
Semistructured Data & XML
(Summer Term 2011)

(c) Prof Dr. Wolfgang May
Universität Göttingen, Germany

may@informatik.uni-goettingen.de

Advanced Course in Informatics; 3+1 hrs/week, 6 ECTS Credit Points

1

A comprehensive German-English dictionary can e.g. be found at

http://dict.leo.org/

TASKS IN INFORMATICS

1. Implementing a proposed solution: a job
requires: good knowledge of common tools

2. Designing solutions: an interesting task
requires: solid knowledge of up-to-date concepts

3. Development of concepts: a fascination
requires: deep understanding and analysis of existing concepts

XML is a good example for all of them.

2

A IMS OF THE COURSE

• knowledge of the concepts of the XML-World, practical experiences
⇒ application-oriented
(requires also to work on your own)

• backgrounds why XML developed, and why it is as it is
⇒ understanding of concepts und developments

• underlying meta-concepts
⇒ as an example of “Informatics” as a whole

3

OVERVIEW

• other talk “Introduction to XML” ...

4

Chapter 1
Introduction

CONTEXT AND OVERVIEW

• Databases are used in many areas ... economics, administration, research ...

• originally: storage of information
late 60s: Network Data Model, Hierarchical Model
70s: Relational model, SQL – Lecture “Introduction to Databases”

• evolution: information systems, combination of databases and applications, distributed
databases, federated databases, interoperability, data integration

• today: Web-based information systems, electronic data interchange
→ new challenges, semistructured data, XML

• tomorrow: Semantic Web etc.

1

1.1 Data Models

A data model defines the modeling constructs that can be used for modeling the application
domain.

• conceptual modeling: application-oriented model

– Entity-Relationship-Model (1976, only static concepts: entities and relationships,
graphical)
Lecture: Introduction to Databases

– Unified Modeling Language (UML 1.0: 1996)
comprehensive graphical formalism for modeling of processes, based on the
object-oriented idea: classes and objects, properties, behavior (states and actions).
Lecture: Software Engineering

• logical data models: (e.g. relational model)
serve as abstract data types for implementations:

– definitions of operations and their semantics, e.g. relational algebra

– corresponding languages (as application programming interfaces): e.g. SQL

• physical data models: the implemented structures.

2

Data Model: Database Schema and Database State

Usually, for a database (for both, conceptual and logical models), its schema and its state are
considered:

Database schema: the schema contains the metadata about the database, i.e., it describes
the structure (in terms of the concepts of the data model).

The set of legal states is also described in metadata (e.g., by integrity constraints).

Database state: the state of a database is given as the currently stored information. It
describes all objects and relationships that exist in the application at a given timepoint.

The database state changes over the time (representing changes in the real word),
whereas the database schema is in general unchanged.

Logically spoken, the database state is an interpretation of the structure that is
determined by the metadata.

Languages for Logical Data Models: In general, a language for operating on a data model
consists of

• Data Definition Language (DDL) for schema definitions,

• Data Manipulation Language (DML) for manipulating and querying database states.

3

LOGICAL /IMPLEMENTATION DATA MODELS

... there are many different data models.

Basically, all database approaches are grounded on the concept of a “data item”
(german: “Datensatz”).

• logical data models and implementation models

– network data model (IDS (General Electric) 1964; CODASYL Standard 1971),
hierarchical data model (IMS (IBM) 1965); data records,

– relational model (Codd 1970), SQL (IBM System R 1973; products since 1979
(Oracle), ISO SQL Standard 1986); tuples

– object-oriented model (ODMG 1993; OQL); objects

• document-data model (SGML)

• semistructured data models, XML; nodes: elements, attributes, text

– why?

– evolution and current situation

4

1.2 Relational Model

• relational model by E.F. Codd (1970, IBM San Jose): mathematical foundation: set theory

• only a single structural concept: relation for entities/objects and relationship types
(note that the notions “entity” and “relationship” from the ER model [1976] were not yet
defined!)

• properties of entities/objects and relationship types are represented by attributes

• a relation schema consists of a name and a set of attributes
Continent: Name, Area

• each attribute is associated with a domain that contains all legal values of the attribute.
Attributes can also have null values:
Continent: Name: VARCHAR(25), Area: NUMBER

• a (relational) database schema is given by a (finite) set of (relation)schemata:
Continent: . . . ; Country: . . . ; City: . . . ; encompasses: . . .

5

RELATIONS

• a (database) state associates a relation with each relation schema.

• the elements of a relation are called tuples.
Each tuple represents an object or a relationship:
(Name: Asia, area: 4.5E7)

Example:
Continent

Name Area

VARCHAR(20) NUMBER

Europe 9562489.6

Africa 3.02547e+07

Asia 4.50953e+07

America 3.9872e+07

Australia 8503474.56

6

Relations: Example

Continent

Name Area

Europe 9562489.6

Africa 3.02547e+07

Asia 4.50953e+07

America 3.9872e+07

Australia 8503474.56

Country

Name code Population Capital ...

Germany D 83536115 Berlin

Sweden S 8900954 Stockholm

Canada CDN 28820671 Ottawa

Poland PL 38642565 Warsaw

Bolivia BOL 7165257 La Paz

..

encompasses

Country Continent Percent

VARCHAR(4) VARCHAR(20) NUMBER

R Europe 20

R Asia 80

D Europe 100

.

• ... with referential integrity constraints

• abstract datatype for this model: relational
algebra

• application interface: SQL

7

QUERY LANGUAGE : SQL

• Since 1973 “SEQUEL – Structured English Query Language” in IBM System R
(E.F. Codd (Turing Award 1981), D. Chamberlin (2001: co-designer of XQuery)) etc.;
Research-only (IBM continued to sell only IMS until SQL/DS (1980), DB2 (1983))
Stories: http://www.mcjones.org/System_R/SQL_Reunion_95/

http://www.nap.edu/readingroom/books/far/ch6.html

• 1974 INGRES (UC Berkeley, M. Stonebraker; NSF funding), QUEL language,
open-source.
Led to the products INGRES (“Relational Technology Inc.” 1980, QUEL; since 1986 with
SQL), INFORMIX (1981; since 1984 with SQL), SYBASE (1984, since 1987 with SQL)

• Oracle: founded in 1977 as “Relational Software” (L. Ellison worked before on a
consultant project for CIA who wanted to use SEQUEL), 1983 renamed to “Oracle”.
Product: 1979 Oracle V2 (SQL), first commercial relational DB system.

• Standard SQL: 1986 ANSI/ISO (least common denominator of existing products); SQL-1
1989 (Foreign Keys, ...); SQL-2 1992 (multiple result tuples in subqueries, SFW in FROM,
JOIN syntaxes, ...); SQL-3 1999 (PL/SQL etc) ...

• 1995: 80% of all databases use the relational model and SQL

8

QUERY LANGUAGE : SQL

SELECT name, percent
FROM country, encompasses
WHERE country.code = encompasses.country

AND encompasses.continent = ’Europe’;

• intuitive to understand,

• clause-based, declarative language,

• set-oriented, closed: result of (nearly) each expression is again a relation,

• orthogonal constructs, can be nested (nearly) arbitrarily,

• functional programming paradigm: each SFW query is a function that maps relations to
another relation. Such functions can be nested.

... so far the things you have learnt in “Databases” about the relational model and SQL.

9

1.3 Concepts and Notions

• the relational model is a data model.

• (relational) databases follow a 3-level architecture:

– physical level/schema: actual storage of tables in files, as sequenced records, with
length indicators etc; additional index files, and allocation tables.

– logical level/schema: user level.
Relational model (logical data model) with given database schema (table names,
attributes, keys, foreign keys etc), relational algebra, SQL (database language).
Abstract, declarative, set-oriented language, distinguished notions of schema and
state.
Internal: mapping to physical schema. Admin can change the physical schema and
adapt the mapping without effecting the logical schema.

– external level (optional): possible views, given by SQL queries.
A view is (any kind of) a mapping from underlying “base” data to derived information.

• note: SQL is the only language with which users work on relational data. Relational data
exists only inside databases.

10

CONCEPTS: PREVIEW

• network data model: mainly a physical data model; "logical" model on a very low level of
abstraction.
No database language, only some data-management-oriented operations extending a
common programming language.

• relational model: abstract/logical data model, relational algebra, declarative, set-oriented
query+update language.

• early semistructured data models (OEM, F-Logic etc.): not comparable, separate
experiments how to extend functionality without losing the advantages from relational
databases and SQL.

• for XML there are several languages (“views” can also be defined in several ways), and
XML exists also as a data structure used in non-database tools.

11

1.4 Aside: Really Declarative Languages ...

SQL is already called “declarative”: express what, not how.

But there is an even more declarative language family: logic-based languages.

Relational Calculus, Datalog

• Facts (tuples) are called “atoms”:
country(“Germany”, “D”, 83536115, 356910, “Berlin”, “Berlin”),
city(“Berlin”, “Berlin”, “D”, 3472009), etc.

• queries are given as “patterns” with free variables:
?- country(N,C,Pop,Area,CapProv,Capital).
yields a set of answer bindings for the variables N,C,Pop,Area,CapProv,Capital.

• Projection via don’t care variables:
?- country(N,_C,Pop,_Area,_,_).
yields a set of answer bindings for the variables N and Pop.

• Selection: ?- country(“Germany”, “D”, Pop, Area,_,_). binds only Pop and Area.

12

Relational Calculus (cont’d)

• Selection as Conjunction:
?- country(N, C, Pop, _,_,_), Pop > 1.000.000. binds N, C, Pop
?- country(N, _, _Pop, _,_,_), _Pop > 1.000.000. returns only the set of names of
countries with more than 1000000 inhabitants.

• Joins as conjunctions:
?- country(N,_C,_,_,Area,_,_), encompassed(_C,Cont,Perc), continent(Cont, ContArea).
?- country(_, “D”,_,_,_,CapProv,Capital), city(Capital, CapProv, “D”, Pop, _, _)

Datalog

• Views as “derived/virtual relations”:
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).
?- ancestor(X,Y).
can express e.g. transitive closure (recursive rules and fixpoint semantics).

• flows_transitive(Name, Sea) :- river(Name, _, Sea, _).
flows_transitive(Name, Sea) :- river(Name, River, _ , _), flows_transitive(River, Sea).
?- flows_transitive(River, Sea).

[see F-Logic/transitive-rivers.flp]

13

REMARK

The term “Database” does not only mean the relational model & SQL, but is a general notion:

• persistent storage

• mass data

• multiuser concepts

– access control/safety

• transaction concepts

– correctness/consistency

– safety: rollback, recovery

... all these are general concepts that apply for the network data model, the relational model,
the object-oriented model, and also for XML databases.

14

Chapter 2
Database Concepts and
Extensions

• The notion of “semistructured data (SSD)” has mainly been coined by the “TSIMMIS”
project (The Stanford-IBM Manager of Multiple Information Sources, 1995-2000;
persons: J. Ullman, H. Garcia-Molina, J. Widom, Y. Papakonstantinou).

• The problem has already been investigated before in several areas and projects.

15

WHY SEMISTRUCTURED DATA ?

... mainly two requirements:

1. data integration from different sources
(late 1980s/early 1990s):

– increasing networks

– combination of contents of several databases

* multi-database-systems

* federated database systems

* different schemata

* mostly only different relational schemata,
· partially also under the aspect of integration of metadata into the DML – this

aspect is originally independent from semistructured data.

* sometimes different data models (“legacy”-databases according to earlier data
models)

* since mid-90s increasingly data from the Web

16

WHY SEMISTRUCTURED DATA ?

2. storage of “unregular” data:
no fixed/homogeneous/known schema, many null values (e.g. biochemistry)

– data exchange (B2B); standard formats e.g. for suppliers in automobile industry

– partly also full-text portions,

– management of document content

* coarsely structured
SGML (special form: HTML)

– annotated binaries (pictures, films, etc.)

– mixed forms between databases and documents

* collections: (tax) laws, partially in SGML

* health care and clinical information systems

17

THE EVOLUTION TOWARDS XML

The evolution in the area of semistructured data and XML combined concepts, experiences
and developments from many previous approaches:

• network data model, hierarchical model (“legacy”-databases),

• relational databases,

• object-oriented databases,

• distributed and federated databases,

• data integration (purely relational environments, or mixed ones),

• document management.

Different lines of evolution have been brought together with XML & friends:

⇒ (nearly) nothing new, but a perfect combination!

Textbook on “Databases” in general (but without document management and XML):

• R.Elmasri, S.Navathe: “Foundations of databases”/“Grundlagen von
Datenbanksystemen”. Pearson Studium, 3rd edition, 2002.

18

2.1 Early Databases: the Network Data Model

Situation 1960: first primitive “high-level” programming languages for “calculations”

• FORTRAN 1957: “formula translator”

• COBOL 1959: “common business-oriented language”

Goal: somehow store and organize lots of data:

• first development in the database system IDS (Integrated Data Store) at General Electric
(Bachman & Williams, 1964; Turing-Award 1973)

• specification of the “Conference on Data Systems Languages Data Base Task Group
(CODASYL)”, 1971.

• products: e.g. VAX-DBMS (Digital Equipment)

19

NETWORK DATA MODEL

• data is stored in data records,

• classified by data record types, with attributes (name and datatype to be specified).

Country

Name Code Population Area . . .

City

Name Population . . .

• Sample data records:

“Germany” “D” 83536115 356910 . . . “Berlin” “3472009” . . .

• So far, the same as the mapping of entity types in the relational model.

• difference: the organization of the records (and their relationships) in the database ...

20

RELATIONSHIPS : SET TYPES

Relationships are represented as sets: “all B that are in a given relationship with a certain A”
(E.g. all cities in a given country)

Definition of set types:

• name of the set type

• owner record type (“owner”; “where the relationship starts from”)

• member record type (“member”)

A set instance then represents the relationship for exact one owner of type “A”. Each instance
of a set consists of

• a data record of the owner record type

• an ordered set of data records of the member record type

• comparison with XML: parent-children relationship, ordered children, but all of the same
type

• intuitition: not as a set, but as a wire that is fixed at the owner and then pulled through all
members.

21

RELATIONSHIPS : SET TYPES

Graphical representation:
“Bachman Diagram”

Country

Name Code Population . . .

City

Name Population . . .

has_cities has_capital

has_ cities: Germany D 83536115 . . .

Berlin 3472009 . . .

Hamburg 1705872 . . .

Frankfurt 652412 . . .

...

has_ capital: Germany D 83536115 . . .

Berlin 3472009 . . .

• similar sets for France//Paris/Lyon/Marseille/... and France//Paris

• a member record can belong to only one instance of a set of each set type (thus, only
1:N-relationships can be modeled directly)

• n:m relationships: later

22

ENTRY POINTS

• system-owned instances of a set serve as entry points
(e.g. an instance of a set “countries” whose members are the country-data records)

ACCESS OPERATIONS

Access to (and navigation through) the database only via sets.

Actually, this is again an abstract datatype:

• access to the attribute values of a record,

• an iterator (first, next) for traversing the relationships ,

• a selector “find_owner” for inverse relationships.

⇒ the user does not explicitly work with pointers or identifiers, but already uses the semantic
notions of the data model.

23

N:M-RELATIONSHIPS

Cannot be represented by a single set type (analogously for attributed relationships).

• split into a 1:M and an inverse N:1-relationship
Problem: consistency maintenance (symmetry!)

• introduce an auxiliary data record type that represents the relationship, and two set types:

Country

Name Code Population . . .

Organization

Name Abbrev . . .

is_member

type

has_membershas_memberships

• later, there is a mapping from the ER model (1976) to the network model.

24

ORGANISATION OF THE SET TYPES

Each data record contains reference entries for each set type where it belongs to (either as
owner or as member):

• as owner: a “first”-reference, labeled with the name of the set type, pointing to the first
member record

• as member:

– a “next”-reference, labeled with the name of the set type, pointing to the next member
record

– additionally a labeled backwards pointer to the owner of the set instance

– a labeled null pointer if there exists no first/next element.

Exercise 2.1
a) Visualize the model by drawing some country, city and organization data records.

b) Consider the “has_headq”-relationship that describes that organizations have their
headquarters in a city. 2

25

SOLUTION : NETWORK SCHEMA DIAGRAM

Country

Name Code . . .

Organization

Name Abbrev . . .

membership

type

City

Name Population . . .

headq_in

has_cities has_capital

has_membersis_member

has_hq_in

is_hq_of

26

SOLUTION : INSTANCE LEVEL

SYSTEM•f •f

Country: Germany •n •f •f •f City: Berlin •n •o •n

⊥
has_capital
•o

City: Hamburg •n •o

City: Frankfurt •n

:
has_city

•o

Country: Belgium •n

:
all_countries

•f •f •f City: Brussels •n

:
has_city

•o •n

⊥
has_capital
•o

Org: EU •n •f membership: (D,EU) •n •o •n •o membership: (B,EU) •n •o •n

. . .

•o

Org: UN •n

:
all_orgs

•f membership: (D,UN) •n

:
is_member

•o •n •o membership: (B,UN) •n

:
is_member

•o •n

. . .

•o

all_countries

all_countriesall_orgs

all_orgs

has_cities

has_capital

has_cities

has_capital

is_member

is_member

has_members

has_members

27

DATA DEFINITION LANGUAGE : EXAMPLE

RECORD NAME IS country
DUPLICATES ARE NOT ALLOWED FOR Code

Name TYPE IS CHARACTER 20
Code TYPE IS CHARACTER 4
Population TYPE IS NUMERIC INTEGER
Area TYPE IS NUMERIC INTEGER

RECORD NAME IS city
Name TYPE IS CHARACTER 25
Population TYPE IS NUMERIC INTEGER

SET NAME IS all_countries
OWNER IS SYSTEM
MEMBER IS country

SET NAME IS has_cities
OWNER IS country
MEMBER IS city

28

QUERY AND DATA MANIPULATION LANGUAGE

• record-at-a-time DML

• based on iterators (common design pattern/interface, e.g. in Java!) over sets

– commands for navigation, access and data manipulation

– embedded into a host language (COBOL, PL/I, later ... Pascal, C)

• “Current of” (cf. PL/SQL: “cursor”) that points to an instance of a record/set type in the DB

– current of each record type

– current of each set type (pointing on either the owner or one of the member records)

– current of run unit (CRU): the record most recently accessed – any record type

• UWA (User Work Area) in the programming language runtime environment

– one variable for each record type (auto-defined from the schema)

– current of ... can be “fetched” into the corresponding UWA record

29

Retrieval and Navigation Commands

Query answering consists of stepwise navigation, carefully tracing currency indicators, and
fetching tuples to the UWA:

• Retrieval: move the CRU into the corresponding UWA record,

• Navigation: navigate by using iterators and currency indicators to specific records and set
owners/members.

30

Search for a Record of a Record Type

• FIND ANY <data record type> [USING <UWA.field.list>]

• FIND DUPLICATE <data record type> [USING <UWA.field.list>]

• tests/loops can be programmed by IF/WHILE DBSTATUS=0 // 0: successfully found

• FIND sets all current of record/set type in which the record participates to that record.
Can be avoided with RETAINING clause.

UWA.city.name = “Santiago”;
FIND ANY city USING name;
// sets also current of city indicator
while DBSTATUS=0 do begin

GET city // fetches data record into UWA.city
if UWA.city.population > 1.000.000 then writeln (UWA.city.name|UWA.city.population);
FIND DUPLICATE city USING name;

end;

• How to print out the city name and the country where it is located?
Needs the “owner” of the city wrt. “has_cities”.

31

Search for a Record in a Set Type

• FIND (FIRST | NEXT | PRIOR | LAST) WITHIN <set type> [USING <UWA.field.list>]

• FIND OWNER WITHIN <set type>

• starts always from the current of this set (which is implicitly set when the CRU points to a
suitable record type)

UWA.country.name = “Belgium”;
FIND ANY country USING name;
FIND FIRST city WITHIN has_capital
GET city // fetches data record (Brussels) into UWA.city
writeln (UWA.city.name);
FIND OWNER WITHIN in_province
GET province // fetches data record (Brabant) into UWA.province
writeln (UWA.province.name);

• Joins are only possible via navigation and loops in the host language.

Exercise 2.2
Write a program that outputs all organizations that have their headquarter in the capital of one
of their member countries. Compare with the equivalent SQL query against Mondial. 2

32

UPDATES

Updates on Data Records

STORE, ERASE, MODIFY (of the current data record)

Updates on Sets

CONNECT, DISCONNECT, RECONNECT (for the current data record wrt. a set)

HIERARCHICAL DATA MODEL

• In general very similar: parent-child-relationships define a tree structure; additionally,
“virtual” parent-child-relationships.

• Systems: IMS (IBM & Rockwell International, 1969 for NASA Apollo), Adabas (Software
AG, 1969), etc ...

33

SOLUTION

// not tested

find any organization // sets current of has_headq, current of has_members

while ok do

{ get organization // current organization into UWA

find first headq_in within has_headq_in // auxiliary record hq(org,cty)

find owner within is_headq_of // is a city

find owner within has_capital // is a country

if ok then // city is a capital

{ get country // UWA.country now holds this country

found = 0;

find first membership within has_members

// starts from the organization

// points to an auxiliary membership record m(org,c)

while ok & not found do

{ find owner within is_member using code // UWA.country.code

// check if the owner country is the same as in UWA

if ok then { println(UWA.organization.name); found = 1;}

find next membership within has_members

}

}

find duplicate organization // next organization

}

34

THE SAME IN SQL

SELECT name

FROM organization org

WHERE (city,country) IN (SELECT capital, code

FROM country

WHERE code IN (SELECT country

FROM is_member

WHERE organization = org.abbreviation))

SELECT organization.name

FROM organization, is_member, country

WHERE organization.abbreviation = is_member.organization

AND is_member.country = country.code

AND organization.city = country.capital

AND organization.country = country.code

SELECT organization.name

FROM organization, country

WHERE organization.city = country.capital

AND organization.country = country.code

AND (abbreviation, code) IN (SELECT organization, country

FROM is_member)

35

CONCLUSION

• importance decreased rapidly since SQL came up (1979), in the meantime it is only
present in “legacy systems”.

• no underlying theory (required as a base for normalization and optimization)

• only procedural, (data-model-level) navigation- and record-oriented query language,
non-declarative, needs to be embedded into a host language (COBOL, PL/I, Pascal, C).

• not possible to state ad-hoc queries.
Error-prone due to behavior of currency indicators.

• nevertheless, the idea of navigation and parent-child-relationships between data records
is elegant (no problems with referential integrity).
These concepts came up again in later approaches ... with high-level navigation!

• graph data model, “node + edge-labeled”

• expecially, ordered “child data records” are used again in XML. Then, there is

– the DOM as an abstract datatype (stepwise, record-oriented),

– XPath/XQuery as a declarative, set-oriented high-level language.

36

2.2 Object-Oriented Databases

Mid-80s: Object-orientation

• object-oriented design and modeling (UML)

• object-oriented programming (C++)

Application programs are developed and programmed in an object-oriented way.

• “impedance mismatch” between tuple-based SQL databases and the object-oriented data
structures of the programming languages.

Goals:

• make objects of the application programs persistent

• bring object-orientation into the DBMS

– class hierarchy and inheritance, polymorphism

– implementation and encapsulation of behavior

37

FURTHER INFLUENCES

• Networks: Internet and Intranets

• Data exchange and interoperability

• CORBA (1989) “Common Object Request Broker Architecture” (standardized by OMG –
Object Management Group; predecessor of Web Services):

– central ORB bus where services can connect

– service registry (predecessor of WSDL and UDDI ideas)

– description of service interfaces in object-oriented style
(IDL - interface description language, similar to C++ declarations)

– exchanging objects between services

⇒ requires a format for exchanging data (DB: between databases)

In this lecture, OODBS are only discussed shortly to sketch the central ideas.
An extended lecture can be found in “Information Systems”, available at
http://user.informatik.uni-goettingen.de/~may/Lectures.

38

L IFETIME OF OBJECTS

• Object-oriented programming language: Objects are created during runtime of an
application program, and they are destroyed when the program terminates.

Objects in OO Database Systems

• persistent: objects that are created by an activity, and then they are stored in the
database system and survive also the termination of the activity that created it (until they
are explicitly destroyed by another activity)

• transient: objects that are only needed temporarily for executing an activity. They exist
only as long as the application is actually active, and they are only managed by the
runtime environment of the programming language.

39

Lifetime of Objects

• Relational DBMS: all SQL types have only persistent instances that are stored in the
DBMS. All non-SQL types (i.e., types of the host language) have only transient instances,
these are destroyed with the termination of the application-program (= when the host
language is left).

Persistent objects can only be manipulated/used by SQL, while transient objects can only
be manipulated/used by the host language.

⇒ “impedance mismatch”.

• ODBMS: object types of the DBMS and of the application coincide. They can have
parallel and transient instances at the same time.

For persistent and transient objects the same programming language and the same
operations are used.

• comparison with XML: XML nodes can also be processed uniformly in the runtime
environment and stored in a database. The DOM-API can be used in both cases.

40

OBJECT-ORIENTED DATA MODEL

• describes only the (database) state (attributes, relationships, class membership and class
hierarchy), not the behavior,

• representation of the current state of the application-domain,

• corresponding conceptual modeling language: UML (see Software Engineering)

• more expressive than the relational model/ER-model

• (behavior of objects is integrated into the data manipulation language)

41

OO-DBMS

Standardization activities similar to the standardization of relational databases:

Success of the relational database systems:

• not only by the simple, high-level data model,

• but also due to the standardization: SQL (at least after some time)

– portability

– interoperability

ODMG: Object Database Management Group

• founded 1991

• Architecture of OODBMS, DDL, query language (OQL), data formats

• ODMG-1.0 standard (1993)

• ODMG-2.0 standard (1997)

• ODMG-3.0 standard (2000); incremental changes

Literature: Cattell et al; Object Database Management (ODMG, 1993/1997/2001)

42

ODMG: OBJECT DATABASE MANAGEMENT GROUP

• Voting members: organizations/companies, who commercially work at an ODBMS,
among others JavaSoft, Windward Solutions, Lucent Technologies, Unidata, GemStone,
ObjectDesign, Versant, ...
Reviewer members: Organizations who have a material interest in the work of ODMG.

• not the goal to define identical products, but to obtain source code portability (cf. Java,
SQL, later also XML).

• enough freedom to define own properties and targets of products:

– performance, optimization, (price)

– support of certain programming languages,

– functionality dedicated to special application areas (multimedia, CAD, ...), predefined
types

– integrated programming environments, design tools ...

43

ARCHITECTURE OF ODBMS

• Different from “classical” relational DBMS:
SQL: high-level language for data manipulation,
applications are then written in other programming languages (cf. embedded
approaches).

• ODBMS/ODM: transparent integration of DBMS functionality (persistence, multiuser,
recovery) into application programming language (cf. Persistent Java).
The objects of the application are simply stored in the database.

• no separate DML necessary. The application-level programming language is the DML.

• There is also a set-oriented, declarative query language
(the impedance mismatch between variable-orientation and set-orientation remains):
OQL

• no transformation between the (logical) database representation and the representation
in the programming language (cf. datatype conversion in JDBC).

44

ARCHITECTURES

ODMG is concerned with two types of products:

• Object Database Management Systems (ODBMSs) store the objects directly,

• Object-to-Database Mappings (ODMs) convert objects and store them in a relational (or
any other) representation.

(object-oriented)
data structures
of the application

relational
representation

Remark:
There are similar ap-
proaches for XML
databases.

Transformation

RDBMS

transparent
ODBMS-
data transfer

45

ODMG-STANDARD

A standard that consists of several languages for implementation-level specification of
object-oriented systems.

COMPONENTS OF THE ODMG STANDARD

• Object specification languages/data model

– Object Definition Language (ODL)

– Object Interchange Format (OIF)

• Object Query Language (OQL) – based on SQL

• C++/Smalltalk/Java Language Binding
specifies how to work with persistent objects in the target languages.

46

2.2.1 ODL: Object Definition Language

• Data definition language for object types:

• not a programming language, but only a language for definition of object specifications,

• characterizes object types (class hierarchy, properties and relationships)

• extends IDL (Interface Definition Language) from the OMG/CORBA (1989/1990) standard
(which is in course closely related to the declaration commands in Java)

47

DATA TYPES: L ITERALS

Literals are only values, they have no object identity.

Atomic literals

• long, short, unsigned long/short, float, boolean, char, string,

• enumeration {...} (“type generator”)
Z.B. enum Weekday {Sunday, Monday, . . . , Saturday}

Structured Literals

• predefined types: date, interval, time, timestamp
(additionally to actual object types Date, Interval, Time, Timestamp)

• user-defined structural types, e.g. address or

struct geoCoord { real longitude;

real latitude; }

Collection literals

• set<t>, bag<t>, list<t>, array<t>, dictionary<t>

(additionally to the actual collection types Set, Bag, List, Array, Dictionary)

48

CLASSES

... are used to define and categorize complex object types.

Classes define the signature of their instances (the implementation does not belong to the
object model):

class <name> { <attribute-defs>;
<relationship-defs>;
<operation-defs>;
}

<attribute-def> ::= attribute <domain-type> <attribute-name>

class City { attribute string name; % attributes ...
attribute number population;
attribute geoCoord coordinates;
relationship Country in_country; % ... and relationships
}

49

RELATIONSHIPS

• relationships are defined in course of the definition of classes.

• in UML and ODMG, only binary relationships are allowed.

• bidirectional and inverse relationships can be specified. Inverse relationships exist in
UML, and later again in the Semantic Web languages (OWL).

• one-to-one / one-to-many / many-to-many-relationships.

class <name> {
<attribute-defs>;
<relationship-defs>;
<operation-defs>; }

<relationship-def>::= relationship <target_of_path> <relationship-name>

inverse <domain-type> :: <relationship-name’>
<target_of_path>::= <domain-type> |

<collection type> <<domain-type>>

• <collection type> for -to-many-relationships

50

RELATIONSHIPS

class <name> { <attribute-defs>;
<relationship-defs>;
<operation-defs>; }

<relationship-def>::= relationship <target_of_path> <relationship-name>

inverse <domain-type> :: <relationship-name>

<target_of_path>::= <domain-type> |

<collection type> <<domain-type>>

class Country { attribute string name;
relationship City capital inverse City::is_capital_of;
relationship set<City> has_cities inverse City::in_country; }

class City { attribute string name;}

Country

name

code

City

namecapital→ 1

←is_capital_of0,1

has_cities→ 1..*
←in_country1

51

RELATIONSHIPS

• the instance level can be represented as a graph:

– nodes: objects; nodes have labels (names of the object types) and an ID

– edges: relationships; edges have labels (names of relationships)

• ODBMS is responsible for maintaining referential integrity:
If an object is deleted, all relationships with/to it must also be deleted.

• relationships define access paths, e.g. Germany.capital for navigation through the graph.

• graph-data model, “node + edge-labeled”

• The set<...> is very similar to the set-oriented representation of set-valued relationships
from the network data model (→ handled by iterators)

• the query language OQL solves this problem SQL-like in a declarative way (see later).

Exercise 2.3
Visualize an excerpt of the Mondial database as an object graph. 2

52

2.2.2 Object Interchange Format (OIF)

• dump the database state to one or more files (cf. export in ORACLE)

• specification language for persistent objects and their states

• OIF file contains for each object its type, its attributes and values, and its relationships to
other objects;

• the database schema (class definitions and class hierarchy) is not represented in OIF!

53

OBJECT INTERCHANGE FORMAT (OIF)

• Simplest form: only the class membership

<object> <class> {}
Germany Country {}
Berlin City {}

• attribute values are enumerated in braces:

Germany Country {name “Germany”, area 356910, . . . }

• structured attributes: nested brace structures

struct geoCoord { real longitude;
real latitude; }

class City { attribute string name;
attribute geoCoord coordinates;
relationship Country in_country; }

Berlin City {name “Berlin”, in_country Germany,
coordinates {longitude 13.3, latitude 52.45} }

54

OBJECT INTERCHANGE FORMAT (OIF)

• Collections, set-valued relationships:

class Country {
attribute string name;
relationship set<City> has_cities;}

Germany Country
{name “Germany”, capital Berlin,
has_cities {Berlin, Frankfurt, Freiburg, . . . } }

• cyclic references: no problem.

• attributed relationships (e.g. border) cannot be represented directly

⇒ OIF is already a self-describing data format!

55

2.2.3 OQL (overview)

• Query language of the ODMG standards (Object Query Language)

• similar to SQL:
SELECT - FROM - WHERE - clause, extended by complex objects, object-identity, path
expressions, polymorphism, operation calls and late binding.

• but: functional language (like SQL), fully orthogonal (in SQL not completely)

• no explicit UPDATE statement: instead, object methods are used

• not Turing complete (cf. SQL/transitive closure)

• OQL can be embedded into suitable object-oriented programming languages (C++, Java,
Smalltalk). Results of queries (collections!) are then processed by iterators.

56

EXTENTS

SQL: SELECT ... FROM <relation> ...

What corresponds to a relation in an ODBMS ?

⇒ Extension: set of all instances of a class (similar to system-owned sets in NWDBMS).

Extensions are defined in ODL together with the class declaration:

class <name> (extent <extent_name>)
{ <attribute-def>;

<relationship-def>;
<operations-def>; }

class Country (extent Countries)
{ attribute string name;

relationship City capital;
set<string> languages;
. . . }

57

QUERIES

Queries against the database are expressed with the SELECT statement, with the same
simple basic structure as in SQL:

SELECT <expression>

FROM <extents>

WHERE ...

SELECT c.population
FROM Countries c
WHERE c.name = ’Germany’

• with an iterator variable (here: c) – cf. SQL Aliasing

Similar to SQL:

• DISTINCT, aggregate functions: COUNT, SUM, . . . , set functions: UNION, INTERSECT,
EXCEPT (MINUS)

58

QUERIES

• SQL: all results of queries of the form

SELECT a,b,c FROM ...

are virtual “relations” (i.e. sets of tuples),

• OQL: the result is a virtual set of objects,

• in most cases an (implicit) collection.

SELECT c.capital
FROM Countries c

Result is of the type

collection <City>

⇒ queries can be nested arbitrarily (like in SQL)

59

QUERIES

in case that the result has more than one attribute (e.g. with SELECT *), a

bag <struct{...}>

is automatically generated:

SELECT c.name, c.population
FROM Countries c
WHERE c.name = ’Germany’

Result is of the type

bag <struct {string name; number population}>

60

COMPLEX RESULTS

• bags (here: set-valued relationship) can be handled as a whole,

• by explicit generation of a struct, the properties of the result can be renamed:

SELECT struct(name: c.name,
cities: c.has_cities)

FROM Countries c

result is of the type

collection <struct {string name;
collection<city> cities}>

How can something in the collection be selected?

61

... straightforwardly: apply a SELECT statement to the collection:

SELECT struct(name: c.name,
cities: (SELECT cty

FROM c.has_cities as cty
WHERE cty.population>1000000))

FROM Countries c

• Traversing the relationship has_cities by a path expression in the query

• nested SELECT in the SELECT statement: the inner SELECT ranges over the (virtual)
set c.has_cities of instances of type set<city>.

• the inner SELECT is evaluated separately for every result (i.e. for each instance c) of the
outer SELECT.

62

PATH EXPRESSIONS

for navigation along scalar relationships:

SELECT name: c.name,
cpp: c.capital.province.population

FROM Countries c

63

SELECT IN THE FROM-CLAUSE

Navigation along set-valued relationships:

not allowed:
SELECT name: c.has_cities.name,

pop: c.has_cities.population
FROM Countries c
WHERE c.name = “Germany”

has_cities is a set of cities, thus, the method population cannot be applied (to the set).

This can be done e.g. by a SELECT statement in the FROM-clause:

SELECT name: cty.name,
pop: cty.population

FROM (SELECT c.has_cities
FROM Countries c
WHERE c.name = “Germany”) as cty

64

CORRELATED JOINS

... do the above example even better:

SELECT name: cty.name,
pop: cty.population

FROM Countries c, c.has_cities cty
WHERE c.name = “Germany”

This would be a nice feature also in SQL ... the right side of the join is computed dependent
on the left one.

⇒ asymmetric joins that express nested iteration in a declarative way

⇒ not aligned with the relational algebra

65

OQL: F UNCTIONAL LANGUAGE CONCEPT

SQL:

• declarative, relational algebra as theoretical base,

• somewhat ad-hoc language (around SELECT – FROM – WHERE),

• not completely orthogonal composition (aggregate functions, method applications)

OQL:

• orthogonal composition rules: operators can be nested as long as the type system is not
violated

• functional concept, includes the simple queries in SQL syntax.

• result of a query is always a

collection()

• can be processed in the same way as an extension (intensional part of the database).

66

CONCLUSION

• Object-oriented databases have not been accepted by the market.

• Products: ObjectStore, Adabas, O2, GemStone, Poet, ...
Some of them served as the base for the first commercial XML database systems
(Excelon, Tamino [Software AG]).

• Object-relational extensions to SQL and relational systems (SQL-3-Standard):
evolutionary instead of revolutionary development.

• graph data model, “node + edge-labeled”

• set-oriented (extents similar to relations) and navigation-based access, integrated in a
declarative language.
Problems with navigating along set-valued properties.

• OQL as a functional language with fully orthogonal constructs and the possibility to
generate structures in the SELECT-clause.
The XML-Query language XQuery will be very similar ...

• OIF as self-describing ASCII-based data exchange format, but still with a fixed schema.

67

2.2.4 Analysis: 1:n-Relationships

Country

name

code

City

namecapital→ 1

←is_capital_of0,1

has_cities→ 1..*
←in_country1

class Country { attribute string name;
relationship City capital inverse City::is_capital_of;
relationship set<City> has_cities inverse City::in_country; }

class City { attribute string name;}

• correct: germany.capital.name

• not correct: germany.has_cities.name

• translation to set<City> “country is in relation with a set of cities” is a tribute to
programming language influence: must be something that exists in programming
languages and that can be bound to a single variable.
“set-valued” – one answer which is a set.

• applying “.name” to a set is obviously not correct.

68

ALTERNATIVE TRANSLATION

Country

name

code

City

namecapital→ 1

←is_capital_of0,1

has_cities→ 1..*
←in_country1

• database style: “country is in relation with multiple cities”
“multi-valued” – a set of answers, each of them is a city,

• “set of answers” is a meta-concept of the query language, not of the underlying
programming language,

• applying “.name” to a set of answers can be defined by the semantics of the query
language!

• “Modern” query languages change to multivalued semantics:

– F-Logic (1989, see later): germany.has_cities.name,

– XPath (for XML, 1998): //country[name=“Germany”]/city/name,

– semantics of path expressions stays within the semantics of the query language.

69

2.3 Data Integration and Metadata Queries: SchemaSQL

2.3.1 Introduction

• So far: single databases

• according to the classical 3-level architecture

external

Level
View 1 View 2 View n

logical

Level
conceptual/logical schema

physical

Level
physical schema

DB state
...

... Mappings

Mapping

70

MULTIDATABASE SYSTEMS AND FEDERATED DATABASE SYSTEMS

• providing a common, integrated view over several databases

External Level View1 View2 · · · Viewm

Integrated Level integrated logical schema

Logical Level log. schema1 log. schema2 · · · log. scheman

Physical Level phys. schema1 phys. schema2 · · · phys. scheman

DB State · · ·

...

Integration Mappings

71

DATA INTEGRATION AND METADATA QUERIES IN SQL: S CHEMASQL

SchemaSQL (Lakshmanan et al. 1996; non-commercial academic system) extends SQL:

• combination of relations and attributes of different (federated) databases.

• uniform handling of data and metadata (by SchemaSQL variables).

• possible domains of variables are the names of the components of a federation, names of
the relations of a database, names of the attributes of a relation, tuples of a relation, and
values of a column of a relation.

• additionally to the “vertical” aggregations over columns, also “horizontal” aggregations
over relations or even tables are possible.

72

Example

univ-A

salInfo

category dept salary

Prof CS 65,000

Assoc Prof CS 50,000

Prof Math 60,000

Assoc Prof Math 55,000

univ-C

CS

category salary

Prof 60,000

Assoc Prof 55,000

Math

category salary

Prof 70,000

Assoc Prof 60,000

univ-B

salInfo

category CS Math

Prof 55,000 65,000

Assoc Prof 50,000 55,000

univ-D

salInfo

dept Prof Assoc Prof

CS 75,000 60,000

Math 60,000 45,000

73

2.3.2 Declaration of Variables

... as known from SQL in the FROM-clause: FROM <range> <var>

SQL: FROM <table> <var>

SELECT cty.name, cty.population

FROM City cty

< range > ∈ {→, db→, db :: rel, db :: rel→, db :: rel.attr} .

