.OracleDriver'"/>
<xsl:param name="database" select="'jdbc:oracle:thin:@IPADDRESS:1521/USER'"/>
<xsl:param name="user" select="'USER'"/>
<xsl:param name="password" select="'PASSWD'"/>

<xsl:variable name="connection" as="java:java.sql.Connection"
xmlns:java="http://saxon.sf.net/java-type">

<sql:connect driver="{$driver}" database="{$database}"
user="{$user}" password="{$password}">

<xsl:fallback>
<xsl:message terminate="yes">SQL extensions not installed</xsl:message>

</xsl:fallback>
</sql:connect>

</xsl:variable>
</xsl:stylesheet>

[Filename: SaxonSQL/sql-administrativa-fake.xsl]

600

Example Access/Query

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"
xmlns:sql="http://saxon.sf.net/sql">

<xsl:include href="sql-administrativa.xsl"/>

<xsl:template match="*">
<sql:query connection="$connection" table="country" column="*"/>
<sql:close connection="$connection"/>

</xsl:template>
</xsl:stylesheet>

[Filename: SaxonSQL/sql-query.xsl]

uses a primitive mapping that relies on the order of columns.

601

Fail-safe(?) installation [saxonEE 9.7.0.4; June 2016]

Put the following in a directory [here: SaxonSQL]:

• saxon9ee.jar, saxon9-sql.jar (both from the downloaded Saxon.zip)

• ojdbc7.jar (or any JDBC driver for the database)

• saxon-license.lic (the 30 days license)

• config.xml:
<configuration xmlns="http://saxon.sf.net/ns/configuration" edition="EE">

<xslt>
<extensionElement namespace="http://saxon.sf.net/sql"

factory="net.sf.saxon.option.sql.SQLElementFactory"/>
</xslt>

</configuration> [Filename: SaxonSQL/config.xml]

• some XML file “dummy.xml” (might even use the xsl stylesheet as dummy XML)

• java -cp saxon9ee.jar:saxon9-sql.jar:ojdbc7.jar net.sf.saxon.Transform
-config:config.xml -s:dummy.xml -xsl:sql-query.xsl

602

Example Access/Query

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"
xmlns:sql="http://saxon.sf.net/sql"
extension-element-prefixes="sql">

<xsl:include href="sql-administrativa.xsl"/>

<xsl:template match="*">
<xsl:variable name="result">
<sql:query connection="$connection" table="country,encompasses"

where="country.code=encompasses.country"
column="country.name,encompasses.continent,percentage"
row-tag="country" column-tag="bla"/>

</xsl:variable>
<sql:close connection="$connection"/>
<!-- and now use the variable somehow, here simply output it -->
<xsl:copy-of select="$result"/>

</xsl:template>
</xsl:stylesheet>

[Filename: SaxonSQL/sql-query2.xsl]

603

Further Commands

• <sql:insert> with attribute

– attribute: table=“...”

– children: <column name=“...” select=“...”/>

value can also be given as contents of the column element; currently always
interpreted as a string.

• <sql:close> with a “connection” attribute

See also http://www.saxonica.com.

604

12.2 The SQL/XML or SQLX standard

Goal: Coexistence between Relational Data and XML

• mapping relational data to XML

– by a default mapping (previous section)

– a (user-defined) XML views over relational data
(“XML publishing”)

• storing XML data in relational systems

– data-centric XML: efficient, several possibilities

– document-centric XML: problematic

605

SQL/XML

• draft for an ISO standard since 2003: www.sqlx.org

• an SQL datatype “XMLType” for storing XML as “value” in databases:

Jim Melton (Oracle): “SQL/XML includes an XML datatype for use inside SQL. This
allows the SQL engine to automatically ’shred’ data-oriented XML documents for storing
some elements and contents in one place while keeping other elements in other places.
Using indexes and joins, you can then bring this data back together very quickly.”

– theory: an abstract datatype with operators/methods
(cf. Computer Science I lecture)

– API: like (user-defined) object types in object-relational databases
(cf. SQL database lab)

* handled with special methods (constructors, selectors)

* can be exported to XML tools, e.g. by JDBC
(either as DOM instance, or serialized as Unicode file/stream)

* libraries provide additional functions for processing XML in PL/SQL.

– internal implementation: not seen by the user
(i) shredding or (ii) storing as LOB (Large Object)

606

SQL/XML

Making XML data a first-class citizen in relational databases,
seamless flow from relational data to XML and back

SQL to XML

• XML generation from SQL queries (i.e., in the SELECT clause)
(e.g., as packets for data exchange)

• define XMLType views over SQL data

SQL access and manipulation of XML inside the RDB

... use XPath expressions inside SQL (and rise the question what is actually the difference to
XQuery):

• storing XML in RDB (e.g. if XML-data exchange packets came in),

• XPath-based extraction of XML content (SELECT clause),

• XPath-based query of XML content (WHERE clause),

• XPath-based update of XML content (in SQL),

• define XPath-based relational views over XML content.

607

“XML” AS AN SQL DATATYPE

XML/XMLType: an SQL datatype to hold XML data:

CREATE TABLE mondial OF XMLType; use as Row Object Value
CREATE TABLE CountryXML OF XMLType; use as Row Object Values

As column object type in relational tables:
CREATE TABLE CityXML

(name XMLType, province VARCHAR2(50), country VARCHAR2(4),
population XMLType,
coordinates XMLType);

[Filename: SQLX/cityxmltable.sql]

• generation: INSERT INTO table VALUES (... , XMLType(’XML as unicode string’) ...)

INSERT INTO CityXML
VALUES(XMLType('<name>Clausthal</name>'), 'Niedersachsen', 'D',
XMLType('<population year="2004">10000</population>'),
XMLType('<coordinates><latitude>51.8</latitude><longitude>10.4</longitude>

</coordinates>'));
[Filename: SQLX/cityxmltuple.sql]

608

HANDLING OF SQL XMLTYPE DATATYPE

• generate it by certain constructors (“XML Publishing Functions”)

• storage: chosen by the database

– “shredding” and distributing over suitable tables (of object-relational object types)
(queries are translated into SQL joins/dereferencing)

– storing it as VARCHAR, CLOB (Character Large Object), or as separate file
(the remainder of this section uses CLOB)

– storing it “natively”

• query it by XPath

• for export/exchange in Unicode:
XMLSerialize: a function to serialize an XML value as a Unicode character string (not
available in sqlplus, only in PL/SQL):
XMLSerialize: XMLType → String

• additional methods provided by PL/SQL libraries,

• XML objects can also be used e.g., as documents or as stylesheets, applied to
documents (by PL/SQL libraries).

