
Chapter 4
XML (Extensible Markup
Language)
Introduction

• SGML very expressive and flexible
HTML very specialized.

• Summer 1996: John Bosak (Sun Microsystems) initiates the XML Working Group (SGML
experts), cooperation with the W3C.
Development of a subset of SGML that is simpler to implement and to understand
http://www.w3.org/XML/: the homepage for XML at the W3C

⇒ XML is a “stripped-down version of SGML”.

• for understanding XML, it is not necessary to understand everything about SGML ...
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HTML

let’s start the other way round: HTML ... well known, isn’t it?

• tags: pairwise opening and closing: <TABLE> ... </TABLE>

• “empty” tags: without closing tag <BR>, <HR>

• <P> is in fact not an empty tag (it should be closed at the end of the paragraph)!

• attributes: <TD colspan = “2”> ... </TD>

• empty tags with attributes:
<IMG SRC=“http://www.informatik.uni-goettingen.de/photo.jpg” ALIGN=“LEFT”>

• content of tag structures: <TD>123456</TD>

• nested tag structures: <TH><B>Name</B></TH>

<A href=“http:www.ifi.informatik.uni-goettingen.de”>

<B>Homepage of the IFI</B></A>

⇒ hierarchical structure

• Entities: ä = &auml; ß= &szlig;
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HTML

• browser must be able to interpret tags
→ semantics of each tag is fixed for all (?) browsers.

• fixed specifications how tags can be nested
(described by a DTD (Document Type Definition))

<body><H1>. . . </H1><H2>. . . </H2>

<P> ... </P>

<H2>. . . </H2>

<P> ... </P>

<H1>. . . </H1><H2>. . . </H2>

<P> ... </P>

</body>

• analogously for tables and lists ...

• reality: people do in general not adhere to this structure

– closing tags are omitted

– structuring levels are omitted

→ parser has to be fault-tolerant and auto-completing
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KNOWLEDGE OF HTML FOR XML?

• intuitive idea – but only of the textual/unicode representation

• this is not a data model

• no query language

• only a very restricted viewpoint:
HTML is a markup language for browsers
(note: we don’t “see” HTML in the browser, but only what the browser makes out of the
HTML).

Not any more.
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GOALS OF THE DEVELOPMENT OF XML

• XML must be directly usable and transmitted in the internet (unicode-files/streams),

• XML must support a wide range of applications,

• XML must be compatible with SGML,

• XML documents must be human-readable and understandable,

• XML documents must be easy to create,

• it must be easy to write programs that evaluate/process/parse XML documents.
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DIFFERENCES BETWEEN XML AND HTML?

• Goal: not browsing, but representation/storage of (semistructured) data (cf. SGML)

• SGML allows the definition of new tags according to the application semantics; each
SGML application uses its own semantic tags.
These are defined in a DTD (Document Type Definition).

• HTML is an SGML application (cf. <HTML> at the beginning of each document
</HTML>), that uses the DTD “HTML.dtd”.

• In XML, (nearly) arbitrary tags can be defined and used:

<country> ... </country>
<city> ... </city>
<province> ... </province>
<name> ... </name>

• These elements represent objects of the application.
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XML AS A META-LANGUAGE FOR SPECIALIZED LANGUAGES

• For each application, it can be chosen which “notions” are used as element names etc.:
⇒ document type definition (DTD)

• the set of allowed element names and their allowed nesting and attributes are defined in
the DTD of the document (type).