• → : names of the databases of the federation

• db→ : names of the relations of the database db.

• db :: rel : tuples of the relation rel of the database db [as in SQL].

• db :: rel→ : names of the attributes of the schema of the relation rel of the database db.

• db :: rel.attr : values of the column of the attribute attr of the relation rel of the database
db.

• SchemaSQL: iterated declarations of variables are allowed!
⇒ joins not longer symmetrical (cf. OQL).

74

Declaration of Variables: Tuple- and Domain Variables

• tuple variables as known from SQL:
db :: rel ranges over the set of tuples of the relation rel of the database db.

SELECT tuple.category, tuple.salary
FROM univ-C::CS tuple

category salary

“Prof” 60000

“AssocProf” 55000

• Domain-Variables:
db :: rel.attr ranges over the set of values of the attribute attr of the relation rel of the
database db

SELECT cat
FROM univ-A::salInfo.category cat

cat

“Prof”

“AssocProf”

Note: SQL-style SELECT category FROM univ-A::salInfo

yields the same result – but does not allow to bind the values

to a variable (that can be used somewhere else)

75

Declaration of Variables: Metadata Variables

• db→ ranges over the relation names of the database db.

SELECT relname FROM univ-C→ relname

relname

“CS”

“math”

• Nested declarations: Second variable depends on the first one:

SELECT dept, tuple.category, tuple.salary
FROM univ-C→ dept, univ-C::dept tuple

dept category salary

“CS” “Prof” 60000

“CS” “AssocProf” 55000

“Math” “Prof” 70000

“Math” “AssocProf” 60000

... integrates both tables from univ-C in one.

76

Declaration of Variables

• Variables over names of attributes:
db :: rel→ ranges over the set of attribute names of the schema of the relation rel of the
database db.

SELECT attrname

FROM univ-C::CS→ attrname attrname

“category”

“Salary”

• SELECT C: name of the attribute,
SELECT T.C: value of the respective attribute of the current tuple.

SELECT attrname, univ-C::CS.attrname

FROM univ-C::CS→ attrname “category” “Prof”

“category” “AssocProf”

“Salary” 60000

“Salary” 55000

77

Declaration of Variables

• → ranges over the names of the databases of the federation.

SELECT dbname FROM→ dbname
dbname

“univ-a”

“univ-b”

“univ-c”

“univ-d”

• SELECT dbname, relname

FROM→ dbname, dbname→ relname dbname relname

“univ-A” “SalInfo”

“univ-B” “SalInfo”

“univ-C” “CS”

“univ-C” “math”

“univ-D” “SalInfo”

78

2.3.3 Queries

All departments of Univ-A that pay a higher salary to their professors than the corresponding
departments of Univ-B:

select A.dept

– all variables are independent

from univ-A::salInfo A, univ-B::salInfo B,

univ-B::SalInfo-> AttB

where AttB <> “category” and

A.dept = AttB and

A.category = “Prof” and

B.category = “Prof” and

A.salary > B.AttB.

79

Queries (Cont’d)

Same for C/D:

select RelC

– C depends on RelC

from univ-C-> RelC, univ-C::RelC C,

univ-D::salInfo D

where RelC = D.dept and

C.category = “Prof” and

C.salary > D.Prof

80

AGGREGATION

Similar to SQL, there can be aggregation over a variable.

⇒ here also horizontal and blockwise aggregation possible.

Average salary for each kind of professors over all departments of Univ-B:

select T.category, avg(T.D)

from univ-B::salInfo→D, univ-B::salInfo T

where D <> “category”

group by T.category

• select the values for D,

• compute the cartesian product
with univ-B::salInfo T

• include column T.D

• evaluate, do the grouping, com-
pute the aggregate

D category CS Math T.D

category Prof 55,000 65,000 55,000

CS Prof 55,000 65,000 55,000

math Prof 55,000 65,000 65,000

category Assoc Prof 50,000 55,000 50,000

CS Assoc Prof 50,000 55,000 50,000

math Assoc Prof 50,000 55,000 55,000

81

Aggregation

Average salary for each kind of professors over all departments of Univ-C:

select T.category, avg(T.salary)

from univ-C→D, univ-C::D T

group by T.category

• compute values for D,

• join with tuple variable D T

D category salary

CS Prof 60,000

CS Assoc Prof 55,000

math Prof 70,000

math Assoc Prof 60,000

• grouping

• compute the aggregate

82

RESTRUCTURING

... as usual via views:

create view

BtoA::salInfo(category, dept, salary) as

select T.category, D, T.D

from univ-B::salInfo→D, univ-B::salInfo T

where D <> ‘category’

creates a virtual database BtoA with a virtual relation salInfo in the same format as A::salInfo.

83

Restructuring

A to B: number of attributes of the result table depends on the number of departments.
⇒ Dynamic result schema

create view AtoB::salInfo(category,D) as

select A.category, A.salary

from univ-A::salInfo A, A.dept D

Result of the FROM-clause:
A.category A.salary A.dept D

Prof 65,000 CS

Assoc Prof 50,000 CS

Prof 60,000 Math

Assoc Prof 55,000 Math

Many-to-one-mapping into a schema of the form

salInfo(category, dept1, . . . , deptn).

AtoB::salInfo

category CS Math

Prof 65,000 60,000

Assoc Prof 50,000 55,000

84

2.3.4 Exercise

Create the following view that represents the information of all four databases in a uniform
way:

create view

globalSchema::salInfo(univ, dept, category, salary) as

[TO BE COMPLETED]

85

SOLUTION

create view

globalSchema::salInfo(univ, dept, category, salary) as

select “univ-A”, T.dept, T.category, T.salary

from univ-A::salInfo T

union

select “univ-B”, D, T.category, T.D

from univ-B::salInfo T, univ-B::salInfo→D

where D<>“category”

union

select “univ-C”, T, T.category, T.salary

from univ-C→D, univ-C::D T

union

select “univ-D”, T.dept, C, T.D

from univ-D::salInfo T, univ-D::salInfo→C

where C<>“dept”

86

2.3.5 Query Evaluation

Federation System Table (FST): meta-information about the component databases, i.e.
names of the databases, relations, attributes, or other statistical information that is useful
for query evaluation (similar to the Data Dictionary in SQL).

Variable Instantiation Tables (VIT): contain the possible variable bindings during the
evaluation (meta level).

Input: a SchemaSQL query

Output: bindings of the variables of the SELECT-clause of the query

Evaluation: two phases:

1. generation of the VITs according to the variables in the FROM-clause. For this, SQL
queries are stated against the local databases and against the FST.

2. rewriting of the SchemaSQL query into an equivalent query using the VITs (Dynamic
SQL). This query is then evaluated by the resident SQL server.

87

EVALUATION : EXAMPLE

select RelC

from univ-C→ RelC, univ-C::RelC C, univ-D::salInfo D

where RelC = D.dept and C.category = “Prof” and C.salary > D.Prof

Bindings for meta-variables (query against an FST):
V ITRelC

RelC

CS
Math

Bindings for tuple variables (queries against component-DBS):

V ITC (depends on RelC)

RelC category salary

CS Prof 60,000
CS Assoc Prof 55,000

Math Prof 70,000
Math Assoc Prof 60,000

V ITD

Dept Prof AssocProf

CS 75,000 60,000
Math 60,000 45,000

88

Evaluation: Example

... again the query:

select RelC

from univ-C→ RelC, univ-C::RelC C,

univ-D::salInfo D

where RelC = D.dept and

C.category = “Prof” and

C.salary > D.Prof

Query evaluation via standard SQL over the V IT ′s.

select VIT_RelC.RelC

from VIT_RelC, VIT_C, VIT_D

where VIT_C.RelC = VIT_RelC.RelC % Correlation RelC, C

and VIT_RelC.RelC = VIT_D.dept

and VIT_C.category = “Prof”

and VIT_C.salary > VIT_D.Prof

89

EXERCISE: SCHEMA-SQL

Describe the evaluation of the query given on Slide 76 with its FST and VITs.

Solution

V ITdbname

dbname

univ-A

univ-B

univ-C

univ-D

V ITrelname

dname relname

univ-A salInfo

univ-B salInfo

univ-C CS

univ-C math

univ-D salInfo

SELECT V ITdbname.dbname, V ITrelname.relname
FROM V ITdbname, V ITrelname

WHERE V ITdbname.dbname = V ITrelname.relname

90

2.3.6 Example: Integration of Stock Exchange Data

Frankfurt::Quota

Date Name Price

3.3.93 sun 150

3.3.93 dc 151

3.3.93 b.u. 160

4.3.93 sun 153

4.3.93 dc 154

4.3.93 b.u. 163

Tokyo::Quota

Date sun dc fuji

3.3.93 150 151 140

4.3.93 153 154 140

Sydney::3.3.

Name Price

sun 150

dc 151

kiwi 130

Sydney::4.3.

Name Price

sun 153

dc 154

kiwi 135

New York::sun

Date Price

3.3.93 150

4.3.93 153

New York::dc

Date Price

3.3.93 151

4.3.93 154

New York::msoft

Date Price

3.3.93 148

4.3.93 74

Possible extension:

Euro vs. Dollar vs. Yen

91

EXERCISE: SCHEMA-SQL

• Formulate the “On which days had which stocks the price of 150 $?” for the schemata
given on Slide 91.

• In commercial database systems, the schema information is stored in the Data Dictionary
(cf. the following excerpts of table definitions of the data dictionary):

SQL> desc sys.user_tables;

Name Null? Type

----------------------- -------- ----

TABLE_NAME NOT NULL VARCHAR2(30)

SQL> desc sys.user_tab_columns;

Name Null? Type

----------------------- -------- ----

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

DATA_TYPE VARCHAR2(30)

Describe how the above queries can be formulated in an environment where SQL is
embedded into a procedural programming language (e.g. embedded-SQL or PL/SQL)
(Pseudocode).

92

SOLUTION : SCHEMA-SQL

• SELECT Date, Name

FROM Frankfurt::Quota

WHERE Price=150;

SELECT Date, AttrName

FROM Tokyo::Quota.Date, Tokyo::Quota → AttrName

WHERE AttrName 6= ’Date’ AND Price=150;

SELECT NewYork::TabName.Date, TabName

FROM NewYork → TabName

WHERE Price=150;

SELECT TabName, Sydney::TabName.Name

FROM Sydney → TabName

WHERE Price=150;

• Information from the Data Dictionary is only needed for Tokyo, New York and Sydney.

93

SOLUTION : SQL

Algorithm for SQL in a procedural environment (database Tokyo):

• Store the result of

SELECT ColumnName

FROM Tokyo.user_tab_columns

WHERE ColumnName 6= ’Date’;

(result: the names of the companies) and for each result <cn> execute the query

SELECT Date, <cn>

FROM Tokyo.Quota

WHERE <cn>= 150;

and collect all results.

94

Solution: SQL

• database “New York”: store the result of

SELECT TableName

FROM user_tables

WHERE

(SELECT ColumnName

FROM user_tab_columns UTC

WHERE UTC.TableName=TableName = {Date,Price});

(the comparison of sets must be formulated in SQL) and for each result <tn> evaluate the
query

SELECT Date, <tn>

FROM <tn>

WHERE Price = 150;

and collect all results.

Problem: SQL statements must be generated dynamically : the results of the first query are
used in the second statement.

95

SOLUTION : DYNAMIC SQL

This is e.g. possible in Oracle by using the DBMS_SQL-Package (to be used with PL/SQL),
which allows to generate SQL statements at runtime:

create procedure findnumber as

declare

cursor col_cursor is

select column_name, data_type

from sys.user_tab_columns

where table_name = upper('&&table_name')

order by column_id;

lv_column_name sys.user_tab_columns.column_name%TYPE;

lv_column_typ sys.user_tab_columns.data_type%TYPE;

lv_rowid varchar2(20);

rows_processed number;

loop_count number;

stmnt varchar2(2000);

doublecur BINARY_INTEGER;

execute_feedback INTEGER;

type colname_typ is table of lv_column_name%TYPE

index by binary_integer;

type rowid_typ is table of lv_rowid%TYPE

96

index by binary_integer;

colname_table colname_typ;

empty_colname colname_typ;

rowid_table rowid_typ;

empty_rowid_table rowid_typ;

begin

DBMS_OUTPUT.ENABLE(10000);

rows_processed := 0;

-- Search for attributes with datatype "Number"

open col_cursor;

loop

fetch col_cursor into

lv_column_name, lv_column_typ;

exit when col_cursor%notfound;

IF lv_column_typ='NUMBER' THEN

rows_processed := rows_processed+1;

colname_table (rows_processed)

:= lv_column_name;

END IF;

end loop;

close col_cursor;

-- Initialize query statement

stmnt := 'select rowid from '

|| '&&table_name '

97

|| 'where ';

-- generate the query iteratively

loop_count := 1;

WHILE loop_count <= rows_processed

loop

stmnt := stmnt

|| colname_table(loop_count)

|| ' = &&Price';

if loop_count < rows_processed

then

stmnt := stmnt || ' or ';

end if;

loop_count := loop_count + 1;

end loop;

DBMS_OUTPUT.PUT_LINE

('Computed Query: ' || stmnt);

-- execute the generated statement

doublecur := DBMS_SQL.OPEN_CURSOR;

DBMS_SQL.PARSE (doublecur

,stmnt

,DBMS_SQL.V7);

DBMS_SQL.DEFINE_COLUMN

(doublecur, 1, lv_rowid, 20);

execute_feedback := DBMS_SQL.EXECUTE (doublecur);

98

-- generate list of all resulting data records and

-- RowIDs

loop

if DBMS_SQL.FETCH_ROWS (doublecur) = 0

then

exit;

else

DBMS_SQL.COLUMN_VALUE (doublecur,1, lv_rowid);

DBMS_OUTPUT.PUT_LINE('RowID: ' ||lv_rowid);

end if;

end loop;

-- cleaning ...

DBMS_SQL.CLOSE_CURSOR (doublecur);

colname_table := empty_colname;

end;

/

99

Solution: Dynamic SQL

SQL> execute find-number;

Give value for table_name: Tokyo

Give a value for price: 150

Generated Query:

select rowid from Tokyo

where SUN = 150 or DC = 150 or FUJI = 150

RowID: AAAA2MAADAAAD7nAAA

SQL> select * from Tokyo

where rowid='AAAA2MAADAAAD7nAAA';

03.03.93 150 151 140

which must still be postprocessed for obtaining the answer ’sun’, 3.3.93.

• Conclusion: SchemaSQL helps to express such queries much shorter and more concise,
and it is easier to learn than PL/SQL and DBMS_SQL.

100

2.3.7 Exercise: Horizontal and blockwise Grouping

• Consider the schemata univ-B, univ-C and univ-D. Give SchemaSQL queries that
return for each kind of professors the average salary over all departments.

101

SOLUTION : HORIZONTAL AND BLOCKWISE GROUPING

• univ-A: same as in standard SQL: vertical aggregation:

select T.category, avg(T.salary)
from univ-A::salInfo T – tuple variable
group by T.category

• univ-B: horizontal aggregation
see Slide 81.

• univ-C: aggregation over different tables
see Slide 82.

• univ-D: aggregation over different columns:

select T.category, avg(T.C)

from univ-B::salInfo T, univ-B::salInfo → C

where C <> “dept”

group by C

102

CONCLUSION

• integration of relational databases with different schemas

• queries against metadata

• combination of metadata and data

• data-dependent generation of schema

New Features

Generalization of the use of variables:

• SQL: variables only ranging over tuples of a fixed relation,

• SchemaSQL: variables ranging over “everything”: data: tuples, column values
metadata: names of columns, names of relations, even names of databases,

• intuitively simple extension of SQL,

• powerful feature for data integration,

– But: classical query optimization/evaluation not applicable.

Such variables are more (F-Logic) or less extremely (XML: XPath/XQuery) used in
Semistructured Data and XML.

103

Chapter 3
Semistructured Data: Early
Approaches
• Data integration

– different, autonomous data sources

– different data models and schemata

– more advanced than the approach of SchemaSQL

• Knowledge representation, data exchange

– schema- and meta-information inside the data

– examples: KIF (Knowledge Interchange Format), F-Logic

– up to ontology management (“Semantic Web”)

• Management of data for presentation on the Web

• Extraction of data from the Web

104

SSD FOR DATA INTEGRATION /DATA EXCHANGE :

Wrapper/Mediator-Based Architectures

• Mediator (Vermittler): between users
and data sources (Middleware),

• Wrapper (Translator): provides ho-
mogeneous access to heterogeneus
sources
(especially for information extraction
from the Web:
programming of wrappers for Web
pages and then collect the data)

Query

Mediator

Mediator

Wrapper Wrapper

Source-specific interfaces

105

WRAPPER /MEDIATOR-BASED ARCHITECTURES

• sources: databases, interfaces to databases via forms (e.g. library search), search
engines, simple Web pages

• each relevant Web source is associated to a wrapper

• mediator contains knowledge about the accessible sources

• mediators can be composed hierarchically

Virtual Approach

The users state queries against the upper level mediator (“external view”) which translates the
queries against lower mediators and wrappers. Wrappers answer the queries from the
sources. Mediators combine the answers and return them.

Materialized Approach

An integrated view of all data is completely materialized (and maintained). Users state their
queries against the materialized database that directly answers them.

106

REQUIREMENTS FOR DATA INTEGRATION

• upper mediator level: a target data format

• interfaces between wrappers/mediators

– a common data exchange format

– a common query language/mechanism

• wrapper level: mapping from sources into the common format

Target Data Model and Languages

• flexible and extensible

– “copy all properties of object X from data source A”

– extensible to additional sources

– different source data models and schemata

• handling metadata and content in combination

• self-describing data !?

107

3.1 TSIMMIS

(The Stanford-IBM Manager of Multiple Information Sources, 1995-2000)

Persons: J. Ullman, H. Garcia-Molina, J. Widom, Y. Papakonstantinou, etc.

Goal (several subprojects): construction of means for a consistent and efficient integrated
access to information sources:

• Heterogeneous information sources

– databases

– Web pages

⇒ often no explicit schema known/present

⇒ mapping to a common data model:
Object Exchange Model (OEM)

108

TSIMMIS: Concept

“Virtual” approach:

• users state queries against a mediator

• mediator forwards the subqueries to lower mediators or wrappers

• wrappers are programs that (logically) transform the objects of the data source into OEM
and then answer the basic queries

• results of the wrappers are returned in OEM format to the mediator

• mediator integrates the results of the sources

• mediators can be composed hierarchically

109

3.1.1 OEM: Object Exchange Model

• very simple, “self-describing” object model

• knows only object identity and nesting as concepts:

• each object has an object-ID, a label (∼ class), a (data)type and a value,

• values of complex types are sets of references to sub-objects

• labels: “self-describing data”

• top-level objects with semantic object identifiers as entry points (cf. OQL)

• can be represented as a graph:
oberlin := City set

Name String “Berlin” Coordinates set

Longitude Number 13.3 Latitude Number 52.45

ogermany := Country set

110

OEM: EXAMPLE

Source 1: CIA World Factbook

Wrapper cia exports OEM objects as follows:

<&cont1, continent, set, {&a1, &n1, &c1, &c2, &c3, . . . }>

<&n1, name, string, ‘Europe’>
<&a1, area, number, 9562488>

<&c1, country, set, {&cn1, &cc1, &ca1, &cp1, &cap1}>

<&c2, country, set, {&cn2, &cc2, &ca2, &cp2, &cap2}>

<&cn1, name, string, ‘Germany’>
<&cc1, code, string, ‘D’>
<&ca1, area, number, 356910>

<&cp1, population, number, 83536115>

<&cap1, name, string, ‘Berlin’>

<&cn2, name, string, ‘Sweden’>
<&cc2, code, string, ‘S’>
<&ca2, area, number, 449964>

<&cp2, population, number, 8900954>

<&cap2, name, string, ‘Stockholm’>

111

OEM: Example

Source 2: Global Statistics

Wrapper gs exports OEM objects as follows:

<&cont1, continent, set, {&a1, &n1, &c1, &c2, &c3, . . . }>

<&n1, name, string, ‘Europe’>
<&c1, country, set, {&cn1, &ct11, &ct12, &ct13, . . . , &prov11, &prov21,. . . }>

<&c2, country, set, {&cn2, &ct21, &ct22, &ct23, . . . , &prov12, &prov22,. . . }>

<&cn1, name, string, ‘Germany’>
<&ct11, city, set, {&ctn11, &ctp11, &prov11}>

<&prov11, province, set, {&pn11, &pa11, &pp11, &ct11}>

<&ctn11, name, string, ‘Stuttgart’>
<&ctp11, population, number, 588482>

<&pn11, name, string, ‘Baden-Württemberg’>
<&pa11, area, number, 35742>

<&pp11, population, number, 10272069>

112

OEM

• another version of OEM has been presented that additionally allows for labeled edges;
e.g. for capital-edges from a country to a city.

Exercise 3.1
Visualize an excerpt of the Mondial database with some countries, cities, continents and
organizations as an OEM graph. 2

... a very simple data model.

• how to query it?

• generally, the network model language could be used for navigating ...

• ... but in the meantime, declarative languages had been invented:

– clause-based: SQL-style

– logic-based: Datalog-style

113

3.1.2 TSIMMIS: Languages

Mediators are programmed in MSL (Mediator Specification Language; a rule-based query
language for OEM):

MSL rules (cf. Prolog, Datalog):

head(Vars) :- body(Vars,databases)

• head and body consist of expressions over patterns of the form

<oid label type value>

or
<oid label value>

or
<label value>

• value can be set-valued; in this case, the set consists itself of expressions of the form
<. . . > .

• objects of different sources are identified by <object>@source.

• body : pattern that must be satisfied by suitable variable bindings,

• head describes the structure of the OEM object that is generated.

114

MSL

The country whose code is “D”:

?- <C country {<code "D">}>@cia

• the query generates a set-valued result object, whose sub-objects are the individual
answers:

result: <answer {&c1}>

The names of all south-american countries in which there is a city with name “Santiago”:

<countryname N>:-

<continent {<name "South America"> <country

{<name N> <city {<name "Santiago">}>}>}>@gs

<&obj42, answer, set, {<countryname “Chile”>,

<countryname “Paraguay”>,

<countryname “Argentina”>}>

115

EXAMPLE

Mediator med accesses wrappers cia and gs.

Query: all cities that are stored in gs whose names are mentioned in cia as names of capitals.

Mediator rule:

<capital {<name Cap> <country CN> R }>@med :-
<country {<name CN> <capital Cap>}>@cia
AND <country {<name CN> <city {<name Cap> | R}>}>@gs

• R is bound to the remaining sub-objects of the resulting city-objects.

⇒ object creation in the rule head obj@med (cf. Views)

exported object e.g. <&cap, capital, set, {&ctn12, &c1, &ctp12, &ctprov12}>@med

• additionally: external predicates (string concatenation, substring, comparisons etc).

• variables can be bound to labels and to values

• syntactically 2nd order

⇒ queries against the logical schema are possible.

116

3.1.3 TSIMMIS: User Queries Against OEM

Users can state queries in MSL or LOREL:

• MSL: see above – rule- and pattern-based language

• LOREL (Lightweight Object Repository Language):
(LORE: DBMS for OEM data model, Stanford)
clause- and path-based language (based on OQL)

Lorel

• Entry points are named constants (e.g. europe) or extents (e.g. countries)

• result of each query is a collection of OEM objects.

Semantics of 1:N-relationships

multi-valued instead of set-valued semantics:

• germany.city yields multiple unary answers instead of (as in ODMG) one set-valued
answer.

• germany.city.name yields the names of all these cities.

117

LOREL

clause-based SQL/OQL-style language: SELECT - FROM - WHERE

% all europ. capitals:

select europe.country.capital % note: multivalued semantics

% the country with the code "S":

select c

from europe.country c

where c.code = "S"

% South-american countries such that ...

select c

from southamerica.country c

where c.city.name = "Santiago"

implicit existential semantics: ... if there is any city whose name is Santiago.

118

3.2 Frame-Based Models

• objects are represented by object frames,

• Frame contains slots for storing properties
(“signature” of the slots can be given by a schema, but not necessarily (⇒ semistructured
data))

• Slots can be literal-valued or object-valued (internal storage by references) for describing
attributes and relationships.

A SELF-DESCRIBING OO-DATA MODEL : F-L OGIC

(M. Kifer, G. Lausen, 1989/1995; SIGMOD Test of Time Award 1999)

• full object-orientation (class hierarchy, inheritance)

• objects have properties

• metadata (class names, method names) as first-class-members of the data model

• “frame-based” model

• deductive language (Prolog-style)

119

F-LOGIC: DATA MODEL AND SYNTAX

• is-a relationship:
<object> : <class>

• subclass-relationship:
<class> :: <class>

• properties:
<object>[<property>→<object/value>] (scalar)
<object>[<property>→→{<set-of-objects/values>}] (set-valued/multi-valued)
Analogously with parameters:
<object>[<property>@(<list-of-objects/values>)→<object/value>]

<object>[<property>@(<list-of-objects/values>)→→<{set-of-objects/values}>]

• inheritable properties:
<class>[<property>•→<object/value>] (scalar)
<class>[<property>•→→{<set-of-objects/values>}] (set-valued)
nonmonotonic inheritance semantics with overriding.

120

F-LOGIC: EXAMPLE

obelgium : country[name→“Belgium”; car_code→“B”;

capital→obrussels; independence→“04 10 1830”;

total_area→30510; population→10170241;

encompassed@(oeurope)→100; pop_growth→0.33;

adm_divs→→{op_antwerp, op_westfl,. . . };

main_cities→→{obrussels, oantwerp,. . . };

borders@(ofrance)→620; borders@(ogermany)→167;

borders@(oluxembourg)→148; borders@(onetherlands)→450].

obrussels : city[name→“Brussels”; country→obelgium;

province→op_westfl; population@(95)→951580].

op_westfl : prov[name→“West Flanders”; country→obelgium;

capital→obrussels; area→3358; population→2253794].

oeu : org[abbrev→“EU”; name→“European Union”;

established→“07 02 1992”; headq→obrussels;

members@(“member”)→→{obelgium, ofrance,. . . };

members@(“applicant”)→→{ohungary, oslovakia,. . . }].

121

REPRESENTATION AS A GRAPH

oeurope

continent
name→“Europe”
. . .

oeu

organization
abbrev→“EU”
headq→•

members→→{•,•,. . . }
. . .

ofrance

country
name→“France”
encompassed@(•)→100
borders@(•)→620
member→→{•,. . . }
. . .

obelgium

country
name→“Belgium”
capital→•

encompassed@(•)→100
adm_divs→→{•, •,. . . }
main_cities→→{•, •,. . . }
borders@(•)→620
member→→{•,. . . }
. . .

op_westfl

province
name→“W.Flanders”
country→•

capital→•

. . .

op_antwerp

province
name→“Antwerp”
country→•

capital→•

. . .

obrussels

city
name→“Brussels”
country→•

province→•

pop@(95)→951580
. . .

oantwerp

city
name→“Antwerp”
country→•

province→•

. . .

122

PROPERTIES

• arbitrary properties of an objects can be stored – simply generate and fill a slot.
self-describing data model

• null values need not to be stored explicitly, slots are simply not filled.

• navigation with path expressions in combination with patterns:

– population of the province where the capital of Belgium is located:
?- C:country[name→”Belgium”].capital.province[population→P].

– all names of cities in Belgium:
?- C:country[name→”Belgium”]..main_cities[name→N].

– sum of population of all provinces of Belgium:
?- Z = sum{X | C:country[name→”Belgium”]..province[population→X]}.

– can be nested in complex conditions:

?- C:country[encompassed@(_Cont[name→”Europe”])→_X; member→→_O[name→“EU”];

population→CP; area→CA]..city[population→CitP; name→N],

CP > 1000000, CA > 100000, CitP > 0.25 * CP.

123

F-LOGIC: S IGNATURE

The signature can also be formalized in F-Logic:

• properties:
<type>[<property>⇒<type>] (scalar)
<type>[<property>⇒⇒<type>] (set-valued)
analogously with parameters:
<type>[<property>@(<list-of-types>)⇒<type>]

• country[name⇒string; capital⇒city;

total_area⇒number; population⇒number;

encompassed@(continent)⇒number;

adm_divs⇒⇒province; main_cities⇒⇒city;

borders@(country)⇒number].

city[name⇒string; country⇒country;

province⇒province; population@(number)→number].

• queries against metadata: ?- X:country[M→(_V:C)] or ?- country[M⇒C].

124

F-LOGIC AS A PROGRAMMING LANGUAGE

• object-oriented logic

• deductive database language (i.e. Prolog-style) with fixpoint semantics

<head>:- <body>.

?- <query>.

• e.g., transitive closure can be expressed:

R[transitive_flows→→S] :- R:river[to@(sea)→S].

R1[transitive_flows→→S] :- R1:river[to@(river)→R2], R2:river[transitive_flows→→S].

Implementations

• The FLORID system (F-Logic Reasoning in Databases; C++):
http://www.informatik.uni-freiburg.de/~dbis/florid

• FLORA/FLORA II; XSB-Prolog: http://flora.sourceforge.net/

... current use: reasoning in the Semantic Web.

125

DATA INTEGRATION FROM THE WEB WITH FLORID

• warehouse approach

• direct mapping from HTML trees to F-Logic

• queries against Web pages possible

• wrapper + mediator functionality programmed by F-Logic rules

1998: Generation of the MONDIAL database from the Web

• F-Logic wrappers for several Web pages

– CIA World Factbook Country Pages

– CIA World Factbook Organizations Pages

– “Global Statistics”

– some smaller sources + the original Karlsruhe TERRA database

⇒ materialized F-Logic representation of each source

• F-Logic integration program that stepwise materializes an integrated database

• advantages of the warehouse approach for complex integration tasks (basic rules +
exceptional and refining rules)

126

3.3 Summary: Database Aspects (1995)

• Integration of data from different, heterogeneous sources:

– relational distributed/federated databases: metadata queries and -integration
(SchemaSQL)

– arbitrary sources (Tsimmis): metadata queries, general, flexible data model

– sources can also be Web pages (HTML) (Tsimmis, Florid)

• semistructured nature of data

– no fixed schema

– implicit null values

– easily extensible (adding new properties)

– object as a collection of properties

– self-describing data + metadata

• languages for semistructured data

– metadata queries

– generation of structure

⇒ flexible

127

QUERY LANGUAGES

• declarative

• clause-based; iterator variables and SELECT-FROM-WHERE-clause
(SQL, OQL, Lorel)

• logical/deductive; binding of variables by patterns; constructive semantics of rule heads

– patterns as terms
(WSL/MSL)

– patterns as extended path expressions
(F-Logic)

– as programming languages: fixpoint semantics

• multivalued vs. set-valued semantics

• rule-based (more or less explicit):

– binding of variables in the “body” (SQL/OQL: FROM-WHERE clause)

– result generation in the head

128

F-LOGIC [1989] AS A PREDECESSOR OF XML, RDF, OWL

• semistructured (⇒ XML, RDF)

• self-describing (⇒ XML, RDF)

• data model

– database model: complex objects, properties, relationships (⇒ XML, RDF)

– but also knowledge representation model with built-in reasoning (⇒ OWL)

– optional schema information (⇒ XSD, RDFS, OWL)

• query language

– navigation, path expressions with predicates and multivalued semantics (⇒ XPath)

• derivation rules (⇒ OWL + Rules [SWRL?])

RDF: Resource Description Format, 1997, see Lecture “Semantic Web”
OWL: Web Ontology Language, 2002 [OIL: 2000], see Lecture “Semantic Web”

129

3.4 Situation 1996

• Experiences with SQL (and ODMG/OQL) as database languages

– standardization vs. products

• document management with SGML (Structured Generic Markup Language), CSS
(Cascading Stylesheets) and DSSSL

• data exchange/access via internet/Web:

– homogeneous solution necessary

– availability of documents and data in HTML:

* very simple variant of SGML

* “native” HTML data (handwritten)

* mapping of SGML (document management) to HTML (publication) by CSS

* HTML-Web-Servers over relational databases

⇒ “Global” approach coordinated by the W3C (World Wide Web Consortium):
development of a data model (+ language), that can handle (legacy-)databases,
documents and Web (=HTML)

130

THE W3C (WORLD WIDE WEB CONSORTIUM)

• http://www.w3.org.

• founded in 1994 for developing common protocols and languages for the World Wide
Web and to ensure interoperability of applications in the Web.
(Tim Berners-Lee, MIT, CERN)

• following the principles of OMG/ODMG who developed the CORBA and ODL/OIF/OQL
standards

• members: companies and research institutes

• definition of working groups

• notes→ working drafts→ recommendations

• not only XML, but also many other Web-related issues

131

3.5 Documents: SGML and HTML

• Structuring (und presentation) are called (logical and optical) “markup”.
(document = content + markup)

• SGML (Standard Generalized Markup Language),
development (IBM) since 1979, standard 1986.
structuring and markup of documents, widely used in publishing.

• for publishing in the Web:
HTML (Hypertext Markup Language), development since 1989 (CERN), standard 1991.

⇒ HTML is an SGML application with a fixed syntax
(tags, attributes, later: DTD).
goal: optical markup, as a side effect also some structuring of the documents (cf.
<P>-Tag).

• SGML much more flexible than HTML→ more complex→ not suitable for browsers
(HTML allows for efficient and fault-tolerant parsing)

• SGML sources can be transformed to HTML by stylesheets (CSS: Cascading Style
Sheets).

132

Chapter 4
XML (Extensible Markup
Language)

Introduction

• SGML very expressive and flexible
HTML very specialized.

• Summer 1996: John Bosak (Sun Microsystems) initiates the XML Working Group (SGML
experts), cooperation with the W3C.
Development of a subset of SGML that is simpler to implement and to understand
http://www.w3.org/XML/: the homepage for XML at the W3C

⇒ XML is a “stripped-down version of SGML”.

• for understanding XML, it is not necessary to understand everything about SGML ...

133

HTML

let’s start the other way round: HTML ... well known, isn’t it?

• tags: pairwise opening and closing: <TABLE> ... </TABLE>

• “empty” tags: without closing tag
, <HR>

• <P> is in fact not an empty tag (it should be closed at the end of the paragraph)!

• attributes: <TD colspan = “2”> ... </TD>

• empty tags with attributes:

• content of tag structures: <TD>123456</TD>

• nested tag structures: <TH>Name</TH>

Homepage of the IFI

⇒ hierarchical structure

• Entities: ä = ä ß= ß

134

HTML

• browser must be able to interpret tags
→ semantics of each tag is fixed for all (?) browsers.

• fixed specifications how tags can be nested
(described by a DTD (Document Type Definition))

<body><H1>. . . </H1><H2>. . . </H2>

<P> ... </P>

<H2>. . . </H2>

<P> ... </P>

<H1>. . . </H1><H2>. . . </H2>

<P> ... </P>

</body>

• analogously for tables and lists ...

• reality: people do in general not adhere to this structure

– closing tags are omitted

– structuring levels are omitted

→ parser has to be fault-tolerant and auto-completing

135

KNOWLEDGE OF HTML FOR XML?

• intuitive idea – but only of the ASCII representation

• this is not a data model

• no query language

• only a very restricted viewpoint:
HTML is a markup language for browsers
(note: we don’t “see” HTML in the browser, but only what the browser makes out of the
HTML).

Not any more.

136

GOALS OF THE DEVELOPMENT OF XML

• XML must be directly usable and transmitted in the internet (Unicode-Files),

• XML must support a wide range of applications,

• XML must be compatible with SGML,

• XML documents must be human-readable and understandable,

• XML documents must be easy to create,

• it must be easy to write programs that evaluate/process/parse XML documents.

137

DIFFERENCES BETWEEN XML AND HTML?

• Goal: not browsing, but representation/storage of (semistructured) data (cf. SGML)

• SGML allows the definition of new tags according to the application semantics; each
SGML application uses its own semantic tags.
These are defined in a DTD (Document Type Definition).

• HTML is an SGML application (cf. <HTML> at the beginning of each document

</HTML>), that uses the DTD “HTML.dtd”.

• In XML, (nearly) arbitrary tags can be defined and used:

<country> ... </country>

<city> ... </city>

<province> ... </province>

<name> ... </name>

• These elements represent objects of the application.

138

XML AS A META-LANGUAGE FOR SPECIALIZED LANGUAGES

• For each application, it can be chosen which “notions” are used as element names etc.:
⇒ document type definition (DTD)

• the set of allowed element names and their allowed nesting and attributes are defined in
the DTD of the document (type).

• the DTD describes the schema

• XML is a meta-language, each DTD defines an own language

• for an application, either a new DTD can be defined, or an existing DTD can be used
→ standard-DTDs

• HTML has (as an SGML application) a DTD

139

EXAMPLE : MONDIAL

<mondial>

:

<country code="D" capital="city-D-Berlin" memberships="EU NATO UN ...">

<name>Germany</name>

<encompassed continent="europe">100</encompassed>

<population year="1995">83536115</population>

<ethnicgroup name="German">95.1</ethnicgroup>

<ethnicgroup name="Italians">0.7</ethnicgroup>

<religion name="Roman Catholic">37</religion>

<religion name="Protestant">45</religion>

<language name="German">100</language>

<border country="F" length="451"/>

<border country="A" length="784"/>

<border country="CZ" length="646"/>

:

140

Example: Mondial (Cont’d)

:

<province id="prov-D-berlin" capital="city-D-berlin">

<name>Berlin</name>

<population year="1995">3472009</population>

<city id="city-D-berlin">

<name>Berlin</name> <population year="1995">3472009</population>

</city>

</province>

<province id="prov-D-baden-wuerttemberg" capital="city-D-stuttgart">

<population year="1995">10272069</population>

<name>Baden Wuerttemberg</name>

<city id="city-D-stuttgart">

<name>Stuttgart</name> <population year="95">588482</population>

</city>

<city id="cty-D-mannheim"> ... </city>

:

</province>

:

</country>

:

</mondial>

141

CHARACTERISTICS :

• hierarchical “data model”

• subelements, attributes

• references

• ordering? documents – yes, databases – no

Examples can be found at

http://dbis.informatik.uni-goettingen.de/Mondial/#XML

142

XML AS A DATA MODEL

XML is much more than only the ASCII representation shown above as known from HTML
(see also introductory talk)

• abstract data model (comparable to the relational DM)

• abstract datatype: DOM (Document Object Model) – see later

• many concepts around XML
(XML is not a programming language!)

– higher-level declarative query/manipulation language(s)

– notions of “schema”

143

4.1 Structure of the Abstract XML Data Model (Overview)

• for each document there is a document node which “is” the document, and which
contains information about the document (reference to DTD, doctype, encoding etc).

• the document itself consists of nested elements (tree structure),

• among these, exactly one root element that contains all other elements and which is the
only child of the document node.

• elements have an element type (e.g. Mondial, Country, City)

• element content (if not empty) consists of text and/or subelements.
These child nodes are ordered.

• elements may have attributes.
Each attribute node has a name and a value (e.g. (car_code, “D”)).
The attribute nodes are unordered.

• empty elements have no content, but can have attributes.

• a node in an XML document is a logical unit, i.e., an element, an attribute, or a text node.

• the allowed structure can be restricted by a schema definition.

144

EXAMPLE : MONDIAL AS A TREE

mondial

country car_code=“D”
memberships=”NATO EU . . . ”
capital="city-D-berlin”

country car_code=“B”
memberships=”NATO EU . . . ”

name population province id=“prov-D-berlin”

“Germany” 83536115 name city id=“city-D-berlin”

“Berlin” name population year=“95”

“Berlin” “3472009”

145

EXAMPLE : MONDIAL AS A NESTED STRUCTURE

mondial

country car_code=“D” memberships=“EU NATO . . . ” capital=“city-D-berlin”

name “Germany”

population “83536115”

province id=“prov-D-berlin”

name “Berlin”

city id=“city-D-berlin”

name “Berlin”

population year=“1995” “3472009”

country car_code=“B” memberships=“EU NATO . . . ”

:
146

OBSERVATIONS

• there is a global order (preorder-depth-first-traversing) of all element- and text nodes,
called document order.

• actual text is only present in the text-nodes
Documents: if all text is concatenated in document order, a pure text version is obtained.
Exercise: consider an HTML document.

• element nodes serve for structuring (but do not have a “value” for themselves)

• attribute nodes contain values whose semantics will be described in more detail later

– attributes that describe the elements in more detail
(e.g. td/@colspan or population/@year)

– IDs and references to IDs

– can be used for application-specific needs

147

4.2 XML ASCII Representation

• Tree model and nested model serve as abstract datatypes (see later: DOM)

data exchange? how can an XML document be represented?