609

HOW TO GET XMLTYPE INSTANCES

• by the opaque constructor
XMLType: STRING → ELEMENT
that generates an XMLType instance from a Unicode string

– the inverse to Java’s to_string,

– nearly all datatypes have such an opaque constructor (e.g., for lists: list(“[1,2,3,4,5]”));

• generate instances recursively by structural constructors that are closely related to the
underlying Abstract Datatype
(cf. binary trees, lists, stacks in Computer Science I) (see Slide 616 ff.);

• or load them from an XML file (that then actually contains the Unicode serialization and
uses the opaque constructor).

610

12.2.1 Loading XMLType Instances (here: oracle-specific)

• This section describes two implementational variants that have to be configured and
prepared by the admin.

• Oracle (here: 12c, 2016) has problems with UTF-8, maps it to what it calls “UTF8”; this
causes problems with some characters [occured with “from Web” variant, seem not to
occur for “from file” variant].

• Full UTF-8 is obtained by declaring the encoding as oracle-specific “AL32UTF8”.

611

Loading XMLType from Local Files (Oracle, tested WM 27.7.2016 12.1.0.1.0)

• choose a directory on the same computer where the DBMS server (!) is installed (e.g.
/tmp or /documents/xml),

• copy XML file (e.g. m.xml) into that directory

– the XML file must not contain a reference to a DTD!

– the file must be readable publicly or for the “oracle” user.

• tell Oracle where it finds XML files:

– centrally by admin:

admin: CREATE OR REPLACE DIRECTORY XMLDIR AS '/tmp' ;
GRANT READ ON XMLDIR TO public (or to scott etc);

– users might do it by themselves:

admin: GRANT CREATE DIRECTORY TO scott;
scott: CREATE OR REPLACE DIRECTORY XMLDIR AS '/tmp';

• insert into mondial
values(xmltype(bfilename('XMLDIR', 'mondial.xml'),

nls_charset_id('AL32UTF8')));

• see documentation: an XML schema might be used; STORE AS OBJECT RELATIONAL

612

LOADING XML FILES: LOCAL SOLUTION

• for importing XML files, our local installation provides a method
system.getxml(’http-url’). (restricted to access dbis.informatik)

SELECT system.getxml(
'http://www.dbis.informatik.uni-goettingen.de/Teaching/DBP/XML/mondial.xml')

FROM dual;

or, inserting it into a table:
INSERT INTO mondial VALUES(system.getxml(

'http://www.dbis.informatik.uni-goettingen.de/Teaching/DBP/XML/mondial.xml'));
[Filename: SQLX/insertmondial.sql]

• the XML file must not contain a reference to a DTD!

• the file can e.g. reside in the local homedirectory or anywhere in the Web (the DB admin
must configure the Oracle firewall to allow to access (certain) Web URLs).

• the file must be publicly readable – chmod filename 644

SET LONG 10000;
SELECT * FROM mondial;

613

Aside: the getXML procedure

- execute as 'system' user (not by "CONNECT / AS SYSDBA"):
CREATE OR REPLACE FUNCTION getXML(url IN VARCHAR2)
RETURN XMLType
IS
x UTL_HTTP.html_pieces;
tempCLOB CLOB := NULL;
s varchar2(2100) := null; -- request pieces:

-- max length will be 2000
s1 varchar2(2100) := null;

BEGIN
x := UTL_HTTP.request_pieces(url, 10000);
DBMS_LOB.createTemporary(tempCLOB, TRUE,

DBMS_LOB.SESSION);
IF x.COUNT > 0 THEN
-- In the xml encoding declaration, replace UTF-8 by AL32UTF8
-- '' -> sqlplus escape of ' ; \1 references to matched (...)
s1 := REPLACE(x(1),

'\s*(<?xml [^>]*encoding)\s*=\s*["'']UTF-8["'']',
'\1="AL32UTF8"');

-- remove DTD reference
s := REGEXP_REPLACE(s1,'<!DOCTYPE [^>]+>','');
DBMS_LOB.writeAppend(tempCLOB, LENGTH(s), s);
FOR i IN 2..x.COUNT LOOP
DBMS_LOB.writeAppend(tempCLOB, LENGTH(x(i)), x(i));

END LOOP;
END IF;
RETURN XMLType(tempCLOB);

END;
/
GRANT EXECUTE ON getXML TO PUBLIC;

614

Aside: the getXML Procedure

• Allow users to use HTTP access (to certain URI patterns) via Access Control Lists (ACLs,
admin only)

Aside: Notes

• UTF-8 encoding supports character sets of even exotic languages (local names of cities
in Mondial).

• Thus, for any XML file somewhere in the Web whose encoding is declared “UTF-8”, this
must be changed into “AL32UTF8”.

• Additionally, the DTD reference must be removed (here: 12c, 2016).

⇒ do this in the getXML procedure

• the HTTP stream is read piecewise (of 2000 chars per piece)

⇒ replace in the first piece.

615

12.2.2 SQL/XML: Generating XML by XML Publishing Functions

The SQL/XML Standard defines “XML publishing functions” that act as constructors (the
name comes from the fact that they are also used to publish relational data in XML format):

• constructors of the recursively defined abstract datatype “XMLType”,

• create fragments or instances of XMLType,

• usage in the same way as predefined or user-defined functions (e.g., in the SELECT
clause),

616

Some Theory: the Abstract Datatype

... constructors of the recursively defined abstract datatype “XMLType”:

Sub-datatypes:

• ELEMENT for element nodes

• ATTRIBUTE for attribute nodes

• QNAME for names of elements and attributes
(restriction of STRING without whitespaces etc.)

• STRING for text values (text nodes and attribute values)

• TUPLE(type) for a tuple of instances of type

• TABLE(type) for a table of instances of type

Constructors are very similar to those of XQuery (in the return clause), e.g.,:

element name attrs-and-content

and those of XSLT: <xsl:element name="..."> content </xsl:element>

and those of the ... DOM.

