
Semistructured Data and XML 1

1. Unit: Exercises to XML

Information about the XML course can be found at

http://www.stud.informatik.uni-goettingen.de/xml-lecture

Exercise 1.1 (XML-Tree vs Directory-Tree)

Load mondial-europe.xml into xmllint and browse through the directory structure. First, change
into the country element of Germany, then into the city of Göttingen. Then, change into the next
city in the document.
Links to xmllint and the Mondial database can be found at
http://www.stud.informatik.uni-goettingen.de/xml-lecture.

Exercise 1.2 (Student-DTD)

• Write a DTD for XML documents with student data:
name, address and a student id, one or more subjects (computer science, law, chemistry, socio-
logy etc)

• Write an XML document containing student data conforming to the DTD, and check it for
validity using xmllint.

Exercise 1.3 (HTML-XHTML)

• Find a simple HTML document (e.g. your own personal student homepage) and convert it by
hand from HTML to XHTML.

• Check the XHTML document for validity using the XHTML validator
(http://validator.w3.org/detailed.html).

Hint: In your home directory in the CIP pool, there is a directory public html which is your
personal web directory. Files there are accessible via
http://student.ifi.informatik.uni-goettingen.de/~<username>/<filename>.

Yes, this is often a nontrivial piece of work. Most HTML pages are written very unprecise.

Why are the requirements of XML/XHTML so much stricter? The reason is the complexity of the
parser: an HTML parser must be very fault-tolerant, which means that it has a lot more transitions
that cover imprecise HTML.

Consider the following example of an HTML fragment (where nearly all closing tags are missing,
and the table markup is far from correct):

<html>

<head><title>A very unprecise HTML page

<body>

some text

<p>

<table border="1">

<tr> <td> eins.eins <td> eins.zwei

<tr> <td> zwei.eins <td> zwei.zwei

</table>

<p>

and some more text

</html>

Semistructured Data and XML 2

Consider the following fragmentary XHTML DTD fragment:

<!ELEMENT html (head?,body)>

<!ELEMENT body (p*)>

<!ELEMENT p (#PCDATA|table)*>

<!ELEMENT table (thead?,tbody)>

<!ELEMENT tbody (tr+)>

<!ELEMENT tr (td+)>

<!ELEMENT td (#PCDATA)>

The following DFA can be used to parse and validate XHTML documents wrt. the above language
fragment:

• every column is a subautomaton,

• dashed lines abstract from the structure of the subelements,

• blue lines connecting hierarchical subautomata describe transitions for opening and closing tags.

html body p table tbody tr td

head

body

body

p
body

/body

#PCDATA

table
p

p

/p

table

/table

thead

tbody

tbody

tbody

/tbody tr

tr

tr

/tr

td

td

tr

td

/td

#PCDATA

td

tr

/table

For fault-tolerant parsing of HTML, the dotted transitions must be added. They represent transi-
tions when

• a complete level (tbody) has been omitted, or

• a closing tag has been omitted.

These lines are depicted above in red, dotted:

• opening <tr> tag in <table>: skip <tbody> level. Note that this makes the return with the closing
</tr> nondeterministic – either jump back to the <tbody> level or to the <table> level (thus,
the parser must push down where it came from).

• opening <td> tag in <td> element: implicitly close the </td> element and jumping to the start
of a new <td>.

• opening <tr> tag in <td> element: implicitly close the </td> and the </tr>, jumping to the start
of a new <tr>.

• closing <table> tag in <td> element: implicitly close the </td>, </tr>, and </tbody>, jumping
to the transition that actually closes the <table>.

• opening <p> tag in <p> element: implicitly close the </p> element and jumping to the start of
a new <p>.

Semistructured Data and XML 3

• some more ...

These transitions cannot be defined automatically from the DTD specification, but have to be
added manually by the parser designer (presuming that he knows what “shortcuts” the users will
apply). Such “techniques” are in general not acceptable for any DTD – thus, for XML it was
decided to have stricter rules for validation.

Exercise 1.4 (DFAs and DTDs)

Consider the following DTD:

<!ELEMENT date (day,month,year?)>

<!ELEMENT day (#PCDATA)>

<!ELEMENT month (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT a (date*)>

<!ELEMENT b (#PDCATA)>

<!ELEMENT c (b+|(b?,a)*)>

Define a finite automaton for each element definition which accepts the corresponding content

model.