• a relational DB can be output as a finite set of tuples (cf. relational calculus)
country(“Germany”, “D”, 83536115, 356910, “Berlin”, “Berlin”)
or
country(Name: “Germany”, Code: “D”, Population: 83536115, Area: 356910,

Capital: “Berlin”, CapitalProvince: “Berlin”)

• object-oriented databases: OIF (Object Interchange Format)

• OEM-tripels, F-Logic-frames

• XML?
Exporting the tree in a preorder-depth-first-traversing.
The node types are represented in a specified syntax:
⇒ XML as a representation language

148

ASCII: XML AS A REPRESENTATION LANGUAGE

• elements are limited by

– opening <Country> and

– closing tags </Country>,

– in-between, the element content is output recursively.

• Element content consists of text

<Name> United Nations </Name>

• and subelements: <Country> <City> ... </City>

<City> ... </City>

</Country>

• attributes are given in the opening tag:

<Country car_code=“D”> . . . </Country>

where attribute values are always given as strings, they do not have further structure. The
difference between value- and reference attributes is not visible, but is only given by the
DTD.

• empty elements have only attributes: <border country=“F” length=“451”/>

149

XML AS A REPRESENTATION LANGUAGE : GRAMMAR

The language “XML” defined as above can be given as an EBNF grammar:

Document ::= Element

Element ::= “<” ElementName Attribute* “>” Content “</” ElementName “>”

| “<” ElementName Attribute* “/>”

Content ::= (Element | Text)+

Text ::= characters including whitespace

Attribute ::= AttributeName “=′” AttributeValue “′”

ElementName, AttributeName ::= character string with some restrictions

AttributeValue ::= characters including whitespace

• note that this grammar does not guarantee that the opening and closing tags match!

• instead of ′, also the usual “ are allowed

• strict adherence to these rules (closing and empty elements) is required.

• an XML instance given as ASCII is well-formed, if it satisfies these rules.

• “XML parsers” process this input.

150

XML PARSER

• an XML parser is a program that processes an XML document given in ASCII
representation according to the XML grammar, and generates a result:

– correctness: check for well-formedness (and adherence to a given DTD)

– DOM-parser: transformation of the XML instance into a DOM model (implementation
of the abstract datatype; see later).

– SAX-parser: traversing the XML tree and generation of a sequence of “events” that
serialize the document (see later).

• XML parsers are required to accept only well-formed instances.

– simple grammar, simple (non-fault-tolerant) parser

– HTML: fault-tolerant parsers are much more complex
(fault tolerance wrt. omitted tags is only possible when the DTD is known)

• each XML application must contain a parser for processing XML instances in ASCII
representation as input.

151

XML PARSING IN THE GENERAL CASE

• ElementName is a separate production and

Element ::= “<” ElementName Attribute* “>” Content “</” ElementName “>”

| “<” ElementName Attribute* “/>”
does not guarantee matching tags

⇒ not context-free!

• Nevertheless, context-free-style parsing with push-down-automaton without fixed stack
alphabet possible:

– for every opening tag, put ElementName on the stack

– for every closing tag, compare with top of stack, pop stack.

⇒ linear-time parsing

• Exercise: give an automaton for parsing XML and describe the handling of the stack
(solution see Slide 179).

152

VIEWING XML DOCUMENTS?

• as a file in the editor

– emacs with xml-mode

– Linux/KDE: kxmleditor

• browser cannot “interpret” XML
(in contrast to HTML)

• with “show source” in a browser:
current versions of most browsers show XML in its ASCII representation with indentation
and allow to open/close elements/subtrees.

• but, in general, XML is not intended for viewing:
→ transformation to HTML by XSLT stylesheets
(see later)

153

4.3 Datatypes and Description of Structure for XML

• relational model: atomic data types and tuple types

• object-oriented model: literal types and object types, reference types

Data Types in XML

• data types for text content

• data types for attribute values

• element types (as “complex objects”)

• somewhat different approaches in DTD (document-oriented, coarse) and XML Schema
(database-oriented, fine)

154

DOCUMENT TYPE DEFINITION – DTD

• the set of allowed tags and their nestings and attributes are specified in the DTD of the
document (type).

• the idea of the DTD comes from the SGML area

– meets the requirements for describing document structure

– does not completely meet the requirements of the database area
→ XML Schema (later)

– simple, and easy to understand.

• the DTD for a document type doctype is given by a grammar (context-free; regular
expression style) that characterizes a class of documents:

– what elements are allowed in a document of the type doctype,

– what subelements they have (element types, order, cardinality)

– what attributes they have (attribute name, type and cardinality)

– additionally, “entities” can be defined (they serve as constants or macros)

155

DATA TYPES OF DTDS

• text content: PCDATA – parsed character data
it is up to the application to distinguish between string data and numerical data

• data types for attribute values:

– CDATA: simple strings

– NMTOKEN: string without blanks

– NMTOKENS: a list of tokens, separated by blanks

– ID: like NMTOKEN, each value must be unique in the document

– IDREF: like NMTOKEN, each value must occur in the same document as an ID value

– IDREFS: the same, multivalued

• element types: definition of structure in the style of regular expressions.

156

DTD: ELEMENT TYPE DEFINITION – STRUCTURE OF THE ELEMENT

CONTENTS

<!ELEMENT elem_name struct_spec>

• EMPTY: empty element type,

• (#PCDATA): text-only content

• (expression): expression over element names and combinators (same as for regular
expressions). Note that the expression must be deterministic.

– “,”: sequence,

– “|”: (exclusive-)or (choice),

– “*”: arbitrarily often,

– “+”: at least once,

– “?”: optional

• (#PCDATA|elem_name1|...|elem_namen)*
mixed content, here, only the types of the subelements that are allowed to occur together
with #PCDATA can be specified; no statement about order or cardinality.

• ANY: arbitrary content

157

Element Type Definition: Examples

• from HTML: images have only attributes and no content
<!ELEMENT img EMPTY >

• from Mondial:

<!ELEMENT country (name, encompassed+, population*,
ethnicgroup*, religion*, border*,
(province+ | city+))>

<!ELEMENT name (#PCDATA)>

• for text documents:

<!ELEMENT Section (Header,
(Paragraph|Image|Figure|Subsection)+,
Bibliography?)>

• Element type definitions by regular expressions
⇒ can be checked by finite state automata

158

DTD: ATTRIBUTE DEFINITIONS

• General: an element contains at most one attribute of every attribute name.

• details about allowed attribute names and their types are specified in the DTD.

<!ATTLIST elem_name

attr_name1 attr_type1 attr_constr1

: : :

attr_namen attr_typen attr_constrn>

• attr_typei: value/reference attribute and scalar/multi-valued

– CDATA: arbitrary text.

– NMTOKEN: scalar, token-content (text without blanks).

– NMTOKENS: multi-valued, token-content.

– (const1| . . . |constk): scalar, from a given domain.

– ID: distinguished scalar attribute, token-content, unique in the whole document.

– IDREF: scalar, its value is a token that occurs as a value of an ID attribute in the same
document (reference).

– IDREFS: multi-valued reference attribute.

159

DTD: Attribute Definitions (cont’d)

<!ATTLIST elem_name

attr_name1 attr_type1 attr_constr1

: : :

attr_namen attr_typen attr_constrn>

• attr_constri: minimal cardinality

– #REQUIRED: attribute must be present for each element of this type.

– #IMPLIED: attribute is optional.

– default : Default-value (non-monotonic value inheritance).

– #FIXED value: attribute has the same (given) value for each element of this type
(monotonic value inheritance).

160

DTD: ATTRIBUTE-DEFINITIONS (EXAMPLES)

<!ATTLIST Country
Code ID #REQUIRED
Capital IDREF #REQUIRED
Memberships IDREFS #IMPLIED
Products NMTOKENS #IMPLIED >

<!ATTLIST desert
id ID #REQUIRED
Type (sand,rocks,ice) ’sand’
Climate NMTOKENS #FIXED ’dry’ >

• when an XML parser reads an XML instance and its DTD, it fills in default and fixed
values.

161

DTD AND XML INSTANCES

• Each DTD defines an own markup language (i.e., an XML application – HTML is one,
Mondial is another).

• an XML instance has a document node (which is not the root node, but even “superior”)
that contains among other things information about the DTD.
(see next slides ...)

• the root element of the document must be of an element type that is defined in the DTD.

• an XML instance is valid wrt. a DTD if it satisfies the structural constraints specified in the
DTD.
Validity can be checked by an extended finite state automaton in linear time.

• XML-instances can exist without a DTD (but then, it is not explicitly specified what their
tags “mean”).

162

XML DOCUMENT STRUCTURE: THE PROLOG

The prolog of an XML document in ASCII-representation contains additional information
about the document (associated with the document node):

• XML declaration (with optional attributes)

<? xml version=“1.0” encoding=“utf-8”?>

encoding=“ISO-8859-1” allows additionally German “Umlauts”.

• document type declaration: indication of the document type, and where the document
type definition (DTD) can be found.

– <!DOCTYPE name {SYSTEM|PUBLIC public-id} url>

SYSTEM url : own document type,
name: one of the element names given in the DTD

<!DOCTYPE Mondial SYSTEM “mondial-2.0.dtd”>

PUBLIC public-id url: standard document type (e.g. XHTML), or

– <!DOCTYPE name [dtd]>

with DTD directly included in the document.

• then follows the document content (i.e., the root node with the document body as its
content).

163

EXAMPLE : MONDIAL

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE mondial SYSTEM "mondial-2.0.dtd">

<mondial>

<country car_code="AL" area="28750" capital="cty-cid-cia-Albania-Tirane"

memberships="org-BSEC org-CE org-CCC ...">

<name>Albania</name> <population>3249136</population>

<encompassed continent="europe" percentage="100"/>

<ethnicgroups percentage="3">Greeks</ethnicgroups>

<ethnicgroups percentage="95">Albanian</ethnicgroups>

<border country="GR" length="282"/> <border country="MK" length="151"/>

<border country="YU" length="287"/>

<city id="cty-cid-cia-Albania-Tirane" is_country_cap="yes" country="AL">

<name>Tirane</name>

<longitude>10.7</longitude> <latitude>46.2</latitude>

<population year="87">192000</population>

</city>

:

</country>

:

</mondial>

164

TOOL : XMLLINT

xmllint is a simple tool that allows (among other things – see later) to validate a document
(belongs to libxml2):

• man xmllint: lists all available commands

• currently, we are mainly interested in the following:
xmllint -loaddtd -valid -noout mondial-europe.xml

validates an XML document wrt. the DTD given in the prolog.

165

XMLLINT: Further Functionality (see later)

XMLLINT can be used to “visit” the document, and to walk through it:

• call xmllint -loaddtd -shell mondial-europe.xml.

Then, one gets a “navigating shell” “inside” the XML document tree
(very similar to navigating in a UNIX directory tree):

• validate: validates the document

• cd xpath-expression: navigates into a node
(the XPath expression must uniquely select a single node)
relativ: cd country[1]

absolut: cd //country[@car_code="D"]

• pwd: gives the path from the root to the current position

• cat: prints the current node

• cat xpath-expression

cat .//city/name

• du xpath-expression lists the content of the node that is selected by xpath-expression

(starting from the current node)

• dir xpath-expression prints the node type and attributes of the selected node

166

Example: “Books” from W3C XML Use Cases

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE bib SYSTEM "books.dtd">

<!-- from W3C XML Query Use Cases -->

<bib>

<book year="1994">

<title>TCP/IP Illustrated</title>

<author><last>Stevens</last><first>W.</first></author>

<publisher>Addison-Wesley</publisher>

<price>65.95</price>

</book>

<book year="1992">

<title>Advanced Programming in the Unix environment</title>

<author><last>Stevens</last><first>W.</first></author>

<publisher>Addison-Wesley</publisher>

<price>65.95</price>

</book>

<book year="2000">

<title>Data on the Web</title>

<author><last>Abiteboul</last><first>Serge</first></author>

<author><last>Buneman</last><first>Peter</first></author>

<author><last>Suciu</last><first>Dan</first></author>

<publisher>Morgan Kaufmann Publishers</publisher>

<price>39.95</price>

</book>

<book year="1999">

<title>Economics of ... for Digital TV</title>

<editor>

<last>Gerbarg</last><first>Darcy</first>

<affiliation>CITI</affiliation>

</editor>

<publisher>Kluwer Academic Publishers</publisher>

<price>129.95</price>

</book>

</bib>

[see XML-DTD/books.xml]

167

Exercise: Generate a DTD for the above XML

... do it step-by-step, using a validator:

• for all element types:
<!ELEMENT name ANY>

• declare <!ATTLIST name ...> where needed

• validate

• stepwise refinement of content models ...

• ... blackboard demonstration ...

• solution see Slide 175

168

DATA -CENTERED VS. DOCUMENT-CENTERED XML DOCUMENTS

Data-Centered XML Documents

• very regular structure with “data fields”

• only some text

• no naturally induced tree structure

Document-Centered XML Documents

• tree structure with much text (text content is the text of the document)

• non-regular structure of elements

• logical markup of the documents

• annotations of the text by additional elements/attributes

Semistructured XML Documents

• combine both (e.g. medical information systems)

169

SUBELEMENTS VS . ATTRIBUTES

When designing an XML structure, often the choice of representing something as subelement
or as attribute is up to the designer.

Document-Centered XML

• the concatenation of the whole text content should be the “text” of the document

• element structures for logical markup and annotations

• attributes contain additional information about the structuring elements.

Data-Centered XML

• more freedom

• attributes are unstructured and cannot have further attributes

• elements allow for structure and refinement with subelements and attributes

• using DTDs as schema language allows the following functionality only for attributes:
– usage as identifiers (ID)
– restrictions of the domain
– default values
(XML Schema and XLink allow many more things)

170

EXAMPLES AND EXERCISES

• The MONDIAL database is used as an example for practical experiments.
See http://dbis.informatik.uni-goettingen.de/Mondial#XML.

• many W3C documents base on examples about a literature database (book, title,
authors, etc.).

• each participant (possibly in groups) should choose an own application area to set up an
own example and to experiment with it.

– from the chosen branch of study?

– database of music CDs

– lectures and persons at the university

– exams (better than FlexNever?)

– calendar and diary

– other ideas ...

Exercise: Define a DTD and generate a small XML document for your chosen application.

171

EXERCISES

• Validate your example document with a suitable prolog and internal DTD.

• put your DTD publicly in your public-directory and validate a document that references
this DTD as an external DTD.

• take a DTD+url from a colleague and write a small instance for the DTD and validate it.

172

DATA EXCHANGE WITH XML

For Electronic Data Interchange (EDI), a commonly known+used DTD is required

• producers and suppliers in the automobile industry

• health system, medical area

• finance/banking

PROCEEDING

Usually, XML data is exchanged in its ASCII representation.

• XML-Server make documents in the ASCII representation accessible (i.e., as a stream or
as a textfile)

• applications parse this input (linear) and store it internally (DOM or anything else).

173

4.3.1 Aside: XML Parsing

... one of the objectives of this lecture is also to show the applications and connections of
basic concepts of CS ...

• XML/DTD: content models are regular expressions
⇒ can be checked by finite state automata

– design one automaton for each <!ELEMENT ...> declaration

– design a combined automaton for validating documents against a given DTD

– extension to attributes: straightforward (when processing opening tags,
dictionary-based)

– checking for well-formedness and validity in linear time

* with a DOM parser: during generation of the DOM

* with a SAX parser: streaming, on the fly

* using a DOM instance: depth-first traversal

• without a DTD: requires a push-down automaton
(remembering opening tags); still linear time

– checking well-formedness

– generating a DOM instance, or on-the-fly (SAX)

174

FINITE STATE AUTOMATA FOR VALIDATION

EXAMPLE : BOOKS .DTD

Consider the “books” example:

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>

<!ATTLIST book year CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (last, first, affiliation?)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT editor (last, first, affiliation?)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT affiliation (#PCDATA)>

175

Finite State Automata

• individual automata for element content models
(recall that the content model must be deterministic)

• + detailed by nesting (jumping on opening/closing tags)

bib book title author/editor

book

title

author editor

publisher publisher

price

author editor

#PCDATA

last

first

affil.

<book>

</book>

<title>

</title>

<editor>

</editor>

</editor>

176

XML GRAMMAR IN PRESENCE OF A DTD

Consider the grammar from Slide 150:

• Element names known from a DTD: context-free grammar

Document ::= Element

Element ::= “<bib” Attribute* “>” Content “</bib>”

Element ::= “<book” Attribute* “>” Content “</book>”
...

...
...

Content ::= (Element | Text)+

Text ::= characters

Attribute ::= AttributeName “=′” AttributeValue “′”

AttributeValue ::= characters

• there is even a regular grammar, see above automata, but this is not derived from the
XML EBNF.

177

XML GRAMMAR IN GENERAL

• no DTD present/element names not known:
Consider the grammar from Slide 150:

• ElementName is a separate production and

Element ::= “<” ElementName Attribute* “>” Content “</” ElementName “>”

| “<” ElementName Attribute* “/>”
does not guarantee matching tags.

• Nevertheless, context-free-style parsing with push-down-automaton without fixed stack
alphabet possible:

– for every opening tag, put ElementName on the stack

– for every closing tag, compare with top of stack, pop stack.

• Automaton: see next slide.

178

XML GRAMMAR IN GENERAL

Stack Commands:
• push (string)
• top: yields top element
• pop: removes top element

ClosingTag

Tag

Closing Tag OK?
char+ = top?

ParseContent EmptyEl ParseAttr

ParseAttrValue

EmptyEl

<

/ char (collect)

char (collect)
>

yes

pop

char (collect)

char (collect)
>

push char+ /

>

_

char

char

=
“

char

char
”

_>

push char+
char

/

>

179

4.4 Example: XHTML

• XML documents that adhere to a strict version of the HTML DTD

• Goal: browsing, publishing

• DTD at http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

(note that the DTD requires also some entity files)

• Validator at http://validator.w3.org/

• Example at ... DBIS Web Pages

• only the text content is shown in the browser, all other content describes how the text is
presented.

• no logical markup of the documents (sectioning etc), but

• only optical markup (“how is it presented”).

Exercise

Design (and validate) a simple homepage in XHTML, and put it as index.html in your
public-directory.

180

4.5 Miscellaneous about XML

4.5.1 Remarks

• all letters are allowed in element names and attribute names

• text (attribute values and element content) can contain nearly all characters.
Western european umlauts are allowed if the XML identification contains
encoding=“UTF-8” or encoding=“ISO-8859-1” etc.

• comments are enclosed in <!-- ... -->

• inside XML content,

<![CDATA[...]]>

(character data sequences) can be included that are not parsed by XML parsers, but
which are copied character-by-character.

181

4.5.2 Entities

Entities serve as macros or as constants and are defined in the DTD. They are then
accessible as “&entityname;” in the XML instance and in the DTD:

<!ENTITY entity_name replacement_text>

• additional special characters, e.g. ç:

DTD: <!ENTITY ccedilla “ç”>

XML: president=“Françla;ois Mitterand”

• reserved characters can be included as references to predefined entities:
< = < (less than), > = > (greater than)
& = & (ampersand), space = , apostroph = ', quote = "
ä = ä, ..., Ü = Ü

<name>Düsseldorf </name>

• characters can also be given directly as character references, e.g. (Space), 
(CR).

182

Entities (cont’d)

• global definitions that may change can be defined as constants:

DTD: <!ENTITY server “http://www.informatik.uni-goettingen.de”>

XML: <url> &server;/dbis <url>

• macros that are needed frequently:

DTD: <!ENTITY european
“<encompassed continent=’europe’>100</encompassed>”>

XML: <country car_code=“D”>

<name >Germany</name>

&european; ...
</country>

• note: single and double quotes can be nested.

183

PARAMETER ENTITIES

Entities that should be usable only in the DTD are defined as parameter entities:

• macros that are needed frequently:
<!ENTITY % namedecl “name CDATA #REQUIRED”>

<!ATTLIST City
%namedecl;
zipcode ID #REQUIRED>

• define enumeration types:
<!ENTITY % waters “(river|lake|sea)”>

<!ATTLIST City_located_at
type %waters; #REQUIRED
at IDREF #REQUIRED>

184

ENTITIES FROM EXTERNAL SOURCES

Entity “collections” can also be used from external sources as external entities:

<!ENTITY entity_name SYSTEM “url”>

is an entity that stands for a remote resource which itself defines a set of entities by

<!ENTITY entity_name’ replacement_text>

e.g. a set of technical symbols:

<!ENTITY % isotech SYSTEM
“http://www.schema.net/public-text/ISOtech.pen”>

%isotech;

the reference %isotech; makes then all symbols accessible that are defined in the external
resource.

This can be iterated for defining “style files” that collect a set of external resources that are
used by an author.

185

4.5.3 Integration of Multimedia

• for (external) non-text resources, it must be declared which program should be called for
showing/processing them. This is done by NOTATION declarations:

<!NOTATION notation_name SYSTEM “program_url”>

<!NOTATION postscript SYSTEM “file:/usr/bin/ghostview”>

• the entity definition is then extended by a declaration which notation should be applied on
the entity:

<!ENTITY entity_name SYSTEM “url”
NDATA notation_name>

<!ENTITY manual SYSTEM “file:/.../name.ps”
NDATA postscript>

• the application program is then responsible for evaluating the entity and the NDATA
definition.

• XLink will later present another mechanism for referencing resources.

186

4.6 Summary and Outlook

XML: “basic version” consists of DTD and XML documents

• tree with additional cross references

• hierarchy of nested elements

• order of the subelements
– documents: 1st, 2nd, . . . section etc.
– databases: order in general not relevant

• attributes

• references via IDREF/IDREFS

– documents: mainly cross references

– databases: part of the data (relationships)

• XML model similar to the network data model:
relationships are mapped into the structure of the data model

– the basic explicit, stepwise navigation commands of the network data model have an
equivalent for XML in the DOM-API (see later), but

– XML also provides a declarative, high-level, set-oriented language.

187

REQUIREMENTS

• Documents: logical markup (Sectioning etc.)
presentation on Web pages in (X)HTML? – transformation languages

• databases: structuring of data;
several equivalent alternatives
query languages?
presentation on Web pages in (X)HTML? – transformation languages

• application-specific formats
e.g. XHTML: browsing
DTDs are induced by the application-programs
Web-Services: WSDL, UDDI; CAD; ontology languages; . . .
transformation between different XML languages
application-programs must “understand” XML internally

188

FURTHER CONCEPTS OF THE XML WORLD

Extensions:

• namespaces: use of different DTDs in a database
(see Slide 223)

• APIs: DOM, SAX

• theoretical foundations

• query languages: XPath, XML-QL, Quilt, XQuery

• stylesheets/transformation languages: CSS, DSSSL, XSL

• better schema language: XML Schema

• XML with inter-document handling: XPointer, XLink

189

4.7 Recall

• XML as an abstract data model

– cf. relational DM

– XML now has become less abstract: creation of instances in the editor, validating,
viewing ...

• a data model needs ... implementation? theory?

• ... first, something else: abstract datatype, interface(s)

– constructors, modificators, selectors, predicates (cf. Info I)

• here: “two-level model”

– as an ADT (programming interface): Document Object Model (DOM):
detailed operations as usual in programming languages (Java, C++).

– as a database model (end user interface; declarative):
import (parser), queries, updates

• theory: formal specification of the semantics of the languages, other issues are the same
as in classical DB theory (transactions etc.).

190

Chapter 5
Query Languages: XPath
• Network Data Model: no query language

• SQL – only for a flat data model, but a “nice” language
(easy to learn, descriptive, relational algebra as foundation, clean theory, optimizations)

• OQL: SQL with object-orientation and path expressions

• Lorel (OEM): extension of OQL

• F-Logic: navigation in a graph by path expressions with additional conditions
descriptive, complex.

191

REQUIREMENTS ON AN XML QUERY LANGUAGE

• suitable both for databases and for documents

• declarative: binding variables and using them

– rule-based, or

– SQL-style clause-based (which is in fact only syntactic sugar)

• binding variables in the rule body/selection clause:
suitable for complex objects

– navigation by path expressions, or

– patterns

• generation of structure in the rule head/generating clause

192

EVOLUTION OF XPATH

• when defining a query language, constructs are needed for addressing and accessing
individual elements/attributes or sets of elements/attributes.

• based on this addressing mechanism, a clause-based language is defined.

Early times of XML (1998)
different navigation formalisms of that kind:

• XSL Patterns (inside the stylesheet language)

• XQL (XML Query Language)

• XPointer (referencing of nodes/areas in an XML document)

used all the same basic idea with slight differences in the details:

• paths in UNIX notation

• conditions on the path

/mondial/country[@car_code=”D”]/city[population > 100000]/name

193

5.1 XPath – the Basics

1999: specification of the navigation formalism as W3C XPath.

• Base: UNIX directory notation

in a UNIX directory tree: /home/dbis/Mondial/mondial.xml
in an XML tree: /mondial/country/city/name

Straightforward extension of the URL specification:
http://.../dbis/Mondial/mondial.xml#mondial/country/city/name [XPointer until 2002]
http://.../dbis/Mondial/mondial.xml#xpointer(mondial/country/city/name) [XPointer now]

• W3C: XML Path Language (XPath), Version 1.0 (W3C Recommendation 16. 11. 1999)
http://www.w3.org/TR/xpath

• W3C: XPath 2.0 and XQuery 1.0 (W3C Recommendation 23. 1. 2007)
http://www.w3.org/TR/xquery

• Tools: see Web page

– XML (XQuery) database system “eXist”

– lightweight tool “saxonXQ” (XQuery)

194

XPATH : NAVIGATION , SIMPLE EXAMPLES

XPath is based on the UNIX directory notation:

• /mondial/country
addresses all country elements in MONDIAL,
the result is a set of elements of the form

<country code=“...”> ... </country>

• /mondial/country/city
addresses all city elements, that are direct subelements of country elements.

• /mondial/country//city
adresses all city elements that are subelements (in any depth) of country elements.

• //city
addresses all city elements in the current document.

• wildcards for element names:
/mondial/country/*/city
addresses all city elements that are grandchildren of country elements
(different from /mondial/country//city !)

195

... and now systematically:

XPATH : ACCESS PATHS IN XML DOCUMENTS

• Navigation paths

/step/step/. . . /step

are composed by individual navigation steps,

• the result of each step is a set of nodes, that serve as input for the next step.

• each step consists of

axis::nodetest [condition]*

– an axis (optional),

– a test on the type and the name of the nodes,

– (optional) predicates that are evaluated for the current node.

• paths are combined by the “/”-operator

• additionally, there are function applications

• the result of each XPath expression is a sequence of nodes or literals.

196

XPATH : A XES

Starting with a current node it is possible to navigate in an XML tree to several “directions” (cf.
xmllint’s “cd”-command).

In each navigation step

path/axis::nodetest [condition]/path

the axis specifies in which direction the navigation takes place. Given the set of nodes that is
addressed by path, for each node, the step is evaluated.

• Default: child axis: child::country ≡ country.

• Descendant axis: all sub-, subsub-, ... elements:
country/descendant::city
selects all city elements, that are contained (in arbitrary depth) in a country element.
Note: path //city actually also addresses all these city elements, but “//” is not the exact
abbreviation for “/descendant::” (see later).

197

XPATH : A XES

... another important axis:

• attribute axis:
attribute::car_code ≡@car_code
wildcard for attributes: attribute::* selects all attributes of the current context node.

• and a less important:
self axis: self::city ≡ ./city
selects the current element, if it is of the element type city.

for the above-mentioned axes there are the presented abbreviations. This is important for
XSL patterns (see Slide 314):

XSL (match) patterns are those XPath expressions, that are built without the use of “axis::”
(the abbreviations are allowed).

198

XPATH : A XES

Additionally, there are axes that do not have an abbreviation:

• parent axis: //city[name=“Berlin”]/parent::country
selects the parent element of the city element that represents Berlin, if this is of the
element type country.
(only the parent element, not all ancestors!)

• ancestor: all ancestors:
//city[name=“Berlin”]/ancestor::country selects all country elements that are ancestors of
the city element that represents Berlin (which results in the Germany element).

• siblings: following-sibling::..., preceding-sibling::...
for selecting nodes on the same level (especially in ordered documents).

• straightforward: “descendant-or-self” and “ancestor-or-self”.
Note: The popular short form country//city is defined as
country/descendant-or-self::node()/city.
This makes a difference only in case of context functions (see Slide 219).

199

XPATH : A XES FOR USE IN DOCUMENT-ORIENTED XML

• following: all nodes after the context node in document order, excluding any descendants
and excluding attribute nodes

• preceding: all nodes that are before the context node in document order, excluding any
ancestors and excluding attribute nodes and namespace nodes

Note: For each element node x, the ancestor, descendant, following, preceding and self axes
partition a document (ignoring attribute nodes): they do not overlap and together they contain
all the nodes in the document.

Example:

Hamlet: what is the next speech of Lord Polonius after Hamlet said “To be, or not to be”?
(note: this can be in a subsequent scene or even act)

Exercise:

Provide equivalent characterizations of “following” and “preceding”

i) in terms of “preorder” and “postorder”,

ii) in terms of other axes.

200

XPATH : NODETEST

• The nodetest constrains the node type and/or the names of the selected nodes

• “*” as wildcard: //city[name=“Berlin”]/child::*
returns all children.

• test if something is a node: //city[name=“Berlin”]/descendant::node()
returns all descendant nodes.

• test if something is a node: //city[name=“Berlin”]/descendant::element()
returns all descendant elements (note: not the text nodes).

• test if something is a text node: //city[name=“Berlin”]/descendant::text()
returns all descendant text nodes.
//city[name=“Berlin”]/population/text()
returns the text contents of the population element.

• test for a given element name:
//country[name=“Germany”]/descendant::element(population)
or short form:
//country[name=“Germany”]/descendant::population
returns all descendant population elements.

201

XPATH : TESTS

In each step

path/axis::nodetest [condition]/path

condition is a predicate over XPath expressions.

• The expression selects only those nodes from the result of path/axis::nodetest that
satisfy condition. condition contains XPath expressions that are evaluated relative to the
current context node of the respective step.

//country[@car_code=“D”]
returns the country element whose car_code attribute
has the value “D”

• When comparing an element with something, the text() method is applied implicitly:

//country[name = “Germany”] is equivalent to
//country[name/text() = “Germany”]

• If the right hand side of the comparison is a number, the comparison is automatically
evaluated on numbers:

//country[population > 1000000]

202

XPATH : TESTS (CONT’D)

• boolean connectives “and” and “or” in condition:

//country[population > 100000000 and @area > 5000000]
//country[population > 100000000 or @area > 5000000]

• boolean “not” is a function:

//country[not (population > 100000000)]

• XPath expressions in condition have existential semantics:
The truth value associated with an XPath expression is true, if its result set is non-empty:

//country[inflation]
selects those countries that have a subelement of type inflation.

⇒ formal semantics: a path expression has

– a semantics as a result set, and

– a truth value!

203

XPATH : TESTS (CONT’D)

• XPath expressions in condition are not only “simple properties of an object”, but are path
expressions that are evaluated wrt. the current context node:

//city[population/@year=’95’]/name

• Such comparisons also have existential semantics:

//country[.//city/name=’Cordoba’]/name
returns the names of all countries, in which a city with name Cordoba is located.

//country[not (.//city/name=’Cordoba’)]/name
returns the names of those countries where no city with name Cordoba is located.

Remark:
Note that descendant::city (relative) and //city (absolute) have different effect:

//country[//city/name=’Cordoba’]/name
returns the names of all countries (the filter just checks if there is some city
with name Cordoba in the document).

204

XPATH : EVALUATION STRATEGY

• Input for each navigation step: A set of nodes (context)

• each of these nodes is considered separately for evaluation of the current step

• and returns zero or more nodes as (intermediate) result.
This intermediate result serves as context for the next step.

• finally, all partial results are collected and returned.

Example

• conditions can be applied to multiple steps

//country[population > 10000000]
//city[@is_capital and population > 1000000]

/name/text()

returns the names of all cities that have more than 1,000,000 inhabitants and that are the
capital of a country that has more than 10,000,000 inhabitants.

205

ABSOLUTE AND RELATIVE PATHS

So far, conditions were always evaluated only “local” to the current element on the main
navigation path.

• Paths that start with a name are relative paths that are evaluated against the current
context node (used in conditions):

//city[name = “Berlin”]

• Semijoins: comparison with results of independent “subqueries”:
Paths that start with “/” or “//” are absolute paths:

//country[population > //country[@car_code=’B’]/population]/name

returns the names of all countries that have more inhabitants than Belgium

• conflict between “//” for absolute paths and for descendant axis:

//country[.//city/name=“Berlin”]
(equivalent: //country[descendant::city/name=“Berlin”])

can be used for starting a relative path.

206

XPATH : FUNCTIONS

Input: a node/value or a set of nodes/values.
Result: in most cases a value; sometimes one or more nodes.

• dereferencing (see Slide 209)

• access to text value and node name (see Slide 212)

• aggregate functions count(node_set), sum (node_set)

count(/mondial/country)

returns the number of countries.

• context functions (see Slide 219)

• access to documents on the Web:

doc(“file or url”)/path
doc(’http://www.dbis.informatik.uni-goettingen.de/index.html’)//text()

(for querying external HTML documents, consider use of namespaces as described on
Slide 230 - nodetests work only with namespace!)

• see W3C document XPath/XQuery Functions and Operators

207

IDREF ATTRIBUTES

• ID/IDREF attributes serve for expressing cross-references

• SQL-style: references can be resolved by semi-joins:
(similar to foreign keys in SQL)

//city[@id = //organization[abbrev=“EU”]/@headq]

SQL equivalent (uncorrelated subquery):

SELECT *

FROM city

WHERE (name, country, province) IN

(SELECT city, country, province

FROM organization

WHERE abbrev = 'EU')

... not a really elegant way in a graph-based data model ...

208

XPATH : DEREFERENCING

Access via “keys”/identifiers

The function id(string∗) returns all elements (of the current document) whose id’s are
enumerated in string∗:

• id(“D”) selects the element that represents Germany
(country/@car_code is declared as ID)

• id(//country[car_code=“D”]/@capital)
yields the element node of type city that represents Berlin.

This notation is hard to read if multiple dereferencing is applied, e.g.

id(id(id(//organization[abbrev=’IOC’]/@headq)/@country)/@capital)/name

Alternative syntaxes:

//organization[abbrev=’IOC’]/id(@headq)/id(@country)/id(@capital)/name
//organization[abbrev=’IOC’]/@headq/id(.)/@country/id(.)/@capital/id(.)/name

209

XPath: Dereferencing (Cont’d)

Analogously for multi-valued reference attributes (IDREFS):

• //country[@car_code=“D”]/@memberships
returns “org-EU org-NATO ...”

• id(//country[@car_code=“D”]/@memberships)
//country[@car_code=“D”]/id(@memberships)
returns the set of all elements that represent an organisation where Germany is a
member.

• id(//organization[abbrev=“EU”]/members/@country)
//organization[abbrev=“EU”]/members/id(@country)
returns all countries that are members (of some kind) in the EU.

210

Aside: Dereferencing by Navigation [Currently not supported]

Syntax:

attribute::nodetest⇒elementtype

Examples:

• //country[car_code=“D”]/@capital⇒city/name
yields the element node of type city that represents Berlin.

• //country[car_code=“D”]/@memberships⇒organization
yields elements of type organization.

• Remark: this syntax is not supported by all XPath Working Drafts:

– XPath 1.0: no

– has originally be introduced by Quilt (2000; predecessor of XQuery)

– XPath 2.0: early drafts yes, later no

– announced to be re-introduced later ...

211

XPATH : STRING() FUNCTION

The function string() returns the string value of a node:

• straightforward for elements with text-only contents:
string(//country[name=’Germany’]/population)
Note: for these (and only for these!) nodes, text() and string() have the same semantics.

• for attributes: //country[name=’Germany’]/string(@area)
Note: an attribute node is a name-value pair, not only a string (will be illustrated when
constructing elements later in XQuery)!
free-standing attribute nodes as result cannot be printed!

• the string() function can also be appended to a path; then the argument is each of the
context nodes: //country[name=’Germany’]//name/string()

• the string value of a subtree is the concatenation of all its text nodes:
//country[@name=’Germany’]/string()
Note: compare with //country[@name=’Germany’]//text() which lists all text nodes.

• string() cannot be applied to node sequences: string(//country[name=’Germany’]//name)
results in an error message.
(see W3C XPath and XQuery Functions and Operators).

212

XPATH : SOME MORE DETAILS ON COMPARISONS

• in the above examples, all predicate expressions like [name=“Berlin”] or
[@car_code=“D”] always implicitly compare the string value of nodes, e.g., here the
string values of <name>Berlin</name> or attribute: (car_code, “D”).

Usage of Numbers

• comparisons using > and < and a number literal given in the query implicitly cast the
string values as numeric values.

//city[population > 200000]
returns the all cities with a population higher than 200,000.

//city[population > ’200000’]

returns the all cities with a population alphabetically “bigger” than 200,000,
e.g., 3500, but not 1,000,000!

//city[population > //city[name="Munich"]/population]
does not recognize that numerical values are meant:
All cities with population lexically bigger than “1244676” are returned.

//city[population > //city[name="Munich"]/population/number()]
It is sufficient to apply the number() casting function (see later) to one of the operands.

213

XPATH : COMPARISON BETWEEN NODES

Usage of Node Identity

• as seen above, the “=” predicate uses the string values of nodes.

In most cases, this is implicitly correct:

Consider the following query: “Give all countries whose capital is the headquarter of an
organization”:

//country[id(@capital)=//organization/id(@headq)]/name

Compares the overall string values of city elements, e.g., “Brussels 4.35 50.8 951580”.

• but for empty nodes, the result is not as intended ...

214

Comparison by Node Identity: “a is b”

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE mondial-simple SYSTEM "mondial-simple.dtd">

<mondial-simple>

<country car_code="D" capital="Berlin"/> <city name="Berlin"/>

<country car_code="B" capital="Brussels"/> <city name="Brussels"/>

<organization name="EU" headq="Brussels"/>

</mondial-simple> [Filename: XPath/node-comparison.xml]

• the query //country[id(@capital)=//organization/id(@headq)]/string(@car_code)
yields “D” and “B”.

• Comparison by node identity is done by “is”:
//country[id(@capital) is //organization/id(@headq)]/string(@car_code)

– “is” is only provided since XPath 2.0

– “is” allows only one node as argument, not a node sequence
(⇒ XQuery: not something bound by “let $x := node sequence”)

• Aside: “deep equality” of nodes can be tested with the predicate deep-equal(x, y).
(by this, two subtrees can be checked to have the same structure+contents)

215

XPATH : PREDICATES AND OPERATIONS ON STRINGS

• concat(string, string, string*)

• startswith(string, string)
//city[starts-with(name,’St.’)]/name

• contains(string, string)
//city[contains(name,’bla’)]/name

• substring-before(string, string, int?)

• substring-after(string, string, int?)

• substring(string, int, int): the substring consisting of i2 characters starting with the i1th
position.

216

XPATH : NAME FUNCTION

• the function name() returns the element name of the current node:

– name(//country[@car_code=’D’]) or
//country[@car_code=’D’]/name()

– //*[name=’Monaco’ and not (name()=’country’)] yields only the city element for
Monaco.

XPATH : IDREF FUNCTION

• the function idref(string∗) returns all nodes that have an IDREF value that refers to one of
the given strings (note that the results are attribute nodes):
idref(’D’)/parent::*/name yields the name elements of all “things” that reference Germany.

217

FUNCTIONS ON NODESETS

• Aggregation: count(nodeset), sum(nodeset), analogously min, max, avg

sum(//country[encompassed/id(@continent)/name="Europe"]/population)

count(//country)

all numeric functions implicitly cast to numeric values (double).

• removal of duplicates:

– recall that the XPath strategy works on sets of nodes in each step - duplicate nodes
are automatically removed:

//country/encompassed/id(@continent)/name

– function distinct-values(nodeset):
takes the string values of the nodes and removes duplicates:

doc(’hamlet.xml’)//SPEAKER

returns lots of <SPEAKER>. . . </SPEAKER> nodes.

distinct-values(doc(’hamlet.xml’)//SPEAKER)

returns only the different (text) values.

• and many more (see W3C XPath/XQuery Functions and Operators).

218

XPATH : CONTEXT FUNCTIONS

• All functions retain the order of elements from the XML document (document order).

• the position() function yields the position of the current node in the current result set.