(always the same abstract datatype, but expressed with different syntaxes)

617

SQL/XML PUBLISHING FUNCTIONS: OVERVIEW

Basic constructors:

• XMLType: generates an XMLType instance from a Unicode string (“opaque constructor”)
XMLType: STRING → ELEMENT

• XMLElement: generates an XML element with a given name and content (either text
(simple contents) or recursively created XML (complex contents) or mixed
XMLElement: QNAME × (STRING ∪ ELEMENT ∪ ATTRIBUTE)∗ → ELEMENT
XMLElement: QNAME → ELEMENT for empty elements

• XMLAttributes: generates a one or more attribute nodes from a sequence of
name-value-pairs
XMLAttributes: (QNAME × STRING)+ → ATTRIBUTE+

618

SQL/XML PUBLISHING FUNCTIONS: OVERVIEW (CONT’D)

Further constructors:

• XMLForest: a function to generate a sequence, called a "forest," of XML elements with
simple contents from a sequence of name-value-pairs
XMLForest: (QNAME × STRING)+ → ELEMENT+

(note: the analogue to XMLAttributes for simple elements)

• XMLAgg: a function to group, or aggregate, XML data vertically from a column into a
sequence of nodes
XMLAgg: COLUMN(XMLTYPE) → XMLTYPE*

• XMLConcat: a function to concatenate the components of a (horizontal) SQL tuple into a
sequence
XMLConcat: TUPLE(XMLTYPE+) → XMLTYPE*
(note that a tuple is also different from a list as in XMLForest!)

• [XMLNamespaces: a function to declare namespaces in an XML element]

619

CONSTRUCTING XML ELEMENTS FROM ATOMIC SQL ENTRIES

Basic form: XMLElement

• XMLElement: Name × Element-Body → Element:

– Element-Body: text or recursively generated (attributes, elements, mixed)

SELECT XMLElement(x) FROM DUAL;

(note: this result is not correct: <X/> is an empty Element, while <X></X> is an element with
the empty string as contents!)

SELECT XMLElement("Country",'bla') FROM DUAL;
SELECT XMLElement(Country,'bla') FROM DUAL;

• note: using “...” to indicate non-capitalization (otherwise the whole name is capitalized).
(note that single and double “...” must be used exactly as in the example).

• Note that the first argument is always interpreted as a string:
SELECT XMLElement(name, code) FROM Country;
yields <NAME>AL</NAME>, <NAME>GR</NAME> etc.

620

Elements with Non-Empty Content

• XMLElement: second argument contains the element body (attributes, subelements, text),

• XMLAttributes: list of name-value pairs that generate attributes.

SELECT XMLElement("Country",
XMLAttributes(code AS "car_code", capital AS "capital"),
name,
XMLElement("Population",population),
XMLElement("Area",area))

FROM country
WHERE area > 1000000;

[Filename: SQLX/xmlelement.sql]

A result element:

<Country car_code="R" capital="Moscow">
Russia
<Population>148178487</Population>
<Area>17075200</Area>

</Country>

621

Optional Substructures

• XML as abstract datatype, functional constructors

• semistructured data: flexible and optional substructures

SELECT XMLElement("City",
XMLAttributes(country AS country),
XMLElement("Name",name),
CASE WHEN latitude IS NULL THEN NULL

ELSE XMLElement("Latitude",latitude) END,
CASE WHEN longitude IS NULL THEN NULL

ELSE XMLElement("Longitude",longitude) END
)

FROM city;
[Filename: SQLX/xmlelement2.sql]

• Note: CASE WHEN cond THEN a ELSE b END
is a functional construct
(like in “if” in XQuery and <xsl:if> in XSLT)

622

CONSTRUCTING XML: SEQUENCES OF ELEMENTS

XMLForest: short form for simple elements

SELECT XMLElement("Country",
XMLForest(name AS Name,

code AS car_code,
population AS "Population",
area AS "Area"))

FROM country
WHERE area > 1000000;

[Filename: SQLX/xmlforest.sql]

<Country>
<NAME>Brazil</NAME> <!-- note capitalization -->
<CAR_CODE>BR</CAR_CODE>
<Population>162661214</Population>
<Area>8511965</Area>

</Country>

⇒ canonical mapping from tuples to XML elements with simple content.

623

Subqueries

Contents can also be generated by (correlated) Subqueries:

SELECT XMLElement("Country",
XMLAttributes(code AS "car_code"),
XMLElement("Name",name),
XMLElement("NoOfCities",

(SELECT count(*)
FROM City
WHERE country=country.code)))

FROM country WHERE area > 1000000;

SELECT XMLElement("Country",
XMLAttributes(code AS "car_code"),
XMLElement("Name",name),
(SELECT XMLElement("NoOfCities",count(*))
FROM City
WHERE country=country.code))

FROM country WHERE area > 1000000;
[Filename: SQLX/xmlsubquery.sql]

624

Constructed XML can then be used for filling tables:

FILLING A TABLE ... WITH XML ROW VALUES

CREATE TABLE CountryXML OF XMLType;

INSERT INTO CountryXML
(SELECT XMLElement("Country",

XMLAttributes(code AS "Code",
population AS "Population"),

XMLElement("Name",name),
XMLElement("Area",area),
(SELECT XMLElement("Capital",

XMLForest(name AS "Name",
population AS "Population"))

FROM city
WHERE country=country.code

AND city.name=capital))
FROM country);

[Filename: SQLX/fillcountry.sql]

625

FILLING A TABLE: XML COLUMN VALUES

CREATE TABLE CityXML
(name XMLType,
province VARCHAR2(50),
country VARCHAR2(4),
population XMLType,
coordinates XMLType);

INSERT INTO CityXML
(SELECT XMLElement("name", name), province, country,

CASE WHEN population IS NULL THEN NULL
ELSE XMLElement("population", XMLAttributes(2010 as year), population)
END ,

CASE WHEN longitude IS NULL THEN NULL
ELSE XMLElement("coordinates",

XMLElement("latitude", latitude),
XMLElement("longitude", longitude))

END
FROM city);

[Filename: SQLX/fillcity.sql]

626

CONSTRUCTING XML FROM XML-IN-SQL: RESTRUCTURING

• Relational databases have

– literals (and objects for object-relational tables),

– tuples,

– tables.