• the DTD describes the schema

• XML is a meta-language, each DTD defines an own language

• for an application, either a new DTD can be defined, or an existing DTD can be used
→ standard-DTDs

• HTML has (as an SGML application) a DTD
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EXAMPLE: MONDIAL

<mondial>
:

<country code="D" capital="city-D-Berlin" memberships="EU NATO UN ...">
<name>Germany</name>
<encompassed continent="europe">100</encompassed>
<population year="1995">83536115</population>
<ethnicgroup name="German">95.1</ethnicgroup>
<ethnicgroup name="Italians">0.7</ethnicgroup>
<religion name="Roman Catholic">37</religion>
<religion name="Protestant">45</religion>
<language name="German">100</language>
<border country="F" length="451"/>
<border country="A" length="784"/>
<border country="CZ" length="646"/>

:
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Example: Mondial (Cont’d)

:
<province id="prov-D-berlin" capital="city-D-berlin">

<name>Berlin</name>
<population year="1995">3472009</population>
<city id="city-D-berlin">

<name>Berlin</name> <population year="1995">3472009</population>
</city>

</province>
<province id="prov-D-baden-wuerttemberg" capital="city-D-stuttgart">

<population year="1995">10272069</population>
<name>Baden Wuerttemberg</name>
<city id="city-D-stuttgart">

<name>Stuttgart</name> <population year="95">588482</population>
</city>
<city id="cty-D-mannheim"> ... </city>
:

</province>
:

</country>
:

</mondial>
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CHARACTERISTICS:

• hierarchical “data model”

• subelements, attributes

• references

• ordering? documents – yes, databases – no

Examples can be found at

http://dbis.informatik.uni-goettingen.de/Mondial/#XML
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XML AS A DATA MODEL

XML is much more than only the character/unicode representation shown above as known
from HTML
(see also introductory talk)

• abstract data model (comparable to the relational DM)

• abstract datatype: DOM (Document Object Model) – see later

• many concepts around XML
(XML is not a programming language!)

– higher-level declarative query/manipulation language(s)

– notions of “schema”
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4.1 Structure of the Abstract XML Data Model (Overview)

• for each document there is a document node which “is” the document, and which
contains information about the document (reference to DTD, doctype, encoding etc).

• the document itself consists of nested elements (tree structure),

• among these, exactly one root element that contains all other elements and which is the
only child of the document node.

• elements have an element type (e.g. Mondial, Country, City)

• element content (if not empty) consists of text and/or subelements.
These child nodes are ordered.

• elements may have attributes.
Each attribute node has a name and a value (e.g. (car_code, “D”)).
The attribute nodes are unordered.

• empty elements have no content, but can have attributes.

• a node in an XML document is a logical unit, i.e., an element, an attribute, or a text node.

• the allowed structure can be restricted by a schema definition.
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EXAMPLE: MONDIAL AS A TREE

mondial

country car_code=“D”
memberships=”NATO EU . . . ”
capital="city-D-berlin”

country car_code=“B”
memberships=”NATO EU . . . ”

name population province id=“prov-D-berlin”

“Germany” 83536115 name city id=“city-D-berlin”

“Berlin” name population year=“95”

“Berlin” “3472009”
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EXAMPLE: MONDIAL AS A NESTED STRUCTURE

mondial

country car_code=“D” memberships=“EU NATO . . . ” capital=“city-D-berlin”

name “Germany”

population “83536115”

province id=“prov-D-berlin”

name “Berlin”

city id=“city-D-berlin”

name “Berlin”

population year=“1995” “3472009”

country car_code=“B” memberships=“EU NATO . . . ”

:
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OBSERVATIONS

• there is a global order (preorder-depth-first-traversing) of all element- and text nodes,
called document order.

• actual text is only present in the text-nodes
Documents: if all text is concatenated in document order, a pure text version is obtained.
Exercise: consider an HTML document.

• element nodes serve for structuring (but do not have a “value” for themselves)

• attribute nodes contain values whose semantics will be described in more detail later

– attributes that describe the elements in more detail
(e.g. td/@colspan or population/@year)

– IDs and references to IDs

– can be used for application-specific needs
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4.2 XML character Representation

• Tree model and nested model serve as abstract datatypes (see later: DOM)

data exchange? how can an XML document be represented?