/mondial/country[position()=6]

Abbreviation: [x] instead of [position()=x]; [-1] yields the last node:

/mondial/country[population > 1000000][6]

selects the 6th country that has more than 1,000,000 inhabitants (in document order, not
the one with the 6th highest population!)

/mondial/country[6][population > 1000000]

selects the 6th country, if it has more than 1,000,000 inhabitants.

• the last() function returns the position of the last elements of the current sub-results, i.e.,
the size of the result.

//country[position()=last()]

219

XPATH : CONTEXT FUNCTIONS (CONT’D)

• consider again the “//” abbreviation (cf. Slide 199):

– /mondial/descendant::city[18] selects the 18th city in the document,

– /mondial/descendant-or-self::node()/city[18] selects each city which is the 18th child of
its parent (country or province).
(note that some implementations are buggy in this point ...)

• Example queries against mondial.xml and hamlet.xml.

220

XPATH : FORWARD- AND BACKWARD AXES

• the result of each query is a sequence of nodes

• document order (and final results): forward

• context functions: forward or backward

• all axes enumerate results starting from the current node.

– forward axes: child, descendant, following, following-sibling

– backward axes: ancestor, preceding, preceding-sibling

//table/preceding-sibling::h4//text()
selects all preceding h4 elements (section headers).

The result is -as always- output in document order
//table/preceding-sibling::h4[1]//text()

selects the last preceding section header (context function on backward axis)

– undirected: self, parent, attribute (and namespace)

• only relevant for queries against document-oriented XML.

221

EXTENSIONS WITH XPATH 2.0

• further string- and aggregate functions

• more complex path constructs (alternatives, parentheses)
(//city|//country)[name=’Monaco’]
/mondial/country/(city|(province/city))/name

• extended subscript operator:
//country[population > 1000000][-3]
//country[population > 1000000][5-10]
//country[population > 1000000][1,5-10,-3]

• ANY and ALL semantics for condition:
//country[ALL city/population > 1000000]
//country[ANY city/population > 1000000]
(countries where all/at least one city has more than 1000000 inhabitants)

• extending the language to more than usual navigation ...

• alignment of the whole XML world (XPath, XQuery) with datatypes (data model and XML
Schema)

222

5.2 Aside: Namespaces

The names in an XML instance (i.e., tag names and the attribute names) actually consist of
two parts:

• localpart + namespace (which can be empty, as in the previous examples)

Use of Namespaces

• a namespace is similar to a language: defining a set of names and sometimes having a
DTD (if intended as an XML vocabulary).

• e.g. “mondial:city”, “bib:book”, “xhtml:tr” “dc:author”, “xsl:template” etc.

• used for distinguishing coinciding element names in different application areas.

• each namespace is associated with a URI (which can be a “real” URL), and abbreviated
by a namespace prefix in the document.

• e.g., associate the namespace prefix xhtml with url http://www.w3.org/1999/xhtml.
these things will become clearer when investigating the RDF, RDFS, and Semantic Web
Data Models.

223

USAGE OF NAMESPACES IN XML DOCUMENTS

• each element can have (or can be in the scope of) multiple namespace declarations
(represented by a node in the data model, similar to an attribute node).

• namespace declarations are inherited to subelements

• the element/tag name and the attribute names can then use one of the declared
namespaces.
By that, every element can have one primary namespace and “knows” several others.

Alternatives:

1. node has no namespace (e.g. mondial),

2. document declares a default namespace (for all elements (not the attributes!) that do not
get an explicit one (often in XHTML pages)),

3. elements have an explicit namespace (multiple namespaces allowed in a document; e.g.
an XSL document that operates with XHTML markup and “mondial:” nodes).

• (2) and (3) are semantically equivalent.

... see next slides.

224

EXPLICIT NAMESPACE IN AN XML DOCUMENT

<xh:html xmlns:xh="http://www.w3.org/1999/xhtml">

<xh:body>

<xh:h3>Header</xh:h3>

<xh:a href="http://www.informatik.uni-goettingen.de">IFI</xh:a>

</xh:body>

</xh:html>

[Filename: XML-DTD/xhtml-expl-namespace.xml]

• Note: attribute is not in the HTML namespace!

This is actually already not XPath, but a simple XQuery query:
declare namespace ht = "http://www.w3.org/1999/xhtml";

/ht:html//ht:a/string(@href)

[Filename: XPath/xhtml-query.xq]

• Note: the namespace must be used in the query,
i.e., “ht:html” is different from just “html”

• more accurate, it means something like <{http://www.w3.org/1999/xhtml}html>...</...>

since not the chosen namespace prefix matters, but only the URI assigned to it.

225

TWO EXPLICIT NAMESPACES IN AN XML DOCUMENT

• “Dublin Core” defines a vocabulary for metadata description of resources (here: of XML
documents); cf. http://dublincore.org/documents/dces/

<xh:html xmlns:xh="http://www.w3.org/1999/xhtml"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:creator>John Doe</dc:creator>

<dc:date>1.1.2000</dc:date>

<xh:body> ... </xh:body> </xh:html>

[Filename: XML-DTD/xhtml-expl-namespaces.xml]

declare namespace ht = "http://www.w3.org/1999/xhtml";

declare namespace dc = "http://purl.org/dc/elements/1.1/";

/ht:html//dc:creator/text()

[Filename: XPath/xhtml-dc-query.xq]

• the document is not valid wrt. the XHTML DTD since it contains additional “alien”
elements.
(combination of languages is a problem in XML – this is better solved in RDF/RDFS)

• in RDF, dc:creator from above expands to the URI
http://purl.org/dc/elements/1.1/creator.

226

DEFAULT NAMESPACES IN AN XML DOCUMENT

• a Default Namespace can be assigned to an element (and inherited to all its subelements
where it is not overwritten):

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:creator>John Doe</dc:creator>

<date xmlns="http://purl.org/dc/elements/1.1/">1.1.2000</date>

<body> ... </body> </html>

[Filename: XML-DTD/xhtml-def-namespaces.xml]

declare namespace ht = "http://www.w3.org/1999/xhtml";

declare namespace dc = "http://purl.org/dc/elements/1.1/";

/ht:html/dc:date/text()

[Filename: XPath/xhtml-dc-def-query.xq]

227

NAMESPACES AND ATTRIBUTES

• Namespaces are not inherited to attributes in any case. If an attribute should be
associated with a namespace, this must be done explicitly:

<ht:html xmlns:ht="http://www.w3.org/1999/xhtml">

<ht:body>

<ht:a href="1+" ht:href="2-">IFI</ht:a>

<x:a xmlns:x="http://www.w3.org/1999/xhtml" href="3+" x:href="4-">IFI</x:a>

IFI

</ht:body> </ht:html>

[Filename: XML-DTD/namespaces-attr.xml]

declare namespace ht = "http://www.w3.org/1999/xhtml";

/ht:html//ht:a/@href/string()

[Filename: XPath/namespaces-attr-query.xq]

• the “HTML-correct” attributes “1+”, “3+”, and “5+” are returned,

• the query /ht:html//ht:a/@href/string() returns the “wrong” attributes “2-”, “4-”, and “6-”.

228

DECLARING NAMESPACES IN THE DTD DOCUMENT

• introduce default namespace in the DTD as attribute of the root element (e.g. in XHTML):

<!ELEMENT html (head, body)>

<!ATTLIST html

xmlns %URI; #FIXED 'http://www.w3.org/1999/xhtml' >

• XHTML instance:

<html xmlns=“http://www.w3.org/1999/xhtml”> <body> ... </body></html>

• introduce explicit namespaces as attribute of the root element (e.g. in XHTML):

<!ELEMENT html (head, body)>

<!ATTLIST html xmlns:xh %URI; #FIXED ’http://www.w3.org/1999/xhtml’ >

This is used with RDF/XML in the Semantic Web

229

EXAMPLE : QUERYING XHTML IN PRESENCE OF NAMESPACES

XHTML DTD at http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd contains:

<!ELEMENT html (head, body)>

<!ATTLIST html id ID #IMPLIED

xmlns %URI; #FIXED 'http://www.w3.org/1999/xhtml'>

Sample XHTML files:

• DBIS Web pages:

declare namespace h = "http://www.w3.org/1999/xhtml";

doc('http://www.dbis.informatik.uni-goettingen.de/')//h:li/h:a/@href/string()

[Filename: XPath/web-queries.xq]

• DBIS WWW2002 paper: in the local exist at /db/xmlcourse/xlink.htm
declare namespace ht = "http://www.w3.org/1999/xhtml";

doc('/db/xmlcourse/xlink.htm')//ht:h1

[Filename: XPath/exist-xhtml-query.xq]

230

DECLARING A DEFAULT NAMESPACE IN XQUERY

XQuery allows to declare default namespaces for elements and for functions:

• are then added to each element and function step, respectively;

• not for attributes (recall that namespaces from elements are not inherited to attributes).
(cf. Slide 228)

declare default element namespace "http://www.w3.org/1999/xhtml";

/html//a/@href/string()

[Filename: XPath/namespaces-default-query.xq]

• the “HTML-correct” attributes “1+”, “3+”, and “5+” are returned,

• the equivalent query is /h:html//h:a/@href/string().

231

5.3 XPath: The Limits

• addressing only sets of nodes

• not “give all pairs of ...”

• the highest mountain in Africa:

doc('mondial.xml')//mountain[

id(id(located/@country)/encompassed/@continent)/name='Africa'

and

not (height <

//mountain[

id(id(located/@country)/encompassed/@continent)/name='Africa']/height)]

/name

[Filename: XPath/highestmountain.xq]

... comparison only by semijoins in the condition.

• for each continent, give the highest mountain?
not possible: two properties of the same object (height, continent) must be compared
independently→ requires variable binding

232

5.4 XPath: Conclusion

What can XPath do?

Comparison with relational operators

• selection: yes (selection of values and of (sub)structures)

• projection/reduction: no. Only complete nodes can be selected

• join/combination: no. Only semi-joins can be expressed in the conditions

Other functionality:

• correlated subqueries: inside the conditions as semijoins

• restructuring of the results: no

• only following a “main path” for navigating to nodes (including semijoins)

⇒ only a fragment of a query language for addressing nodes.

– compared with SQL, XPath is only a unary “FROM” clause!

– XQL (Software AG, 1998/1999) for some time followed (as one of the predecessors of
XPath) an approach to add join variables and constructs for projection and
restructuring/grouping to the path language.

233

IMPORTANCE OF XPATH IN THE XML-WORLD

• adressing mechanism for nodes in XML documents

• navigation in the tree structure

• serves as base for different concepts:

– XQuery

– XSL/XSLT: stylesheets, transformation language

– other query languages

– XML Schema

– XPointer/XLink

234

Chapter 6
XML Query Languages
• XPath is not a query language:

selects only sets of nodes

• additional functionality of query languages:

– composition of tuples/structures from several nodes of a path

– joins

– dereferencing

* via joins

* via direct resolving of IDs (seen as values)

* via dereferencing of ID attributes

– aggregations

– formatting and restructuring of results

– operations on the order of nodes!

235

XML QUERY LANGUAGES

Collected experiences from SQL, OQL, OEM/WSL/MSL, F-Logic and some more ...

• predecessors of XPath: XSL Patterns/XPointer/XQL (1998)

• XQL extended the early “basic form” to a query language

– adding several constructs to the path expressions

– increasingly complicated

– still not sufficiently expressive

– showed the limits and requirements

• XML-QL (1998): pattern-matching-based “extraction language”

– not path-based, but XML-pattern/template-based binding of variables

– semantics by a clause-construct

– generation and structuring of the result by an XML pattern with variables

236

XML QUERY LANGUAGES (CONT’D)

• Quilt (2000): SQL-style extension of XPath

– binding of variables by XPath expressions

– nested loops by “for”-clauses

– additional conditions in a “where”-clause

– structuring of the result by a “return”-clause

• XQuery (2001): “official” version of Quilt

– W3C Working Draft XQuery first version from 15 February 2001

– XQuery 1.0: W3C Recommendation since 23.1.2007

– http://www.w3.org/TR/xquery/

237

6.1 XQL

XQL (XML Query Language; 1998) is a simple query language based on early constructs of
XPath:

• all XPath expressions that can be expressed without the use of “axis::” (cf. Slide 198 -
axes have only been added later).

• text() was a function,

• function applications have been expressed by “!” at the end of the path expression:
//country/name!text()

Further querying functionality was integrated syntactically into the path expressions.

238

XQL: B OOLEAN OPERATIONS AND SET OPERATIONS

• q1 union q2, q1 | q2

• q1 intersect q2

• q1 ∼ q2 (union, in case that both are non-empty)

• q1 or q2

• q1 and q2

239

XQL: R ETURN OPERATORS (PROJECTIONS ON THE PATH)

Operators that output the node that is addressed at the given position:

??: the complete node is added to the output structure (including attributes and subelements)

?: only the element “hull” is added to the output

• country/city[@isCountryCap]/name

<name>Berlin</name>

<name>Rome</name>

• country?/city[@isCountryCap]/name

<country> <name>Berlin</name> </country>

<country> <name>Rome</name> </country>

• country?[@car_code?]/city[@isCountryCap]/name

<country car_code="D"> <name>Berlin</name> </country>

<country car_code="I"> <name>Rome</name> </country>

• country?[@car_code?]/city?[@isCountryCap]/name!text()

<country car_code="D"> <city>Berlin</city> </country>

<country car_code="I"> <city>Rome</city> </country>

240

XQL: G ROUPING

• copy a part of the original document structure:
path1 { path2 }

• without grouping:
country?[@car_code?]/city?/name!text()

<country car_code="D"> <city>Berlin</city> </country>

<country car_code="D"> <city>Hamburg</city> </country>

<country car_code="D"> <city>Munich</city> </country>

• with grouping:
country?[@car_code?] {/city?/name!text()}

<country car_code="D">

<city>Berlin</city>

<city>Hamburg</city>

<city>Munich</city>

</country>

241

XPATH : SEMIJOINS ARE POSSIBLE

• Semi-joins via subqueries in the condition:

π[A](r ⊲⊳ s) , A ⊂ attr(r)

Query: name of the continent where Germany is located:

/mondial/continent[@id =
/mondial/country[@car_code=“D”]

/encompassed/@continent]
/name!text()

Problems

• full joins with join conditions not possible

• no restructuring/generation of answer structure

242

XQL: J OINS

Asymmetric full joins expressed by correlating variables and “alternative”-construct:
Filters may contain variable assignments of the form

[$var := expr]

that are then used in another condition

[expr′ = $var]

//organization?[$s := @headq] {name?? | abbrev?? | member?? | //city[@id=$s]?? }

<organization>

<name>European Union</name>

<abbrev>EU</abbrev>

<member type="member" country="GR F E A D I B L NL DK SF S IRL P GB"/>

<member type="membership applicant"

country="AL CZ H SK LV LT PL BG RO EW M CY"/>

<city> <name>Brussels</name> ... </city>

</organization>

Equivalent:

//organization?[$s := @headq and name?? | abbrev??] {member?? | //city[@id=$s]?? }

243

XQL: C ONCLUSION

• Ad-hoc-constructs (in different versions)

• insufficient restructuring functionality

– tree structure of the input is in principle retained

• insufficient join functionality

• no clear semantics for the result format

• queries cannot be nested (cf. SQL, OQL: results are again relations);
here is even no notion of a subquery

• one of the reasons: no variable concept

• implemented and used up to 2002 in the “Tamino” system of Software AG.

244

6.2 Query Languages: Requirements

Requirements on XML Query Languages [David Maier and W3C XML Query Requirements]

• closedness: output must be XML

• orthogonality/composability: everywhere where a set of XML elements is required, also a
query is allowed.

• clean definition and nesting of operations: selection, extraction/projection, restructuring,
combination/join, fusion of elements,

• applicable without presence of schema, but can use a schema,

• retaining the order of nodes,

• [queries should have an XML representation, especially, XML documents should be able
to contain embedded queries]

• resolving of XPointer and XLink

• formal semantics: deriving structure of the result, equivalence and query containment

245

6.3 XML-QL

• http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/

• simple, pattern-based XML query language:

WHERE xml-pattern IN url CONSTRUCT result

• usage of variable bindings:
xml-pattern contains variables that can be used in result,

• declarative,

• “relationally complete”, i.e., joins can be expressed.

Example:

WHERE <country car_code=$id>

<name>$name</name>

</country>

IN "http://www.../mondial.xml"

CONSTRUCT <country car_code=$id name=$name/>

246

XML-QL: J OINS

Joins are expressed as a list of
WHERE (expr1 IN doc1, ... , exprn IN docn)-clauses:

• equijoin inside a document:

WHERE

<country car_code=$c></country>

IN mondial.xml,

<organization abbrev=$org>

<members type=$type country=$c/>

</organization>

IN mondial.xml,

CONSTRUCT ...

247

XML-QL: J OINS

• Joins that combine multiple documents:

WHERE

<city name=$name1>

IN http://www.../europe.xml,

<city name=$name2>

IN http://www.../america.xml,

<connection from=$name1 to=$name2>

IN http://www.../lufthansa.xml

CONSTRUCT

<connection>

<from continent="europe" city="name1"/>

<to continent="america" city="name2"/>

</connection>

248

XML-QL: N ESTED QUERIES

WHERE xml-pattern IN url CONSTRUCT result

• result can contain nested WHERE ... IN ... CONSTRUCT statements.

FURTHER FUNCTIONALITY

• tag-variables: WHERE <$tag> ... </>

• regular path expressions: instead of XPath’s “//”, <*> ... </> is used.

DATA MODEL

• Graph-based: XML-tree with IDREF edges:

WHERE

<country car_code=$cc>

<capital><name>$name</name><population>$pop</population></capital>

</country>

IN ... CONSTRUCT ...

249

XML-QL: C ONCLUSION

• clause-based high-level language

• selection and construction pattern-based (by binding variables in the patterns; similar to
Logic Programming)

• join conditions: not in a WHERE clause, but implicitly expressed by join variables (like in
Logic Programming)

• graph data model; no difference between tree edges and reference edges

• has been implemented

• used in different projects (e.g. MIX – Mediation in XML; UC San Diego 1999/2000)

– allows for access and combination of different HTML/XML-sources in a query.

250

6.4 SQL, OQL etc.

• set-oriented (sets of tuples or objects) language

• implicit iteration over sets:

SELECT ... FROM relation-or-extent c

• variable c ranges over data items

• join: use several such variables and correlate them

• WHERE and SELECT part: use these variables

Similar constructs for XML?

• variables range over sets of nodes

• ... sets of nodes can be addressed by XPath

• straightforward and intuitive:

for $c in //country
where $c/population > 1000000
return $c/name/text()

251

6.5 Quilt and XQuery

• a Quilt is a “Flickenteppich” ...

• IBM, Software AG, INRIA; literature: WebDB2000-Workshop

• Structure similar to SQL/OQL: clause-based, functional language
(arbitrary nesting of FLWR expressions allowed),

• Use of variables similar to SQL/OQL,

• based upon XPath (previously XQL/XSL Patterns) in the selection part and upon XML-QL
(XML patterns) in the construction part:

• For Let Where Return-clauses

for variable in xpath-expr // from XQL/XPath and XML-QL
let additional_variable := xpath-expr

where condition

return xml-expr // from XML-QL

• has been moved into W3C’s “XML Query” in 2001 with only small changes.

• Remark: XQuery is case-sensitive.
ALL KEYWORDS MUST BE WRITTEN WITH non-capital LETTERS!

252

XQUERY: EXAMPLE

• for-clause: binding of variables (cf. SQL: FROM)

• where-clause: evaluation of conditions

• return-clause: generation of the result (cf. SQL: SELECT)

<result>

{ for $c in /mondial/country

where $c/population > 10000000

return <bigcountry>

{ $c/name }

<area> { string($c/@area) } </area>

</bigcountry>

} </result>

[Filename: XQuery/first-example.xq]

generates

<result><bigcountry><name>France</name><area>547030</area></bigcountry>

<bigcountry><name>Spain</name><area>504750</area></bigcountry>

:
</result>

253

ASIDE: TOOLS – XQUERY AS A DATABASE AND WEB QUERY LANGUAGE

XML Databases

• local repository of XML documents

• adding documents to the Database

• access only against locally stored documents

• presence of access paths like indexes etc

• manipulation of documents

Tool: a local eXist repository; see Web page
paths: /mondial//country/name or doc(’/db/xmlcourse/mondial.xml’)/mondial/country/name

Queries against the Web

• querying the whole Web

• documents not locally stored; only on-the-fly-indexing possible

• access to remote documents by their url

Tool: saxonXQ; see Web page
paths: doc(’filename or url ’)//country/name

254

XQUERY: OVERVIEW OF FUNCTIONALITY

• for-clause: defines nested loops where each of the variables runs over the set of selected
values

• variables in XPath expressions: bound in for/let (or by surrounding statements), they are
used as starting points for paths and in conditions

• joins:

– multiple variables in a for-clause:
for $var1 in doc1/path1, . . . , $varn in docn/pathn

– correlated definition of the variables in the for-clause:
for $var1 in doc1/path1, $var2 in $var1/path2, . . .

• let-clause for definition of “constants”:
let $var := expr
binds $var to the whole result of expr (in general, a node set).

• nested/iterated for-let-for-let-clauses allowed

• generation of nested and grouped structures:
the return-clause may contain further FLWR-clauses (which can contain variables from
the outer clause).

255

SIMPLEST XQUERY QUERIES: XPATH

• Each XPath query is also an XQuery query
result: a sequence of nodes or literal values

doc('mondial.xml')//country/name

Note: different behavior when returning attribute nodes!

doc('mondial.xml')//country/@area

XQUERY: FOR-CLAUSE

for $var = xpath-expr

• iterates over the result of xpath-expr

for $c in /mondial//country/name

return $c

[Filename: XQuery/for-example.xq]

256

XQUERY: RETURN-CLAUSE

Output of all statements must be XML.

• simple case: content of a variable

for $c in /mondial//country/name

return $c

• and generation of structured results (cf. OQL)

Generation of Structures

• literal XML

• computed element- and attribute constructors (later)

Use of Computed Values/Structures

• enclosed between “{” . . . “}”

• evaluation of variables and XPath expressions

• nested FLWR-clauses

257

RETURN-CLAUSE : CONSTRUCTION OF RESULT ELEMENTS

• literal XML, values of variables and results of XPath expressions

<html><table>

<tr><th>Name</th><th>Area</th><th>Population</th></tr>

{ for $c in /mondial/country

return

<tr><td>{$c/name/text()}</td>

<td>{string($c/@area)}</td>

<td>{$c/population/text()}</td>

</tr>

}

</table></html>

[Filename: XQuery/table-example.xq]

returns one table row for each country.

258

XQUERY: FOR-CLAUSE

Multiple Variables in a For-Clause

• cartesian product
(cf. FROM-clause in SQL)

for $c in /mondial//country,

$o in /mondial//organization

where $c/@capital = $o/@headq

return

<answer>

<country>{$c/name/text()}</country>

<organization>{$o/name/text()}</organization>

</answer>

[Filename: XQuery/cartesian-example.xq]

• compare where clause with equivalent
where $c/id(@capital) is $o/id(@headq)
on node level (“=” would also be correct here, taking the string value of the nodes).

259

XQUERY: FOR-CLAUSE

Multiple Variables in a For-Clause

• “correlated” Join
(cf. FROM-clause in Schema-SQL and OQL)

• subset of the cartesian product

for $c in /mondial/country,

$p in $c/province

return

<answer>

<country>{$c/name/text()}</country>

<prov>{$p/name/text()}</prov>

</answer>

[Filename: XQuery/correlated-join-example.xq]

260

RETURN-CLAUSE WITH NESTED FLWR-CLAUSE

• inner query used in the outer return-clause (cf. OQL)

for $c in /mondial/country

where $c/province

return

<answer>

{$c/name}

{ for $p in $c/province

return

<prov>{$p/name/text()}</prov>

}

</answer>

[Filename: XQuery/nested-flwr-example.xq]

generates for each country that has provinces an <answer> element that contains a
<name> element and a sequence of <prov> elements.

261

LET-CLAUSE

let $var := xpath-expr

• does not iterate over the result of xpath-expr

• but binds the complete result of xpath-expr as sequence of nodes to the variable:

for $c in /mondial/country

let $cities := $c//city/name

return

<country>

{$c/name}

{$cities}

</country>

[Filename: XQuery/let-example.xq]

• useful for keeping intermediate results for reuse (often missed in SQL)

262

WHERE-CLAUSE : CONDITIONS

Similar to XPath’s conditions (same predicates etc):

• logical “and” and “or”

• “not(...)” as a boolean function

• Comparisons: “is” for node identity, “<<” and “>>” for document order, “follows” and
“precedes”

• Quantifiers: where some|every $var in expr satisfies condition

for $c in /mondial/country

where some $city in $c//city satisfies $city/population > 1000000

return $c/name

for $c in /mondial/country

where every $city in $c//city satisfies $city/population > 1000000

return $c/name

[Filenames: XQuery/some-example.xq and every-example.xq]

263

USE CASE : J OIN BETWEEN DIFFERENT DOCUMENTS

• doc(...) function to access files (local or from the Web)

• here: join by a subquery

<result>

{ for $c in doc(concat('http://www.dbis.informatik.uni-goettingen.de',

'/Mondial/mondial-europe.xml'))/mondial/country

where some $l in doc('hamlet.xml')//LINE

satisfies contains($l, $c/name)

return

<country>

{$c/name}

</country>

}

</result>

[Filename: XQuery/join-web-documents.xq]

264

CONDITIONAL EVALUATION AND ALTERNATIVES

• if-then: alternative choice of subelements
if (expr) then expr else expr

<result>

{ for $c in /mondial/country

return

<country>

{$c/name}

{if ($c/province) then $c/province/city else $c/city}

</country>

}

</result>

[Filename: XQuery/if-else-example.xq]

265

ORDER OF RESULT SET

XPath: the result is always returned in document order :

• purely navigational access:

//country/city/name

• even when a backward axis is used during navigation, the nodes are enumerated in
document order:

//country[name='Germany']/province[last()]/preceding-sibling::*/name

(backward axis is only relevant for context functions in immediate conditions)

• or when id-referencing is used:

id(//organization/@headq)/name

(note: cities are not ordered according to the order of the organizations!)

XQuery: result set is ordered according to for-clause:

for $c in //organization

return id($c/@headq)/name

let-clause: binds the result set according to the respective order.

266

SORTING

• order by: expr order by (expr [ascending|descending])

<result>

{ for $c in //country

order by $c/name

return $c/name }

</result>

[Filename: XQuery/orderby-example.xq]

• note that the interpreter must be told whether the values should be regarded as numbers
or as strings (default: alphanumerical)

<result>

{ for $c in //country

where $c/population > 0

order by number($c/population)

return $c/name }

</result>

[Filename: XQuery/orderby-num-example.xq]

267

GROUPING AND AGGREGATION

• aggregate functions over result sets (avg, sum)

• bind variable with “for”-clause

• assign group with “let” (dependent on the current value in the for-clause) to a variable

• apply aggregate function to a nodeset

<result>

{ for $c in /mondial/country

let $cities := $c//city

where sum($cities/population) > 10000000

return

<answer>

{$c/name}

{sum($cities/population)}

</answer>

}

</result>

[Filename: XQuery/aggr-1-example.xq]

268

AGGREGATION

• aggregation over result of a FLWR subquery

• bind (single) intermediate result by “let”

<result>

{ for $c in /mondial/country

let $maxpop := max(for $citypop in $c//city/population/text()

return $citypop)

return

<answer>

{$c/name}

{$maxpop}

</answer>

}

</result>

[Filename: XQuery/aggr-2-example.xq]

269

ATTRIBUTES IN THE RETURN-CLAUSE

• note that expressions the form “@bla” return attribute nodes - these are
(AttrName,value)-pairs:

<result>

{//country[name='Germany']/@car_code}

</result>

generates <result car_code=“D”/>.

• attribute nodes are always added to the surrounding element.

• if only their value is needed, apply string().

for $c in /mondial/country

return

<country>

{$c/@area}

{string($c/@car_code)}

</country>

[Filename: XQuery/attribute-example.xq]

Result:

<country area=“28750”>AL</country>

<country area=“131940”>GR</country>

:

270

COMPUTED ELEMENT- AND ATTRIBUTE NAMES

• explicit constructors

– element expr attrs-and-content
the evaluation of expr yields the name of the element, the result of attrs-and-content is
then inserted as attributes and content
Note: content is a node sequence, separated by “,”

– attribute expr expr-value
the evaluation of expr yields the name of the attribute, expr-value yields its value.

<result>

{ for $c in doc('mondial.xml')//country

where $c/encompassed

return

element { $c/@car_code }

{ attribute {$c/encompassed[1]/@continent} {"yes"},

$c/name

}

} </result>

[Filename: XQuery/computed-constructors-example.xq]

A result node:

<B europe=“yes”>

<name>Belgium</name>

271

COMPUTED ELEMENT- AND ATTRIBUTE NAMES : A NOTHER EXAMPLE

• the element content can be computed by an XQuery expression (cf. usage of expr on the
previous slide):

<result>

{ for $c in doc('mondial.xml')//country

where $c/encompassed

return

element { $c/@car_code }

{ for $e in $c/encompassed

return attribute {string($e/@continent)} {"yes"},

$c/name

}

} </result>

[Filename: XQuery/computed-constructors-example2.xq]

272

HANDLING DUPLICATES

• recall from XPath: results (and intermediate results) of XPath expressions are node sets
in document order
⇒ for $x in xpath-expr, let $y := xpath-expr
always results in a set (i.e., duplicates removed)

• recall Slide 218 for removal of duplicate values: distinct-values(...)

distinct-values(doc('...')//SPEAKER)

How many speeches has each of the speakers in “Hamlet”?
for $a in distinct-values(doc('/db/xmlcourse/hamlet.xml')//SPEAKER)

let $n := count(//SPEECH[SPEAKER = $a])

order by $n descending

return

<answer>

{$a}

{$n}

</answer> [Filename: distinct-values.xq]

• takes only the string values (⇒ no further navigation applicable)

273

Handling Duplicates in XQuery(cont’d)

• FLWR expressions (e.g., for $c in ... return $c) do not eliminate duplicates automatically

• for $o in //organization return $o/id(@headq)
returns duplicates

• distinct-values(for $o in //organization return $o/id(@headq))
returns only the string values

• so it must be done programmatically (often, specific for the given problem: iterate over the
target set and do the test in a subquery) – cf. SQL:
select * from <table-of-entity-tuples> where <condition>

• or by a generic function – see Slide 281

274

SPECIALIZED DATATYPES FOR TIME ETC.
The datatypes specified by XML Schema are used in XPath/XQuery (and XSLT)

• Syntax: constructors like xs:dateTime(’syntactical representation’)

• syntactical representations:

– xs:dateTime: yyyy-mm-dd Thh:mm:ss[.xx][{+|-}hh:mm]

– xs:date: yyyy-mm-dd and xs:time: hh:mm:ss [{+|-}hh:mm]

– xs:duration: P [n Y][n M][n D][T[n H][n M][n [.n] S]], where n can be any natural number

– xs:dayTimeDuration, xs:yearMonthDuration: restrictions of xs:duration.

let $x := xs:dateTime('2009-08-01T13:51:20.99'),

$y := xs:date('2008-12-31'),

$t1 := xs:time('12:50:00+01:00'), (: timezone +1 = Frankfurt :)

$t2 := xs:time('15:35:00.50-05:00') (: timezone -5 = New York :)

return <e const="{$x}" diff="{$t2 - $t1}" d="{$y + xs:yearMonthDuration("P1Y2M")}"

sum1="{xs:time("11:12:00") + xs:dayTimeDuration("PT1H75M")}"

sum2="{xs:dateTime("2009-01-10T11:12:00") + xs:dayTimeDuration("P3DT26H40M")}"/>

[Filename: XQuery/datetime-test.xq]

• resulting diff = “PT8H45M0.5S” (an xs:duration), sum1 = “13:27:00” (an xs:time),
sum2= “2009-01-14T13:52:00” (an xs:dateTimes), d= “2010-02-28” (an xs:date)

275

Actual Usage

... is often simple

<country car_code="B">

<indep_date>1830-10-04</indep_date>

</country>

for $c in //country[indep_date < '1900-01-01']

return concat($c/name, $c/indep_date)

[Filename: XQuery/simple-date-example.xq]

note: explicit [indep_date < xs:date('1900-01-01')] would be safer.

276

FUNCTIONS AND OPERATORS

XPath and XQuery Standard Operators

• Recall Slide 212 for string() and name(), and Slide 209 for id().

• See “W3C XML Query Functions and Operators” for predefined functions,
especially concerning dates+times.

Further Operators: EXSLT

Some mathematical functions (sqrt etc.) are not supported as builtins in XPath/XQuery, but
only as extensions in EXSLT:

• http://www.exslt.org/, supported e.g. by saxon.

• declare namespace math="http://exslt.org/math"

• use math:sqrt, math:sin, ...

• ”XPath and XQuery Functions and Operators 3.0” will support math functions (WD 2010,
not yet finalized [2011])

277

USER-DEFINED FUNCTIONS

• User defined functions are declared in the prolog:
declare function func_name ([$var1, . . . , $varn]) [as returnType]
{

expr that uses $var1, . . . , $varn

}

• Parameters: $vari [as paramType], default for parameter and return types is item()*
(i.e. a sequence of nodes, literals etc.),

• Any sequence type may be used for paramType and returnType (cf. XML Schema),

• Any XQuery expression is allowed in the function body.

278

USER-DEFINED FUNCTIONS: EXAMPLES

• A function computing the population density for a given country:
declare function local:density ($name as xs:string) as element(density)

{

for $c in doc('mondial.xml')//country[name=$name]

let $density := if ($c/@area > 0) then $c/population div $c/@area else 0

return <density>{$density}</density>

};

local:density('Germany')

[Filename: XQuery/function-density.xq]

• Example for a recursive function:
declare function local:depth($e as node()) as xs:integer

{

if (fn:empty($e/*)) then 1

else fn:max(for $c in $e/* return local:depth($c)) + 1

};

local:depth(/)

[Filename: XQuery/function-depth.xq]

279

USER-DEFINED FUNCTIONS: EXAMPLE

Ignoring the FLWR, XQuery can even be used as a common functional language:

• every (arithmetic + if) expression is a valid XQuery expression

(:call saxonXQ faculty.xq x=5 :)

declare variable $x external;

declare function local:faculty($n as xs:integer) as xs:integer

{ if ($n=1) then 1

else $n * local:faculty($n - 1)

};

local:faculty($x)

[Filename: XQuery/faculty.xq]

280

USER-DEFINED FUNCTION: EXAMPLE

Remove duplicates from a node set (taken from the example Section from W3C
XPath/XQuery Functions and Operators):

declare function distinct-nodes-stable ($arg as node()*) as node()*

{

for $a at $apos in $arg

let $before_a := fn:subsequence($arg, 1, $apos - 1)

where every $ba in $before_a satisfies not($ba is $a)

return $a

}

281

PRACTICAL HINTS: OUTPUT

When creating output, most XQuery engines generate the XML declaration, and output “<”
and “>” as “<” and “>”, respectively.

Add Doctype Declaration to the Output

• XQuery engines output only the XML structure itself

• how to add the <!DOCTYPE mondial SYSTEM “mondial.dtd”> preamble?

With saxon, use

declare namespace saxon=“http://saxon.sf.net/”;
declare option saxon:output “indent=yes”;
declare option saxon:output “doctype-system=mondial.dtd”;

Generating non-XML code, text, etc

• In case it is intended to generate e.g. LaTeX, N3 or whatever output, the XML declaration
and the <->-conversion must be avoided.

With saxon, use

declare option saxon:output "method=text";

282

OPERATING WITH SEQUENCES

Comparisons are instance-based: if one operand is a sequence, each value is compared:

• ... as we have seen for XPath: country[.//city/name = “Cordoba”]/name
country[.//city/population > 1000000]/name

• but somewhat surprising when using a “let”-view:

let $europnames := //country[encompassed/@continent="europe"]/name

for $country in //country

where not ($country/name = $europnames)

return $country/name

[Filename: XQuery/seq-comparison-example.xq]

outputs all names of non-european countries.

• selection from let-sequences is also instance-based:
let $europcountries := //country[encompassed/@continent="europe"]

return $europcountries[@area>300000]/name

[Filename: XQuery/seq-selection-example.xq]

283

OPERATIONS ON NODES AND NODE SEQUENCES

• “=” compares the string-values of nodes, not “correct” if node identity has to be checked

• “is” compares node identity:

for $c in //country,

$o in //organization

where $c/id(@capital) is $o/id(@headq)

return <pair country='\{$c/@car_code\}' org='\{$o/abbrev\}'/>

[Filename: XQuery/node-comparison.xq]

• “is” is not allowed for sequences:

let $caps := //country/id(@capital)

for $hq in //organization/id(@headq)

where $hq is $caps (: not allowed :)

return $hq/name

[Filename: XQuery/nodes-comparison-example-1.xq]

⇒ “A sequence of more than one item is not allowed as the second operand of “is” ”

284

OPERATIONS ON NODES AND NODE SEQUENCES

• explicit iteration via some:

let $caps := //country/id(@capital)

for $hq in //organization/id(@headq)

where some $cap in $caps satisfies $hq is $cap

return $hq/name [Filename: XQuery/nodes-comparison-example-2.xq]

• index-of(sequence,item)→ integer

let $caps := //country/id(@capital)

for $hq in //organization/id(@headq)

where index-of($caps,$hq) (: checks if $caps contains $hq :)

return $hq/name [Filename: XQuery/nodes-comparison-example-3.xq]

• ... or “where $caps intersect $hq”, or even shorter:

let $caps := //country/id(@capital)

let $hqs := //organization/id(@headq)

return ($hqs intersect $caps)/name

[Filename: XQuery/nodes-comparison-example-4.xq]

285

FLEXIBILITY

For each task, there is a multitude of possible solutions ...

Example: Uncorrelated Subqueries

Names of all countries that are larger than Germany:

• XPath:

//country[@area > number(//country[@car_code='D']/@area)]/name

• XQuery and SQL: uncorrelated subquery/semijoin

for $c in //country

where $c/@area >

number(//country[@car_code='D']/@area)

return $c/name

SELECT c.name

FROM country c

WHERE c.area > (SELECT c2.area

FROM country c2

WHERE c2.code = 'D')

• binding the uncorrelated subquery to a variable:

let $germanyarea := number(//country[@car_code='D']/@area)

for $c in //country

where $c/@area > $germanyarea

return $c/name

286

EXERCISES

... see Web.

Exercise 6.1
Determine the lowest mountain that is the highest mountain of the continent where it is
located.

Solve the problem for the relational Mondial-DB in SQL, and for XML in XQuery. 2

287

XQUERY: CONCLUSION

Design and Functionality

• combines the positive experiences of previous approaches

• avoids their drawbacks

• intuitively clear syntax and semantics

• declarative, orthogonal, functional style: every expression is a function on nodesets that
also returns a nodeset

– explicit, variable-based iteration: “for var in expression”

– implicit iteration: “collection[condition]” or “collection/path”

• Theoretical background (see W3C XML Query Formal Semantics; datatypes of the XML
Schema and XML Query Data Model)

– for each expression (and thus also for its result), the formal type (according to the XML
Schema datatypes) can be determined.

– the type of each variable is determined in the same way.

– formal, denotational semantics of queries:
“what is the answer set of a given expression?”

288

XQUERY: CONCLUSION (CONT’D)

W3C XML Query Formal Semantics:

• XPath/XQuery is a functional language.

• is built from expressions, rather than statements. Every construct in the language (except
for the XQuery query prolog) is an expression and expressions can be composed
arbitrarily.

• The result of one expression can be used as the input to any other expression, as long as
the type of the result of the former expression is compatible with the input type of the
latter expression with which it is composed.

• Another characteristic of a functional language is that variables are always passed by
value, and a variable’s value cannot be modified through side effects.

289

XQUERY: CONCLUSION (CONT’D)

• Note: XQueryX provides a syntax that is formulated in XML

Restrictions

• up to now no resolving of XLink/XPointer (see later)

• only a query language:
decision of the W3C: first complete XQuery 1.0 as a query language and make it
consistent with XML Schema and XML Query Data Model as a “Recommendation”, and
then start official thoughts about updates in XQuery 2.0.

290

GENERAL DESIGN PATTERNS FOR DATABASE QUERY LANGUAGES

SQL, OQL, XML-QL, XQuery (and many others) use the same underlying principle:

• binding variables

• evaluating a condition

• generating a result (which is a set of data items of the underlying data model)

Note: XQL did not follow this idea⇒ restricted expressiveness and clarity

... let’s now have a look on one more XML query language

• the underlying principle is the same

⇒ everything else is “just syntax”!