The part of the automaton for the a and date elements are simple:

date

date

/date

/date

day

month

year

day

/day

#PCDATA

month

/month

#PCDATA

year

/year
#PCDATA

The part for the c element is mich more complicated: note that the DTD is not allowed since it is
not deterministic (where determinism is defined according to the derived automaton), since if first
a b is read, it is not known which branch should be entered, see below:

b

b

b

a

a

a

b

a

Note that the initial state is also an accepting state since
the second branch (b?, a)∗ can be empty.
the automaton shows that there it is nondeterministic if
first, a b is read.
From other lectures, it is known that the automaton can
be transformed into an equivalent deterministic one, that
then also indicates an allowed content model expression.

Transformation: move the b from b?, a out (take care that the second branch can also begin with
an omitted b and then an a, and that it is completely optional!).

Semistructured Data and XML 4

b

b

b

a

a

a

b

a

A deterministic content model expression is then
(b, (b ∗ |(a, (b?, a)∗)))) | (a, (b?, a)∗)?.
Note that there are several more equivalent expressions.

The complete automaton is then created by connecting each a step with a copy of the date auto-
maton (copies are needed since the return jump must be deterministic – in reality this is done by
maintaining a stack), and connecting each b step with a #PCDATA automaton.

Exercise 1.5 (Is XML a context-free language?) Consider XML as a formal language.

(a) is the language of all XML documents of a given document type, specified by DTD that does
not contain any attributes context-free?

(b) consider the case where the DTD contains attributes.

(c) is the language of all well-formed XML documents, without known document type, or with no
document type at all context-free?

Recall from the Theoretical Computer Science lecture:

• A language is context-free in the sense of the Chomsky hierarchy if there is a context-free
grammar for it.

• A context-free grammar’s productions are of the form A → α1, . . . , αn, with A being a non-
terminal symbol, and α1, . . . , αn being non-terminal and terminal symbols, 1 ≤ n.

• A common way of proving that a language is not context-free is to prove that the pumping
lemma property does not hold.

The Pumping Lemma for context-free Languages (or uvwxy Theorem). A language L
is context-free ⇒ ∃n ∈ N ∀z ∈ L : |z| ≥ n → ∃uvwxy with z = uvwxy
(1) |vx| ≥ 1
(2) |vwx| ≤ n
(3) ∀i ∈ N : uviwxiy ∈ L.

In words:
For each context-free language L there is a number n such that for every word z from L of length
n or longer, there is a decomposition of z into uvwxy, such that (1) − (3) holds.

Solution. Let Σ = {<, /, >, a, . . . , z, 0, . . . , 9, “ ”} be the (reduced) unicode alphabet of XML. A
DTD consists of a number of element and attlist definitions.

(a) The grammar (recall, without attributes) is as follows:

Define Ldtd for a fixed DTD, which uses a fixed set E1, . . . , En of element names, as a language
over Σ′ = {<, >, /, a, . . . , z, 0, . . . , 9, “ ”, elementname1, . . . , elementnamen} as follows.

Starting rule: S → E1| . . . |En.

For each element definition <!ELEMENT elementnamek EMPTY>, add the rule
Ek → <elementnamek/>.

Semistructured Data and XML 5

For each element definition <!ELEMENT elementnamek (β)>, add the rule
Ek → <elementnamek>Cβ </elementnamek>.

For every Cβ , add the corresponding rule for context models (= regular expressions):

if β = #PCDATA then add Cβ → P
if β = ANY then add Cβ → E1| . . . |En|ǫ
if β = (β1, β2) then add Cβ → Cβ1

Cβ2

if β = (β1|β2) then add Cβ → Cβ1
|Cβ2

if β = (β1∗) then add Cβ → Cβ1
Cβ |ǫ

if β = (β1+) then add Cβ → Cβ1
(Cβ |ǫ)

if β = (β1?) then add Cβ → Cβ1
|ǫ

if β = elementnamem then add Cβ → Am ,
and add the corresponding rules for Cβ1

and Cβ1
.

PCDATA rule: P → Pa|Pb| . . . |Pz|PA| . . . |PZ|P0| . . . |P9|P“ ”|ǫ.

The result is a context-free grammar for Ldtd.

(b) There are two issues to consider: (i) attributes in general, and (iii) specifics of IDREF/IDREFS.

For (ii), for every !ATTLIST elementnamei declaration, every permutation π of the attributes
attr i,1, . . . , attr i,m(k) must be allowed in the corresponding grammar rule for Ei, e.g.