• XML structures have

– sequences

– nesting (generated by XMLElement or by nested subqueries)

Create XML structures from XML-in-SQL content nodes:

• horizontally SQL/XML-to-XML: create an XML node sequence from a tuple (with XML
values) [note: XMLForest does not create a sequence from a tuple, but from a list that is
generated from an SQL tuple], or

• vertically SQL/XML to XML: create an XML node sequence from a column (or some rows
of that column) that holds XML nodes?

627

CONSTRUCTING XML: GROUPING INTO A SEQUENCE

Aggregated Lists

• XMLAgg: is a new SQL aggregate function (like count() or sum()), that does not return a
single value but the sequence of elements in that column.

• Note: XMLAgg is not applied to a sequence of XML elements, but to a column holding
XML elements!

Simplest case: XMLAgg over a table of XMLType row objects:

SELECT XMLElement("Cities",
(SELECT XMLAgg(name)
FROM CityXML c))

FROM DUAL; [Filename: SQLX/xmlagg.sql]

Result:

<Cities>
<name>...</name>
<name>...</name>
:

</Cities>

628

CONSTRUCTING XML: GROUPING

Aggregated Lists

... another example

• create a sequence of XML nodes from XML ndoes generated as 1-column query result
(table):

SELECT XMLElement("Continents",
(SELECT XMLAgg(XMLElement("Continent", XMLAttributes(name AS "Name",

area AS "Area")))
FROM continent))

FROM DUAL;
[Filename: SQLX/xmlagg2.sql]

Result:

<Continents>
<Continent Name="Europe" Area="..."/>
<Continent Name="Asia" Area="..."/>
:

</Continents>

629

CONSTRUCTING XML: NESTED GROUPING

Grouping/Aggregation: Nested Lists

• XMLAgg: generate a collection from the tuples inside of a GROUP BY:
In XML, this list of items can also be used!

... now we can have the number of cities in a country, together with a list of them:

SELECT XMLElement("Country",
XMLAttributes(country AS car_code),
XMLElement("NoOfCities", count(*)),
XMLAgg(XMLElement("city",name) ORDER by population))

FROM city
GROUP BY country;

[Filename: SQLX/xmlgroupagg.sql]

Element of the result set:

<Country CAR_CODE="D">
<NoOfCities>85</NoOfCities>
<city>Erlangen</city> <city>Kaiserslautern</city> ... <city>Berlin</city>

</Country>

630

CONSTRUCTING XML: MAPPING TUPLES INTO SEQUENCES

XMLConcat

• takes a tuple of XML elements and transforms them into a sequence:

SELECT XMLElement("City", XMLConcat(name, population, coordinates))
FROM CityXML
WHERE country='D';

[Filename: SQLX/xmlconcat.sql]

An element of the result set:

<City>
<name>Berlin</name>
<population>...</population>
<coordinates><latitude>...</latitude><longitude>...</longitude></coordinates>

</City>

631

Example: XMLConcat and XMLAgg

• the GROUP BY from Slide 630 can equivalently be expressed by using a (correlated)
(Sub)query that returns a tuple for each country (consisting of the number and the
aggregation of all cities):

SELECT XMLElement("Country",
XMLAttributes(code AS code),
XMLElement(name, name),
(SELECT XMLConcat(

XMLElement("NoOfCities", count(*)),
XMLAgg(XMLElement("city",name)))

FROM City
WHERE country=code))

FROM country;
[Filename: SQLX/xmlconcatagg.sql]

632

12.2.3 Map XMLType to String for Data Exchange

• the “user interface” sqlplus automatically shows XMLType data in its serialized XML form.

• for transmitting XML data e.g. via HTTP as a unicode stream, it must first be serialized
into a VARCHAR2 (PL/SQL fragment):

SELECT XMLSerialize(CONTENT value(m)) FROM mondial m;

(just looks “normal”)
set serveroutput on;
declare s VARCHAR2(1000);
begin

SELECT XMLSerialize(CONTENT c.name)
INTO s
FROM cityXML c
WHERE country='MC';
dbms_output.put_line(s);

end;
/

[Filename: SQLX/xmlserialize.sql]

633

12.2.4 Handling XML Data from within SQL

• recall: XMLType is defined as an abstract datatype.

• it also has selectors that provide an interface for standard XML languages

• signature:

extract: XMLType × XPath_Expression → XMLType ∪ string
extractValue: XMLType × XPath_Expression → string
existsNode: XMLType × XPath_Expression → Boolean

• implementation based on user-defined object types

– cf. object-relational extensions to SQL

• above operations also available as member methods

SELECT extract(value(m), '//city[name="Berlin"]') FROM mondial m;
SELECT m.extract('//city[name="Berlin"]') FROM mondial m;
SELECT extractValue(value(m), '//country[@car_code="D"]/population[last()]')
FROM mondial m;
SELECT m.extractValue('//country[@car_code="D"]/population[last()]')
FROM mondial m; -- buggy (since version 9 ... and still in 12c)!!!

634

SELECT: “Extract” Function

extract(XMLType_instance, XPath_string)
XMLType_instance.extract(XPath_string)

• First argument: selects an attribute with value of type “XMLType” in the current row (use
value(.) function)

• Second argument: applies XPath_string to it

• Result: value of type XMLType or any other SQL type
(multi-valued results are concatenated)

XML Row Values

Value of the row is of type XMLType: apply methods directly

SELECT extract(value(c), '/Country/@Code'),
extract(value(c), '/Country/Capital/Name')

FROM CountryXML c;

SELECT c.extract('/Country/@Code'),
c.extract('/Country/Capital/Name')

FROM CountryXML c;

635

ASIDE: SHORT OVERVIEW OF XPATH

(use the SQLX section in different lectures)

• Navigation as in Unix: /step/step/step
/mondial/country/name

• capitalization is relevant!