• a relational DB can be output as a finite set of tuples (cf. relational calculus)
country(“Germany”, “D”, 83536115, 356910, “Berlin”, “Berlin”)
or
country(Name: “Germany”, Code: “D”, Population: 83536115, Area: 356910,

Capital: “Berlin”, CapitalProvince: “Berlin”)

• object-oriented databases: OIF (Object Interchange Format)

• OEM-tripels, F-Logic-frames

• XML?
Exporting the tree in a preorder-depth-first-traversing.
The node types are represented in a specified syntax:
⇒ XML as a representation language
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XML AS A REPRESENTATION LANGUAGE

• elements are limited by

– opening <Country> and

– closing tags </Country>,

– in-between, the element content is output recursively.

• Element content consists of text
<Name> United Nations </Name>

• and subelements: <Country> <City> ... </City>

<City> ... </City>

</Country>

• attributes are given in the opening tag:
<Country car_code=“D”> . . . </Country>

where attribute values are always given as strings, they do not have further structure. The
difference between value- and reference attributes is not visible, but is only given by the
DTD.

• empty elements have only attributes: <border country=“F” length=“451”/>
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XML AS A REPRESENTATION LANGUAGE: GRAMMAR

The language “XML” defined as above can be given as an EBNF grammar:

Document ::= Element

Element ::= “<” ElementName Attribute* “>” Content “</” ElementName “>”

| “<” ElementName Attribute* “/>”

Content ::= (Element | Text)+

Text ::= characters including whitespace

Attribute ::= AttributeName “=′” AttributeValue “′”

ElementName, AttributeName ::= character string with some restrictions

AttributeValue ::= characters including whitespace

• note that this grammar does not guarantee that the opening and closing tags match!

• instead of ′, also the usual “ are allowed

• strict adherence to these rules (closing and empty elements) is required.

• an XML instance given as ASCII is well-formed, if it satisfies these rules.

• “XML parsers” process this input.
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XML PARSER

• an XML parser is a program that processes an XML document given in Unicode
representation according to the XML grammar, and generates a result:

– correctness: check for well-formedness (and adherence to a given DTD)

– DOM-parser: transformation of the XML instance into a DOM model (implementation
of the abstract datatype; see later).

– SAX-parser: traversing the XML tree and generation of a sequence of “events” that
serialize the document (see later).

• XML parsers are required to accept only well-formed instances.

– simple grammar, simple (non-fault-tolerant) parser

– HTML: fault-tolerant parsers are much more complex
(fault tolerance wrt. omitted tags is only possible when the DTD is known)

• each XML application must contain a parser for processing XML instances in Unicode
representation as input.
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XML PARSING IN THE GENERAL CASE

• ElementName is a separate production and

Element ::= “<” ElementName Attribute* “>” Content “</” ElementName “>”

| “<” ElementName Attribute* “/>”
does not guarantee matching tags

⇒ not context-free!

• Nevertheless, context-free-style parsing with push-down-automaton without fixed stack
alphabet possible:

– for every opening tag, put ElementName on the stack

– for every closing tag, compare with top of stack, pop stack.

⇒ linear-time parsing

• Exercise: give an automaton for parsing XML and describe the handling of the stack
(solution see Slide 180).
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VIEWING XML DOCUMENTS?

• as a file in the editor

– emacs with xml-mode

– Linux/KDE: kxmleditor

• browser cannot “interpret” XML
(in contrast to HTML)

• with “show source” in a browser:
current versions of most browsers show XML in its Unicode representation with
indentation and allow to open/close elements/subtrees.

• but, in general, XML is not intended for viewing:
→ transformation to HTML by XSLT stylesheets
(see later)
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4.3 Datatypes and Description of Structure for XML

• relational model: atomic data types and tuple types

• object-oriented model: literal types and object types, reference types

Data Types in XML

• data types for text content

• data types for attribute values

• element types (as “complex objects”)

• somewhat different approaches in DTD (document-oriented, coarse) and XML Schema
(database-oriented, fine)
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DOCUMENT TYPE DEFINITION – DTD

• the set of allowed tags and their nestings and attributes are specified in the DTD of the
document (type).

• the idea of the DTD comes from the SGML area

– meets the requirements for describing document structure

– does not completely meet the requirements of the database area
→ XML Schema (later)

– simple, and easy to understand.