Ek → <elementnamek attrk,π(1)=“P” . . . attrk,π(m(k))=“P”>Cβ</elementnamek>.

If instead of only CDATA attributes, also NMTOKEN/NMTOKENS are allowed, use a rule
for NM and NMS similar to P .

So far, the grammar is still context-free.

If ID/IDREFS with their uniqueness and reference properties have to be verified, these features
go beyond the expressiveness of context-free grammars. Actually, the context-free grammar
together with a dictionary (to store IDs and check their uniqueness) and a postprocessing run
(to check IDREFS that may be forward-references) is used.

(c) Let Lxml = { <ω1 . . . ωk>α1 . . . αm</ω1 . . . ωk>|
ω1 ∈ {a, . . . , z, A, . . . , Z},
ω2, . . . , ωk ∈ {a, . . . , z, A, . . . , Z, 0, . . . , 9},
α1, . . . , αm ∈ {ǫ} ∪ CHAR ∪ L}

,

(well-formed XML without document type and without attributes).

Show via pumping lemma that Lxml is not context-free.

To prove: ∀n ∈ N ∃z ∈ L, |z| ≥ n ∀uvwxy with z = uvwxy :
(1) : |vx| = 0 ∨ (2) : |vwx| > n ∨ (3) : ∃i ∈ N : uviwxiy /∈ L.
Let z =< a . . . a

︸ ︷︷ ︸

n×

b . . . b
︸ ︷︷ ︸

n×

>< / a . . . a
︸ ︷︷ ︸

n×

b . . . b
︸ ︷︷ ︸

n×

>.

Assuming |vx| ≥ 1 ∧ |vwx| ≤ n :⇒
case 1 : vwx ⊆ starting tag or vwx ⊆ end tag : ⇒ uv2wx2y /∈ L.
case 2 : v ∩ {>, <, /} 6= ∅ or x ∩ {>, <, /} 6= ∅ : ⇒ uv2wx2y /∈ L.
case 3 : v ⊆ starting tag ∧ x ⊆ end tag :

|vwx| ≤ n ⇒ v = b . . . b, x = a . . . a ⇒
uvwxy = < a . . . ab . . . b

︸ ︷︷ ︸

u

b . . . b
︸ ︷︷ ︸

v

b . . . b >< /a . . . a
︸ ︷︷ ︸

w

a . . . a
︸ ︷︷ ︸

x

a . . . ab . . . b >
︸ ︷︷ ︸

y

⇒

uv2wx2y =< a . . . a
︸ ︷︷ ︸

n

b . . . b
︸ ︷︷ ︸

n+|v|

>< / a . . . a
︸ ︷︷ ︸

n+|x|

b . . . b
︸ ︷︷ ︸

n

>/∈ Lxml .

Comments. Thus, parsing an XML document is much easier if a DTD is provided.

If an XML document is processed, where no DTD is provided, the parsing is theoretically based
on generating a context-free grammar on-the-fly by instantiating the ANY rule for every element

Semistructured Data and XML 6

name that is unknown so far.

Actually, this is again encoded in a stream processing that reads the plain text input character by
character and determines element names, attribute names, values etc., and does the parsing (and
often already the intended processing).

Exercise 1.6 (XML Tree and XPath Axes) Consider the XPath axes in a document.

• Provide equivalent characterizations of the “following” axis and of the “preceding” axis

i) in terms of “preorder” and “postorder”,

ii) in terms of other axes.

Given an XML document, let pre : element ∪ text → IN and post : element ∪ text → IN denote the
preorder and postorder numberings.

• Given a node x, preceding(x) are all elements and text nodes y such that pre(y) < pre(x)
and not post(y) < post(x) (this excludes the ancestors). Enumerate them in reverse document
order.

• Symmetric: Given a node x, following(x) are all elements and text nodes y such that post(y) >
post(x) (note that this does not include the descendants, since the root of a subtree is visited
after the tree) and not pre(y) < pre(x) (this excludes the ancestors). Enumerate them in
document order.

• The nodes on the “following” axis can be enumerated as “descendants-or-self of all following
siblings of the ancestors-or-self of x”.

XPath Expression:
doc(’mondial.xml’)//city[name=’Karlsruhe’]/ancestor-or-self::*/following-sibling::*/descendant-or-self::*/name()

Analogously for the “preceding” axis.

Exercise 1.7 (XML to RDB) A possible model for storing (or indexing) XML data is based
on relational tables (we ignore namespaces here).