• result: a sequence of XML nodes (not only values, but also trees):
/mondial/country

• steps to deeper descendants: /mondial//city/name , //city/name
(latter includes /mondial/country/city and /mondial/country/province/city)

• attributes: .../@attributname: /mondial/country/@area

• access to text contents: /mondial/country/name/text()

• evaluation of conditions during navigation:
/mondial/country[@code=’D’]/@area
/mondial/country[name/text()=’Germany’]/@area

• Comparisons automatically use only the text contents:
/mondial/country[name=’Germany’]/@area

636

SELECT: “Extract” Function (Cont’d)

XML Column Values
Recall:

CREATE TABLE CityXML (name XMLType, province VARCHAR2(50),
country VARCHAR2(4), population XMLType, coordinates XMLType);

CityXML.population is an XMLType column object:

SELECT extract(population,'/') FROM CityXML;
SELECT c.population.extract('/') FROM CityXML c;
SELECT name, extractValue(population,'/population/@YEAR'),

extractValue(population,'/population')
FROM CityXML;
SELECT name, c.population.extract('/population/@YEAR').getNumberVal(),

c.population.extract('/population/text()').getNumberVal()
FROM CityXML c
ORDER BY 3;

• exact capitalization in XPath argument!

• extractValue currently not implemented as member method (bug)

• use getNumberVal() and getStringVal() functions

637

SUBQUERIES TO XMLTYPE IN THE WHERE CLAUSE

... for selecting and comparing values, use also extract():

SELECT name
FROM CityXML c
WHERE c.population.extract('/population/text()')

.getNumberVal() > 1000000;

SELECT c.extract('/Country/Name/text()')
FROM CountryXML c
WHERE c.extract('/Country/@Population')

.getNumberVal() > 1000000;

• Note: comparison takes place on the SQL level (WHERE)
(→ join functionality when variables are used).

• Note: if the XPath expression returns a sequence of results, these are concatenated
already during the evaluation of the extract() function ...

• ... thus, one has to use another way.

638

WHERE: “ExistsNode” Function

existsNode(XMLType_instance, XPath_string)

• Checks if item is of XMLType_instance, and XPath_string has a nonempty result set:

• note: the value for the comparison must be given in the XPath string – no joins on the
SQL level possible.

• result: 1, if a node exists, 0 otherwise.

SELECT name, extractValue(population,'/population')
FROM CityXML
WHERE existsNode(population, '/population[text()>1000000]') = 1;

SELECT name, extractValue(population,'/population')
FROM CityXML c
WHERE c.population.existsNode('/population[text()>1000000]') = 1;

639

UPDATING XML DATA

• the complete XMLType value is changed, not updated

• updateXML(...) as a (transformation) function!
Note: the statement “SELECT updateXML(...) FROM ...” does not update the DB, but
returns the value that would result from the update.

updateXML(XMLType_instance, XPath_string, new_value)

• first argument: SQL – selects an (SQL-)attribute of the current tuple (must result in an
XMLType object),

• 2nth argument: selects the node(s) to be modified by the value of the ...

• 2n + 1th argument: new value,

• result: updates instance of type XMLType.

• Note: the expression “SELECT updateXML(...) FROM ...” does not change the database
but returns only the value that would result from the update.

640

Updating XML Data (Cont’d)

SELECT updateXML(c.population,
'population/text()','3600000',
'population/@YEAR','2016')

FROM CityXML c WHERE extractValue(c.name,'name')='Berlin';

SELECT updateXML(value(c),
'/Country/Name/text()','Fidschi')

FROM CountryXML c
WHERE extractValue(value(c),'Country/Name')='Fiji';

[Filename: SQLX/updatexml.sql]

641

Updating XML Data (Cont’d)

This function is then used in the SQL SET-Statement:

UPDATE CityXML c
SET c.population -- an XMLType element

= updateXML(c.population,
'population/text()','3600000',
'population/@YEAR','2016')

WHERE extractValue(c.name,'name')='Berlin';

UPDATE CountryXML c
SET value(c) = updateXML(value(c),

'/Country/Name/text()','Fidschi')
WHERE existsNode(value(c),'/Country[Name="Fiji"]') = 1

642

CREATE OR REPLACE FUNCTION xslexample RETURN CLOB IS
xmldoc CLOB;
xsldoc CLOB;
myParser dbms_xmlparser.Parser;
indomdoc dbms_xmldom.domdocument;
xsltdomdoc dbms_xmldom.domdocument;
xsl dbms_xslprocessor.stylesheet;
outdomdocf dbms_xmldom.domdocumentfragment;
outnode dbms_xmldom.domnode;
proc dbms_xslprocessor.processor;
html CLOB DEFAULT 'BLA'; -- must be initialized;

BEGIN
-- Get the XML document as CLOB
SELECT value(m).getClobVal() INTO xmldoc FROM mondial m;
-- Get the XSL Stylesheet as CLOB
SELECT s.stylesheet.getClobVal() INTO xsldoc
FROM stylesheets s WHERE name='mondial-simple.xsl';

-- Get the new xml parser instance
myParser := dbms_xmlparser.newParser;
-- Parse the XML document and get its DOM
dbms_xmlparser.parseClob(myParser, xmldoc);
indomdoc := dbms_xmlparser.getDocument(myParser);

-- Parse the XSL document and get its DOM
dbms_xmlparser.parseClob(myParser, xsldoc);
xsltdomdoc := dbms_xmlparser.getDocument(myParser);

xsl := dbms_xslprocessor.newstylesheet(xsltdomdoc, '');
-- Get the new xsl processor instance
proc := dbms_xslprocessor.newProcessor;

-- Apply stylesheet to DOM document
outdomdocf := dbms_xslprocessor.processxsl(proc, xsl, indomdoc);
outnode := dbms_xmldom.makenode(outdomdocf);

-- Write the transformed output to the CLOB
dbms_xmldom.writetoCLOB(outnode, html);
-- Return the transformed output
return(html);

END;
/
SELECT xslexample FROM dual; [Filename: SQLX/xslexample.sql]

643

12.3 XQuery Support in SQLX

SQL function XMLQuery()

• SQL function xmlquery(’query ’ [passing vars clause] returning content)

• XQuery function ora:view(tablename) turns tables into sequences of XML elements:

– relational tables: Every row is turned into a ROW element as shown on Slide 597,

– object table of XMLType: sequence of the XML elements in the object table,
comparable to XQuery’s let

• the result is the sequence of nodes as returned by the XQuery statement (of type “XML
content”).