• the DTD for a document type doctype is given by a grammar (context-free; regular
expression style) that characterizes a class of documents:

– what elements are allowed in a document of the type doctype,

– what subelements they have (element types, order, cardinality)

– what attributes they have (attribute name, type and cardinality)

– additionally, “entities” can be defined (they serve as constants or macros)
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DATA TYPES OF DTDS

• text content: PCDATA – parsed character data
it is up to the application to distinguish between string data and numerical data

• data types for attribute values:

– CDATA: simple strings

– NMTOKEN: string without blanks

– NMTOKENS: a list of tokens, separated by blanks

– ID: like NMTOKEN, each value must be unique in the document

– IDREF: like NMTOKEN, each value must occur in the same document as an ID value

– IDREFS: the same, multivalued

• element types: definition of structure in the style of regular expressions.
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DTD: ELEMENT TYPE DEFINITION – STRUCTURE OF THE ELEMENT

CONTENTS

<!ELEMENT elem_name struct_spec>

• EMPTY: empty element type,

• (#PCDATA): text-only content

• (expression): expression over element names and combinators (same as for regular
expressions). Note that the expression must be deterministic.

– “,”: sequence,

– “|”: (exclusive-)or (choice),

– “*”: arbitrarily often,

– “+”: at least once,

– “?”: optional

• (#PCDATA|elem_name1|...|elem_namen)*
mixed content, here, only the types of the subelements that are allowed to occur together
with #PCDATA can be specified; no statement about order or cardinality.

• ANY: arbitrary content
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Element Type Definition: Examples

• from HTML: images have only attributes and no content
<!ELEMENT img EMPTY >

• from Mondial:

<!ELEMENT country (name, encompassed+, population*,
ethnicgroup*, religion*, border*,
(province+ | city+))>

<!ELEMENT name (#PCDATA)>

• for text documents:

<!ELEMENT Section (Header,
(Paragraph|Image|Figure|Subsection)+,
Bibliography?)>

• Element type definitions by regular expressions
⇒ can be checked by finite state automata
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DTD: ATTRIBUTE DEFINITIONS

• General: an element contains at most one attribute of every attribute name.

• details about allowed attribute names and their types are specified in the DTD.

<!ATTLIST elem_name

attr_name1 attr_type1 attr_constr1

: : :

attr_namen attr_typen attr_constrn>

• attr_typei: value/reference attribute and scalar/multi-valued

– CDATA: arbitrary text.

– NMTOKEN: scalar, token-content (text without blanks).

– NMTOKENS: multi-valued, token-content.

– (const1| . . . |constk): scalar, from a given domain.

– ID: distinguished scalar attribute, token-content, unique in the whole document.

– IDREF: scalar, its value is a token that occurs as a value of an ID attribute in the same
document (reference).

– IDREFS: multi-valued reference attribute.
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DTD: Attribute Definitions (cont’d)

<!ATTLIST elem_name

attr_name1 attr_type1 attr_constr1

: : :

attr_namen attr_typen attr_constrn>

• attr_constri: minimal cardinality

– #REQUIRED: attribute must be present for each element of this type.

– #IMPLIED: attribute is optional.

– default : Default-value (non-monotonic value inheritance).

– #FIXED value: attribute has the same (given) value for each element of this type
(monotonic value inheritance).
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DTD: ATTRIBUTE-DEFINITIONS (EXAMPLES)

<!ATTLIST Country
Code ID #REQUIRED
Capital IDREF #REQUIRED
Memberships IDREFS #IMPLIED
Products NMTOKENS #IMPLIED >

<!ATTLIST desert
id ID #REQUIRED
Type (sand,rocks,ice) ’sand’
Climate NMTOKENS #FIXED ’dry’ >

• when an XML parser reads an XML instance and its DTD, it fills in default and fixed
values.
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DTD AND XML INSTANCES

• Each DTD defines an own markup language (i.e., an XML application – HTML is one,
Mondial is another).

• an XML instance has a document node (which is not the root node, but even “superior”)
that contains among other things information about the DTD.
(see next slides ...)