(1) a table for storing element and text nodes:

• first column: node identifier in Dewey Notation (e.g., 1.2.6.3 for the third child of the sixth
child of the second child of the root node),

• second column: number of the node when enumerated in preorder,

• third column: number of the node when enumerated in postorder,

• forth column: element type (or “text”),

• fifth column: text content (or NULL).

(2) a table for storing attribute nodes:

• first column: dewey identifier of the node where the attribute belongs to,

• second column: attribute name,

• third column: value.

a) Discuss whether the above information is sufficient for storing an XML document. Give the
tables for a small example document.

b) Discuss what must be done when an update (modification, insertion, deletion) is executed.

c) Given a “current” element somewhere in the tree, characterize the following sets of nodes (i.e.,
the nodes that result from navigating along the different axes) by their dewey notation and, if
possible, by their preorder / postorder information:

• the parent

• all children

Semistructured Data and XML 7

• all successors

• all ancestors

• all siblings

• all predecessors according to document order

• all successors according to document order

• all attributes

Consider the following XML tree (also available on the Web page):

<mondial>

<country car_code="F" area="547030" capital="cty-France-Paris">

<name>France</name>

<population>58317450</population>

<population_growth>0.34</population_growth>

<languages percentage="100">French</languages>

<province capital="cty-France-Strasbourg">

<name>Alsace</name>

<city id="cty-France-Strasbourg">

<name>Strasbourg</name>

<population year="90">252338</population>

</city>

<city>

<name>Mulhouse</name>

<population year="90">108357</population>

</city>

</province>

<province capital="cty-France-Paris">

<name>Ile de France</name>

<city id="cty-France-Paris">

<name>Paris</name>

<population year="90">2152423</population>

</city>

:

</province>

:

</country>

<country car_code="D" area="356910" capital="cty-Germany-Berlin">

<name>Germany</name>

<population>83536115</population>

<population_growth>0.67</population_growth>

<languages percentage="100">German</languages>

<province>

<name>Baden Wurttemberg</name>

<city>

<name>Stuttgart</name>

<population year="95">588482</population>

</city>

<city>

<name>Karlsruhe</name>

<population year="95">277011</population>

</city>

Semistructured Data and XML 8

</province>

:

<province>

<name>Berlin</name>

<city id="cty-Germany-Berlin">

<name>Berlin</name>

<population year="95">3472009</population>

</city>

</province>

:

</country>

<country car_code="H" area="93030" capital="cty-Hungary-Budapest">...</country>

:

</mondial>

The resulting table is as follows:

Elements:

Dewey Nr Element type| text contents |preorder|postorder

1 mondial 1

1.1 country 2 150

1.1.1 name 3 2

1.1.1.1 "France" 4 1

1.1.2 population 5 4

1.1.2.1 58317450 6 3

1.1.3 population_growth 7 6

1.1.3.1 0.34 8 5

1.1.4 languages 9 8

1.1.3.1 "French" 10 7

1.1.5 province 11 21

1.1.5.1 name 12 10

1.1.5.1.1 "Alsace" 13 9

1.1.5.2 city 14 15

1.1.5.2.1 name 15 12

1.1.5.2.1.1 "Strasbourg" 16 11

1.1.5.2.2 population 17 14

1.1.5.2.2.1 252338 18 13

1.1.5.3 city 19 20

1.1.5.3.1 name 20 17

1.1.5.3.1.1 "Mulhouse" 21 16

1.1.5.3.2 population 22 19

1.1.5.3.2.1 108357 23 18

1.1.6 province 24 29

1.1.6.1 name 25 23

1.1.6.1.1 "Ile de France" 26 22

1.1.6.2 city 27 28

1.1.6.2.1 name 28 25

1.1.6.2.1.1 "Paris" 29 24

1.1.6.2.2 population 30 27

1.1.6.2.2.1 2152423 31 26

:

Semistructured Data and XML 9

Note: we assume that Germany is node No 152 in preorder

enumeration.

That means, that Node no.1 is ‘‘mondial’’ and France

consists of 150 nodes (including the country node for it).

Thus, in postorder enumeration, the country node for

France has number 150. The first node in postorder in

the Germany subtree, the text contents of the name, has

number 151.