SELECT
xmlquery(
'for $c in ora:view("countryXML")/Country
where $c/Capital[Population > 1000000]
return $c/Name'

returning content)
from dual;

SELECT
XMLElement("result",
xmlquery(
'for $c in ora:view("countryXML")/Country
where $c/Capital[Population > 1000000]
return $c/Name'

returning content)) from dual;

644

Passing XML parameters to XMLQuery()

Instances of XMLType can be selected in the SQL environment and passed to XMLQuery:

• context node

• variables

SELECT
XMLElement("result",
xmlquery(
'for $c in ora:view("countryXML")/Country
where $c/Capital[Population > $pop]
return $c/Name'

passing
(SELECT population FROM City WHERE name='Tokyo') as "pop"

returning content
)) from dual;

• comma-separated value-as-varname-list

• without “as ...”: context node

• "varname" cares for capitalization ($POP and ... as pop would also be correct)

645

Syntax example

• Select names of all countries

• from the only XML element stored in table mondial (used as context element)

• that have a city that has a higher population than Tokyo (obtained from an SQL query)

SELECT
XMLElement("result",
xmlquery(
'for $c in //country
where $c//city[population[last()] > $POP]
return $c/name'

passing
(SELECT value(m) from mondial m),
(SELECT population FROM City WHERE name='Tokyo') as POP

returning content
)) from dual;

646

XMLTable(): from XML contents sequences back to relational tables

• XQuery returns a sequence of nodes, which is of XML type “content” that can be put in an
element (see above).

Turn the sequence of nodes into a table of rows:

• SQL function xmltable(’query ’ [passing vars clause] [COLUMNS column def clause])

• column-def-clause is a comma-separated list of (datatype, column name, XPath expr.),

• default: a single XMLType pseudo-column, named COLUMN_VALUE,

• the result of XMLTable can be used like a relational table.

SELECT column_value
FROM
xmltable ('

for $j in //country
return $j/name'
passing

(SELECT value(m) FROM mondial m));

every row of the table is of XMLType and contains
a <name>...</name>element

SELECT column_value
FROM
XMLTABLE ('

for $j in //country
return $j/name'
PASSING

(SELECT value(m) FROM mondial m))
WHERE column_value LIKE '%fr%';

Note: “like” is applied to the (contents of the) ele-
ment.

647

XMLTABLE columns specification

SELECT *
FROM XMLTable ('

for $j in //country
return $j/name'
PASSING

(SELECT value(m) FROM mondial m)
COLUMNS

result XMLTYPE PATH '.',
x VARCHAR2(50) PATH 'text()');

returns <name>...</name>elements.

SELECT *
FROM XMLTable ('

for $j in //country
return $j'
PASSING

(SELECT value(m) FROM mondial m)
COLUMNS

name VARCHAR2(50) PATH 'name',
area NUMBER PATH '@area',
population NUMBER

PATH 'population[position()=last()]');

casts automatically to numbers.

• note: the second example requires explicit “[position()=last()]” instead of only [last()].

• Additional specification of namespaces (for the paths): see documentation.

648

Back and Forth: an example

• the result of XMLTable(...) can be used like a relational table:

SELECT u.column_value, u.column_value.extract('//Name/text()')
FROM (
SELECT t.column_value
FROM
XMLTABLE ('

for $j in $X/*
return $j'
PASSING
(xmlquery(

'for $c in ora:view("countryXML")/Country
where $c/Capital[Population[last()] > $pop]
return $c/Name'

PASSING (SELECT population FROM city WHERE name='Berlin') as "pop"
RETURNING content)

) AS X) t) u
WHERE u.column_value.extract('//Name/text()') like '%ic%';

• or e.g. in insert: INSERT INTO ... (SELECT * FROM XMLTable(...)).

649

XQuery in SQLplus

• simple keyword “xquery”,

• returns the result of applying XMLTable (i.e., one row for each result of the xquery
statement):

xquery
for $c in ora:view("countryXML")/Country
where $c/Capital[Population > 1000000]
return $c/Name

/

In contrast to many XML tools, attribute nodes are output as string values:

xquery
for $i in ora:view("mondial")/mondial/country
return $i/@car_code
/

650

Namespaces and Function Declarations

• as usual in XQuery:

xquery
declare namespace local = "http://localhost:8080/defaultNS";
declare function local:density($pop, $area)
{

$pop div $area
};
for $c in ora:view("mondial")//country
return local:density($c/population[last()],$c/@area)
/

651

Restrictions of Functionality

(Oracle version 12c)

• most XQuery/XPath functionality is supported (aggregation, context functions,
some/every, string functions, path alternatives, ...)

• id(.) and idref(.) are not supported (recall that documents do not contain a DTD reference)

652

INDEXES

• Indexes on XML data can be defined over any literal fields:

CREATE INDEX countrycodeindex
ON countryxml c
(EXTRACTVALUE(value(c), '//Country/@Code'));

CREATE INDEX countrycapnameindex
ON countryxml c
(EXTRACTVALUE(value(c), '//Country/Capital/Name'));

CREATE INDEX mondialcitynameindex
ON mondial m
(EXTRACTVALUE(value(m), '//Country//City/Name'));

653

12.4 XML Storage in Oracle

• CLOB (Character Large Object): Default.
XML is stored in its Unicode representation.
Note: for content management/delivery (e.g., to a Web server or as a Web service that
just requires to get a Unicode stream) this is optimal.
Queries: XML is parsed internally and XPath/XQuery is applied.