• the root element of the document must be of an element type that is defined in the DTD.

• an XML instance is valid wrt. a DTD if it satisfies the structural constraints specified in the
DTD.
Validity can be checked by an extended finite state automaton in linear time.

• XML-instances can exist without a DTD (but then, it is not explicitly specified what their
tags “mean”).
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XML DOCUMENT STRUCTURE: THE PROLOG

The prolog of an XML document in Unicode representation contains additional information
about the document (associated with the document node):

• XML declaration (with optional attributes)
<? xml version=“1.0” encoding=“utf-8”?>

encoding=“ISO-8859-1” allows additionally German “Umlauts”.

• document type declaration: indication of the document type, and where the document
type definition (DTD) can be found.

– <!DOCTYPE name {SYSTEM own-url | PUBLIC public-id public-url}>

name: one of the element names given in the DTD
SYSTEM own-url : own document type,

<!DOCTYPE Mondial SYSTEM “mondial.dtd”>

PUBLIC public-id public-url : standard document type (e.g. XHTML), or

– <!DOCTYPE name [ dtd ]>

with DTD directly included in the document.

• then follows the document content (i.e., the root node with the document body as its
content).
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NOTE: DOCUMENT TYPE DECLARATION WITH PUBLIC ID, PUBLIC URL

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

• id is a globally agreed string

• url looks like a URL for being accessed through the Web

... maybe this was intended at the beginning.

– any software that processes a document accesses the DTD at the URL.

⇒ turned out to be a bad idea: billions of accesses to this URL
(http://www.w3.org/blog/systeam/2008/02/08/w3c_s_excessive_dtd_traffic)

⇒ W3C blocked access to this URL!

⇒ problem for the users who now get unintelligible error messages when using any tools
(e.g., creating the DBIS Web pages with XSLT).

• W3C: this URL is to be understood as a URI (Uniform Resource Identifier; in a sense that
rather belongs to the Semantic Web area) that only tells the tool that the document “is”
XHTML 1.0; not that the XHTML DTD should/can be accessed there.

• technically to be solved by using “XML Catalogs”, cf. Slide 234
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EXAMPLE: MONDIAL

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE mondial SYSTEM "mondial.dtd">
<mondial>
<country car_code="AL" area="28750" capital="cty-cid-cia-Albania-Tirane"

memberships="org-BSEC org-CE org-CCC ...">
<name>Albania</name> <population>3249136</population>
<encompassed continent="europe" percentage="100"/>
<ethnicgroups percentage="3">Greeks</ethnicgroups>
<ethnicgroups percentage="95">Albanian</ethnicgroups>
<border country="GR" length="282"/> <border country="MK" length="151"/>
<border country="YU" length="287"/>
<city id="cty-cid-cia-Albania-Tirane" is_country_cap="yes" country="AL">
<name>Tirane</name>
<longitude>10.7</longitude> <latitude>46.2</latitude>
<population year="87">192000</population>

</city>
:

</country>
:

</mondial>

165

TOOL: XMLLINT

xmllint is a simple tool that allows (among other things – see later) to validate a document
(belongs to libxml2):

• man xmllint: lists all available commands

• currently, we are mainly interested in the following:
xmllint -loaddtd -valid -noout mondial-europe.xml
validates an XML document wrt. the DTD given in the prolog.
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XMLLINT: Further Functionality (see later)

XMLLINT can be used to “visit” the document, and to walk through it:

• call xmllint -loaddtd -shell mondial-europe.xml.