291

6.6 Further (Academic) Query Languages

XPATHLOG

• Prolog-/Datalog-style (May, DBPL and VLDB 2001; TPLP 2004)

• based on F-Logic

– path syntax changed from step.step.step to step/step/step

– same syntax for conditions as for F-Logic: “[...]” could be reused

– F-Logic semantics (1989) closely related with XPath semantics

– new: distinction between attributes/subelements

• Binding of variables at arbitrary positions of an expression

• joins as conjunction (as in Prolog/Datalog)

292

XPATHLOG

• implicit resolving of multi-valued attributes

• implicit resolving of reference attributes

?- //country->C[name->N and @membership->O/name->A].

• access to signature/metadata

?- //country[name="Germany"]/M.

?- //country[name="Germany"]/@A.

• class membership and -hierarchy

?- C isa country[name->N]/M.

?- _C isa country/@A->_O, _O isa X.

?- country[@M=>C]. % from DTD

293

XPATHLOG: OVERVIEW

• declarative language

• implicit iteration (fixpoint semantics)

• (equi-)join variables

• XPath-style semantics in rule heads for generation and manipulation of XML data

• first implementation of an update language for XML (Demo VLDB 2001)
generation of XML in rule heads:
C[density -> D] :- C isa country[population -> P; @area -> A], D is P div A.

• fixpoint semantics for execution

• can compute transitive closure etc.

R[tr_flows_into -> S] :- R isa river, R/to[@watertype -> “seas”; @water -> S].

R[tr_flows_into ->S] :- R isa river, R/to[@watertype -> “river”; water -> R2],

R2[tr_flows_into -> S].

294

GENERAL DESIGN PRINCIPLES FOR DATABASE QUERY LANGUAGES

SQL, OQL, XML-QL, XQuery (and many others) use the same underlying principle:

• binding variables

• evaluating a condition

• generating a result (which is a set of data items of the underlying data model)

SQL/OQL XML-QL XQuery XPathLog

variables: 1-step-navig. XML patterns XPath navig. XPath navig.+

SQL: flat data model XPath patterns

OQL: + path navig.

conditions: WHERE clause Patterns XPath fragment XPath filters

(equality join conds) (only non-join-conds) (join conds)

WHERE clause WHERE clause separate conjuncts

(comparisons+joins) (all) (comparisons+joins)

• the underlying Logic Programming fixpoint semantics enables XPathLog to compute the transitive
closure

• ... but it does not allow for syntactically nested statements

295

FURTHER (ACADEMIC) QUERY LANGUAGES

• XML-GL (Comai, Politecnico Milano, 1999): graphical “language”

• Lorel-XML (Stanford Univ., 1999): OQL-style language, migration of Lorel

• YATL-XML (Cluet, INRIA, 2000): term-based language, migration of YATL

• Lixto/Elog (Gottlob, TU Wien, 2001): graphical tool for data extraction from the Web,
Datalog-based internals

• Xcerpt, XChange (Bry et al, LMU München, 2002): term- and unification-based language

... many different approaches to the same goal (mainly in Europe).
Overview in (May, TPLP 2004).

296

Chapter 7
Manipulating XML Data
• XML data in files:

– usually no changes (except manually or by scripts)

– transformations XML→ HTML etc: XSLT

• XML data in application systems

– inside the application programming language; mostly by the DOM-API

– no special data manipulation language necessary (cf. OQL)?

• different proposals

– pre-XQuery commercial area:

* XMLDB: XUpdate (1999)

* eXcelon (2000; XUL as extension of XSLT)

– academic area:

* “Updating XML” (Halevy et al, SIGMOD 2001) as an extension to XQuery

* XPathLog (May, VLDB 2001): Prolog-style query- and manipulation language

297

EXTENDING XQUERY WITH UPDATES – CONCEPTS

In the meantime consensus about which operations is reached. Syntax is still open.

• always wrt. a context node

• base operations:

– delete node

– rename node as name

– insert node/nodes before|after|into node

• combined operations:

– replace node with node

– move node before|after|into node

298

7.1 XML:DB Initiative’s XUpdate

• XML:DB Initiative founded in late 1999
Goal: interface for storing XML in databases

• Low-level API (Java etc., using DOM + XPath ...)

• an update concept: XUpdate

• Implementation:
dbXML Core XML Database released as Open Source software in Sept. 2000
transferred to the Apache Software Foundation (“Xindice”)

• http://xmldb-org.sourceforge.net/

(inactive?)

• The XML:DB database API is implemented in several systems:
eXist, X-Hive, Tamino, XML:DB Lexus, ...

... but here we are mainly interested in XUpdate ...
(note that XUpdate (1999) is not related with XQuery (2001))

299

XML:DB XU PDATE

Situation in 1999: XML, XPath, XSLT [see later], low-level APIs

• Requirement: “The XML Update specification MUST be an XML element”
i.e., the language is itself in XML syntax (like XSLT and XML Schema)

• XUpdate: a very basic description of update operations:

– which node (elements, attributes)

– which operation (delete, update value, append/insert to contents)

– new value (in case of update/append/insert)

Basic structure:

<xu:modifications xmlns:xu= “http://www.xmldb.org/xupdate”>

<xu:operation select= “xpath-expression”>

contents (e.g. new value)
</xu:operation>

</xu:modifications>

... submit such an element as a kind of a “message” to the DB and get the update.

300

XUpdate: Example

<?xml version="1.0"?>

<xu:modifications version="1.0" xmlns:xu="http://www.xmldb.org/xupdate">

<xu:append select="/mondial/country[name='Germany']">

<xu:element name='localname'>Deutschland</xu:element>

</xu:append>

</xu:modifications>

[Filename: XUpdate/append.xu]

Calling eXist with (see client.sh -h)

/bin/gen_client.sh -u user -P password -c /db/may -f mondial.xml -X append.xu

executes the update.

• select= "xpath " is the same as in XSLT (see later), XML Schema etc. – a widely used
concept in the XML world.
(if multiple nodes are addressed, each one is modified)

• <xu:element> constructor is the same as in XSLT (1998) and later in XQuery’s RETURN
clause

• analogously insert-before and insert-after.

301

XUpdate: Examples (Cont’d)

<?xml version="1.0"?>

<xu:modifications version="1.0" xmlns:xu="http://www.xmldb.org/xupdate">

<xu:remove select="/mondial/country[name='Germany']/localname"/>

</xu:modifications>

[Filename: XUpdate/remove.xu]

<?xml version="1.0"?>

<xu:modifications version="1.0" xmlns:xu="http://www.xmldb.org/xupdate">

<xu:update select="/mondial/country[name='Germany']/population">

80000000

</xu:update>

</xu:modifications>

[Filename: XUpdate/update.xu]

302

XUpdate: Examples (Cont’d)

• get the new value from the database:

<?xml version="1.0"?>

<xu:modifications version="1.0" xmlns:xu="http://www.xmldb.org/xupdate">

<xu:update select="/mondial/country[name='Germany']/population/text()">

<xu:value-of select="/mondial/country[name='Germany']/@area"/>

</xu:update>

</xu:modifications>

[Filename: XUpdate/update-select.xu]

note: the inner select cannot depend on the current node.

<?xml version="1.0"?>

<xu:modifications version="1.0" xmlns:xu="http://www.xmldb.org/xupdate">

<xu:variable name="bla"

select="/mondial/country[name='Germany']/gdp_total/text()"/>

<xu:update select="/mondial/country[name='Germany']/population/text()">

<xu:value-of select="$bla"/>

</xu:update>

</xu:modifications>

[Filename: XUpdate/update-variable.xu]

303

XUPDATE : CONCLUSION AND COMMENTS

• XML-syntax of the language strongly influenced by XSLT (1998)

– elements as commands

– select="..." selects nodes to which the command is applied

– use of variables select="$variable " as in XSLT, and later also in XQuery

– element/command contents specifies what is to be done

– element generation by literal XML (also in XSLT and later XQuery)

• only very simple functionality

– no way to compute the inner value,

– no iteration etc.

• same time: combination with XSLT and XUpdate to XUL (XML Update
Language/Updategrams [Excelon]):
XSLT program structures + XUpdate operations, applied to “current node” of XSLT.

304

7.2 XQuery with Updates 2001

• extend a declarative query language with updates

• based on variable bindings

• SQL: FROM-WHERE for selecting nodes ...
... that are then modified.

• XQuery: FOR-LET-WHERE for selecting nodes ...
... that are then modified.

• update instead of the return-clause (cf. SQL: UPDATE vs. SELECT)?

• or what?

305

XQUERY WITH UPDATES – AN EARLY PROPOSAL

• QuiP: the 2001/02 XQuery prototype of Software AG [Diplomarbeit P. Lehti 2001],
later integrated into the Tamino system (before: XQL).

• calling quip filename.xq > bla.xml wrote the modified XML to a file.

update

for $c in document("twocountries.xml")//country

let $area := string($c/@area)

delete $c/@area

insert <area>{$area}</area> after $c/name

rename $c//city[@id=$c/@capital] as capital

replace $c/@car_code with

attribute code {concat($c/name/text(), ":", string($c/@car_code))}

replace $c/population/text() with

$c/population/text() * (1 + $c/population_growth div 100)

insert "biggest city" into

$c//city[population = max(for $citypop in $c//city/population/text()

return int($citypop))]

[Filename: XQuery/update.quip]

306

XQUERY WITH UPDATES – W3C PROPOSAL

• XQuery reached recommendation state in 2007 ... as a query language still without
updates.

• “XQuery Update Facility”, first W3C Working Draft has been published 27 January 2006;
http://www.w3.org/TR/xqupdate

New Expressions

do insert SourceExpr (([as (first | last)] into) | after | before) TargetExpr
do delete TargetExpr
do rename TargetExpr as Expr // Expr must result in a qname
do replace [value of] TargetExpr with Expr

• Syntax still changing,

• not implemented in saxonA 9.1, only in (commercial) saxonB 9.1

307

XQuery with Updates – Transformation Command

• not an update!

1. assign variable(s),

2. update things bound to the variable(s),

3. return something generated from the (updated) variables.

transform copy $VarName := Expr (, $ VarName := ExprSingle)*
modify UpdateExpr return Expr

308

Chapter 8
The Transformation Language XSL

8.1 XSL: Extensible Stylesheet Language

• developed from

– CSS (Cascading Stylesheets) scripting language for transformation of data sources to
HTML or any other optical markup, and

– DSSSL (Document Style Semantics and Specification Language), stylesheet
language for SGML. Functional programming language.

• idea: rule-based specification how elements are transformed and formatted recursively:

– Input: XML

– Output: XML (special case: HTML)

• declarative/functional: XSLT (XSL Transformations)

309

APPLICATIONS

• XML→ XML

– Transformation of an XML instance into a new instance according to another DTD,

– Integration of several XML instances into one,

– Extraction of data from an XML instance,

– Splitting an XML instance into several ones.

• XML→ HTML

– Transformation of an XML instance to HTML for presentation in a browser

• XML→ anything

– since no data structures, but only ASCII is generated, LATEX, postscript, pdf can also be
generated

– ... or transform to XSL-FO (Formatting objects).

310

THE LANGUAGE (S) XSL

Partitioned into two sublanguages:

• functional programming language: XSLT
“understood” by XSLT-Processors (e.g. xt, xalan, saxon, xsltproc ...)

• generic language for document-markup: XSL-FO
“understood” by XSL-FO-enabled browsers that transform the XSL-FO-markup according
to an internal specification into a direct (screen/printable) presentation.
(similar to LaTeX)

• programming paradigm: self-organizing tree-walking

• XSL itself is written in XML-Syntax.
It uses the namespace prefixes “xsl:” and “fo:”,
bound to http://www.w3.org/1999/XSL/Transform and
http://www.w3.org/1999/XSL/Format.

• XSL programs can be seen as XML data.

• it can be combined with other languages that also have an XML-Syntax (and an own
namespace).

311

APPLICATION : XSLT FOR XML → HTML

• the prolog of the XML document contains an instruction that specifies the stylesheet to be
used:

<?xml version=“1.0”?>

<?xml-stylesheet type=“text/xsl” href=“mondial-simple.xsl”?>

<!DOCTYPE mondial SYSTEM “mondial.dtd”>

<mondial> ... </mondial>

• if an (XSL-enabled) browser finds an XML document with a stylesheet instruction, then
the XML document is processed according to the stylesheet (by the browser’s own XSLT
processor), and the result is shown in the browser.
(e.g.,
http://www.informatik.uni-goettingen.de/Teaching/SSD/XSLT/mondial-with-stylesheet.xml)
⇒ click “show source” in the browser

• Remark: not all browsers support the full functionality (id()-function)

• in general, for every main “object type” of the underlying application, there is a suitable
stylesheet how to present such documents.

312

8.2 XSLT: Syntax and Semantics

• Each XSL-stylesheet is itself a valid XML document,

<?xml version=“1.0”>

<xsl:stylesheet version=“2.0”
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>

...
</xsl:stylesheet>

• contains elements of the namespace xsl: that specify the transformation/formatting,

• contains literal XML for generating elements and attributes of the resulting document,

• uses XPath expressions for accessing nodes in an XML document. XPath expressions
(mostly) occur as attribute values of <xsl:...> elements,
(e.g., <xsl:copy-of select=’xpath’>)

• XSL stylesheets/programs recursively generate a result tree from an XML input tree.

313

8.2.1 XSLT: Flow Control by Templates

The stylesheet consists mainly of templates that specify the instructions how elements should
be processed:

• xsl:template:

<xsl:template match=“xsl-pattern”>

content
</xsl:template>

• xsl-pattern is an XPath expression without use of “axis::” (cf. Slide 198). It indicates for
which elements (types) the template is applicable:
a node x satisfies xsl-pattern if there is some ancestor node k of x, such that x is in the
result set of xsl-pattern for k as context node.

(another selection takes place at runtime when the nodes are processed for actually
deciding to apply a template to a node).

• content contains the XSL statements for generation of a fragment of the result tree.

314

TEMPLATES

• <xsl:template match=“city”>

<xsl:copy-of select=“current()”/>

</xsl:template>

is a template that can be applied to cities and copies them unchanged into the result tree.

• <xsl:template match=“lake|river|sea”> ... </xsl:template>

can be applied to waters.

• <xsl:template match=“country/province/city”> ... </xsl:template>

can be applied to city elements that are subelements of province elements that in course
are subelements of country elements.

• <xsl:template match=“id(’D’)”> ... </xsl:template>

can be applied to the element whose ID is “D”.

• <xsl:template match=“city[population > 1000000]”> ... </xsl:template>

can be applied to city elements that have more than 1000000 inhabitants.

315

EXECUTION OF TEMPLATES : “T REE WALKING ”

• xsl:apply-templates:

<xsl:apply-templates select=“xpath-expr ”/>

• xpath-expr is an XPath expression that indicates for which elements (starting from the
node where the current template is applied as context node) “their” template should be
applied.
Note that elements are processed in order of the final axis of the select expression.

• By <xsl:apply-templates> elements inside the content of <xsl:template> elements, the
hierarchical structure of XML documents is processed

– simplest case (often in XML→ HTML): depth-first-search

– can also be influenced by the “select” attribute: “tree jumping”

• if all subelements should be processed, the “select” attribute can be omitted.

<xsl:apply-templates/>

316

TEMPLATES

• <xsl:apply-templates select=“country”/>

processes all country subelements of the current context element.

• <xsl:apply-templates select=“country/city”/>

processes all city subelements of country subelements of the current context element,

• <xsl:apply-templates select=“/mondial//city[population > 1000000]”/>

processes all city elements that are contained in Mondial and whose population is more
than 1000000,

• <xsl:apply-templates select=“id(@capital)”/>

processes the element whose ID equals the value of the capital-(reference) attribute of
the current context element.

317

TEMPLATES

• One template must be applicable to the root element for initiating the processing:

– <xsl:template match=“name_of_the_root_element”>

– <xsl:template match=“/”>

– <xsl:template match=“*”>

RULE-BASED “P ROGRAMMING”

• local semantics: templates as “rules”

• global semantics: built-in implicit tree-walking combines rules

318

TEMPLATES : EXAMPLE

Presentation of the country information as a table (→ HTML)

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">

<xsl:template match="mondial">

<html> <body> <table>

<xsl:apply-templates select="country"/>

</table> </body> </html>

</xsl:template>

<xsl:template match="country">

<tr><td> <xsl:value-of select="name"/> </td>

<td> <xsl:value-of select="@car_code"/> </td>

<td align="right"> <xsl:value-of select="population"/> </td>

<td align="right"> <xsl:value-of select="@area"/> </td>

</tr>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/mondial-simple.xsl]

319

TEMPLATES : EXAMPLE

Presentation of the country and city information as a table:

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="mondial">

<html><body><table>

<xsl:apply-templates select="country"/>

</table></body></html>

</xsl:template>

<xsl:template match="country">

<tr valign="top">

<td><xsl:value-of select="name"/></td>

<td><xsl:value-of select="@car_code"/></td>

<td align="right"><xsl:value-of select="population"/></td>

<td align="right"><xsl:value-of select="@area"/></td>

<td valign="top">

<table><xsl:apply-templates select=".//city"/></table>

</td>

</tr>

</xsl:template>

<xsl:template match="city">

<tr> <td width="100"><xsl:value-of select="name"/></td>

<td align="right" width="100">

<xsl:value-of select="population[1]"/>

</td>

</tr>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/mondial-nested.xsl]

320

TEMPLATES : EXAMPLE

The following (transformation: XML→ XML) stylesheet copies all country and city elements
from Mondial and outputs first all country elements, and then all city elements as top-level
elements:

<xsl:stylesheet version=“2.0” xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>

<!-- Template that copies elements -->

<xsl:template match=“city|country”>

<xsl:copy-of select=“current()”/>

</xsl:template>

<xsl:template match=“mondial”>

<!-- apply templates: first countries -->

<xsl:apply-templates select=“/mondial/country”>

<!-- apply templates: then cities -->

<xsl:apply-templates select=“//country/city | //country/province/city”/>

</xsl:template>

</xsl:stylesheet>

321

TEMPLATES

Difference between:

1. <xsl:template match=“xsl-pattern”>

content
</xsl:template>

2. <xsl:apply-templates select=“xpath-expr ”/>

• select=“...” is evaluated wrt. the current context node (selects which elements are
addressed by the given XPath expression),

• match=“...” is evaluated wrt. the document structure starting from “below” (checks if the
document structure matches with the pattern),

• xsl:apply-templates selects nodes for application by its xpath-expr, and then the suitable
templates are applied,

• the order of templates has no effect on the order of application (document order of the
selected nodes).

322

TEMPLATES

Exercise 8.1
Describe the difference between the following stylesheet fragments:

1. <xsl:template match=“city”>

<xsl:copy-of select=“current()”
</xsl:template>

<xsl:apply-templates select=“//country/city”/>

<xsl:apply-templates select=“//country/province/city”/>

2. <xsl:template match=“country/city”>

<xsl:copy-of select=“current()”
</xsl:template>

<xsl:template match=“country/province/city”>

<xsl:copy-of select=“current()”
</xsl:template>

<xsl:apply-templates select=“//country/city|//country/province/city”>
2

323

CONFLICTS BETWEEN TEMPLATES

When using non-disjoint match-specifications of templates (e.g. *, city, country/city,
city[population>1000000]) (including possibly templates from imported stylesheets), several
templates are probably applicable.

• in case that during processing of an <xsl:apply-templates>-command several templates
are applicable, the one with the most specific match-specification is chosen.

• defined by priority rules in the XSLT spec (that also define priorities between
incomparable patterns)

OVERRIDING (SINCE XSLT 2.0)

The above effect is similar to overriding of methods in object-oriented concepts: always take
the most specific implementation

• <xsl:next-match>: apply the next-lower-specific rule (among those defined in the same
stylesheet)

• <xsl:apply-imports>: apply the next-lower-specific rule (among those defined in imported
stylesheets (see later))

324

RESOLVING TEMPLATE CONFLICTS MANUALLY

Process a node with different templates depending on situation:

• associating “modes” with templates and using them in apply-templates

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="2.0">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="mondial">

<xsl:apply-templates select="country[@area>1000000]"/>

... and now the second part ...

<xsl:apply-templates select="country[@area>1000000]" mode="bla"/>

</xsl:template>

<xsl:template match="country">

<firsttime> <xsl:value-of select="name"/> </firsttime>

</xsl:template>

<xsl:template match="country" mode="bla">

<secondtime> <xsl:value-of select="name"/> </secondtime>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/mondial-modes.xsl]

325

NAMED TEMPLATES

Named templates serve as macros and can be called by their name.

• xsl:template with “name” attribute:

<xsl:template name=“name”>

content
</xsl:template>

– name is an arbitrary name

– content contains xsl-statements, e.g. xsl:value-of, which are evaluated against the
current context node.

• xsl:call-template

<xsl:call-template name=“name”/>

• Example: Web pages – templates for upper and left menus etc.

326

8.2.2 XQuery and XSLT

• both are declarative, functional languages ...

• ... with completely different strategies:

– XQuery: nesting of the return-statement directly corresponds to the structure of the
result

– XSLT: the nested processing of templates yields the structure of the result.

XSLT

• modular structure of the stylesheets

• extensibility and reuse of templates

• flexible, data-driven evaluation

XQuery

• better functionality for joins (for $a in ..., $b in ...)

• XSLT: joins must be programmed explicitly as nested loops (xsl:for-each)

327

TRANSLATION XSLT → XQUERY

• each template is transformed into an FLWR statement,

• inner template-calls result in nested FLWR statements inside the return-clause

• genericity of e.g. <apply-templates/> cannot be expressed in XQuery since it is not known
which template is activated

⇒ the more flexible the schema (documents), the more advantages show up for XSLT.

Exercise 8.2
• Give XQuery queries that do the same as mondial-simple.xsl and mondial-nested.xsl.

• Give an XQuery query that does the same as the stylesheet on Slide 321. 2

328

8.2.3 XSLT: Generation of the Result Tree

Nodes can be inserted into the result tree by different ways:

• literal XML values and attributes,

• copying of nodes and values from the input tree,

• generation of elements and attributes by constructors.

Configuring Output Mode

• recommended, top level element (see xsl doc. for details):
<xsl:output method=“xml|html|xhtml|text” indent=“yes|no”/>

(not yet supported by all XSLT tools; saxon has it)

Generation of Structure and Contents by Literal XML

• All tags, elements and attributes in the content of a template that do not belong to the
xsl-namespace (or to the local namespace of an xsl-tool), are literally inserted into the
result tree.

• with <xsl:text> some_text</xsl:text>, text can be inserted explicitly (whitespace, e.g.
when generating IDREFS attributes).

329

GENERATION OF THE RESULT TREE

Copying from the Input Tree

• <xsl:copy>contents</xsl:copy>

copies the current context node (i.e., its “hull”): all its namespace nodes, but not its
attributes and subelements (note that contents can then be generated separately).

• <xsl:copy-of select=“xpath-expr ”/>

copies the result of xpath-expr (applied to the current context) unchanged into the result
tree.

• <xsl:value-of select=“xpath-expr ” [separator=“char ”]/>

generates a text node with the value of xpath-expr.
Applied to multiple nodes, the partial results are separated by char (default: space).
[note: the latter changed from XSLT 1.0 (apply only to 1st node) to 2.0]

Exercise 8.3
Consider the differences between <xsl:copy/>, <xsl:copy-of select=“current()”/> and
<xsl:value-of select=“current()”/>.
In which cases do two commands have the same result? 2

330

GENERATION OF THE RESULT TREE

Example:

<xsl:template match=“city”>

<mycity>

<xsl:value-of select=“name”/>

<xsl:copy-of select=“longitude|latitude”/>

</mycity>

</xsl:template>

• generates a mycity element for each city element,

• the name is inserted as #PCDATA content,

• the subelements longitude and latitude are copied:

<mycity>Berlin

<longitude>13.3</longitude>

<latitude>52.45</latitude>

</mycity>

331

GENERATION OF THE RESULT TREE

For inserting attribute values,

<xsl:value-of select=“xpath-expr ”/>

cannot be used directly. Instead, XPath expressions have to be enclosed in {...}:

<xsl:template match=“city”>

<mycity key=“{@id}”>

<xsl:value-of select=“name”/>

<xsl:copy-of select=“longitude|latitude”/>

</mycity>

</xsl:template>

332

GENERATION OF THE RESULT TREE

Example:

<xsl:template match=“city”>

<mycity source=“mondial”
country=“{ancestor::country/name}”>

<xsl:apply-templates/>

</mycity>

</xsl:template>

• generates a “mycity” element for each “city” element,

• constant attribute “source”,

• attribute “country”, that indicates the country where the city is located,

• all other attributes are omitted,

• for all subelements, suitable templates are applied.

333

XSLT: G ENERATION OF THE RESULT TREE

Generation of Elements and Attributes

• <xsl:element name=“xpath-expr ”>

content
</xsl:element>

generates an element of element type xpath-expr in the result tree, the content of the new
element is content. This allows for computing element names.

• <xsl:attribute name=“xpath-expr ”>

content
</xsl:attribute>

generates an attribute with name xpath-expr and value content which is added to the
surrounding element under construction.

• With <xsl:attribute-set name=“name”> xsl:attribute* </xsl:attribute-set>

attribute sets can be predefined. They are used in xsl:element by
use-attribute-sets=“attr-set1 ... attr-setn”

334

GENERATION OF IDREFS ATTRIBUTES

• XML source: “border” subelements of “country” with an IDREF attribute “country”:
<border country=“car_code” length=“...”>

• result tree: IDREFS attribute country/@neighbors that contains all neighboring countries

• two ways how to do this (both require XSLT 2.0)

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">

<xsl:template match="*"><xsl:apply-templates select="country"/></xsl:template>

<xsl:template match="country">

<country neighbors1="{border/@country}"> <!-- note: adds whitespace as separator -->

<xsl:attribute name="neighbors2">

<xsl:value-of select="border/@country"/> <!-- default separator: whitespace -->

</xsl:attribute>

</country>

</xsl:template></xsl:stylesheet>

[Filename: XSLT/mondial-neighbors.xsl]

335

8.2.4 XSLT: Control Structures

... so far the “rule-based”, clean XSLT paradigm with implicit recursive semantics:

• templates: recursive control of the processing

... further control structures inside the content of templates:

• iterations/loops

• branching

DESIGN OF XSLT COMMAND ELEMENTS

• semantics of these commands as in classical programming languages (Java, C, Pascal,
Basic, Cobol, Algol)

• Typical XML/XSLT design: element as a command, further information as attributes or in
the content (i.e., iteration specification, test condition, iteration/conditional body).

336

ITERATIONS

For processing a list of subelements or a multi-valued attribute, local iterations can be used:

<xsl:for-each select=“xpath-expr ”>

content
</xsl:for-each>

• inside an iteration the “iteration subject” is not bound to a variable (like in XQuery as for

$x in xpath-expression), but

• the current node is that from the xsl:for-each, not the one from the surrounding
xsl:template

• an xsl:for-each iteration can also be used for implementing behavior that is different from
the templates “matching” the elements (instead of using modes).

337

FOR-EACH : EXAMPLE

Presentation of the country and city information as a table:

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="mondial">

<html><body><table>

<xsl:apply-templates select="country"/>

</table></body></html>

</xsl:template>

<xsl:template match="country">

<tr valign="top">

<td><xsl:value-of select="name"/></td>

<td><xsl:value-of select="@car_code"/></td>

<td align="right"><xsl:value-of select="population"/></td>

<td align="right"><xsl:value-of select="@area"/></td>

<td valign="top">

<table>

<xsl:for-each select=".//city">

<tr> <td width="100"><xsl:value-of select="name"/></td>

<td align="right" width="100">

<xsl:value-of select="population[1]"/>

</td>

</tr>

</xsl:for-each>

</table>

</td>

</tr>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/mondial-nested-for-each.xsl]

338

XSLT: C ONDITIONAL PROCESSING

• Simple Test:
<xsl:if test=“predicate”> content </xsl:if>

Example:

<xsl:template match=“country”>

<table>

<tr> <th colspan=”2”> <xsl:value-of select=“name”> </th>

</tr>

<xsl:if test=“@area”>

<tr>

<td> Area: </td>

<td> <xsl:value-of select=“@area”> </td>

</tr>

</xsl:if>

...
</table>

</xsl:template>

339

XSLT: C ONDITIONAL PROCESSING

• Multiple alternatives:

<xsl:choose>

<xsl:when test=“predicate1”>

content1

</xsl:when>

<xsl:when test=“predicate2”>

content2

</xsl:when>

...
<xsl:otherwise>

contentn+1

</xsl:otherwise>

</xsl:choose>

340

8.2.5 XSLT: Variables and Parameters

Variables and parameters serve for binding values to names.

VARIABLES

• variables can be assigned only once (in their definition). A later re-assignment (like in C
or Java) is not possible.

• variables can be defined as top-level elements which makes them visible in the whole
document (as a constant).

• a variable definition can take place at an arbitrary position inside a template - such a
variable is visible in all its following siblings, e.g.,

– a variable before a <xsl:for-each> is visible inside the <xsl:for-each>;

– a variable inside a <xsl:for-each> gets a new value for each iteration to store an
intermediate value.

341

B INDING AND USING VARIABLES

• value assignment either by a “select” attribute (value is a string, a node, or a set of nodes)

<xsl:variable name=“var-name” select=“xpath-expr ”/>

• or as element content (then, the value can be a tree which is generated dynamically by
XSLT)

<xsl:variable name=“var-name”>

content
</xsl:variable>

• Usage: by select=“$var-name”

342

Example: Variables

A simple, frequent use is to “keep” the outer current element when iterating by an xsl:for-each:

• Consider the previous “border”-example

• now: generate a table of neighbors

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="*">

<table><xsl:apply-templates select="country"/></table>

</xsl:template>

<xsl:template match="country">

<xsl:variable name="country" select="."/>

<xsl:for-each select="border">

<tr>

<td><xsl:value-of select="$country/@car_code"/></td>

<td><xsl:value-of select="@country"/></td>

</tr>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/mondial-neighbors-table.xsl]

343

PARAMETERS

• ... similar to variables

• values are communicated to called templates by parameters,

• the definition of parameters is allowed only at the beginning of xsl:template elements.
The defined parameter is then visible everywhere in the template body.

• the assignment of a value takes place in the calling <xsl:apply-templates> or
<xsl:call-template> element.

• pure call-by-value, no call-by-reference possible.

Remark: since a parameter can be an element with substructures, theoretically, a single
parameter is always sufficient.

344

COMMUNICATION OF PARAMETERS TO TEMPLATES

• Parameters are declared at the beginning of a template:

<xsl:template match=“...”>

<xsl:param name=“param-name”
select=“xpath-expr /”> <!-- with a default value -->

...
</xsl:template>

• the parameter values are then given with the template call:

<xsl:apply-templates select=“xpath-expr1”>

<xsl:with-param name=“param-name”
select=“xpath-expr2”/>

</xsl:apply-templates>

• Often, parameters are propagated downwards through several template
applications/calls.
This can be automatized (since XSLT 2.0) by

<xsl:param name=“param-name” select=“xpath-expr ” tunnel=“yes”>

345

Example: Parameters

Generate a table that lists all organizations with all their members. The abbreviation of the
organisation is communicated by a parameter to the country template which then generates
an entry:

→ next slide
[Filename: orgs-and-members.xsl]

Exercise 8.4
• Extend the template such that it also outputs the type of the membership.

• Write an equivalent stylesheet that does not call a template but works explicitly with
<xsl:for-each>.

• Give an equivalent XQuery query (same for the following examples). 2

346

EXAMPLE (CONT’D)

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="mondial">

<html><body> <h2>Membership Table</h2>

<table> <xsl:apply-templates select="organization"/>

</table></body></html>

</xsl:template>

<xsl:template match="organization">

<tr><td colspan="2"><xsl:value-of select="name"/></td></tr>

<xsl:apply-templates select="id(members/@country)">

<xsl:with-param name="the_org" select="name/text()"/>

</xsl:apply-templates>

</xsl:template>

<xsl:template match="country">

<xsl:param name="the_org"/>

<tr><td><xsl:value-of select="$the_org"/></td>

<td><xsl:value-of select="name/text()"/></td></tr>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/orgs-and-members.xsl]

347

EXAMPLE /COMPARISON OF MECHANISMS

Example: This example illustrates the implicit and explicit iterations, and the use of
variables/parameters
[use file:XSLT/members1.xsl and develop the other variants]

• Generate a list of the form

<organization> EU <member>Germany</member>

<member>France</member> ... </organization>

– using template-hopping [Filename: XSLT/members1.xsl]

– using xsl:for-each [Filename: XSLT/members2.xsl]

• Generate a list of the form

<membership organization="EU" country="Germany"/>

based on each of the above stylesheets.

– template hopping: requires a parameter [Filename: XSLT/members3.xsl]

– iteration: requires a variable [Filename: XSLT/members4.xsl]

348

A POWERFUL COMBINATION : VARIABLES AND CONTROL

<xsl:variable name=“var-name”>

content
</xsl:variable>

Any structure that is generated in content is then bound to the variable.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="mondial">

<xsl:variable name="berlin">

<bla>

<xsl:copy-of select="//city[name='Berlin']"/>

</bla>

</xsl:variable>

<xsl:copy-of select="$berlin"/>

<xsl:copy-of select="$berlin/bla/city/name"/>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/var-1.xsl]

349

Even more powerful

Anything inside the contents is bound to the variable – this allows even to generate complex
structures by template applications:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="mondial">

<xsl:variable name="bigcities">

<xsl:apply-templates select="//city"/>

</xsl:variable>

<xsl:copy-of select="$bigcities"/>

<xsl:copy-of select="$bigcities//name"/>

</xsl:template>

<xsl:template match="city">

<xsl:if test='number(population)>1000000'>

<xsl:copy-of select="current()"/>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/var-2.xsl]

350

EXTERNAL PARAMETERS

Stylesheets can be called with external parameters (e.g., from the shell, or from a Java
environment):

• define formal parameters for the stylesheet:

<xsl:stylesheet ...>

<xsl:parameter name=“name1”/>

<xsl:parameter name=“name2”/>

stylesheet contents
(parameters used as $namei)

</xsl:stylesheet ...>

• call e.g. (with saxon)
saxonXSL -s bla.xml bla.xsl name1=value1 name2=value2

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:param name="country"/>

<xsl:template match="mondial">

<xsl:copy-of select="//country[name=$country]"/>

</xsl:template>

</xsl:stylesheet> [Filename: XSLT/external-param.xsl]

351

8.2.6 XSLT: Miscellaneous

SORTING

For the set-based XSLT elements

• xsl:apply-templates and

• xsl:for-each

it can be specified whether the elements should be processed in the order of some key:

<xsl:sort select=“xpath-expr ”
data-type = {“text”|“number”}
order = {“descending”|“ascending”}/>

• “select” specifies the values according to which the nodes should be ordered (evaluated
wrt. the node as context node)

• “data type” specifies whether the ordering should be alphanumeric or numeric,

• “order” specifies whether the ordering should be ascending or descending,

• if an “xsl:apply-templates”- or “xsl:for-each” element has multiple “xsl:sort” subelements,
these are applied in a nested way (as in SQL).

352

GROUPING (SINCE XSLT 2.0)

Extends the <xsl:for-each> concept to groups:

<xsl:for-each-group select=“xpath-expr ” group-by=“local-key”>

content
</xsl:for-each-group>

Inside the content part:

• current element is the first element of the current group
⇒ for accessing/returning the whole group, something else must be used:

• current-group() returns the sequence of all elements of the current group (e.g.,
current-group()/name for all their names); can e.g. be used for aggregation

• current-grouping-key() returns the current value of the grouping key

• position() returns the number of the current group

353

Grouping (Example)

Example

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="mondial">

<xsl:for-each-group select="country" group-by="encompassed/@continent">

<continent nr="{position()}">

<xsl:copy-of select="id(current-grouping-key())/name"/>

<xsl:copy-of select="current-group()/name"/>

</continent>

</xsl:for-each-group>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/for-each-group.xsl]

Exercise 8.5
Do the same in XQuery (note: use “let” for the group). 2

354

HANDLING NON -XSLT NAMESPACES IN XSLT

• namespaces used in the queried document (e.g., xhtml)

• namespaces to be used in the generated document

• namespaces used in the XSLT stylesheet (xsd, fn, ...)

Declare the namespaces in the surrounding <xsl:stylesheet> element:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:ht="http://www.w3.org/1999/xhtml"

version="2.0">

tells the XSL processor that the namespace bound to ’http://www.w3.org/1999/xhtml’ is
denoted by “ht:” in this document.
(and <ht:body> is different from <body>)

355

Querying XHTML documents with namespace

<!--

call: saxonXSL -s http://www.dbis.informatik.uni-goettingen.de/index.html

-xsl xsl-html.xsl

note: takes some time ...

-->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:ht="http://www.w3.org/1999/xhtml"

version="2.0">

<xsl:template match="/">

<result>

<xsl:copy-of select="//ht:li"/>

</result>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/xsl-html.xsl]

356

USING FUNCTIONS FROM XQUERY FUNCTIONS AND OPERATORS

• the functions and operators from “XQuery Functions and Operators” (e.g., aggregations)
are also available in XSLT.

• Namespace: http://www.w3.org/2005/xpath-functions

Example

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

version="1.0">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="mondial">

<xsl:for-each select="country">

<country name="{name/text()}">

<xsl:copy-of select="fn:sum(.//city/population[1])"/>

</country>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/fn-sum.xsl]

357

USER-DEFINED FUNCTIONS (SINCE XSLT 2.0)

<xsl:function name=“local-ns:fname”>

<xsl:param name=“param1”/>

:
<xsl:param name=“paramn”/>

contents
</xsl:function>

• the local-ns must be declared by xmlns:local-ns=’uri ’ in the xsl:stylesheet element;

• function can then be used with n parameters in xsl:value-of, or in any XPath expression.
e.g.,
<xsl:value-of select=“local-ns:fname(value1,. . . ,valuen)”/>

358

ACCESS TO DATA FROM MULTIPLE DOCUMENTS

• using the document()-function from XPath:

• note the use of " and ’

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:ht="http://www.w3.org/1999/xhtml"

version="2.0">

<xsl:template match="/"> <!-- call it for any xml document -->

<result>

<xsl:copy-of

select="document('http://www.dbis.informatik.uni-goettingen.de/index.html')//ht:li"/>

</result>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/web-queries.xsl]

359

GENERATION OF MULTIPLE INSTANCES

• controlling output to different files (since XSLT 2.0):
<xsl:result-document href=“output-file-uri”>

• note: generates directories if required.

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="*">

<xsl:result-document href="tmp/countries.xml">

<countries><xsl:apply-templates select="country"/></countries>

</xsl:result-document>

<xsl:result-document href="tmp/organizations.xml">

<organizations><xsl:apply-templates select="organization"/></organizations>

</xsl:result-document>

</xsl:template>

<xsl:template match="country"><xsl:copy-of select="name"/></xsl:template>

<xsl:template match="organization"><xsl:copy-of select="name"/></xsl:template>

</xsl:stylesheet>

[Filename: XSLT/redirected-output.xsl]

360

GENERATION OF MULTIPLE INSTANCES

• also possible with dynamically computed filenames:
generates a file for each country:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="*">

<xsl:result-document href="tmp/countries.xml">

<countries><xsl:apply-templates select="country"/></countries>

</xsl:result-document>

<xsl:result-document href="tmp/organizations.xml">

<organizations><xsl:apply-templates select="organization"/></organizations>

</xsl:result-document>

</xsl:template>

<xsl:template match="country"><xsl:copy-of select="name"/></xsl:template>

<xsl:template match="organization"><xsl:copy-of select="name"/></xsl:template>

</xsl:stylesheet> [Filename:
XSLT/redirected-output-countries.xsl]

361

IMPORT MECHANISMS

XSL-stylesheets can import other stylesheets (i.e., they import their rules):

• <xsl:include href=“url”/>

for conflict-free stylesheets,

• <xsl:import href=“url”/>

definitions of the importing document have higher priority than definitions from the
imported documents,
the xsl:import subelements must precede all other subelements.

Example: DBIS Web pages

• general macros, frames etc. as templates in separate files

• individual page content in XML

• stylesheets generate Web pages from XML content file

362

8.3 XSL-FO

XSL-FO specifies formatting objects, that are added to a result tree and describe the later
formatting

• page layout, areas, frames, indentation,

• colors, fonts, sizes,

• structuring, e.g. lists, tables ...

XSL-FO provides similar concepts as known from LATEX.