• Binary XML

CREATE TABLE mondialBin OF XMLType
XMLTYPE STORE AS BINARY XML;

INSERT INTO mondialBin VALUES(
system.getxml(
'http://www.dbis.informatik.uni-goettingen.de/Teaching/DBP/XML/mondial.xml'));

• object-relational (only possible, if an XML Schema with oracle-specific annotations is
preloaded)

654

STORAGE: PERFORMANCE COMPARISON

• BinaryXML is much faster
this example: 16:1

SET PAUSE OFF;
SET TIMING ON;

select xmlquery('
for $i in ora:view("mondial")/mondial
let $city := $i//city
let $country := $i/country
where $city/@country = $country/@car_code

and $city/@id = $country/@capital
return $city/name
'returning content)
from dual;

needs first time: 8.34,
then between 7.30 and 7.90

select xmlquery('
for $i in ora:view("mondialbin")/mondial
let $city := $i//city
let $country := $i/country
where $city/@country = $country/@car_code

and $city/@id = $country/@capital
return $city/name
'returning content)
from dual;

needs first time: 0.42,
then between 0.28 and 0.30

655

Storage: Performance Comparison (Cont’d)

• join between two XPaths on a single XML table

SELECT * FROM XMLTABLE('
for $i in ora:view("mondial")//country

$j in ora:view("mondial")//city,
where $i/@car_code = $j/@country

and $i/@capital = $j/@id =
return $j/name/text()');

• without XMLTYPE STORE AS BINARY XML: to do

• with XMLTYPE STORE AS BINARY XML: to do

656

Storage: Performance Comparison (Cont’d)

CREATE TABLE mcity OF XMLType XMLTYPE STORE AS BINARY XML;
CREATE TABLE mcountry OF XMLType XMLTYPE STORE AS BINARY XML;
INSERT INTO mcity (SELECT COLUMN_VALUE FROM XMLTABLE(

'for $c in ora:view("mondial")//city return $c'));
INSERT INTO mcountry (SELECT COLUMN_VALUE FROM XMLTABLE(

'for $c in ora:view("mondial")//country return $c'));

CREATE INDEX mcountrycode ON mcountry c
(EXTRACTVALUE(value(c), '//country/@car_code'));

CREATE INDEX mcountrycap ON mcountry c
(EXTRACTVALUE(value(c), '//country/@capital'));

CREATE INDEX mcitycountry ON mcity c
(EXTRACTVALUE(value(c), '//city/@country'));

CREATE INDEX mcityid ON mcity c
(EXTRACTVALUE(value(c), '//city/@id'));

SELECT * FROM XMLTABLE('
for $i in ora:view("mcountry")/country,

$j in ora:view("mcity")/city
where $i/@car_code = $j/@country and $i/@capital = $j/@id
return $j/name'); -- /text() -> error/bug

657

Storage: Performance Comparison (Cont’d)

• without XMLTYPE STORE AS BINARY XML: even for restricted size (cities > 200000
inhabitants, countries with area >1000000) 26 minutes.

• with XMLTYPE STORE AS BINARY XML: 3 minutes

• without indexes: first run needs longer (e.g., 26min/20min); then nearly same time as with
indexes.

658

12.5 Background: XMLType as Object Type

(cf. “Practical Training in SQL” course)

Since SQL3 Standard: Object(-relational) types

• user-definable: CREATE TYPE AS OBJECT ... / CREATE TYPE BODY

• stored as row or column objects
CREATE TABLE cities OF CityObjectType;

• member methods

– programmed in PL/SQL or recently also in Java

– calls are embedded into SQL: SELECT object.method(args)

• reference attributes:
CREATE TABLE COUNTRY (..., capital REF CityType, ...);
SELECT c.capital ...;

⇒ now used for implementing XMLType

• as predefined internal classes/types

• can be used high-level from SQL, or low-level inside PL/SQL

659

XSLT IN ORACLE: “TRANSFORM” MEMBER METHOD

Member Method of XMLType: XML-instance.transform(Stylesheet-as-XMLValue)
as SQL function: SELECT XMLTransform(XML-instance,Stylesheet-as-XMLValue)

CREATE TABLE stylesheets
(name VARCHAR2(100),
stylesheet XMLTYPE);

INSERT INTO stylesheets VALUES('mondial-simple.xsl',
system.getxml('http://www.dbis.informatik.uni-goettingen.de' ||

'/Teaching/DBP/XML/mondial-simple.xsl'));

SELECT value(m).transform(s.stylesheet)
FROM mondial m, stylesheets s
WHERE s.name = 'mondial-simple.xsl';

SELECT XMLTransform(value(m),s.stylesheet)
FROM mondial m, stylesheets s
WHERE s.name = 'mondial-simple.xsl';

[Filename: SQLX/applystylesheet.sql]

660

Using built-in DOM, Parser, and XSL Engine

Tools from several packages can be explicitly used inside PL/SQL procedures:

• dbms_xmldom: implements DOM (usually, XML is transformed into DOM for processing it
in detail)
PL/SQL call: dbms_xmldom.dosomething(object,args)

• dbms_xmlparser: parses documents from CLOB or URL, parses DTD from CLOB or URL
(and stores the result);
access to the DOM instance/DTD in the parser then by “getdocument” or “getdoctype”

• dbms_xslprocessor: processxsl(different arguments);
clob2file/file2clob allows for reading/writing;
selectnodes/selectsinglenode/valueof: XPath queries

... for details: Oracle Documentation, google ...

661

12.6 Storing XML Data in Database Systems

• “shredding” and distributing over suitable tables (of object-relational object types)
(queries are translated into SQL joins/dereferencing)

– Schema-based

– Generic mapping of the graph structure

• storing it as VARCHAR, CLOB (Character Large Object), or as separate file with special
functionality

• storing it “natively”/binary/model-based: internal object model

Literature

Klettke/Meyer “XML & Datenbanken” (dpunkt-Verlag), Ch. 8
Schöning: “XML und Datenbanken” (Hanser), Ch. 7,8
Chaudhri/Rashid/Zicari: XML Data Management

662

12.6.1 Mapping XML → Relational Model

two basic approaches:

• Schema-based: one or more “customized” tables for each element type
(→ similar to relational normalization theory)

– (possibly) many null values

– efficient access on data that belongs together

• one generic large table based on the graph structure:
(element-id, name of the property, value/id of the property)

– no null values

– although memory-consuming (keys/names that are stored once in (1) are now stored
for each occurrence)

– data that belongs together is split over several tuples

⇒ in both cases, theory and efficiency of relational database systems can be exploited.

663

SCHEMA-BASED STORAGE

necessary: DTD or XML Schema of the instance.

1. For each element type that has children or attributes, define a table that contains

• a column that holds the primary key of the parent,

• a primary key column if the element type has a member that satisfies (1) or (2),

• for each scalar attribute and child element type with text-only contents that appears at
most once, a column that holds the text contents.

2. for each multi-valued attribute or text-only subelement type that occurs more than once
for some element type, a separate table is created with the following columns:

• key of the parent node,

• the (attribute or text) value

(similar to 1:n relationships in the relational model).