Then, one gets a “navigating shell” “inside” the XML document tree
(very similar to navigating in a UNIX directory tree):

• validate: validates the document

• cd xpath-expression: navigates into a node
(the XPath expression must uniquely select a single node)
relativ: cd country[1]
absolut: cd //country[@car_code="D"]

• pwd: gives the path from the root to the current position

• cat: prints the current node

• cat xpath-expression
cat .//city/name

• du xpath-expression lists the content of the node that is selected by xpath-expression
(starting from the current node)

• dir xpath-expression prints the node type and attributes of the selected node
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Example: “Books” from W3C XML Use Cases

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE bib SYSTEM "books.dtd">
<!-- from W3C XML Query Use Cases -->
<bib>

<book year="1994">
<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="1992">

<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="2000">

<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>
<book year="1999">

<title>Economics of ... for Digital TV</title>
<editor>

<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>

</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>

</book>
</bib>

[see XML-DTD/books.xml]
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Exercise: Generate a DTD for the above XML

... do it step-by-step, using a validator:

• for all element types:
<!ELEMENT name ANY>

• declare <!ATTLIST name ...> where needed

• validate

• stepwise refinement of content models ...

• ... blackboard demonstration ...

• solution see Slide 176
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DATA-CENTERED VS. DOCUMENT-CENTERED XML DOCUMENTS

Data-Centered XML Documents

• very regular structure with “data fields”

• only some text

• no naturally induced tree structure

Document-Centered XML Documents

• tree structure with much text (text content is the text of the document)

• non-regular structure of elements

• logical markup of the documents

• annotations of the text by additional elements/attributes

Semistructured XML Documents

• combine both (e.g. medical information systems)
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SUBELEMENTS VS. ATTRIBUTES

When designing an XML structure, often the choice of representing something as subelement
or as attribute is up to the designer.

Document-Centered XML

• the concatenation of the whole text content should be the “text” of the document

• element structures for logical markup and annotations

• attributes contain additional information about the structuring elements.

Data-Centered XML

• more freedom

• attributes are unstructured and cannot have further attributes

• elements allow for structure and refinement with subelements and attributes

• using DTDs as schema language allows the following functionality only for attributes:
– usage as identifiers (ID)
– restrictions of the domain
– default values
(XML Schema and XLink allow many more things)
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EXAMPLES AND EXERCISES

• The MONDIAL database is used as an example for practical experiments.
See http://dbis.informatik.uni-goettingen.de/Mondial#XML.

• many W3C documents base on examples about a literature database (book, title,
authors, etc.).

• each participant (possibly in groups) should choose an own application area to set up an
own example and to experiment with it.

– from the chosen branch of study?

– database of music CDs

– lectures and persons at the university

– exams (better than FlexNever?)

– calendar and diary

– other ideas ...

Exercise: Define a DTD and generate a small XML document for your chosen application.
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EXERCISES

• Validate your example document with a suitable prolog and internal DTD.

• put your DTD publicly in your public-directory and validate a document that references
this DTD as an external DTD.

• take a DTD+url from a colleague and write a small instance for the DTD and validate it.

• note: if you to this with an XHTML document and W3Cs XHTML DTD, care for the XML
Catalog issue, cf. Slides 164 and 234.
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DATA EXCHANGE WITH XML

For Electronic Data Interchange (EDI), a commonly known+used DTD is required

• producers and suppliers in the automobile industry

• health system, medical area

• finance/banking

PROCEEDING

Usually, XML data is exchanged in its Unicode representation.

• XML-Server make documents in the Unicode representation accessible (i.e., as a stream
or as a textfile)

• applications parse this input (linear) and store it internally (DOM or anything else).
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4.3.1 Aside: XML Parsing

... one of the objectives of this lecture is also to show the applications and connections of
basic concepts of CS ...

• XML/DTD: content models are regular expressions
⇒ can be checked by finite state automata

– design one automaton for each <!ELEMENT ...> declaration

– design a combined automaton for validating documents against a given DTD

– extension to attributes: straightforward (when processing opening tags,
dictionary-based)

– checking for well-formedness and validity in linear time

* with a DOM parser: during generation of the DOM

* with a SAX parser: streaming, on the fly

* using a DOM instance: depth-first traversal

• without a DTD: requires a push-down automaton
(remembering opening tags); still linear time

– checking well-formedness

– generating a DOM instance, or on-the-fly (SAX)
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FINITE STATE AUTOMATA FOR VALIDATION

EXAMPLE: BOOKS.DTD

Consider the “books” example:

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (last, first, affiliation?)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT editor (last, first, affiliation?)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
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Finite State Automata

• individual automata for element content models
(recall that the content model must be deterministic)

• + detailed by nesting (jumping on opening/closing tags)

bib book title author/editor

book

title

author editor

publisher publisher

price

author editor

#PCDATA

last

first

affil.