FO-objects are e.g. (Namespace fo:) fo:block, fo:character, display-graphic, float, footnote,
inline-graphic, list-block, list-item, list-item-body, list-item-label, multi-case, page-number,
page-number-citation, region-before/after, region-body, simple-link, table, table-and-caption,
table-body, table-caption, table-cell, table-column, table-footer, table-header, table-row.

• Each of these objects has appropriate attributes.

363

XSL-FO

• result tree contains formatting objects elements

• the result tree is then input to a formatter that generates HTML/LATEX/RTF/PDF etc.

• currently only understood by

– FOP (originally by James Tauber, now by Apache), a Java program that translates
XML documents that include XSL-FO-markup to PDF:

http://xml.apache.org/fop/

– Adobe Document Server (XML→ PDF)

364

8.4 XSLT: Language Design in the XML-World

• XSLT is itself in XML-Syntax

• there is a DTD for XSLT: http://www.w3.org/TR/xslt#dtd

⇒ Analogously, there is an XML syntax for XQuery: XQueryX,
http://www.w3.org/TR/xqueryx, W3C Recommendation since 23 January 2007.

• XSLT uses an own namespace, xsl:....

• there are several further languages of this kind (programming languages, markup
languages, representation languages ...):
XLink, XML Schema,
SOAP (Simple Object Access Protocol)
WSDL (Web Services Description Language)
OWL (Web Ontology Language)
DocBook
... lots of application-specific languages.

365

8.5 Concepts

(cf. Slide 10)

• XML as an abstract data model (Infoset) with an abstract datatype (DOM) and several
implementations (physical level),

• High-level declarative, set-oriented query language logical level: XPath/XQuery

• new: XSLT: transformational language

• two possibilities to define views:

– XQuery: views as queries,

– XSLT: views by transformations, especially XHTML views to the user.

366

Chapter 9
XPointer and XLink
• Considered up to now: XML as a data model, data representation, queries

• only single, isolated documents

World Wide Web

• references between documents,

• links in HTML: point to a document, sometimes to an anchor in a document:
http://user.informatik.uni-goettingen.de/~may/Mondial/mondial.html#XML

(the target must be prepared in the remote document with),

• browser: when clicking on a link, something happens.

What does that mean for XML? – concepts?

• a language for expressing references: XPointer

• a language for specifying the semantics of references: XLink

367

9.1 XPointer

• links in HTML: point to a document, sometimes to an anchor in a document:
http://user.informatik.uni-goettingen.de/~may/Mondial/mondial.html#XML

(the target must be prepared in the remote document with),

• Goal in XML: express a pointer to something in another XML document.

• possibilities to address individual elements, attributes, or also characters in an XML
document:

– element-, attribute-, comment-, processing instruction nodes,

– all “information” that can be selected on the monitor by “mousing” can also be
addressed by an XPointer.
(independent from borders of elements – can start in the middle of an element and
end in the middle of another element).

– each point directly before or after an element can be addressed.

368

XPOINTER

• XPointer is a semantical, not a syntactical (wrt. the target document) concept. XPointers
must be transparent against mechanical changes in the target document (i.e., not “point
to the 3rd character in the 6th line in the browser”).

• extends the URL concept with the use of XPath:

XPointer = url#xpointer-expr

http://.../Mondial/mondial.xml#xpointer(descendant::country[@car_code=“D”])

• “shorthand pointer”: url#id
– as in HTML: and

addresses the element that has id as its ID-value
(DTD: value of an attribute declared as ID)

• full form – “xpointer scheme” (there are also other schemes):

url#xpointer(xpointer-expr)

• For this, XPath is extended with some constructs.

• alternative: element() scheme, e.g. element(D), element(/1/4/3), element(D/8/3)
(last: third child of the eight child of the element identified by “D”)

369

XPOINTER

• every XPath epression is also an XPointer expression

• xpath-expr1/range-to(xpath-expr2) is a pointer, that selects an area in an XML document:

mondial.xml#xpointer(//country[name=“Germany”]/city[1]/range-to(../city[6]))

selects the area from the 1st to the 6th city of Germany in mondial.xml.
(not as set of nodes, but as an area. This can e.g. include changing from one province
element to another).

• string-range(xpath-expr, string, m, n) selects sequences of characters in documents: for
each result of xpath-expr, the first occurrence of string is searched, and the characters
from positions m-n are “referenced”.
Markup is ignored in this sequence (including attribute values!)

Remark: since we speak about pointers, the result is not a fragment of an XML document,
but simply two positions in a document!

370

XPOINTER: EXAMPLES

• Addressing via the id-function:

mondial.xml#xpointer(id(“D”))
shorthand: mondial.xml#D

– robust against changes in the XML document structure,

– requires knowledge about the schema definition (ID-declaration)

• “object-oriented” addressing via semantic “keys”:

mondial.xml#xpointer(//country[name=“Germany”])
mondial.xml#xpointer(//country[name=“Germany”]//city[name=”Berlin”])

371

9.2 XLink: World Wide Linking

• extended possibility for specifying hyperlinks.

• relationships between resources (documents, elements, ...)
resources can also be programs, images, films, etc.

• – Language: “XLink”

– Namespace xlink:

• uses (naturally) XPointer

Requirement Analysis

• What “kinds” of references are needed?
Is the functionality of HTML’s <a>-tag sufficient?

• semantics of references?
click? and then?

• ... up to now, XLink is officially only investigated for browsing applications.

372

SEMANTICS OF EXISTING REFERENCE TYPES: HTML

HTML:

• specified in the source document, unidirectional, only one target,

• either the whole page, or to a predefined anchor.

• behavior?

– standard: when clicked, the target page is shown in the current window.
user-activated, “replace”

– alternative: when clicked, the target page is shown in a new window.
user-activated, “new”

– alternative: instead of building up a page, another page is shown in the current
window (forwarding)
automatically activated, “replace”

– alternative: when building up a page in the browser, other pages are shown in small,
separate windows
automatically activated, “new”

... sufficient for clicking/browsing, but not for a data model.

373

HTML:

... is also a “link”!

• specified in the source document, unidirectional, only one non-HTML/XML target,

• behavior?

– standard: when the page is loaded, the image is embedded at the given position.
automatically activated, “embed”

– alternative: when building up a page in the browser, show pictures in small, separate
windows
automatically activated, “new”

374

SEMANTICS OF EXISTING REFERENCE TYPES: ID/IDREF

ID/IDREF/IDREFS is already a reference mechanism in XML: Simplest kind of references
inside an XML document :

• unidirectional, internal to the document, one or more targets

• “Activation”?
... when a query is executed (dereferencing; “user-activated”)

... insufficient for a data model, useless for clicking ...

375

EXAMPLE -SCENARIOS

World-Wide-Web

• Web pages

• Hyperlinks

• other kinds of relationships between Web pages

Storage of XML Data in XML (Mondial)

• Distribution over multiple documents

– countries.xml

– cities-car-code.xml
(cities and provinces of each
country)

– organizations.xml

– memberships.xml

members

orgs countries

cty-B cty-D

member-of is-member

headq

capital
has-city

neighbor

376

XL INK : B ASIC NOTIONS

Resources: XML documents, parts of XML documents, HTML pages, images, films, Web
services ...

• local resource: a resource that belongs as a structure to the content of the XLink element
itself (or that is the link itself)

• remote resource: a resource that is given by a URI

Examples

• Göttingen is a simple link:
connects the (local) resource “Göttingen” (string to be clicked) with a (remote) resource
located at the URL www.goettingen.de (Web page).

• is an even simpler link:
has no local resource, but points only to a remote one

377

XL INK : B ASIC NOTIONS (CONT’D)

Arcs: directed connections between resources (starting point→ endpoint)

• outbound: the starting point is a local resource, the end is a remote resource.

– ...,

– country-capital-relationship: a country element is the local resource, and city element
is the other, remote, resource.

• inbound: the starting point is a remote resource, the endpoint is a local one.
Inbound-arcs cannot be represented in the same document as their starting point.

• third-party: starting point and endpoint are remote resources.

– e.g. own linkbase over the Web: each link connects two remote resources (an area of
an HTML document with another URL).

– e.g. memberships of countries in organizations:

* each link connects two remote resources, a country and an organisation

* n:m-relationship ... see later

378

XL INK : K INDS OF L INKS AND THEIR SEMANTICS

XLink offers a meta-semantics for describing references that is then used by applications.

• different kinds of references

– simple: like ... or

– links to multiple targets/resources/documents
activate several resources at the same time
DB: a country has several cities

– the links described above are inline-links, i.e., contained in the document itself
(outbound arcs).

– out-of-line-links: a user can define connections between (sets of) documents that are
owned by somebody else (third-party arcs).
“overlay” own hyperlinks for clicking over the Web
DB: connections between countries and organizations

• timepoint of activation (onLoad, onRequest)

• action (new, replace, embed)

379

XL INK ELEMENTS

• Element- and attribute names from the xlink: namespace

• Each element can become a link ...

• ... by adding an xlink:type attribute having one of the values defined by XLink, the
element is assigned XLink functionality.

• Properties and substructures (chosen from a predefined set of XLink behavior) can then
be specified.

<!ELEMENT linkelement (contentmodel)>

<!ATTLIST linkelement
xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type (simple|extended|locator|resource|arc) #FIXED “...”
... >

• different possibilities for the content model (depending on xlink:type, some things are
required).

• additional attributes (depending on xlink:type)

380

XL INK ELEMENT TYPES

• Definition of arbitrary link element types,

• XLink defines 5 basic types of element types:

– simple: similar to what is known from HTML’s ,

– extended: multiple targets,

– locator: is used in extended links for specifying individual remote resources,

– resource: is used in extended links for specifying individual local resources,

– arc: is used in extended links for specifying connections between locator- and
resource elements.

381

XL INK -ELEMENTS AND THEIR ATTRIBUTES

Structure

• xlink:type: chooses a link type,

• xlink:href: specification of target(s) (for simple or locator elements)
(note that an XPointer can specify multiple targets)

• xlink:label: give names for locators and resources.

• xlink:from, xlink:to: for arcs – references to an xlink:label.

Behavior

• xlink:actuate: specifies, when the link is “activated”:

– onLoad: when loading/parsing the XML document,

– onRequest: only when the user does something (e.g. clicking).

• xlink:show: specifies what happens when the link is activated:

– new: target appears in a new window,

– replace: the current document is replaced by the target,

– embed: the target is embedded into the current document.

382

XL INK ELEMENTS AND THEIR ATTRIBUTES (CONT’D)

Further Attributes (application-specific)

• xlink:title: the user can give a comment about the target.

• xlink:role and xlink:arcrole: allows to group links to roles, e.g., xlink:role=“Annotation” for
giving additional information to the application.

• xlink:arcrole is mainly used for annotations for mappings to RDF (Resource Description
Framework):

object has property rolename value

(RDF is e.g. used in the Semantic Web)

383

SIMPLE L INKS

• By setting xlink:type to “simple”, a simple link analogous to the <A>-tag in HTML is
defined.

• the xlink:href attribute specifies the target

• xlink:actuate and xlink:show specify the behavior.

Example: <A>-Element in HTML (known behavior)

<!ELEMENT A ANY>

<!ATTLIST A xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink"

xlink:type (simple|extended|locator|resource|arc) #FIXED "simple"

xlink:href CDATA #REQUIRED

xlink:actuate (onLoad|onRequest) "onRequest"

xlink:show (new|embed|replace) "new">

A sample element that embeds an HTML fragment when clicking on it:

For getting the whole list, please click

<A xlink:href="liste-fragment.html" xlink:show="embed">here.

384

SIMPLE L INK : EXAMPLE

• country/capital as simple link

<!ELEMENT country (name,population?, ..., capital,cities, ...)>

<!ELEMENT capital EMPTY>

<!ATTLIST capital xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink"

xlink:type (simple|extended|locator|resource|arc)

#FIXED "simple"

xlink:href CDATA #REQUIRED>

In the XML document:

<country car_code="D" area="356910">

<name>Germany</name>

:

<capital xlink:type="simple"

xlink:href="cities-D.xml#xpointer(//city[name='Berlin'])"/>

</country>

• the (empty) “capital” element is the local resource,
the link is specified between country/capital and Berlin.

Exercise: Define the HTML element with XLink.

385

XL INK : INLINE EXTENDED L INKS

• Extended links can contain multiple XPointers,

• they have no own href attribute,

• the specification of the targets is done by locator subelements and resource subelements.

<!ELEMENT linkelement (... locatorelement* ... resourceelement* ...)>

<!ATTLIST linkelement
xmlns:xlink
xlink:type (simple|extended|locator|resource|arc) #FIXED “extended” >

<!ELEMENT locatorelement (contentmodel)>

<!ATTLIST locatorelement
xmlns:xlink
xlink:type (simple|extended|locator|resource|arc) #FIXED “locator”
xlink:href CDATA #REQUIRED >

resourceelement : any element can be made a local resource by xlink:type=“resource”.

386

EXAMPLE : EXTENDED L INK IN THE WWW

Pictures in the Web:

<!ELEMENT a-loc EMPTY>

<!ATTLIST a-loc xlink:type (...) FIXED "locator"

xlink:href CDATA>

 <ext-a xlink:type="extended">Goettingen

<a-loc xlink:type="locator" xlink:href="goe1.jpg">

<a-loc xlink:type="locator" xlink:href="goe2.jpg">

<a-loc xlink:type="locator" xlink:href="goe3.jpg">

</ext-a>

 <ext-a xlink:type="extended">Freiburg

<bla-loc xlink:type="locator" xlink:href="fr1.jpg">

<bla-loc xlink:type="locator" xlink:href="fr2.jpg">

</ext-a>

when the user (in an XLink-enabled browser) clicks on such an <ext-a> element, all
corresponding pictures are shown in separate new windows.

387

EXAMPLE : EXTENDED L INK IN MONDIAL

The country elements can also be regarded as extended links:

• each country element as a whole is a local resource

• with own resources: name etc.

• with references (locators) to other resources.

<!ELEMENT country (name,...,capital,encompassed*,border*,cities)>

<!ATTLIST country car_code ID #IMPLIED

:

xlink:type CDATA #FIXED 'extended'>

<!ELEMENT capital EMPTY>

<!ATTLIST capital xlink:type CDATA #FIXED 'locator'

xlink:href CDATA #REQUIRED >

Analogously for encompassed, border, provinces, cities.

Exercise 9.1
Give a DTD for these elements (note that encompassed and border have further attributes). 2

388

EXAMPLE (CONT’D)

XML instance:

<country xlink:type="extended"

car_code="D" area="356910" ...>

<capital xlink:type="locator"

xlink:href="cities-D.xml#xpointer(//city[name='Berlin'])"/>

<cities xlink:type="locator"

xlink:href="cities-D.xml#xpointer(//city)"/>

:

</country>

Exercise 9.2
Complete the XML instance. 2

389

EXAMPLE (CONT’D)

• the attributes xlink:show and xlink:actuate are not relevant here

• application: not browsing, but queries, transformations etc.

• not considered neither in XPath/XQuery nor in XLink.

• These aspects are investigated in the LinXIS project:
http://www.dbis.informatik.uni-goettingen/LinXIS

(see later)

• up to now: only outbound links

– country/capital is an implicit outbound-arc from the local resource (country) to a city.

– country/cities references multiple targets (city elements), defines multiple outbound
arcs.

390

XL INK : OUT-OF-L INE-L INKS

Link elements that are not in the document, but in separate documents (i.e., possible to “add”
links to other people’s documents):

• expressed by extended link elements with locators and resources;
these are equipped with an xlink:label attribute.

• in addition to the locator elements (that address the (remote) resources), additional
information must be stored:

– which resources are connected by an arc,

– and the direction of the connection.

⇒ additional arc elements
connect resources/locators by xlink:from and xlink:to attributes.

391

XL INK : OUT-OF-L INE-L INKS

• element content allows for subelements of locator element types (as above) and
subelements of arc element types that describe relationships between locator elements:

<!ELEMENT linkelement ((locatorelement*|resourceelement*|arcelement)*)>

<!ATTLIST linkelement as above >

<!ELEMENT locatorelement as above >

<!ATTLIST locatorelement as above

type, href, label: NMTOKEN , title, role >

<!ELEMENT arcelement (contentmodel)>

<!ATTLIST arcelement
xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type (simple|extended|locator|resource|arc) #FIXED “arc”

xlink:from NMTOKEN #IMPLIED

xlink:to NMTOKEN #IMPLIED

xlink:arcrole CDATA #IMPLIED >

• Note: xlink:label is not an ID; there can be several elements with the same label.

392

EXAMPLE OUT-OF-L INE-L INKS : WEB

Adding an own link base in addition to the -entries in HTML Web documents:

• two kinds of locator elements:

1. XPointers on keywords and sentences where the link should start from:

<univis xlink:type="locator" xlink:label="univis-ssdxml"

xlink:href="http://www.univis.goe/somepath#xpointer(//h1[text()='...'])"/>

2. URLs of target pages:

<teaching xlink:type="locator" xlink:label="ssdxml-homepage"

xlink:href="http://www.cs.uni-goettingen.de/teaching/ssdxml.html"/>

• Arc elements:

<arc xlink:type="arc"

xlink:from="univis-ssdxml" xlink:to="ssdxml-homepage"/>

• when using an XLink-enabled browser that has access to the link base, there is a link on
the Univis page from the headline to the XML lecture.

393

EXAMPLE OUT-OF-L INE-L INKS : MONDIAL

Memberships of countries in organizations:

<!ELEMENT memberships (country*,organization*,membership*)>

<!ATTLIST memberships xlink:type (...) #FIXED “extended” >

<!ELEMENT country EMPTY>

<!ATTLIST country xlink:type (...) #FIXED “locator”
xlink:href CDATA #REQUIRED

xlink:label NMTOKEN #REQUIRED >

<!ELEMENT organization EMPTY>

<!ATTLIST organization xlink:type (...) #FIXED “locator”
xlink:href CDATA #REQUIRED

xlink:label NMTOKEN #REQUIRED >

<!ELEMENT membership EMPTY>

<!ATTLIST membership xlink:type (...) #FIXED “arc”

xlink:from NMTOKEN #IMPLIED

xlink:to NMTOKEN #IMPLIED

membership_type CDATA #REQUIRED >

394

EXAMPLE OUT-OF-L INE-L INKS : MONDIAL

<memberships>

<country xlink:label=“B” xlink:type=“locator”

xlink:href=“.../countries.xml#xpointer(//country[@car_code=’B’]”)/>

<country xlink:label=“D” xlink:type=“locator”

xlink:href=“.../countries.xml#xpointer(//country[@car_code=’D’])”/>

<organization xlink:label=“org-EU” xlink:type=“locator”

xlink:href=“.../organizations.xml#xpointer(//organization[@abbrev=’EU’])”/>

<organization xlink:label=“org-UN” xlink:type=“locator”

xlink:href=“.../organizations.xml#xpointer(//organization[@abbrev=’UN’])”/>

<membership xlink:from=“B” xlink:to=“org-EU” xlink:type=“arc”

membership_type=“member”/>

<membership xlink:from=“B” xlink:to=“org-UN” xlink:type=“arc”

membership_type=“member”/>

</memberships>

395

SEMANTICS OF ARCS

• In case that all xlink:label in an extended link element are unique, each arc element
stands for the unique relationship given by the xlink:from and xlink:to attributes.

• In case that the labels are not unique, every arc stands for all relationships between pairs
of locators that have the corresponding from- and to-labels.

• an arc that has no xlink:to attribute, stands for a connection to each locator (analogously
for from).

• an arc that has neither from nor to stands for all possible relationships.

396

XL INK : USAGE

Browsing: obvious. xlink:show and xlink:actuate

• W3C Amaya (http://www.w3.org/Amaya): partially understands XLink and is open-source

– use XLink for annotations to Web pages (→ RDF).

• queries against XML data sources:

– The W3C XML Query Requirements state that the query language must support
queries over references. The XLink/XQuery combination does not (yet) satisfy this.

– behavior of XPath and XLink has not yet been considered in the W3C documents:

– there is even no data model for XLinks

– currently: requires real programming for resolving XLink elements and evaluating the
references dynamically.

397

9.3 XInclude: Database-Style Use of XPointer

Include-elements are replaced by the corresponding included items:

<xi:include parse= “xml|text” href= “url” xpointer= “xpointer ”/>

• no browsing semantics (XHTML: include must be resolved when loading)

• query/database semantics: obvious

<country xlink:type="extended" car_code="D" area="356910" ...>

<xi:include parse="xml" href="mondial-D-cities.xml" xpointer="//city"/>

</country>

becomes

<country xlink:type="extended" car_code="D" area="356910" ...>

<city><name>Berlin</name> ... </city>

<city><name>Stuttgart</name> ... </city>

:

</country>

– resolve inclusion when loading

– resolve inclusion on-demand when querying

398

9.4 The LinXIS Project – Linked XML Information Sources

Research project in the DBIS group at Göttingen:

... combine XLink with XInclude-style functionality

• extend XLink with data model semantics: insert referenced targets

• dbxlink: namespace for specifying the data model

<country car_code="D" area="356910" ...>

<capital xlink:type="simple" dbxlink:transparent="keep-element insert-contents"

xlink:href="cities-D.xml#xpointer(//city[name='Berlin'])"/>

</country>

<country car_code="D" area="356910" ...>

<capital><name>Berlin</name><population>3472009</population></capital>

</country>

• query: document(countries.xml)//country[name="Germany"]/capital/population)

resolves the xlink and “jumps” automatically to the target of the reference to
mondial/cities-D.xml#xpointer(//city[name="Berlin"])

• http://www.dbis.informatik.uni-goettingen.de/LinXIS

399

Chapter 10
XML Schema

10.1 Motivation

• Database area: schema description

– cf. SQL datatypes, table schemata

– constraints

• Programming languages: typing – real typing – means: theory

– every expression (query, variable etc) can be assigned with a type

– structural induction

– static typechecking for queries/programs/updates

– validation of resulting structures wrt. target DTD/Schema

400

XML QUERY FORMAL SEMANTICS : OVERVIEW

Every (query) expression is assigned with a semantics

Static Semantics

Given a static environment, an expression is of a certain type:
(static env.: namespace decl, typedefs, type decls. of variables)

• statEnv ⊢ Expr : T ype

Dynamic Semantics

Given a dynamic environment, an expression yields a certain result:
(dynamic env.: context node, size+position in context, variable bindings)

• dynEnv ⊢ Expr ⇒ V alue

(equivalent to “classical” notation: [[Expr]]dynEnv = V alue)

... both defined by structural induction.
(for short example: show 2.1.5 and “if” in 4.10 of W3C XQFS document)

401

XML QUERY DATA TYPES

... by examples:

define type coordinates { -- in any order

element longitude of type xs:float &

element latitude of type xs:float}

define type city { -- sequence

attribute country of type xs:string,

attribute province of type xs:string?, -- optional

element name of type xs:string,

element population of type { -- anonymous

attribute year of type xs:decimal,

xs:string }

element coordinates of type { -- anonymous

element longitude of type xs:float &

element latitude of type xs:float} }

... similar to DTD expressions extended by primitive datatypes

402

XML QUERY DATA TYPES (CONT’D)

XML type theory:

• operations on types (e.g. “union”): result type of a query that yields either a result of type
a or type b

• derivation of new types by

– additional constraints

– additional content

• constraints: does the derived result type for some expression guarantee that some
conditions hold?

• containment of types: is the derived result type for some expression covered by a certain
target type?
(static type checking of programs)

• can e.g. be applied for query and storage optimization, indexing etc.

403

REQUIREMENTS ON AN XML SCHEMA LANGUAGE

• requirement: a schema description language for the user that is based on these types:
(usage is optional – XML is self-describing)

• DTD: heritage of SGML; database-typical aspects are not completely supported
(datatypes [everything is CDATA/PCDATA], cardinalities); but: order, iteration.

• DTD: syntax is not in XML.

⇒ better formalism for representing schema information

• XML syntax→ easy to process

• more detailed information as in the DTD

• database world: datatypes with derived types, constraints etc.

404

XML SCHEMA : IDEAS

• no actually new concepts (in contrast to the definition of the object-oriented model), but ...

• combination of the power of previous schema languages:

– datatype concepts from the database area (SQL)

– idea of complex object types/classes from the OO area

– structured types from the area of tree grammars (e.g. DTD)

• new in contrast to DTDs: difference between element types and elements: <country>

elements are of the type countryType.

⇒ very complex

405

10.2 XML Schema: Design

Using XML syntax and a verbose formalism, XML Schema uses a very detailed and
systematic approach to type definitions and -derivations.

• only a few primitive, atomic datatypes

• other simple types are derived from these by restriction,

• complex types with text-only contents are derived by extension from simple types,

• other (complex types) are derived by restriction from a general anyType (cf. class object
in OO),

• these types are then used for declaring elements.

406

XML SCHEMA : THE STANDARD

The XML Schema Recommendation (since May 2001) consists of 2 parts:
(note: XML Schema 1.1 work is in progress [2007])

• Part 2: “Datatypes”

– Definition of simple types:
have no attributes and no element content; are used only for text content and as
attribute values.

• Part 1 “Structures”:

– Definition of structured datatypes (complex types):
with subelements and attributes; are used as element types.

* names/types if the subelements and attributes

* order of the subelements

– Definition of elements using the complex types.

• many syntax definitions

• Part 0: “Primer” (http://www.w3.org/TR/xmlschema-0/) explains and motivates the
concepts.

407

USAGE OF XML SCHEMA

• understand concepts and ideas (XML Schema Primer, lecture)

• apply them in practice

• lookup for syntax details in the W3C documents

• make experiences

408

XML SCHEMA DOCUMENTS

An XML-Schema document consists of

• a preamble and

• a set of definitions and declarations

<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

content
</xs:schema>

content uses the following kinds of schema components:

• datatype definitions (simple types and complex types)

• attribute declarations

• element declarations

• miscellaneous ...

409

10.3 Datatypes

Datatypes are seen as triples:

• range (possible values, cardinality, equality and ordering),

• lexical representation by literals (e.g. 100 also as 1.0E2 and 1.0e+2)

• set of properties

The set of possible values can be specified in different ways:

• extensional (enumeration)

• intensional (by axioms)

• restriction of another domain

• construction from other domains (lists, sets ...)

410

DATATYPES

Datatypes are characterized by their domain and properties (called facets) in multiple
independent “dimensions”. The facets describe the differences between datatypes.

The basic facets (present for each datatype) are

• equality,

• order relation,

• upper and lower bound,

• cardinality (finite vs. countable infinite),

• numerical vs. non-numerical.

411

DATATYPES

• primitive datatypes (predefined)

• generated datatypes (derived from other datatypes). This can happen by aggregation
(lists) or restriction of another datatype.

• Primitive predefined types in XML Schema:

– string (with many subtypes: token, NMTOKEN),

– boolean (lexical repr.: true, false),

– float, double,

– decimal (with several subtypes: integer etc.),

– duration, time, dateTime, ...

– base64Binary, hexBinary

– anyURI (Universal Resource Identifier).

• generated predefined types:

– integer, [non]PositiveInteger, [non]NegativeInteger, [unsigned](long|short|byte)

412

XML-SPECIFIC DATATYPES

There are some XML-specific datatypes (subtypes of string) that are defined based on the
basic XML recommendation. They are only used for attribute types (atomic and list types):

• NMTOKEN (restriction of string according to the definition of XML tokens),

• NMTOKENS derived from NMTOKEN by list construction,

• IDREF/IDREFS analogously,

• Name: XML Names,

• NCName: non-colonized names,

• language: language codes according to RFC 1766.

413

CONSTRAINING FACETS

By specifying constraining facets, further datatypes can be derived:

• for sequences of characters: length, minlength, maxlength, pattern (by regular
expressions);

• for numerical datatypes: maxInclusive, minInclusive, maxExclusive, minExclusive,

• for lists: length, minLength, maxLength

• for decimal datatypes: totalDigits (number of digits), fractionDigits (number of positions
after decimal point);

• enumeration (definition of the possible values by enumeration),

... for a description of all details, see the W3C XMLSchema Documents.

414

GENERATION OF SIMPLE DATATYPES

Simple datatypes can be derived as <simpleType> from others:

Derivation by Restriction

Restriction of a base type (i.e., specification of further restricting facets):

<xs:simpleType name=“name”>

<xs:restriction base=“simple-type”>

facets
</xs:restriction>

</xs:simpleType>

<xs:simpleType name=“carcodeType”>

<xs:restriction base=“xs:string”>

<xs:minLength value=“1”/>

<xs:maxLength value=“3”/>

<xs:pattern value=“[A-Z]+”/>

</xs:restriction>

</xs:simpleType>

415

Derivation by Restriction

Example:

<xs:simpleType name=“longitudeType”
<xs:restriction base=“xs:decimal”>

<xs:minExclusive value=“-180”/>

<xs:maxInclusive value=“180”/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=“latitudeType”
<xs:restriction base=“xs:decimal”>

<xs:minInclusive value=“-90”/>

<xs:maxInclusive value=“90”/>

</xs:restriction>

</xs:simpleType>

defines two derived simple datatypes.

416

Remark: Usage of SimpleTypes

• as attributes (details later):

<xs:attribute name=“car_code” type=“carcodeType”/>

can e.g. be used in

<country car_code=“D”> ... </country>

• as elements (details later):

<xs:element name=“longitude” type=“longitudeType”/>

can e.g. be used in

<longitude>48</longitude>

Only if also attributes are required, a <complexType> must be defined.

417

Derivation by Restriction: Enumeration

• Enumeration of the allowed values.

Example (from XML Schema Primer)

<xs:simpleType name=“USState”>

<xs:restriction base=“xs:string”>

<xs:enumeration value=“AK”/>

<xs:enumeration value=“AL”/>

<xs:enumeration value=“AR”/>

<!– and so on ... –>

</xs:restriction>

</xs:simpleType>

• so far, this functionality is similar to what could be done in SQL by attribute types and
integrity constraints.

• additionally:

– “multi-valued” list types (but still simple types)

– complex types

418

Derivation as List Types

<xs:simpleType name=“name”>

<xs:list itemType=“simple-type”>

facets <!-- optional -->

</xs:list>

</xs:simpleType>

• simpleType must be a non-list type,

• facets of the list (e.g., maxLength, minLength, pattern) can be defined by subelements

Example

Datatype for a list of country codes:

<xs:simpleType name=“countrylist”>

<xs:list itemType=“carcodeType”/>

</xs:simpleType>

<xs:attribute name=“neighbors” type=“countrylist”/>

for <country neighbors=“NL L F CH ...”> . . . </country>

419

Derivation as Union Types

• Analogously union of sets with xs:union and @xs:memberTypes.

Component of a data type for postal addresses for US suppliers: send e.g., to D 37075
Göttingen (car code), or CA 94065 Redwood (US State Code)

<xs:simpleType name=“stateOrCountry”>

<xs:union memberTypes=“carcodeType USState”/>

</xs:simpleType>

420

10.4 Complex Datatypes

Complex datatypes can be derived from others by <complexType>. They describe

• ContentType: simpleContent or complexContent (an already defined simpleType or an
own ContentModel),

• attributes.

Different possibilities:

• by extension from a simple datatype (adding attributes, making an element type out of a
simple type)

• by restriction from another datatype (restriction of its components or its structure),

• completely new definition (formally, a restriction of base=“xs:anyType”)

With these datatypes, element types can be defined later.

421

COMPLEX DATATYPES

Complex datatypes are defined by the following properties:

• name,
<xs:complexType name=“name”> . . . </xs:complexType>

• kind of content (simple or complex; mixed)
<xs:simpleContent> . . . </>

<xs:complexContent [mixed=“true”]> . . . </>

• derivation method (extension or restriction),
<xs:extension base=“typename”> . . . </>

<xs:restriction base=“typename”> . . . </>

• attribute declarations
<xs:attribute name=“name” type=“typename”/>

• structure of content model
... a bit more complex ...

422

COMPLEX DATATYPES : TYPE WITH ATTRIBUTES

Population: text content and an attribute:

<population year=“1997”>130000</population>

• take the simpleType for the text content and extend it with an attribute:

<xs:complexType name="population">

<xs:simpleContent>

<xs:extension base="xs:nonNegativeInteger">

<xs:attribute name="year" type="xs:nonNegativeInteger"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

• the complexType can have (but does not necessary have) the same name, as the
element to be defined later.

423

COMPLEX DATATYPES : EMPTY ELEMENT TYPES

Border: only two attributes:

<border country=“F” length=”500”/>

• take the base type anyType (arbitrary complexContent and attributes) and restrict it:

<xs:complexType name="border">

<xs:complexContent>

<xs:restriction base="anyType">

<xs:attribute name="country" type="xs:IDREF"/>

<xs:attribute name="length" type="xs:decimal"/>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

424

COMPLEX DATATYPES : A RBITRARY ELEMENT TYPES

Newly defined element types with <complexContent> are usually defined by

<xs:complexType name="...">

<xs:complexContent>

<xs:restriction base="anyType">

<!-- type definition: content model and attributes -->

</xs:restriction>

</xs:complexContent>

</xs:complexType>

As an abbreviation, it is allowed to omit <complexContent>and <xs:restriction
base=“anyType”>:

<xs:complexType name="border">

<xs:attribute name="country" type="xs:IDREF"/>

<xs:attribute name="length" type="xs:decimal"/>

</xs:complexType>

425

COMPLEX DATATYPES : A RBITRARY ELEMENT TYPES

• element types with complex content use (nested) structure-defining elements (called
Model Groups):

– <xs:sequence> . . . </xs:sequence>

– <xs:choice> . . . </xs:choice>

– <xs:all> . . . </xs:all>

(“all” with some restrictions - only top-level, no substructures allowed)

• inside, the allowed element types are specified:

<xs:element name=“name” type=“typename”/>

• note: even if only one type of subelements is contained, one of the above must be used
around it.

• note: the XML Schema definition requires to list the content model specification before
the attributes.

426

COMPLEX DATATYPES : A RBITRARY ELEMENT TYPES

Example

Definition of the type of the <city> elements:

<xs:complexType name="city">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="population" type="population"/>

<xs:element name="longitude" type="longitude"/>

<xs:element name="latitude" type="latitude"/>

</xs:sequence>

<xs:attribute name="country" type="xs:IDREF"/>

</xs:complexType>

... so far, the basic concepts.

427

10.5 Composing Declarations

FURTHER ATTRIBUTES OF ATTRIBUTE DEFINITIONS

• use (optional, required, prohibited)
default is “optional”

• default (same as in DTD: attribute is added if not given in the document)

• fixed (same as in DTD)

FURTHER ATTRIBUTES OF SUBELEMENT DEFINITIONS

• minOccurs, maxOccurs: default 1.

• <default value=“value”/> (bit different from attribute default): if the element is given in a
document with empty content, then the default contents value is inserted.
In case that an element is not given at all, no default is used.

• <fixed value=“value”/>: analogous.

Examples: later.

428

GLOBAL ATTRIBUTE- AND ELEMENT DEFINITIONS

... up to now, arbitrary element types have been defined.

At least, for the root element, a separate element declaration is needed.

• <xs:attribute> and <xs:element> elements can not only occur inside of <complexType>

elements, but can also be global.

• as global declarations, they must not contain specifications of @use, @maxOccurs, or
@minOccurs.

• global declarations can then also be used in type definitions by @ref.
Then, they are allowed to have @use, @maxOccurs and @minOccurs.

• especially useful if the same element type is used several times.

429

EXAMPLE

<xs:element name="city" type="city"/>

<xs:element name="name" type="xsd:string"/>

<xs:attribute name="car_code" type="carcodeType"/>

<xs:complexType name="country">

<xs:sequence>

<xs:element ref="name"/> -- maxOccurs and minOccurs default 1

<xs:element ref="city" maxOccurs="unbounded"/>

<xs:element ref="border" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute ref="car_code" use="required"/>

</xs:complexType>

<xs:element name="country" type="country"/>

<xs:complexType name="mondial">

<xs:sequence>

<xs:element ref="country" maxOccurs="unbounded"/>

:

</xs:sequence>

</xs:complexType>

430

ANONYMOUS, LOCAL TYPE DEFINITIONS

• Instead of
<xs:element name=“name” type=“typename”/>

<xs:attribute name=“name” type=“typename”/>

anonymous, local type definitions in the content of such elements are allowed:

<xs:complexType name="city">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="population">

<xs:simpleContent>

<xs:extension base="xs:nonNegativeInteger">

<xs:attribute name="year" type="xs:nonNegativeInteger">

</xs:extension>

</xs:simpleContent>

</xs:element>

</xs:sequence>

<xs:attribute name="country" type="xs:IDREF"/>

</xs:complexType>

431

LOCAL DECLARATIONS

• <complexType> declarations define local symbol spaces, i.e., the same attribute/element
names can be used in different complex datatypes with different specifications of
result-datatypes (this is not possible in DTDs; cf. country/population and city/population
elements)

Using global types:

<xs:complexType name=“countrypop”> ... without @year ... </xs:complexType>

<xs:complexType name=“citypop”> ... with @year ... </xs:complexType>

<xs:complexType name=“countryType”>

:
<xs:element name=“population” type=“countrypop”/>

</xs:complexType>

<xs:complexType name=“cityType”>

:
<xs:element name=“population” type=“citypop”/>

</xs:complexType>

432

Local Declarations (Cont’d)

Using local “population” types:

<xs:complexType name=“countryType”>

<xs:complexType name=“pop”> ... without @year ... </xs:complexType>

:
<xs:element name=“population” type=“pop”/>

</xs:complexType>

<xs:complexType name=“cityType”>

<xs:complexType name=“pop”> ... with @year ... </xs:complexType>

:
<xs:element name=“population” type=“pop”/>

</xs:complexType>

433

ATTRIBUTE GROUPS

Groups of attributes that are used several times can be defined, named and then reused:

<xs:attributeGroup name=“groupname”>

attributedefs
</xs:attributeGroup>

<xs:complexType name=“name” ...>

:
<xs:attributeGroup ref=“groupname”/>

</xs:complexType>

• group definitions can also be nested ...

434

CONTENT MODEL GROUPS

In the same way, parts of the content model can be predefined:

<xs:group name=“groupname”>

modelgroupdef
</xs:group>

<xs:complexType name=“name” ...>

:
<xs:group ref=“groupname”/>

</xs:complexType>

Exercise 10.1
Use the following group definitions in your MONDIAL schema:

• an attribute group for (country, province) in city, lake, mountain etc.

• a content model group for (longitude, latitude) 2

435

PRACTICAL ISSUES: XSI:SCHEMALOCATION

In addition to use separate separate .xsd and .xml files (call e.g. saxonXSD bla.xml bla.xsd),
the XML Schema can be identified in the XML instance:

• simple things without namespace: the xsi:noNamespaceSchemaLocation attribute gives
the URI or local file path of the XML Schema file:

<mondial xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="mondial.xsd"> ... </mondial> <!-- local -->

<mondial xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://.../mondial.xsd"> ... </mondial>

• when a namespace is used: declare the namespace, and the xsi:schemaLocation
attribute is of the form xsi:schemaLocation=“namespace uri-of-xsd-file”:

<mon:mondial xmlns:mon="http://www.semwebtech.org/Mondial"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.semwebtech.org/Mondial

http://www.semwebtech.org/Mondial/mondial.xsd">

... </mon:mondial>

• if a document uses several namespaces, several xsi:schemaLocations gan be given; also
inside of inner elements.

436

10.6 Integrity Constraints

XML Schema supports three further kinds of integrity constraints (identity constraints):

• unique, key, keyref

that have very strong similarities with the corresponding SQL-concepts:

• a name,

• a selector : an XPath expression, e.g. //city, that describes the set of elements for which
the condition is specified (stronger than SQL: relative to the instance of the element type
where the spec is a child of),

• a list of fields (relative to the result of the selector), that are subject to the condition,

• for keyref: the name of a key definition that describes the corresponding referenced key.

More expressive than ID/IDREF:

• not only document-wide keys, but can be restricted to a set of nodes (by type, and by
subtree),

• multiple fields; can not only contain attributes, but also (textual) element content,

• but not applicable to IDREFS (then, e.g., “D NL B ...” would be seen as a single value).

437

INTEGRITY CONSTRAINTS

• are subelements of an element type. The scope of them is then each instance of that
element type (e.g., allows for having a key amongst all cities of a given country, and
keyrefs in that country only referring to such cities)

• document-wide: define them for the root element type.