1.2 country 152

1.2.1 name 153 152

1.2.1.1 "Germany" 154 151

1.2.2 population 155 154

1.2.2.1 83536115 156 153

1.2.3 population_growth 157 156

1.2.3.1 0.67 158 155

1.2.4 languages 159 158

1.2.4.1 "German" 160 157

1.2.5 province 161 171

1.2.5.1 name 162 160

1.2.5.1.1 "Baden Wurttemberg" 163 159

1.2.5.2 city 164 170

1.2.5.2.1 name 165 162

1.2.5.2.1.1 "Stuttgart" 166 161

1.2.5.2.2 population 167 164

1.2.5.2.2.1 588482 168 163

1.2.5.3 city 169 169

1.2.5.3.1 name 170 166

1.2.5.3.1.1 "Karlsruhe" 171 165

1.2.5.3.2 population 172 168

1.2.5.3.2.1 277011 173 167

1.2.6 province 174 ?

:

1.2.7 province 210

1.2.7.1 name 211

1.2.7.1.1 "Berlin" 212

1.2.7.2 city 213

1.2.7.2.1 name 214

1.2.7.2.1.1 "Berlin" 215

1.2.7.2.2 population 216

1.2.7.2.2.1 3472009 217

:

1.3 country 389 ?

1.3.1 name 390 389

1.2.1.1 "Hungary" 391 388

:

Attributes:

Parent(Dewey) AttrName Attr Value

1.1 car_code "F"

Semistructured Data and XML 10

1.1 area "547030"

1.1 capital "cty-France-Paris"

1.1.4 percentage "100"

1.1.5 capital "cty-France-Strasbourg"

1.1.5.2 id "cty-France-Strasbourg"

1.1.5.2.2 year "90"

1.1.6 capital "cty-France-Paris"

1.1.6.2 id "cty-France-Paris"

1.1.6.2.2 year "90"

1.2 car_code "D"

1.2 area "356910"

1.2 capital "cty-Germany-Berlin"

etc.

The information is more than sufficient: The preorder and postorder numbers are not necessary.
But they will provide useful search indexes.

Note that there is no reasonable notion for inorder traversal (this would be “leftchild-self-rightchild”
an is thus only applicable to binary trees).

Updates:

• update of text contents: only one update of the first table

• modification, insertion, or deletion of an attribute node: only one update to the second table

• insertion or deletion of an element:

– change dewey number of all following siblings

– change preorder and postorder numbers of all nodes with higher numbers

Use of the indexes:

• parent, following-sibling, preceding-sibling: by Dewey Number arithmetics (note that CREATE

TYPE DEWEY with suitable methods parent(), preceding-sibling(), following-sibling()
and an ORDER method makes this even easier [note that there cannot be a MAP method if the
number of children of a node is not restricted]). Use also an index on this column.

• descendants: all nodes x with self.preorder < x.preorder and self.postorder > x.postorder

• children: descendants+Dewey comparison, or add a depth column or depth function to the
Dewey type.

• ancestors: all nodes x with self.preorder > x.preorder and self.postorder < x.postorder.

• following: all nodes x with self.preorder < x.preorder and self.postorder < x.postorder
(neither ancestors nor descendants are following).

• preceding: all nodes x with self.postorder > x.postorder and self.preorder > x.preorder
(note: following and preceding do not include the ancestors, but only nodes that are the roots
of trees that completely follow/precede self!)

Optimizations:

• “gaps” in the preorder or postorder numbering reduce update efforts (since both are only used
for comparisons, that does not matter in most cases)

• use relative numbers wrt. the previous sibling or the parent (amortized analysis!). Note that
post(x) = pre(x) − depth(x) + number − of − descendants(x)
Proof: when a node is enumerated in postorder, the following nodes have been enumerated
before: all “preceding”nodes in preorder except the ancestors on the way back to the root,
additionally, all nodes in the subtree rooted in x.

Semistructured Data and XML 11

• Thus, if for each node, the size of the subtree rooted in it is known, pre(x) and post(x) can be
computed as follows:

– pre(x) = sum of sizes of all subtrees that are rooted in preceding siblings of x’s ancestors +
#(ancestors), and

– post(x) = sum of sizes of all subtrees that are rooted in preceding siblings of x’s ancestors
+ sum of sizes of the tree rooted in x - 1.

Further exercise (solutions to be sent to us):

• create suitable tables in SQL, including a Dewey Object Type,

• implement an XSLT stylesheet or a recursive XQuery function or a recursive OraXML PL/SQL
function (see later) that traverses an XML tree and creates suitable input statements,

• experiment with SQL queries for the axes.