<book>

</book>

<title>

</title>

<editor>

</editor>

</editor>
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XML GRAMMAR IN PRESENCE OF A DTD

Consider the grammar from Slide 150:

• Element names known from a DTD: context-free grammar

Document ::= Element

Element ::= “<bib” Attribute* “>” Content “</bib>”

Element ::= “<book” Attribute* “>” Content “</book>”
...

...
...

Content ::= (Element | Text)+

Text ::= characters

Attribute ::= AttributeName “=′” AttributeValue “′”

AttributeValue ::= characters

• there is even a regular grammar, see above automata, but this is not derived from the
XML EBNF.
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XML GRAMMAR IN GENERAL

• no DTD present/element names not known:
Consider the grammar from Slide 150:

• ElementName is a separate production and

Element ::= “<” ElementName Attribute* “>” Content “</” ElementName “>”

| “<” ElementName Attribute* “/>”
does not guarantee matching tags.

• Nevertheless, context-free-style parsing with push-down-automaton without fixed stack
alphabet possible:

– for every opening tag, put ElementName on the stack

– for every closing tag, compare with top of stack, pop stack.

• Automaton: see next slide.
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XML GRAMMAR IN GENERAL

Stack Commands:
• push (string)
• top: yields top element
• pop: removes top element

ClosingTag

Tag

Closing Tag OK?
char+ = top?

ParseContent EmptyEl ParseAttr

ParseAttrValue

EmptyEl

<

/ char (collect)

char (collect)
>

yes

pop

char (collect)

char (collect)
>

push char+ /

>

_

char

char

=
“

char

char
”

_>

push char+
char

/

>
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4.4 Example: XHTML

• XML documents that adhere to a strict version of the HTML DTD

• Goal: browsing, publishing

• DTD at http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
(note that the DTD requires also some entity files)

• Validator at http://validator.w3.org/

• Example at ... DBIS Web Pages

• only the text content is shown in the browser, all other content describes how the text is
presented.

• no logical markup of the documents (sectioning etc), but

• only optical markup (“how is it presented”).

Exercise

Design (and validate) a simple homepage in XHTML, and put it as index.html in your
public-directory.
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4.5 Miscellaneous about XML

4.5.1 Remarks

• all letters are allowed in element names and attribute names

• text (attribute values and element content) can contain nearly all characters.
Western european umlauts are allowed if the XML identification contains
encoding=“UTF-8” or encoding=“ISO-8859-1” etc.

• comments are enclosed in <!-- ... -->

• inside XML content,

<![CDATA[ ... ]]>

(character data sequences) can be included that are not parsed by XML parsers, but
which are copied character-by-character.
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4.5.2 Entities

Entities serve as macros or as constants and are defined in the DTD. They are then
accessible as “&entityname;” in the XML instance and in the DTD:

<!ENTITY entity_name replacement_text>

• additional special characters, e.g. ç:

DTD: <!ENTITY ccedilla “&#231”>

XML: president=“Fran&ccedilla;ois Mitterand”

• reserved characters can be included as references to predefined entities:
< = &lt; (less than), > = &gt; (greater than)
& = &amp; (ampersand), space = &nbsp;, apostroph = &apos;, quote = &quot;
ä = &auml;, ..., Ü = &Uuml;

<name>D&uuml;sseldorf </name>

• characters can also be given directly as character references, e.g. &#x20 (space), &#xD
(CR).
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Entities (cont’d)

• global definitions that may change can be defined as constants:

DTD: <!ENTITY server “http://dbis.informatik.uni-goettingen.de”>

XML: <url> &server;/dbis <url>

• macros that are needed frequently:

DTD: <!ENTITY european
“<encompassed continent=’europe’>100</encompassed>”>

XML: <country car_code=“D”>

<name >Germany</name>

&european; ...
</country>

• note: single and double quotes can be nested.
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PARAMETER ENTITIES

Entities that should be usable only in the DTD are defined as parameter entities:

• macros that are needed frequently:
<!ENTITY % namedecl “name CDATA #REQUIRED”>

<!ATTLIST City
%namedecl;
zipcode ID #REQUIRED>

• define enumeration types:
<!ENTITY % waters “(river|lake|sea)”>

<!ATTLIST City_located_at
type %waters; #REQUIRED
at IDREF #REQUIRED>
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ENTITIES FROM EXTERNAL SOURCES

Entity “collections” can also be used from external sources as external entities:

<!ENTITY entity_name SYSTEM “url”>

is an entity that stands for a remote resource which itself defines a set of entities by

<!ENTITY entity_name’ replacement_text>

e.g. a set of technical symbols:

<!ENTITY % isotech SYSTEM
“http://www.schema.net/public-text/ISOtech.pen”>

%isotech;

the reference %isotech; makes then all symbols accessible that are defined in the external
resource.

This can be iterated for defining “style files” that collect a set of external resources that are
used by an author.
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4.5.3 Integration of Multimedia

• for (external) non-text resources, it must be declared which program should be called for
showing/processing them. This is done by NOTATION declarations:

<!NOTATION notation_name SYSTEM “program_url”>

<!NOTATION postscript SYSTEM “file:/usr/bin/ghostview”>

• the entity definition is then extended by a declaration which notation should be applied on
the entity:

<!ENTITY entity_name SYSTEM “url”
NDATA notation_name>

<!ENTITY manual SYSTEM “file:/.../name.ps”
NDATA postscript>

• the application program is then responsible for evaluating the entity and the NDATA
definition.

• XLink will later present another mechanism for referencing resources.
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4.6 Summary and Outlook

XML: “basic version” consists of DTD and XML documents

• tree with additional cross references

• hierarchy of nested elements

• order of the subelements
– documents: 1st, 2nd, . . . section etc.
– databases: order in general not relevant

• attributes

• references via IDREF/IDREFS

– documents: mainly cross references

– databases: part of the data (relationships)

• XML model similar to the network data model:
relationships are mapped into the structure of the data model

– the basic explicit, stepwise navigation commands of the network data model have an
equivalent for XML in the DOM-API (see later), but

– XML also provides a declarative, high-level, set-oriented language.
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REQUIREMENTS

• Documents: logical markup (Sectioning etc.)
presentation on Web pages in (X)HTML? – transformation languages

• databases: structuring of data;
several equivalent alternatives
query languages?
presentation on Web pages in (X)HTML? – transformation languages

• application-specific formats
e.g. XHTML: browsing
DTDs are induced by the application-programs
Web-Services: WSDL, UDDI; CAD; ontology languages; . . .
transformation between different XML languages
application-programs must “understand” XML internally
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FURTHER CONCEPTS OF THE XML WORLD

Extensions:

• namespaces: use of different DTDs in a database
(see Slide 226)

• APIs: DOM, SAX

• theoretical foundations

• query languages: XPath, XML-QL, Quilt, XQuery

• stylesheets/transformation languages: CSS, DSSSL, XSL

• better schema language: XML Schema

• XML with inter-document handling: XPointer, XLink
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4.7 Recall

• XML as an abstract data model

– cf. relational DM

– XML now has become less abstract: creation of instances in the editor, validating,
viewing ...

• a data model needs ... implementation? theory?

• ... first, something else: abstract datatype, interface(s)

– constructors, modificators, selectors, predicates (cf. Info I)

• here: “two-level model”

– as an ADT (programming interface): Document Object Model (DOM):
detailed operations as usual in programming languages (Java, C++).

– as a database model (end user interface; declarative):
import (parser), queries, updates

• theory: formal specification of the semantics of the languages, other issues are the same
as in classical DB theory (transactions etc.).
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