<xs:unique name=“...” >

<xs:selector xpath=“xpath-expr ”/>

<xs:field xpath=“xpath-expr ”/> · · · <xs:field xpath=“xpath-expr ”/>

</xs:unique>

<xs:key name=“ name ” >

<xs:selector xpath=“xpath-expr ”/>

<xs:field xpath=“xpath-expr ”/> · · · <xs:field xpath=“xpath-expr ”/>

</xs:key>

<xs:keyref name=“...” refer=“ name ” >

<xs:selector xpath=“xpath-expr ”/>

<xs:field xpath=“xpath-expr ”/> · · · <xs:field xpath=“xpath-expr ”/>

</xs:keyref>

438

INTEGRITY CONSTRAINTS : EXAMPLE

<xs:element name="mondial">

<xs:complexType>

<xs:element ref="country" maxOccurs="*"/>

: <!-- with <border country="..."/> subelements -->

</xs:complexType>

<xs:key name="countrykey"> <-- key amongst all countries -->

<xs:selector xpath="country"/> <!-- range: unique amongst all countries -->

<xs:field xpath="@car_code"/> <!-- is the field @car_code -->

</xs:key>

<xs:keyref name="bordertocountry" refer="countrykey">

<xs:selector xpath=".//border"/> <!-- for all border elements, -->

<xs:field xpath="@country"/> <!-- the @country attr refs to a country -->

</xs:keyref>

</xs:element>

439

INTEGRITY CONSTRAINTS : EXAMPLE

<?xml version="1.0" encoding="UTF-8"?>

<countries-and-cities

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="keys.xsd">

<country code="D">

<neighbor code="A"/>

<neighbor code="CH"/>

<county code="FR" name="Freiburg">

<neighbor code="VS"/>

<city>Freiburg</city>

</county>

<county code="VS" name="Villingen-Schwenningen">

<neighbor code="FR"/>

<city>Villingen</city>

</county>

<county code="D" name="Duesseldorf"/>

</country>

<country code="CH">

<neighbor code="D"/>

<neighbor code="A"/>

<county code="FR" name="Fribourg">

<neighbor code="VS"/>

<city>Fribourg</city>

</county>

<county code="VS" name="Valais/Wallis">

<neighbor code="FR"/>

<city>Sion</city>

</county>

<county code="VD" name="Vaud/Waadt">

<neighbor code="FR"/>

<neighbor code="VS"/>

</county>

</country>

<country code="A"/>

</countries-and-cities>

[Filename: XMLSchema/keys.xml]

440

Integrity Constraints: Example (Cont’d)

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="countries-and-cities">

<xs:complexType>

<xs:sequence>

<xs:element ref="country" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:key name="countrykey"> <!-- all countries -->

<xs:selector xpath=".//country"/>

<xs:field xpath="@code"/>

</xs:key>

<xs:keyref name="neighbortocountry" refer="countrykey">

<xs:selector xpath=".//country/neighbor"/>

<xs:field xpath="@code"/>

</xs:keyref>

</xs:element>

<xs:element name="country">

<xs:complexType>

<xs:sequence>

<xs:element ref="neighbor" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="county" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="code" type="xs:string"/>

</xs:complexType>

<xs:key name="countykey"> <!-- key is local to the country -->

<xs:selector xpath=".//county"/>

<xs:field xpath="@code"/>

</xs:key>

<xs:keyref name="neighbortocounty" refer="countykey"> <!-- local in the country -->

<xs:selector xpath=".//county/neighbor"/>

<xs:field xpath="@code"/>

</xs:keyref>

</xs:element>

<xs:element name="county">

<xs:complexType>

<xs:sequence>

<xs:element ref="neighbor" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="city" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="code" type="xs:string"/>

<xs:attribute name="name" type="xs:string"/>

</xs:complexType>

</xs:element>

<xs:element name="city" type="xs:string"/>

<xs:element name="neighbor">

<xs:complexType>

<xs:attribute name="code" type="xs:string"/>

</xs:complexType>

</xs:element>

</xs:schema>

[Filename: XMLSchema/keys.xsd]

441

USE OF KEY/KEYREF

• allows for local keys and multi-field keys.

• queries can only be stated by joins (as in SQL); then local keys are only of limited use.

• no multivalued keyrefs as in IDREFS. Each reference must be in a separate subelement.

GENERAL ASSERTIONS

Assertions between attributes and/or subelements on instances of an element type:

• children of a complexType declaration,

• <xs:assert test=“xpath-based test”/>

442

10.7 Applications and Usage of XML Schema

• (simple) datatype arithmetics and reasoning (numbers, dates)
The simpleTypes and restrictions are also used in the Semantic Web languages
RDF/RDFS/OWL.

• specification of allowed structure: validation of documents

The information about a class of documents is also often used:

• derive an efficient mapping to relational storage (cf. Slide 577)

• definition of indexes (over keys and other properties)

• the type definitions can be used to derive corresponding Java Interfaces (JAXB; (cf.
Slide 451))

– get/set methods for properties,

– automatical mapping between Java and XML serialization,

– classes that add behavior can then be programmed by extending the interfaces.

443

Chapter 11
Algorithms and APIs
• XML as a data structure:

– abstract datatype with API: DOM

– (mainly main-memory) implementations; used e.g. in Java applications

– low-level API with variable-based access

• Databases?

– high-level API: XPath, XQuery

– mapping to relational model (Oracle, IBM DB2) or ObjectTypes (Oracle, DB2)

– “Native” storage: Software AG-Tamino

– classical database functionality: multiuser, transactions, recovery

444

Algorithms and APIs (Cont’d)

• XML as Data Exchange Format in Web Services

– serialize application objects as XML

– SOAP: generic [not discussed in this course]

– JAXB: "model-aware" infrastructure

• Stream Processing:

– XML data transfer as sequence of events

– SAX (Simple Application Interface for XML), StAX (Streaming API for XML)

445

11.1 DOM

• DOM (Document Object Model) defines a platform- and language-independent
object-oriented interface (i.e., an abstract datatype) for generating, processing and
manipulating XML data.

XML
document
(or stream)

Application

Logic

DOM
Parser

(Java) DOM
Data Structure

Operations
on DOM

data model

Java Runtime Environment/Application

read

creates

access

446

DOM

• DOM is a specification of an interface/abstract datatype for the XML data model, not a
data model and not a programming language!

• implementations in Java, C++, etc; usually main-memory-based;
specialized Java interface definitions:

– this course: JDOM jdom.jar, org.jdom.*

– another alternative: dom4j

– not recommended: org.w3c.dom.* (the plain dom is an implementation that exists in
nearly all programming languages and does not make use of Java’s advantages);

• language base of the DOM specification: OMG-IDL

• Main-memory-based: only for relatively small application programs
(most of the “lightweight”-tools used in the course are internally based on DOM)

447

DOM: PRINCIPLES

• only one document in a DOM

• step-by-step-access to the data:
based on variable assignments in the surrounding imperative/object-oriented
programming language and on iterators (cf. proceeding in the network data model):

– document: represents the complete document,

* Query-Methods, e.g. NodeList getElementsByName(string)

– class “Node”: getNodeType(), getChildren(), getFirstChild(), getNextSibling(),
getParentNode(), ...

– class “Element”: getName(), getAttributes(), getContent(), ...

– class “Attribute”: getName(), getValue(), ...

– corresponding methods for generating and changing nodes.

• additionally, XPath and XSLT can be applied to instances of Document and Element;

• based on DOM, XPath and XQuery can be implemented (cf. Apache Xerces
(XML/DOM)/Xalan (XSLT)/Xindice (DB))

• often inefficient (no indexes, query optimization)

448

DOM – sample code fragment: Stepwise access

(taken from LanguageElement.java from MARS, using JDOM)

// given: Element element;

protected Set<InputVariableDefinition> getInputVariableDefinitions(

boolean includeJoinVariables)

{ Set<InputVariableDefinition> definitions = new HashSet<InputVariableDefinition>();

@SuppressWarnings("unchecked")

List<Element> elements = element.getChildren();

for (Element e : elements)

{ String elementName = e.getName();

if (!elementName.equals("Opaque"))

{ String name = e.getAttributeValue("name", "");

InputVariableDefinition variable = null;

if (elementName.equals("has-input-variable"))

variable = new InputVariableDefinition(name, InputVariableDefinition.INPUT);

else if (elementName.equals("uses-variable") && includeJoinVariables)

variable = new InputVariableDefinition(name, InputVariableDefinition.USE);

if (variable != null)

{ String use = e.getAttributeValue("use", "");

if (use.length() > 0) variable.setUse(use);

definitions.add(variable);

}

}

}

return definitions;

}

449

DOM – sample code fragment: XPath

(taken from ServiceRegistry.java from MARS)

• similar to the JDBC statement concept for SQL in Java:

public Element getTaskDescr(Element serviceDescr, String task)

{

Element taskDescr = null;

try

{ XPath xpath = XPath.newInstance(

"./lsr:has-task-description/lsr:TaskDescription[" +

"contains(lsr:describes-task/@rdf:resource,$task)]");

xpath.addNamespace(Namespaces.RDF_NS);

xpath.addNamespace(Namespaces.MARS_NS);

xpath.addNamespace(Namespaces.LSR_NS);

xpath.setVariable("task", task);

taskDescr = (Element) xpath.selectSingleNode(serviceDescr);

}

catch (Exception e) {...}

}

450

11.2 JAXB - The J ava API for X ML Binding

• Part of the Java Web Services Developer Pack

• SUN’s “Java Web Service Tutorial”
http://java.sun.com/webservices/tutorial.html

• XML elements describe objects with properties,

• correspond to classes of an application,

• derive interface with setX/getX methods (= Java Beans) as skeletons for these classes
(automatically generated from an XML Schema description),

• user derives classes from these interfaces by adding behavior,

• application logics implemented by using these classes,

• import/export of XML instances of these classes via generic mappings (derived from the
XSD).

451

JAXB A RCHITECTURE

• map XML Schemas to Java classes (get/set methods),

• methods for unmarshalling XML instance documents into Java objects,

• methods for marshalling Java objects back into XML instance documents.

Architecture

XML
Schema

Java
Binding

Compiler

Application

Schema-
derived
classes

User-defined
classes

Augmented
Classes

JAXB

marshalling/

unmarshalling

XML
Input

XML
Output

452

JAXB - E XAMPLE

[Filename: java/JAXB/books.xml]

<?xml version="1.0"?>

<Collection>

<books>

<book isbn="111-1234">

<name>Learning JAXB</name>

<price>34</price>

<authors>

<authorName>Jane Doe</authorName>

</authors>

<language>English</language>

<language>French</language>

<promotion>

<Discount>10% until March 2003</Discount>

</promotion>

<publicationDate>2003-01-01</publicationDate>

</book>

<book isbn="112-0815">

<name>Java Web Services Today and Beyond</name>

<price>29</price>

<authors>

<authorName>John Brown</authorName>

<authorName>Peter T.</authorName>

</authors>

<language>English</language>

<promotion>

<Discount>Buy one get Web Services Part 1 free</Discount>

</promotion>

<publicationDate>2002-11-01</publicationDate>

</book>

</books>

</Collection>

• values for xd:date and xs:time must conform to the syntax
required for these XML types (cf. Slide 275)

453

JAXB - Example: XSD

[Filename: java/JAXB/books.xsd]
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb" jaxb:version="2.0">

<xs:element name="Collection">

<xs:complexType>

<xs:sequence>

<xs:element name ="books">

<xs:complexType>

<xs:sequence>

<xs:element name="book" type="bookType"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<!-- continue next page -->

454

<xs:complexType name="bookType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="price" type="xs:long"/>

<xs:element name="authors" >

<xs:complexType>

<xs:sequence>

<xs:element name="authorName" type="xs:string" minOccurs="1"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="language" type="xs:string" minOccurs="1"

maxOccurs="unbounded"/>

<xs:element name="promotion">

<xs:complexType>

<xs:choice>

<xs:element name="Discount" type="xs:string" />

<xs:element name="None" type="xs:string"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:element name="publicationDate" type="xs:date"/>

</xs:sequence>

<xs:attribute name="isbn" type="xs:string" />

</xs:complexType>

</xs:schema>

455

JAXB HowTo

• README file in java/JAXB/JAXB-README.txt:

Java Architecture for XML Binding (JAXB)

mkdir myjaxb

cd myjaxb

mkdir classes gen-src

java6: included in JDK

earlier java: download jaxb and adjust below HOME:

java -jar JAXB2_20070122.jar

export JAXB_HOME=whereeveritis/jaxb20

export JAXB_LIB=$JAXB_HOME/lib

export JAXB_JAR=$JAXB_LIB/jaxb-api.jar:$JAXB_LIB/jaxb-libs.jar:$JAXB_LIB/jaxb-xjc.jar

$JAXB_HOME/bin/xjc.sh -p JAXBbooks books.xsd -d gen-src

created classes can the be found in gen-src/JAXBbooks

javac -d classes ‘find gen-src -name '*.java'‘

javac -d classes -classpath classes JAXBbooks.java

java -classpath classes JAXBbooks books.xml

Syntax for old Java (with jaxb.jar in classpath)

$JAXB_HOME/bin/xjc.sh -p JAXBmondial mondial-jaxb.xsd -d gen-src

javac -d classes -classpath $JAXB_JAR ‘find gen-src -name '*.java'‘

javac -d classes -classpath $JAXB_JAR:classes JAXBmondial.java

java -classpath classes:$JAXB_JAR JAXBmondial mondial-jaxb.xml

456

JAXB: Binding XML Schema to Java Classes
<xs:element name="Collection">

<xs:complexType>

<xs:sequence>

<xs:element name ="books"> minOccurs = maxOccurs = 1 by default
<xs:complexType>

<xs:sequence>

<xs:element name="book" type="bookType"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>

</xs:element>

• elements that have complexTypes are mapped to
classes (for local type declarations: local classes
like Collection.Books),

• elements of simpleTypes and attributes are mapped
to instance properties

• multivalued properties are handled by lists; updates
not via setXXX(), but via list modifications

Class Collection

private Books books;

public Books getBooks();

public void setBooks(Books b);

Class Books

private List<BookType> book;

public List<BookType> getBook();

returns a “live list” - no setBook(),

but use getBook.add(newItem)

Class BookType

· · ·

1

0..*

457

JAXB: Binding XML Schema to Java Classes (2)
<xs:complexType name="bookType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name="price" type="xs:string"/>

<xs:element name="authors" >

<xs:complexType>

<xs:sequence>

<xs:element name="authorName" type="xs:string"
minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="language" type="xs:string"

minOccurs="1" maxOccurs="unbounded"/>

<xs:element name="promotion">

<xs:complexType>

<xs:choice>

<xs:element name="Discount" type="xs:string" />
<xs:element name="None" type="xs:string"/>

</xs:choice>

</xs:complexType>

</xs:element>
<xs:element name="publicationDate" type="xs:date"/>

</xs:sequence>

<xs:attribute name="isbn" type="xs:string"/>
</xs:complexType>

Class BookType

private String name;

private String isbn;

private long price;

private XMLGregorianCalendar publicationDate;

private Authors authors;

private List language

private Promotion promotion;

public String getName(); void setName(String s);

public String getIsbn(); void setIsbn(String s);

public long getPrice(); void setPrice(long x);

public XML-G-C. getPublicationDate(); void set(...)

public Authors getAuthors(); void setAuthors(Authors as);

public List getLanguage(); no setLanguage()

public Promotion getPromotion(); void setPromotion();

Class Authors

private List<String> authorName;

public List<String> getAuthorName();

live list - no setAuthorName()

Classes Promotion

private String discount;

private String none;

public get/set methods

1 1

458

JAXB - Example Usage

[Filename: java/JAXB/JAXBbooks.java]
import javax.xml.bind.JAXBContext;

import javax.xml.bind.Unmarshaller;

import javax.xml.bind.Marshaller;

import java.util.List;

import javax.xml.datatype.XMLGregorianCalendar;

import java.io.File;

import org.w3c.dom.*;

import javax.xml.transform.dom.*;

import javax.xml.transform.*;

import javax.xml.transform.stream.*;

// import java content classes generated by binding compiler

import JAXBbooks.*;

/**

* This shows how to use JAXB to unmarshal an xml file

* Then display the information from the content tree

*/

public class JAXBbooks {

public static void main (String args[]) {

try

{

JAXBContext jc = JAXBContext.newInstance("JAXBbooks");

Unmarshaller unmarshaller = jc.createUnmarshaller();

Collection collection= (Collection)

unmarshaller.unmarshal(new File("books.xml"));

Collection.Books books = collection.getBooks();

List bookList = books.getBook();

459

for(int i = 0; i < bookList.size();i++)

{

System.out.println("Book details ");

BookType book =(BookType) bookList.get(i);

System.out.println("Book Name: " + book.getName().trim());

System.out.println("Book ISBN: " + book.getIsbn().trim());

System.out.println("Book Price: " + book.getPrice());

System.out.println("Book promotion: " +

book.getPromotion().getDiscount().trim());

System.out.println("No of Authors " +

book.getAuthors().getAuthorName().size());

BookType.Authors authors = book.getAuthors();

for (int j = 0; j < authors.getAuthorName().size();j++)

{

String authorName = (String) authors.getAuthorName().get(j);

System.out.println("Author Name " + authorName.trim());

}

XMLGregorianCalendar date = book.getPublicationDate();

System.out.println("Date " + date);

for (int j = 0; j < book.getLanguage().size();j++)

{

String language = (String) book.getLanguage().get(j);

System.out.println("Language " + language.trim());

}

// add an element to a live list:

book.getLanguage().add("Kisuaheli");

System.out.println();

}

// write the result to an XML file:

Marshaller m = jc.createMarshaller();

DOMResult domResult = new DOMResult();

m.marshal(collection, domResult);

Document doc = (Document) domResult.getNode();

// transformer stuff is only for writing DOM tree to file/stdout

TransformerFactory factory = TransformerFactory.newInstance();

Source docSource = new DOMSource(doc);

StreamResult result = new StreamResult("foo.xml");

Transformer transformer = factory.newTransformer();

transformer.transform(docSource, result);

}catch (Exception e) {

e.printStackTrace();

}

}

} 460

JAXB - A NOTHER EXAMPLE

[Filename: java/JAXB/mondial-jaxb.xml]
<?xml version="1.0"?>

<mondial>

<country name="Austria" area="83850" indep_date="1918-11-12" capital="cty-Austria-Vi

<population>8023244</population>

<province name="Styria" area="16386">

<population>1203000</population>

<city name="Graz">

<population year="1994-01-01">238000</population>

</city>

</province>

<province name="Salzburg" area="7154">

<population>501000</population>

<city name="Salzburg">

<population year="1994-01-01">144000</population>

</city>

</province>

<province name="Vienna" area="415">

<population>1583000</population>

<city name="Vienna" id="cty-Austria-Vienna">

<population year="1994-01-01">1583000</population>

</city>

</province>

</country>

</mondial>

461

JAXB - Example: XSD

[Filename: java/JAXB/mondial-jaxb.xsd]
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb" jaxb:version="2.0">

<xs:element name="mondial">

<xs:complexType>

<xs:sequence>

<xs:element name="country" type="country"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="country">

<xs:sequence>

<xs:element name="population" type="populationtype"

minOccurs="0" maxOccurs="1" />

<xs:element name="province" type="province"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="area" type="xs:integer" use="optional"/>

<xs:attribute name="car_code" type="xs:ID" use="optional"/>

<xs:attribute name="indep_date" type="xs:date" use="optional"/>

<xs:attribute name="capital" type="xs:IDREF" use="optional">

<xs:annotation> <!-- annotation of the target type <<<<<<<< -->

<xs:appinfo>

<jaxb:property>

<jaxb:baseType name="City"/>

</jaxb:property>

</xs:appinfo>

</xs:annotation>

</xs:attribute>

</xs:complexType>

462

<xs:complexType name="province">

<xs:sequence>

<xs:element name="population" type="populationtype"

minOccurs="0" maxOccurs="1" />

<xs:element name="city" type="city"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="area" type="xs:integer" use="optional"/>

</xs:complexType>

<xs:complexType name="city">

<xs:sequence>

<xs:element name="population" type="populationtype"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="id" type="xs:ID"/>

</xs:complexType>

<xs:complexType name="populationtype">

<xs:simpleContent>

<xs:extension base="xs:decimal">

<xs:attribute name="year" type="xs:date" use="optional"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:schema>

• annotation of the country/@capital IDREFS attribute:
⇒ public City getCapital()

• countries have at most one population subelement, cities
may have several ones.

463

JAXB - Example Usage

[Filename: java/JAXB/JAXBmondial.java]
import javax.xml.bind.JAXBContext;

import javax.xml.bind.Unmarshaller;

import java.io.File;

import java.util.List;

// import java content classes generated by binding compiler

import JAXBmondial.*;

/**

* This shows how to use JAXB to unmarshal an xml file

* Then display the information from the content tree

*/

public class JAXBmondial {

public static void main (String args[]) {

try {

JAXBContext jc = JAXBContext.newInstance("JAXBmondial");

Unmarshaller unmarshaller = jc.createUnmarshaller();

Mondial mondial =

(Mondial) unmarshaller.unmarshal(new File("mondial-jaxb.xml"));

List countryList = mondial.getCountry();

Province prov;

City city;

for (int i = 0; i < countryList.size();i++)

{

Country country = (Country) countryList.get(i);

System.out.println("Country: " + country.getName());

System.out.println(" pop: " +

country.getPopulation().getValue());

// Java knows from the annotation of the IDREF attribute

// that this is a city

City c = country.getCapital();

System.out.println(" cap: " + c.getName());

List provList = country.getProvince();

for (int j = 0; j < provList.size() ; j++)

{

prov = (Province) provList.get(j);

System.out.println(" Province name: " + prov.getName().trim());

464

JAXB M APPING : SUMMARY

• allows for easy and lightweighted unmarshalling, bean-based manipulation and
marshalling of XML data,

• higher level of abstraction from XML representation, compared with DOM and SAX,

• but still actually just a way to manipulate XML data without having to know the specific
notions of the XML data model.

Minor Comments

• naming (getBook() for a list etc.) not always intuitive;
can be customized by annotations to the XSD;

• intermediate elements (example: Books, Authors) lead to unnecessary classes;
can often be omitted (example: Language elements)

⇒ to get a better “modeling”, do not use structures like
Country-hasProvince-Province-hasCity-City

(as in Striped RDF/XML [Semantic Web lecture]; this would generate intermediate
classes), but

Country-Province-City.

465

JAXB I NTEGRATION WITH JAVA APPLICATION ?

A comfortable usage of the generated classes into an application program is not yet
supported:

• means: add application-specific methods
(and properties that would be local to the Java existence of the object)

• define a subclass: java_xxx extends xxx

– after unmarshalling, the objects are only instances of xxx

⇒ methods of java_xxx not applicable

• define class java_xxx where xxx is a subclass of:

– useful from the java point of view: extend application class with bean functionality and
marshalling

– cannot be communicated to the JAXB generation of the classes (annotation with
xjc:superClass c in the xsd does only allow to make all classes subclasses of c)

466

JAXB I NTEGRATION WITH JAVA APPLICATION

Delegation

• (manually) write application classes that delegate to the JAXB-generated classes and
extend them with application functionality,

• after unmarshalling, traverse the tree and create the “real” objects

⇒ application classes must be manually adapted after schema changes.

Manual editing of generated classes themselves

• edit the generated xxx.java files

• if instance attributes are added, they must also be added either to propOrder, or get an
anntotation as @XmlAttribute – and then they will be exported when marshalling them

⇒ must be manually redone/adapted after schema changes.

Using Helper Classes

• encode behavior in separate helper classes that provide static methods:
mondialHelper.addProvince(Country,Province)

467

JAXB - Example Usage with extended class definition

put the following into the generated JAXB/gen-src/JAXBmondial/Country.java and then
recompile:

// a method for more comfortable manipulation:

public void addProvince(Province p) {

getProvince().add(p);

}

// a "useful" method:

public void printCityNames() {

List provList = getProvince();

for (int j = 0; j < provList.size() ; j++)

{

Province prov = (Province) provList.get(j);

List cityList = prov.getCity();

for (int k = 0; k < cityList.size() ; k++)

{

City city = (City) cityList.get(k);

System.out.println(city.getName().trim());

}

}

}

[Filename: java/JAXB/put-into-Country.java]

468

JAXB - Example Usage with extended class definition
import javax.xml.bind.JAXBContext;

import javax.xml.bind.Unmarshaller;

import java.io.File;

import java.util.List;

// import java content classes generated by binding compiler

import JAXBmondial.*;

public class JAXBmondial2 {

public static void main (String args[]) {

try {

JAXBContext jc = JAXBContext.newInstance("JAXBmondial");

Unmarshaller unmarshaller = jc.createUnmarshaller();

Mondial mondial =

(Mondial) unmarshaller.unmarshal(new File("mondial-jaxb.xml"));

List countryList = mondial.getCountry();

for (int i = 0; i < countryList.size();i++)

{

Country country = (Country) countryList.get(i);

System.out.println("Country: " + country.getName());

country.printCityNames(); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

}

}catch (Exception e) { e.printStackTrace(); }

}

}

[Filename: java/JAXB/JAXBmondial2.java]

469

ASIDE: SOAP (S IMPLE OBJECT ACCESS PROTOCOL)

• Generic “protocol” (nevertheless, HTTP-based)

• Any object can be serialized in XML, sent, and deserialized
(only having the Java class code, without having an XSD).
So far similar to the OIF (Object Interchange Format) of ODMG (cf. Slide 53 ff.).

• The XML representation is not intended to be processed on the XML level, but only by
soap-unpacking it.

• Bad experience: correct packing/unpacking only between same SOAP implementations.

• Note: Instances of Java XML (DOM) are not serialized as plain XML, but as SOAP
serialization of an instance of the underlying DOM implementation class.
(not intended for exchanging XML, but for exchanging objects by XML).

⇒ when messages are designed to be XML, SOAP is not the right way, but use simple, plain
HTTP!

• One does not need to have any knowledge of XML to use soap (actually, knowledge of
XML doesn’t help).

⇒ so it does not fit in this course.

470

11.3 XML Stream Processing

• reading from a file or from an HTTP connection both is actually reading char by char from
a stream

• the stream is parsed, resulting in something that can be used by application:

XML
document
(or stream)

DOM
Parser (Java) DOM

Data Structure

XML
document
(or stream)

JAXB
unmarshalling

471

PARSING : GENERAL CONCEPTS

• Compiler Construction in general:

1. input: a sequence of characters

2. lexical analysis ("lexer") extracts the keywords (e.g. “begin”, “end”, “for”) and outputs a
sequence of tokens

3. syntactical (grammar) analysis: check grammatical structure and generate the parse
tree (e.g. via automaton)

4. tools: lex & yacc/bison

5. interpreter, optimizer, compiler, visualizer etc. process the parse tree

• XML:

1. lexical: split unicode input sequence into opening tags, closing tags, attributes,
PCDATA, processing instructions, etc.

2. syntactical and structural: is it well-formed?

3. processing: build DOM tree, build JAXB structure, visualize, . . .

• the above DOM and JAXB are actually parser+specific processing

⇒ XML Stream Processing: works on the tokens sequence!

472

EVENT-BASED PROCESSING AS A general Design Pattern

• A stream of (high-level) items that carry some inherent semantics can be seen as a
stream of “events”
(in contrast to a simple 0-1-stream, a byte stream or similar low-level streams)

Event Source

• User Interaction

• System Messages

• Parser producing
parsing events

• ...

Event Handler
(user-provided)

• Identifies event type

• invokes associated
action

en . . . e2 e1

• The application programmer provides the Event Handler implementation, containing
actions for each type of event;

• kind of rule-based ;

• programmer is not in charge of the control flow

473

11.4 Event-based XML Parsing with SAX

• SAX (“The Simple API for XML”) is an event-based interface/model

Event Source

XML

instance

a Generic

XML Parser

provided by SAX,

generating

events

Event Handler
(user-provided)

• Identifies event type
(startDoc, endDoc,
startElem, endElem
. . .)

• invokes associated

action

en . . . e2 e1

endD
ocum

ent()

startE
lem

ent(
"m

ondial",attrs,...)

startD
ocum

ent()

Represents/processes an XML document as a sequence of events (depth-first traversal), e.g.

• startDocument(), endDocument()

• startElement(Name, attributesList) – attributes not split

• endElement(Name)

• characters(string)

474

XML PARSING WITH SAX

SAX: parse XML from a file (in general: char stream).

• import classes: javax.xml.parsers.*, org.xml.sax.*

• a generic XML Parser is parameterized with a Content Handler
(plus Error Handler, DTD Handler, and EntityResolver) implementation.

• The most trivial Content Handler is the DefaultHandler that does nothing:
the document is parsed, events are detected, but no action is performed
(DTD / XML Schema validation can be switched on).

• Event handler programmed wrt. a “push API”.

• Normally, the user-provided Content Handler extends the DefaultHandler, overwriting
(some of) its Event Methods.

• With the content handler implementation, the user provides “actions” in form of Java
code, associated with specific events (and even dependent on context information).

• If during parsing of the XML document, a specific event occurs, the code of the
associated action from the content handler is invoked (“callback”).

475

SAX: A PPLICATIONS

Only events are signaled: linear processing based on incoming sequence of events.

• ... among many other things, one can generate a DOM tree structure,

• validation according to a DTD (using the automaton as given on Slide 176) in linear time,

• stream-processing of XML input

– start processing already when input document is not yet complete

– filtering for elements that are relevant for a given application

– linear search for something, e.g., names of countries
(Exercise: sketch the behavior of the event handler on relevant events)

– if the stream is a list of elements of the same structure:
generate a database entry for each element (use JDBC)

• if necessary: application needs to maintain context.

476

SAX EXAMPLE CODE

Consider a very simple application that

• detects all elements with attributes

• for each element, output the element’s name

• for each element, output the name-value pairs of its attributes
>java PrintAttributes mondial.xml > bla.out

>less bla.out

element: country

- attribute: 'car_code' value: 'AL' type: 'ID'

- attribute: 'area' value: '28750' type: 'CDATA'

- attribute: 'capital' value: 'cty-cid-cia-Albania-Tirane' type: 'IDREF'

- attribute: 'memberships' value: 'org-BSEC org-CE org-CCC org-ECE org-EBRD org-EU ...' type: 'IDREFS'

element: encompassed

- attribute: 'continent' value: 'europe' type: 'IDREF'

- attribute: 'percentage' value: '100' type: 'CDATA'

element: ethnicgroups

- attribute: 'percentage' value: '3' type: 'CDATA'

element: ethnicgroups

- attribute: 'percentage' value: '95' type: 'CDATA'

element: religions

- attribute: 'percentage' value: '70' type: 'CDATA'

...

477

Class “PrintAttributes.java”:
import java.io.IOException;

import javax.xml.parsers.*;

import org.xml.sax.SAXException;

import org.xml.sax.helpers.DefaultHandler;

public class PrintAttributes {

public static void main(String[] args) {

if (args.length != 1) {

System.err.println("usage: PrintAttributes <url>");

System.exit(1);

}

String url = args[0]; // ... prepare a contentHandler:

DefaultHandler handler = new ContentHandlerPrintAttributes(

"printing attributes of document at url '" + url + "'");

SAXParserFactory factory = SAXParserFactory.newInstance();

try {

SAXParser parser = factory.newSAXParser();

parser.parse(url, handler); // <<<<<<<<< and now it runs ...

} catch (IOException e1) {

e1.printStackTrace();

} catch (ParserConfigurationException e) {

e.printStackTrace();

} catch (SAXException e) {

e.printStackTrace();

}

}

}

[see java/SAX/PrintAttributes.java]

478

Class “ContentHandlerPrintAttributes.java”:
import org.xml.sax.Attributes;

import org.xml.sax.SAXException;

import org.xml.sax.helpers.DefaultHandler;

public class ContentHandlerPrintAttributes extends DefaultHandler {

public ContentHandlerPrintAttributes(String message) {

System.out.println(message);

}

// react on opening elements:

public void startElement(String url, String localName, String qName,

Attributes attrs) throws SAXException {

if (attrs.getLength() > 0) {

String elementName;

if(qName == null || qName.equals("")) elementName = localName;

else elementName = qName;

System.out.println("element: " + elementName);

for (int i = 0; i < attrs.getLength(); i++) {

System.out.println(" - attribute: '" + attrs.getQName(i)

+ "' value: '" + attrs.getValue(i) + "' type: '"

+ attrs.getType(i)+"'");

}

System.out.println();

}

}

// methods for endElement(), startDocument(), endDocument(), characters() omitted

// all other "parsing events" are ignored in this case

}

[see java/SAX/ContentHandlerPrintAttributes.java]

479

SAX: A PPLICATIONS TO XPATH QUERY ANSWERING

Forward queries

XPath-queries like //country[@car_code=’D’]/population can be answered very (time- and
memory-)efficient,

• use the sequence of events (linear)

• maintain some context (often LOGSPACE/additional LOGTIME sufficient)

... works only for queries, that contain only forward steps,

General queries

which XPath expressions can be transformed in equivalent forward-expressions (and with
what efforts)?

• “XPath: Looking forward”; F. Bry et al ; 2002; LMU München

• theory: complexity, connections to linear temporal logic
For every linear temporal logic formula that uses past and future operators, there is an
equivalent formula that uses only future operators
... but in general of exponential size.

480

11.5 XML Streams/StAX - The St reaming A PI for X ML

Higher abstraction level (than character-based XML) for XML data exchange:
javax.xml.stream (rt.jar)

Reconsider SAX

• on-the fly processing, no in-memory representation for good performance

• idea of “XML Event Stream”: a char stream (File, HTTP) can be converted into an XML
Event Stream by an XML parser; see example’s main() method.

• SAX does not make the XML Event Stream accessible, but only via the Event Handler.

Generalization and Abstraction: XML Streams

• XMLEvents: StartDocument, StartElement, Character, EndElement,

• XMLStreamWriter, XMLStreamReader,

• XML Streams also can be connected directly as an abstract means to exchange XML

481

SAX AND STAX: A PPLICATIONS

Stream-based processing can be applied to XML data on multiple levels:

• low-level applications:
SAX is often used for building a DOM from ASCII XML input: “opening tag with
attributes”, “text”, “closing tag” can immediately be translated into the DOM constructors.

• low-level streaming of an XML instance:
answering XPath (forward-axes only) queries; optionally maintaining some context (e.g.,
stack).

• higher level “application-level events”:
the XML stream is not seen as the traversal of a large instance, but as a sequence of
(independent) XML fragments that are seen as application-level events
[RFID applications, time series of stock quotes, RSS feeds]

482

XML Streams: Application Scenarios

• READ: usage analogous to SAX: process an XML file input as an XML Event Input
Stream:
control flow is not passed to the parser (unlike SAX), but XML events are accessed using
an iterator, controlled by the Java program using the StAX API (Pull-API).
[Note: iterators are a common design pattern, not only applied to collections, but as we
see here also to streams: init(), next(), ...]
⇒ application code: same as for SAX, only operational embedding done differently.

• WRITE AND READ: streamed data exchange between processed on the XML level

483

Interfaces XMLStreamWriter, XMLStreamReader

(only some comments; see also following examples)

Reader

• int event = r.next() and then switch based on event type
javax.xml.stream.XMLStreamConstants.XX:
START_DOCUMENT, START_ELEMENT, ATTRIBUTE, CHARACTERS, END_ELEMENT, . . .

• goal-driven access methods when on START_ELEMENT:
r.getLocalName(), r.getAttributeValue(name),
r.getAttributeCount(), getAttributeValue(n) for iteration,
r.getElementText() (reads also the next EndElement from the stream!)

• goal-driven access method when on CHARACTERS: r.getText()

Writer

• Writer: w.writeStartDocument(), w.writeStartElement(name),a
w.writeAttribute(name,value), w.writeCharacters(text): obvious;

• w.writeEndElement(): closes the innermost open element;

• w.writeEndDocument(): closes all open elements.

• w.flush(): force write any data to the underlying output mechanism.

484

StAX EXAMPLE : EXAM REGISTRATION

Assume the administration of exams in a student’s office (“Prüfungsamt”):

• The subject (e.g., “Semi-structured Data and XML”) and ID of lectures/exams,

• whether the exam is written or oral,

• for written exams, the date of the exam,

• for oral exams, a number of dates is given when the single exams are held.

• the registration period starts when receiving an incoming XML message
start-registration

• the registration period ends when receiving an incoming XML message
end-registration

• for all students that did (register) correctly, the student’s relevant details are extracted
and written to some output stream (valid-register; in the example, we use STDOUT.)

• students that register before beginning or after the end of registration, are not accounted
for the exam; an XML message invalid-register goes to STDOUT,

485

StAX Example: Exam Registration (Cont’d)

• the registration data of the students comes in via a continuous input stream;

• the program should allow the management of registrations for multiple exams at one time
(all incoming over the same input stream).

Example stream:

. . . → start-registration(lecture=“XML”, id="08154711", mode="written", date="7/11/2008") →

register(student="0001", exam="08154711") → register(student="0009", exam="08154711") →

register(student="0004", exam="08154711") → end-registration(id="08154711") →

register(student="0007", exam="08154711") → . . .

⇒ XML Processor ⇒

. . . → registered-exam(lecture=“XML”, id="08154711", mode="written", date="7/11/2008") →

valid-register(student="0001", exam="08154711") → valid-register(student="0009", exam="08154711") →

valid-register(student="0004", exam="08154711") → invalid-register(student="0007", exam="08154711") → . . .

486

StAX EXAMPLE CONT’D:

Consider the following XML sequence as input stream:

<?xml version="1.0" encoding="UTF-8"?>

<stream>

<register student="0007" exam="08154711"/>

<start-registration id="08154711" mode="written">

<subject>Semistructured Data and XML</subject>

<date>07/11/2008</date>

</start-registration>

<register student="0001" exam="08154711"/>

<register student="0009" exam="08154711"/>

<start-registration id="12345678" mode="oral">

<subject>Dental Hygiene</subject>

<dates>

<date>17/9/2008</date>

<date>18/9/2008</date>

</dates>

</start-registration>

<end-registration id="12345678"/>

<register student="0004" exam="08154711"/>

<register student="0004" exam="12345678"/>

<register student="0007" exam="12345678"/>

<end-registration id="08154711"/>

<register student="0007" exam="08154711"/>

</stream>

[Filename: java/StAX/exam.xml]

487

StAX EXAMPLE CONT’D (2):

Code for the Exam bean, containing the exam’s properties and
some constants):
import java.util.ArrayList;

import java.util.List;

public class Exam {

public static final String DATE = "date";

public static final String SUBJECT = "subject";

public static final String ID = "id";

public static final String MODE = "mode";

public static final String DATES = "dates";

public static final String STARTOFREG = "start-of-registering";

public static final String ENDOFREG = "end-of-registering";

private String id;

private boolean oral;

private String subject;

private String date;

private List<String> dates;

private boolean registeringClosed = false;

private String startOfReg;

private String endOfReg;

public Exam(String id, String mode) {

this.id = id;

this.oral = "oral".equals(mode);

this.dates = new ArrayList();

}

488

public String getId() { return id; }

public void setDate(String date) { this.date = date; }

public String getDate() { return date; }

public void setDates(List<String> dates) {this.dates = dates; }

public List<String> getDates() { return dates; }

public void setSubject(String subject) { this.subject = subject; }

public String getSubject() { return subject; }

public boolean isOral() { return oral; }

public boolean isWritten() { return (!oral); }

public String getMode() {

if (oral) return "oral";

return "written";

}

public boolean isRegisteringClosed() {

return registeringClosed;

}

public void setRegisteringClosed(boolean registeringClosed) {

this.registeringClosed = registeringClosed;

}

public String getEndOfReg() {

return endOfReg;

}

public String getStartOfReg() {

return startOfReg;

}

public void setStartOfReg(String startOfReg) {

this.startOfReg = startOfReg;

}

public void setEndOfReg(String endOfReg) {

this.endOfReg = endOfReg;

}

}

[Filename: java/StAX/Exam.java]

489

StAX EXAMPLE CONT’D (3):

Code for the main parser class, containing the main method:

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.OutputStream;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import javax.xml.stream.XMLInputFactory;

import javax.xml.stream.XMLOutputFactory;

import javax.xml.stream.XMLStreamConstants;

import javax.xml.stream.XMLStreamException;

import javax.xml.stream.XMLStreamReader;

import javax.xml.stream.XMLStreamWriter;

public class ExamStreamParser {

FileInputStream inputStream;

OutputStream outputStream;

public ExamStreamParser(FileInputStream in, OutputStream out) {

this.inputStream = in;

this.outputStream = out;

}

public void startParsing() {

try {

XMLInputFactory inputFactory = XMLInputFactory.newInstance();

XMLOutputFactory outputFactory = XMLOutputFactory.newInstance();

XMLStreamReader parser = inputFactory.createXMLStreamReader(inputStream);

XMLStreamWriter writer = outputFactory.createXMLStreamWriter(outputStream);

Exam currentExam = null;

Map<String,Exam> exams = new HashMap<String,Exam>();

boolean goOn = true;

while (goOn) {

490

while (goOn) {

int event = parser.next();

switch(event) {

case XMLStreamConstants.END_DOCUMENT:

parser.close();

writer.flush();

writer.close();

goOn = false;

break;

case XMLStreamConstants.START_ELEMENT:

// start-registration and its subelelements

if("start-registration".equals(parser.getLocalName())) {

currentExam = new Exam(parser.getAttributeValue(null, Exam.ID),parser.getAttributeValue(null, Exam.MODE));

currentExam.setStartOfReg(getDate());

break;

}

if(Exam.SUBJECT.equals(parser.getLocalName())) {

currentExam.setSubject(parser.getElementText()); break;

}

if(Exam.DATE.equals(parser.getLocalName())) {

if(currentExam.isWritten()) currentExam.setDate(parser.getElementText());

else currentExam.getDates().add(parser.getElementText());

break;

}

if("end-registration".equals(parser.getLocalName())) {

String examId = parser.getAttributeValue(null,Exam.ID);

Exam exam = exams.get(examId);

if(exam == null) {

System.err.println("no such exam with id '"+examId+"' open for registration!");

break;

}

exam.setEndOfReg(getDate());

exam.setRegisteringClosed(true);

break; // no output is generated.