• for mixed content: possible solutions depend on the specific structure

• special treatment for infrequent properties (to avoid nulls): handling in a separate
XMLType column that holds all these properties together.

664

Schema-Based Storage: Example

For Mondial countries, provinces and cities, the following relations are created:

• country: key(mondial), key, name, code, population, area, . . .

• border: ref(country), ref(other country), length

• language: ref(country), language, percentage

• province: ref(country), key, name, population, area

• city: ref(country), ref(province), key, name, latitude, longitude

• city-population: ref(city), year, value

Exercise

• give an excerpt of the instance

• translate some XPath/XQuery queries to SQL

• extended exercise: generate and populate the schema in SQL

Supported: Oracle (with augmented XML Schema), IBM DB2 (with DAD – Data Access
Definition), MS SQL Server (extended Data-Reduced XML)

665

OBJECT-RELATIONAL APPROACH: INTERNAL OBJECT TYPES

• “shredded storage” of XML data is in general not implemented by plain relational tables,
but using object-relational technology:
object types, collections, varrays etc ...

• collections/varrays: with value- and path indexes

• XPath expressions are rewritten into these structures

Integration of “legacy” object types

• application-dependent object types (as used in SQL3 in pre-XML times): standard
mapping to XML (e.g. for data exchange)

666

Oracle & XML Schema
... register XMLSchema (must be typed in one single line!)

EXEC dbms_xmlschema.registerURI('http://mondial.de/m.xsd',
'http://dbis.informatik.uni-goettingen.de/Mondial/mondial.xsd');

can be deleted with

EXEC dbms_xmlschema.deleteSchema('http://mondial.de/m.xsd',
dbms_xmlschema.DELETE_CASCADE_FORCE);

• ... now, it knows http://mondial.de/m.xsd and created object tables for all root element
types:
SELECT * from ALL_XML_TABLES;

CREATE TABLE mondial2 OF XMLType
XMLTYPE STORE AS OBJECT RELATIONAL
XMLSCHEMA "http://mondial.de/m.xsd"
ELEMENT "mondial";

INSERT INTO mondial2 VALUES(
system.getxml(
'http://www.dbis.informatik.uni-goettingen.de/Teaching/DBP/XML/mondial.xml'));

SELECT XMLisValid(value(m)) FROM mondial2 m;

667

GRAPH-STRUCTURE-BASED STORAGE

Without any schema knowledge, the graph structure can be represented in a single large
table:

NodeNumber ParentNode [SiblingNo if ordered] Name Value

(see next page)

Alternatives

• separate table for elements and attributes (without node number and sibling number)

• separate between no-value, string value and numeric values for storing adequate types.

• previous-sibling and following-sibling columns instead of sibling-no (DOM style)

Querying

• requires recursive queries (PL/SQL; CONNECT BY)

• large joins (using the same large table several times)

• not implemented in any commercial system [according to Schöning 2003]

668

NodeNumber ParentNode SiblingNo Name Value

1 doc 1 mondial

2 1 1 country

3 2 @code D

4 2 @membership ref(eu)

: : : :

41 2 @membership ref(un)

42 2 @area 356910

43 2 @capital ref(92)

44 2 1 name Germany

45 2 2 population 83536115

: : : :

90 2 47 province

91 90 1 name Berlin

92 90 2 city

93 92 @country ref(2)

94 92 1 name Berlin

95 92 2 population

96 95 @year 1995

97 95 text() 3472009

: : : :

669

12.6.2 “Opaque” Storage

XML documents are stored as a whole as special datatype that can be used as row type or
column data type (most commercial DBS; as described above for SQL/XML)

• approaches with text-based storage (CLOBs, files)

• specialized functionality for this datatype
(cf. object-relational DBs: member functions)

– XPath querying, XSLT support

– validation

– text search functions

• syntax embedded into SQL

• supported by indexes

– full text indexes

– path indexes/ “functional” indexes (user-defined, e.g. over //city/@country)

– application and refinement of classical algorithms

• optimization of queries below the relational level!

670

12.6.3 “Native” Storage

Using “original” concepts of the database for storing XML (internal XML or object model)
instead of mapping it or “simply” representing it as Unicode string.

• often based on existing object-oriented DB-systems with application of concepts from
hierarchical and network-DBs

• no document transformation to another data model

• data model/classes based on the notions of “tree”, “element”, “attribute”, “document order”

• navigation

• XPath/XQuery/XSQL APIs

671

“Native” Storage: Systems and Products

Many early implementations came from the object-oriented area:

• XML-QL, based on the Strudel system

• LoPiX, based on F-Logic

• Lorel-XML, based on Lorel/OEM

• Tamino (Software AG, Darmstadt, founded 1969 (Adabas, hierarchical DB), Tamino 1999,
with XQL, first native XML DBMS),

• Excelon (until 1998: ObjectDesign with “ObjectStore”; since 12.2002: acquired by
Progress Software Corp.)

• POET (Hamburg, “Persistent Objects and Extended Database Technology”, product
1990, spin-off from BKS 1992, OQL interfaces, SGML Document Repository 1997,
Content Management Suite since 1998, merger with Versant 2004)

• Infonyte (GMD IPSI XQL 1998, based on a “Persistent DOM”, 12.2000: spinoff TU
Darmstadt/Fraunhofer-IPSI)

672

GENERIC DATABASE BEHAVIOR FOR XML DATABASES

Everything that has been developed and dicussed for relational databases is also relevant for
XML:

• physical storage + storage management

• optimization, evaluation algorithms

• multiuser operation, transactions (ACID), safety, access control

• ECA-rules, triggers

The algorithms and theoretical foundations are very similar.

Often, relational (or hierarchical) DB technology is actually used inside.

673

COEXISTENCE OF XML AND RELATIONAL DATA

• generating XML (views, data exchange packets, ...) from stored relational data

• relational (and object-relational) techniques used for efficiently storing data-centric XML

• storing text-oriented data in RDB with specialized “native” datatypes

• XPath is also accepted by SQL/XML

• additional XML processing functionality by packages and object types

• XQuery is still not the “winner” for data-oriented applications!

• is it the winner for document-oriented applications?
http://www.w3.org/TR/xquery-full-text/

674