}

// register and its subelements

if("register".equals(parser.getLocalName())) {

String studentId = parser.getAttributeValue(null, "student");

String examId = parser.getAttributeValue(null, "exam");

if(exams.containsKey(examId)) {

Exam exam = exams.get(examId);

if(! exam.isRegisteringClosed()) {

writer.writeStartElement("valid-register");

writer.writeAttribute("student", studentId);

writer.writeAttribute("exam", examId);

writer.writeEndElement();

} else {

writer.writeStartElement("invalid-register");

writer.writeAttribute("student", studentId);

writer.writeAttribute("exam", examId);

writer.writeStartElement("message");

writer.writeCharacters("invalid registration! registration for exam '" + exam.getId()

+ "' (" + exam.getSubject() + ") has ended on " + exam.getEndOfReg());

writer.writeEndElement();

}

} else {

writer.writeStartElement("invalid-register");

writer.writeAttribute("student", studentId);

writer.writeAttribute("exam", examId);

writer.writeStartElement("message");

writer.writeCharacters("invalid registration! exam '"+examId+"' is not (yet?) open for registration.");

writer.writeEndElement();writer.writeEndElement();

}

writer.writeCharacters("\n");

break;

}

break; 491

case XMLStreamConstants.END_ELEMENT:

if("start-registration".equals(parser.getLocalName())) {

exams.put(currentExam.getId(),currentExam);

writer.writeStartElement("registered-exam");

writer.writeAttribute(Exam.ID, currentExam.getId());

writer.writeAttribute(Exam.MODE, currentExam.getMode());

writer.writeCharacters("\n ");

writer.writeStartElement(Exam.SUBJECT);

writer.writeCharacters(currentExam.getSubject());

writer.writeEndElement();

writer.writeCharacters("\n ");

writer.writeStartElement(Exam.STARTOFREG);

writer.writeCharacters(currentExam.getStartOfReg());

writer.writeEndElement();

writer.writeCharacters("\n ");

if(currentExam.isWritten()) {

writer.writeStartElement(Exam.DATE);

writer.writeCharacters(currentExam.getDate());

writer.writeEndElement();

} else {

writer.writeStartElement(Exam.DATES);

for(Iterator<String> i=currentExam.getDates().iterator();i.hasNext();) {

writer.writeStartElement(Exam.DATE);

writer.writeCharacters(i.next());

writer.writeEndElement();

}

writer.writeEndElement();

}

writer.writeCharacters("\n");

writer.writeEndElement();writer.writeCharacters("\n");

currentExam = null; // it's better to provoke

// a nullpointer exception than to edit the wrong exam object

break;

}

}

}

} catch (XMLStreamException e) {

e.printStackTrace();

}

}

private String getDate() {

DateFormat format = new SimpleDateFormat();

Date date = new Date();

return format.format(date);

}

public static void main(String[] args) {

try {

ExamStreamParser examStreamParser = new ExamStreamParser(new FileInputStream(args[0]), System.out);

examStreamParser.startParsing();

} catch (FileNotFoundException e) {

e.printStackTrace();

}

}

}

[Filename: java/StAX/ExamStreamParser.java]

492

StAX COMPARISON WITH SAX

SAX: • “Push” API

• Common pattern: methods for each event type, where startElement() and
endElement() contain large ifs.

StAX: • “Pull” API

• Common pattern: huge switch command whose cases again contain large if.

• Performance: no difference
(inside, StAX’s next() does the same as the SAX builtin stream reader algorithm that call
the EventHandler)

• The actual code to be written is not much different in both cases.

• SAX maps a unicode input stream directly to the EventHandler calls.

• StAX makes the intermediate abstraction level of XML event streams accessible

– can easily produce XML output via XMLStreamWriter (e.g. to another StAX appl.)
(programmatically, the same feature can be provided by a SAX Event Handler as well
using StAX’s xml.stream classes)

493

Example: XML Stream Communication
import java.io.PipedInputStream;

import java.io.PipedOutputStream;

import java.io.OutputStream;

import javax.xml.stream.XMLOutputFactory;

import javax.xml.stream.XMLStreamWriter;

public class XMLStreamTestWriter implements Runnable

{

OutputStream outputStream;

public XMLStreamTestWriter(OutputStream out) {

this.outputStream = out;

}

public void run() {

try {

XMLOutputFactory outputFactory = XMLOutputFactory.newInstance();

XMLStreamWriter writer = outputFactory.createXMLStreamWriter(outputStream);

writer.writeStartElement("foo");

int i=1;

while (i<100) {

writer.writeStartElement("bla");

writer.writeCharacters(" " + i);

writer.writeEndElement();

System.out.print("Write <bla>" + i + "</bla> ");

//writer.flush(); // if not uncommented: strictly alternating

// comment out flush: sleep < 700 causes alternating after blocks of 2...5 elements

try{ java.lang.Thread.sleep(50); }

catch (Exception e) { e.printStackTrace(); }

i++;

}

// writer.writeEndElement(); // close </foo> is done by the next line:

writer.writeEndDocument(); // docu: closes all tags, but does not send anything else

writer.flush();

writer.close();

} catch (Exception e) { e.printStackTrace(); }

System.out.println("Writer finished");

}

public static void main(String[] args) throws Exception{

PipedOutputStream pos = new PipedOutputStream();

PipedInputStream pis = new PipedInputStream();

pis.connect(pos);

new Thread (new XMLStreamTestWriter(pos)).start();

new Thread (new XMLStreamTestReader(pis)).start();

}

}

[Filename: java/StAX/XMLStreamTestWriter.java]

• underlying: connected PipedOutput/InputStream

494

Example: XML Stream Communication (Cont’d)
import java.io.PipedInputStream;

import java.io.InputStream;

import javax.xml.stream.XMLInputFactory;

import javax.xml.stream.XMLStreamConstants;

import javax.xml.stream.XMLStreamReader;

public class XMLStreamTestReader implements Runnable {

InputStream inputStream;

public XMLStreamTestReader(PipedInputStream in) {

this.inputStream = in;

}

public void run() {

try {

XMLInputFactory inputFactory = XMLInputFactory.newInstance();

XMLStreamReader parser = inputFactory.createXMLStreamReader(inputStream);

boolean goOn = true;

while (goOn) {

int event = 0;

try {

event = parser.next();

switch(event) {

case XMLStreamConstants.START_ELEMENT:

System.out.println("Read start element " + parser.getLocalName());

break;

case XMLStreamConstants.CHARACTERS:

System.out.println("Read " + parser.getText());

break;

case XMLStreamConstants.END_ELEMENT:

System.out.println("Read end element " + parser.getLocalName());

break;

case XMLStreamConstants.END_DOCUMENT: // never happens!

System.out.println("Read end document");

goOn = false;

default: System.out.println("Read something else. event: " + event);

}}

catch(Exception e) { parser.close(); goOn = false; }

}

parser.close();

System.out.println("Reader finished");

}

catch (Exception e) { e.printStackTrace(); }

}

}

[Filename: java/StAX/XMLStreamTestReader.java]

495

11.6 Aside: Use of Date and Time Datatypes

• XML Schema: simple datatypes for dateTime

• represented by String literals in attribute values or text contents

– xs:dateTime: yyyy-mm-dd Thh:mm:ss[.xx][{+|-}hh:mm]

– xs:time: hh:mm:ss [{+|-}hh:mm]

– xs:duration: P [n Y][n M][n D][T[n H][n M][n [.n] S]], where n can be any natural number

– xs:dayTimeDuration, xs:yearMonthDuration: restrictions of xs:duration.

• for XQuery handling with specific operations (similar to those known from SQL) cf.
Slide 275.

• map to appropriate classes for processing by Java (and by this e.g. with JDBC from and
to SQL databases).

496

ASIDE: DATE AND TIME IN JAVA

Java provides several classes for handling date and time:

• Datatype: import java.util.GregorianCalendar;

Create from string representation:

• import java.text.DateFormat; import java.text.SimpleDateFormat;

public static String datedefaultpattern = "yyyy-MM-dd'T'HH:mm:ss";

// input: string s (following the XML Schema pattern)

DateFormat df = new SimpleDateFormat(datedefaultpattern);

GregorianCalendar typedvalue = df.parse(s);

// result: typedvalue as an object

• see java.util.GregorianCalendar for method documentation.

• TODO: check if JAXB declares automatically as date (which class in Java) and whether
set-methods of JAXB-created classes automatically convert data.

497

11.7 Web Services (Overview)

• History: RPC (Remote Procedure Call)

– call a specific procedure at a specific server
(client stub→marshalling→message→unmarshalling→ server stub→ server).

• History: OMG Standard (Object Management Group) CORBA (1989, “Common Object
Request Broker Architecture”; cf. Slides 38 ff.):

– Middleware, usually applied in an Intranet,

– central ORB bus where services can connect,

– service registry (predecessor of WSDL and UDDI ideas)

– description of service interfaces in object-oriented style
(IDL - interface description language, similar to C++ declarations)

– exchanging objects between services via OIF (Object Interchange Format)

⇒ RPC abstraction (call abstract functionality) by the ORB as a broker.

• XML-RPC and SOAP+WSDL+UDDI) are XML-based variants of RPC+Corba.

• SOA (“Service-Oriented Architecture”).

498

HTTP: HYPERTEXT TRANSFER PROTOCOL (OVERVIEW)

• HTTP 0.9 (1991), HTTP 1.0 (1995), HTTP 1.1 (1996).

• Application Layer Protocol, based on a (reliable) transport protocol (usually TCP
“Transmission Control Protocol” that belongs to the “Internet Protocol Suite” (IP)) [see
Telematics lecture].

• Request-Response Protocol: open connection, send something, receive response (upon
completion), close connection

• usually associated with Web Browsing and HTML:
send (HTTP GET) URL, get URL (=resource) contents
⇒ this is already a (very basic) Web Service
also: send HTTP POST URL+Data (Web Forms) get answer
⇒ this is also a (still basic) Web Service; “Hidden Web”

• common protocol used for communication with and between Web Services ...

499

(JAVA) SERVLET

• a piece of software that should be made available as a Web Service

• implements the methods of the Servlet interface
(Java: javax.Servlet, subclasses GenericServlet, HttpServlet)

WEB (SERVICE|SERVLET) CONTAINER

• a piece of software that extends a Web Server with infrastructure to provide the runtime
environment to run servlets as Web Services,

• hosts one or more Web Services that extend the container’s base URL,

• the servlets’ code must be accessible to the Web Service Container, usually located in a
specific directory,

• controls the lifecycle of the servlets: (init(), destroy())

• maps the incoming communication from ports via the URLs to the appropriate servlet
invocation
Method service(httpContents), mapped to doGet(httpContents),
doPut(httpContents).

500

ABSTRACTION LEVELS

• a Web Services Container contains several “projects” (eclipse terminology) or
“applications”:

– from the programmer’s view, a “project” is an eclipse project, as a package it is a
single .war file, at the end, it is a subdirectory in the container.
Each project has an (internal) name (its directory name in the container), e.g.
project1 or mondial.

• Each project consists of one or more servlets:

– each servlet has an (internal) name (relative to its directory name in the container),
e.g. project1 contains servlets servlet1a and servlet1b.

– each servlet’s code is a class that extends javax.HttpServlet;

501

ABSTRACTION LEVELS : URL MAPPING

HTTP connections (GET, POST) received by the server are transparently forwarded to the
servlets.

URLs are e.g.

http://www.example.org/services/2011/oneservice/handle1

http://www.example.org/mondial/sqlonline

• the Web Service Container has a base url;
http://www.example.org.

• the Web Service Container maps relative paths to projects (later: by tomcat’s server.xml),
e.g.
/services/2011/oneservice to project1,
/mondial to mondial.

• each project’s configuration (later: web.xml) maps path tails to servlet ids, and servlet ids
to servlet classes, e.g.
/handle1 and / to servlet1a to Project1.MyServletA,
/handle2 to servlet1b to Project1.MyServletB.

502

TOMCAT BASIC INSTALLATION

• Web Server with Web Service Container: Download and install Apache Tomcat

– can optionally, but not necessarily be combined with the Apache Webserver

– can be installed in the CIP Pool

• set environment variable (catalina is tomcat’s Web Service Container)

export CATALINA_HOME=~/apache-tomcat-x.x.x

• configure server: edit

$CATALINA_HOME/conf/server.xml:

<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->

<Connector port="8080" .../>

• start/stop tomcat:

$CATALINA_HOME/bin/startup.sh

$CATALINA_HOME/bin/shutdown.sh

• logging goes to

$CATALINA_HOME/logs/catalina.out

503

GENERAL SERVLET PREPARATION DIRECTORY STRUCTURE

MyProject project directory (anywhere outside tomcat)

MyProject/build.xml the ant file for compiling and deploying – see later.

MyProject/src the .java (and other) sources

MyProject/lib jars that are needed for building, but should not be copied to the Web Service
Container.
Put javax.servlet.jar there (tomcat has own classes for servlets, this would create
conflicts).

MyProject/WebRoot roughly, all this content is copied later to the Web Service Container.

MyProject/WebRoot/WEB-INF

the whole content of MyProject/WebRoot except WEB-INF is visible later (e.g., HTML pages
can be placed here); the contents of WEB-INF is used by the Web Service Container.

MyProject/WebRoot/WEB-INF/web.xml web application configuration – see later.

MyProject/WebRoot/WEB-INF/classes compiled binary stuff,

MyProject/WebRoot/WEB-INF/lib used jars.

504

HTTP METHODS GET AND POST

HTTP GET and POST: request-response

HTTP GET should be used only if invocation does not change

• Request consists only of URL+parameters:

http://www.example.org/mondial?type=city&code=D&name=Berlin&province=Berlin

HTTP POST should be used if it has side effects or changes the state of the Web Service

• Request URL consists only of the plain URL,

• parameters (e.g. queries using forms) or any other information is sent via a stream

⇒ often also queries use POST

Response: always as a stream.

• other HTTP methods PUT (resource), DELETE (resource) are used in REST
(Representational State Transfer) “architectures”
(e.g. the eXist XML database and document management system uses REST)

505

SERVLET PROGRAMMING

• servlets handle incoming HTTP connections via doGet() (=react-on-get) and doPost()
(=react-on-post) methods:

public class MyServletA extends HttpServlet

{ public void init(ServletConfig cfg) throws ServletException

{ ... initialization ... }

protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException

{ ... }

protected void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException

{ ... }

}

• doGet() and doPost() both read the HttpServletRequest and write the
HttpServletResponse object.

• the HttpServletRequest is different between GET (simpler) and POST (including a
stream).

506

SERVLET PROGRAMMING - SOME METHODS

doGet/doPost(HttpServletRequest req, HttpServletResponse resp) throws ...

{ String path = req.getPathInfo();

tail of the URL path, e.g. do

if (path.equals("/handle1")) { ... }

java.util.Map<java.lang.String,java.lang.String[]> req.getParameterMap();

(doGet) returns a java.util.Map of the parameters of this request.

ServletInputStream req.getInputStream(); or

java.io.BufferedReader req.getReader();

(doPost) retrieves the body of the request as binary data using a ServletInputStream.
(doPost) retrieves the body of the request as character data using a BufferedReader.

PrintWriter out = response.getWriter();

yields a Writer to the response – send character text.

ServletOutputStream os = response.getOutputStream();

yields an output stream. Don’t forget os.flush().

507

INVOKING A NEW HTTP CONNECTION

Strongly stripped fragment (without try-catch etc.):

public static StringBuffer connectAndSend(String url, StringBuffer content) {

HttpURLConnection.setFollowRedirects(true);

HttpURLConnection con = (HttpURLConnection) new URL(url).openConnection();

con.setRequestMethod("POST");

con.setDoInput(true);

con.setDoOutput(true);

con.setRequestProperty("Connection", "keep-alive");

con.setConnectTimeout(timeout);

con.setRequestProperty("Content-type", "text/xml");

write(con.getOutputStream(), content);

con.getOutputStream().close();

con.connect();

StringBuffer response = read(con.getInputStream());

con.getInputStream().close();

return response; }

508

A NOTE ON MULTITHREADING

• servlets can be instantiated by the container permanently or on-demand.

• if multiple requests for the same servlet come in, the servlet container can run multiple
threads on the same instance of a servlet.

– be careful with instance variables,

– implement mutual exclusion if necessary

• the server can also create (and remove) additional instances of a servlet.

509

THE PROJECT ’S WEB .XML

<web-app>

<!-- Define servlet names and associate them with classfiles -->

<servlet>

<servlet-name>servlet1a</servlet-name>

<servlet-class>org.dbis.project1.MyServletA</servlet-class>

<init-param> ... </init-param>

</servlet>

<servlet> ... </servlet>

<!-- define mapping of path tails to servlets -->

<servlet-mapping>

<servlet-name>servlet1a</servlet-name>

<url-pattern>/handle1</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>servlet1a</servlet-name>

<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>servlet1b</servlet-name>

<url-pattern>/handle2</url-pattern>

</servlet-mapping>

</web-app>

510

SERVLET DEPLOYMENT

• upon startup, tomcat deploys all servlets that are available in

$CATALINA_HOME/webapps

(considering path mappings etc. in $CATALINA_HOME/server.xml)

Two alternatives how to make servlets available there:

• create a project1.war file (web archive, similar to jar) and copy it into
$CATALINA_HOME/webapps.
(e.g. build.xml targets "dist" and "deploy")
(tomcat will unpack an deploy it upon startup)

• create a directory project1, copy the everything that is in the WebRoot directory there.
(e.g. build.xml target "deploy")

511

TOMCAT ’S CONF/SERVER.XML

The URL paths to the projects have to be defined.

This is done in the <Host> element:

<Host>

<Context path="/services/2011/oneservice" reloadable="false" docBase="project1"/>

:

</Host>

(since the standard path mondial for mondial is used, no explicit entry is needed)

• reloadable: automatically reloads the servlet if the code is changed (e.g. a new .war).
Should be done only during development.

• the path attribute is key. There can be multiple paths that are mapped to the same
docBase.

512

SOME COMMENTS

• HTTP connections are Unicode.

• exchanging XML via HTTP must be programmed via String/StringBuffer

– out: serialize XML,

– in: put SAX or StAX on the Unicode stream.

• exchanging StAX’s XMLStream:

– out: have an XMLStream, run StAX’s next() iterator on it,

– serialize each event, put it in the HTTP stream

– in: create a naked StAX XMLStreamReader on the HTTP stream that just provides the
XMLStream.

513

Chapter 12
Between Relational Data and XML

Data integration between “Legacy Systems” and XML databases

• Note: “legacy” now means SQL ...

Mixing everything up ...

Access to data stored in relational databases by

• using an XML environment (e.g., saxon) and mapping relational data from a remote SQL
database (e.g. Oracle) to XML, and working with it.

• using XML-world concepts and languages in an SQL environment, e.g. for exchanging
data in XML format (again, e.g., Oracle).

(Note that IBM DB2/XML Extender and MS SQL Server provide similar functionality)

514

12.1 Publishing/Mapping Relational Data in XML

Several generic mappings are possible:

Consider country(name: “Germany”, code: “D”, population: 83536115, area: 356910)

• tables, rows, and subelements

<table name="country">

<row><name>Germany</name><code>D</code>

<population>83536115</population><area>356910</area></row>

:

</table>

• tuples with subelements

<country><name>Germany</name><code>D</code>

<population>83536115</population><area>356910</area></country>

:

• analogous with XML attributes

• advantage with subelements (vs. attributes): SQL values can also be object types
(mapped to XML) and XMLType contents!

515

Example: HTTP-based access to Oracle

The whole database is mapped (virtually) to XML:

<SCHMIDT> -- user name as root element

<COUNTRY> -- all names are capitalized

<ROW><NAME>Germany</NAME><CODE>D</CODE>

<POPULATION>83536115</POPULATION><AREA>356910</AREA></ROW>

:

</COUNTRY>

:

</SCHMIDT>

Access by extended URL notation:

• URL: computer :port /oradb/user /tablename/ROW[condition]

• capitalize user, table and attribute names

• URL must select a single element (whole table, or single row)

ap34.ifi...:8080/oradb/DUMMY/COUNTRY %% show page source

ap34.ifi...:8080/oradb/DUMMY/COUNTRY/ROW[CODE='D']

ap34.ifi...:8080/oradb/DUMMY/COUNTRY/ROW[CODE='D']/NAME

ap34.ifi...:8080/oradb/DUMMY/COUNTRY/ROW[CODE='D']/NAME/text()

516

Generic Mappings (Cont’d)

Up to now: mapping of materialized base tables.
Problem: how to map the result of a query with computed columns?
SELECT Name, Population/Area FROM country

• tables, rows, and subelements:
the DTD is independent from the relational schema
metadata is contained in the attributes
(“JDBC-style” processing of result sets)

<table name="country">

<row><column name="name">Germany</column>

<column name="population/area">83536115</column>

<column name="area">234.05473</column>

</row>

:

</table>

• another “most generic mapping” as (object, property, value) to be discussed later ...

Additionally: often, tools define their own access functionality ...

517

ACCESS TO SQL DATABASES WITH SAXON -XSLT
[does currently not work]

• uses JDBC technology for remote access (at least for Java XSL tools)

• defines namespace “sql”

• <sql:connect> with attributes “database” (JDBC url), “driver” (JDBC driver)
returns a JDBC connection object as a value of type “external object” that can be bound
to a variable, e.g. $connection.
Note: there can be several connections at the same time.

• <sql:query> with following attributes allows to state an SQL query whose result is
generically mapped to XML:

– connection

– table: ... the “FROM” clause

– column: ... the “SELECT” clause

– where: optional condition

– row-tag: tag to be used for rows (default: “row”)

– col-tag: tag to be used for columns (default: “col”)

result is a collection of <row> ... </row> elements that can e.g. be bound to a variable.

518

Administrative Parameters

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"

xmlns:sql="java://net.sf.saxon.sql.SQLElementFactory">

<!-- insert your database details here, or supply them in parameters -->

<xsl:param name="driver" select="'oracle.jdbc.driver.OracleDriver'"/>

<xsl:param name="database" select="'jdbc:oracle:thin:USER/PASSWD@IPADDRESS:1521:USER'"/>

<xsl:param name="user" select="'USER'"/>

<xsl:param name="password" select="'PASSWD'"/>

<xsl:variable name="connection" as="java:java.sql.Connection"

xmlns:java="http://saxon.sf.net/java-type">

<sql:connect xsl:extension-element-prefixes="sql"

driver="{$driver}" database="{$database}"

user="{$user}" password="{$password}">

<xsl:fallback>

<xsl:message terminate="yes">SQL extensions not installed</xsl:message>

</xsl:fallback>

</sql:connect>

</xsl:variable>

</xsl:stylesheet>

[Filename: XSLT/sql-administrativa-fake.xsl]

519

Example Access/Query

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"

xmlns:sql="java:/net.sf.saxon.sql.SQLElementFactory">

<xsl:include href="sql-administrativa.xsl"/>

<xsl:template match="*">

<xsl:call-template name="countries"/>

</xsl:template>

<xsl:template name="countries">

<xsl:variable name="country-table">

<!-- ** the query's result is bound to the surrounding variable ** -->

<sql:query xsl:extension-element-prefixes="sql"

connection="$connection" table="country" column="*"/>

</xsl:variable>

<xsl:copy-of select="$country-table"/>

<sql:close connection="$connection"/>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/sql-query.xsl]

uses a primitive mapping that relies on the order of columns.

520

Example Access/Query

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0"

xmlns:sql="java:/net.sf.saxon.sql.SQLElementFactory"

extension-element-prefixes="sql">

<xsl:include href="sql-administrativa.xsl"/>

<xsl:template match="*">

<xsl:call-template name="countries"/>

</xsl:template>

<xsl:template name="countries">

<xsl:variable name="country-table">

<sql:query connection="$connection" table="country,encompasses"

where="country.code=encompasses.country"

column="country.name,encompasses.continent,percentage"

row-tag="country" column-tag="bla"/>

</xsl:variable>

<xsl:copy-of select="$country-table"/>

<sql:close connection="$connection"/>

</xsl:template>

</xsl:stylesheet>

[Filename: XSLT/sql-query2.xsl]

521

Further Commands

• <sql:insert> with attribute

– attribute: table=“...”

– children: <column name=“...” select=“...”/>

value can also be given as contents of the column element; currently always
interpreted as a string.

• <sql:close> with a “connection” attribute

See also http://www.saxonica.com/documentation/documentation.html

522

12.2 The SQL/XML or SQLX standard

Goal: Coexistence between Relational Data and XML

• mapping relational data to XML

– by a default mapping (previous section)

– a (user-defined) XML views over relational data
(“XML publishing”)

• storing XML data in relational systems

– data-centric XML: efficient, several possibilities

– document-centric XML: problematic

523

SQL/XML

• draft for an ISO standard since 2003: www.sqlx.org

• an SQL datatype “XMLType” for storing XML as “value” in databases:

Jim Melton (Oracle): “SQL/XML includes an XML datatype for use inside SQL. This
allows the SQL engine to automatically ’shred’ data-oriented XML documents for storing
some elements and contents in one place while keeping other elements in other places.
Using indexes and joins, you can then bring this data back together very quickly.”

– theory: an abstract datatype with operators/methods
(cf. Computer Science I lecture)

– API: like (user-defined) object types in object-relational databases
(cf. SQL database lab)

* handled with special methods (constructors, selectors)

* can be exported to XML tools, e.g. by JDBC
(either as DOM instance, or serialized as ASCII)

* libraries provide additional functions for processing XML in PL/SQL.

– internal implementation: not seen by the user
(i) shredding or (ii) storing as LOB (Large Object)

524

SQL/XML

Making XML data a first-class citizen in relational databases,
seamless flow from relational data to XML and back

SQL to XML

• XML generation from SQL queries (i.e., in the SELECT clause)
(e.g., as packets for data exchange)

• define XMLType views over SQL data

SQL access and manipulation of XML inside the RDB

... use XPath expressions inside SQL (and rise the question what is actually the difference to
XQuery):

• storing XML in RDB (e.g. if XML-data exchange packets came in),

• XPath-based extraction of XML content (SELECT clause),

• XPath-based query of XML content (WHERE clause),

• XPath-based update of XML content (in SQL),

• define XPath-based relational views over XML content.

525

“XML” AS AN SQL DATATYPE

XML/XMLType: an SQL datatype to hold XML data:

CREATE TABLE mondial OF XMLType; use as Row Object Value
CREATE TABLE CountryXML OF XMLType; use as Row Object Values

As column object type in relational tables:
CREATE TABLE CityXML

(name XMLType, province VARCHAR2(35), country VARCHAR2(4),

population XMLType,

coordinates XMLType);

[Filename: SQLX/cityxmltable.sql]

• generation: INSERT INTO table VALUES (... , XMLType(’XML as ASCII’) ...)

INSERT INTO CityXML

VALUES(XMLType('<name>Clausthal</name>'), 'Niedersachsen', 'D',

XMLType('<population year="2004">10000</population>'),

XMLType('<coordinates><longitude>10.4</longitude><latitude>51.8</latitude>

</coordinates>'));

[Filename: SQLX/cityxmltuple.sql]

526

HANDLING OF SQL XMLT YPE DATATYPE

• generate it by certain constructors (“XML Publishing Functions”)

• storage: chosen by the database

– “shredding” and distributing over suitable tables (of object-relational object types)
(queries are translated into SQL joins/dereferencing)

– storing it as VARCHAR, CLOB (Character Large Object), or as separate file
(the remainder of this section uses CLOB)

– storing it “natively”

• query it by XPath

• export/exchange in ASCII:
XMLSerialize: a function to serialize an XML value as an ASCII character string:
XMLSerialize: XMLType→ String

• additional methods provided by PL/SQL libraries,

• XML objects can also be used e.g., as documents or as stylesheets, applied to
documents (by PL/SQL libraries).

527

HOW TO GET XMLTYPE INSTANCES

• by the opaque constructor
XMLType: STRING→ ELEMENT
that generates an XMLType instance from an ASCII string

– the inverse to Java’s to_string,

– nearly all datatypes have such an opaque constructor (e.g., for lists: list(“[1,2,3,4,5]”));

• generate instances recursively by structural constructors that are closely related to the
underlying Abstract Datatype
(cf. binary trees, lists, stacks in Computer Science I);

• or load them from an XML file (that then actually contains the ASCII serialization and
uses the opaque constructor).

528

LOADING XMLTYPE INSTANCES

• from files:

– tell Oracle where it finds XML files:

CREATE OR REPLACE DIRECTORY XMLDIR AS '/tmp/' ;

CREATE OR REPLACE DIRECTORY XMLDIR AS '/home/bla/...' ;

* Admin only, or after GRANT CREATE ANY DIRECTORY,

* on the same computer where the DBMS server (!) is installed.

– copy XML file (e.g. m.xml) into XMLDIR

* the XML file must not contain a reference to a DTD!

* the file must be publicly readable – chmod filename 644

– load the file into the database (use the xdb_utilities package that must be installed
separately)

INSERT INTO mondial

VALUES(xdb_utilities.getXMLfromfile('m.xml','XMLDIR'));

set long 10000 ; -- number of characters in the output

SELECT * FROM mondial;

529

Admin’s Note on Creating Directories

admin: GRANT CREATE ANY DIRECTORY TO scott;

scott: CREATE OR REPLACE DIRECTORY XMLDIR AS '/tmp';

SELECT owner, object_name FROM all_objects WHERE object_type='DIRECTORY';

SELECT * FROM all_directories;

• The directory belongs then to SYS

• there is only one such directory declaration for the whole system

• “delete” it (i.e., make it unknown) DROP directory XMLDIR

• allow users to use the directory for reading:

GRANT READ on XMLDIR TO scott;

530

LOADING XML F ILES : L OCAL SOLUTION

• for importing XML files, our local installation provides a method
system.getxml(’http-url’):

SELECT system.getxml(

'http://www.dbis.informatik.uni-goettingen.de/Teaching/DBP/XML/mondial.xml')

FROM dual;

or, inserting it into a table:
INSERT INTO mondial VALUES(

system.getxml(

'http://www.dbis.informatik.uni-goettingen.de/Teaching/DBP/XML/mondial.xml'));

[Filename: SQLX/insertmondial.sql]

• that the XML file must not contain a reference to a DTD!

• the file can e.g. reside in the local homedirectory or anywhere in the Web,

• note that the file must be publicly readable – chmod filename 644

SET LONG 10000;

SELECT * FROM mondial;

531

SQL/XML: G ENERATING XML BY XML PUBLISHING FUNCTIONS

The SQL/XML Standard defines “XML publishing functions” that act as constructors (the
name comes from the fact that they are also used to publish relational data in XML format):

• constructors of the recursively defined abstract datatype “XMLType”,

• create fragments or instances of XMLType,

• usage in the same way as predefined or user-defined functions (e.g., in the SELECT
clause),

• output (e.g. in SELECT) in ASCII notation.

532

Some Theory: the Abstract Datatype

... constructors of the recursively defined abstract datatype “XMLType”:

Sub-datatypes:

• ELEMENT for element nodes

• ATTRIBUTE for attribute nodes

• QNAME for names of elements and attributes
(restriction of STRING without whitespaces etc.)

• STRING for text values (text nodes and attribute values)

• TUPLE(type) for a tuple of instances of type

• TABLE(type) for a table of instances of type

Constructors are very similar to those of XQuery (in the return clause), e.g.,:

element name attrs-and-content

and those of XSLT: <xsl:element name="..."> content </xsl:element>

and those of the ... DOM.

(always the same abstract datatype, but expressed with different syntaxes)

533

SQL/XML P UBLISHING FUNCTIONS: OVERVIEW

Basic constructors:

• XMLType: generates an XMLType instance from an ASCII string (“opaque constructor”)
XMLType: STRING→ ELEMENT

• XMLElement: generates an XML element with a given name and content (either text
(simple contents) or recursively created XML (complex contents) or mixed
XMLElement: QNAME × (STRING ∪ ELEMENT ∪ ATTRIBUTE)∗ → ELEMENT
XMLElement: QNAME→ ELEMENT for empty elements

• XMLAttributes: generates a one or more attribute nodes from a sequence of
name-value-pairs
XMLAttributes: (QNAME × STRING)+ → ATTRIBUTE+

534

SQL/XML P UBLISHING FUNCTIONS: OVERVIEW (CONT’D)

Further constructors:

• XMLForest: a function to generate a sequence, called a "forest," of XML elements with
simple contents from a sequence of name-value-pairs
XMLForest: (QNAME × STRING)+ → ELEMENT+

(note: the analogue to XMLAttributes for simple elements)

• XMLAgg: a function to group, or aggregate, XML data in a table into a sequence of nodes
XMLAgg: TABLE(XMLTYPE)→ XMLTYPE*
(note that a table is different from a list as in XMLForest!)

• XMLConcat: a function to concatenate the components of a tuple into a sequence
XMLConcat: TUPLE(XMLTYPE+)→ XMLTYPE*
(note that a tuple is also different from a list as in XMLForest!)

• [XMLNamespaces: a function to declare namespaces in an XML element]

535

CONSTRUCTING XML: E LEMENTS

Basic form: XMLElement

• XMLElement: Name × Element-Body→ Element:

– Element-Body: text or recursively generated (attributes, elements, mixed)

SELECT XMLElement("x") FROM DUAL;

(note: this result is not correct: <x/> is an empty Element, while <x></x> is an element with
the empty string as contents!)

SELECT XMLElement("Country",'bla') FROM DUAL;

SELECT XMLElement(Country,'bla') FROM DUAL;

• note: using “...” to indicate non-capitalization (otherwise the whole name is capitalized).
(note that single and double “...” must be used exactly as in the example).

536

Elements with Non-Empty Content

• XMLElement: second argument contains the element body (attributes, subelements, text),

• XMLAttributes: list of name-value pairs that generate attributes.

SELECT XMLElement("Country",

XMLAttributes(code AS "car_code", capital AS "capital"),

name,

XMLElement("Population",population),

XMLElement("Area",area))

FROM country

WHERE area > 1000000;

[Filename: SQLX/xmlelement.sql]

A result element:

<Country car_code="R" capital="Moscow">

Russia

<Population>148178487</Population>

<Area>17075200</Area>

</Country>

537

Optional Substructures

• XML as abstract datatype, functional constructors

• semistructured data: flexible and optional substructures

SELECT XMLElement("City",

XMLAttributes(country AS country),

XMLElement("Name",name),

CASE WHEN longitude IS NULL THEN NULL

ELSE XMLElement("Longitude",longitude) END,

CASE WHEN latitude IS NULL THEN NULL

ELSE XMLElement("Latitude",latitude) END)

FROM city

WHERE longitude IS NOT null;

[Filename: SQLX/xmlelement2.sql]

• Note: CASE WHEN cond THEN a ELSE b END

is a functional construct
(like in “if” in XQuery and <xsl:if> in XSLT)

538

CONSTRUCTING XML: S EQUENCES OF ELEMENTS

XMLForest: short form for simple elements

SELECT XMLElement("Country",

XMLForest(name AS Name,

code AS car_code,

population AS "Population",

area AS "Area"))

FROM country

WHERE area > 1000000;

[Filename: SQLX/xmlforest.sql]

<Country>

<NAME>Brazil</NAME> <!-- note capitalization -->

<CAR_CODE>BR</CAR_CODE>

<Population>162661214</Population>

<Area>8511965</Area>

</Country>

⇒ canonical mapping from tupels to XML elements with simple content.

539

Subqueries

Contents can also be generated by (correlated) Subqueries:

SELECT XMLElement("Country",

XMLAttributes(code AS "car_code"),

XMLElement("Name",name),

XMLElement("NoOfCities",

(SELECT count(*)

FROM City

WHERE country=country.code)))

FROM country WHERE area > 1000000;

SELECT XMLElement("Country",

XMLAttributes(code AS "car_code"),

XMLElement("Name",name),

(SELECT XMLElement("NoOfCities",count(*))

FROM City

WHERE country=country.code))

FROM country WHERE area > 1000000;

[Filename: SQLX/xmlsubquery.sql]

540

CONSTRUCTING XML: R ESTRUCTURING

• Relational databases have

– literals (and objects for object-relational tables),

– tuples,

– tables.

• XML structures have

– sequences

– nesting (generated by XMLElement or by nested subqueries)

How to create

• a sequence from a tuple [note: XMLForest does not create a sequence from a tuple, but
from a list that is generated from a tuple], or

• a sequence from a table?

541

CONSTRUCTING XML: G ROUPING INTO A SEQUENCE

Aggregated Lists

• XMLAgg: is a new SQL aggregate function (like count() or sum()), that does not return a
single value but the sequence of nodes of that table

• Note: XMLAgg is not applied to a sequence of items, but to a table of items!

Simplest case: XMLAgg over a table of XMLType row objects:

SELECT XMLElement("Cities",

(SELECT XMLAgg(name)

FROM CityXML c))

FROM DUAL;

[Filename: SQLX/xmlagg.sql]

Result:

<Cities>

<name>...</name>

<name>...</name>

:

</Cities>

542

CONSTRUCTING XML: G ROUPING

Aggregated Lists

... another example

• create a sequence of XML nodes from all entries of a relational table:

SELECT XMLElement("Continents",

(SELECT XMLAgg(XMLElement("Continent", XMLAttributes(name AS "Name",

area AS "Area")))

FROM continent))

FROM DUAL;

[Filename: SQLX/xmlagg2.sql]

Result:

<Continents>

<Continent Name="Europe" Area="..."/>

<Continent Name="Asia" Area="..."/>

:

</Continents>

543

CONSTRUCTING XML: N ESTED GROUPING

Grouping/Aggregation: Nested Lists

• XMLAgg: generate a collection from the tuples inside of a GROUP BY:
In XML, this list of items can also be used!

... now we can have the number of cities in a country, together with a list of them:

SELECT XMLElement("Country",

XMLAttributes(country AS car_code),

XMLElement("NoOfCities", count(*)),

XMLAgg(XMLElement("city",name) ORDER by population))

FROM city

GROUP BY country;

[Filename: SQLX/xmlgroupagg.sql]

Element of the result set:

<Country CAR_CODE="D">

<NoOfCities>85</NoOfCities>

<city>Erlangen</city> <city>Kaiserslautern</city> ... <city>Berlin</city>

</Country>

544

CONSTRUCTING XML: M APPING TUPLES INTO SEQUENCES

XMLConcat

• takes a tuple of XML elements and transforms them into a sequence:

SELECT XMLElement("City", XMLConcat(name, population, coordinates))

FROM CityXML

WHERE country='D';

[Filename: SQLX/xmlconcat.sql]

An element of the result set:

<City>

<name>Berlin</name>

<population>...</population>

<coordinates><longitude>...</longitude><latitude>...</latitude></coordinates>

</City>

545

Example: XMLConcat and XMLAgg

• the GROUP BY from Slide 542 can equivalently be expressed by using a (correlated)
(Sub)query that returns a tuple for each country (consisting of the number and the
aggregation of all cities):

SELECT XMLElement("Country",

XMLAttributes(code AS code),

XMLELEMENT(name, name),

(SELECT XMLConcat(

XMLElement("NoOfCities", count(*)),

XMLAgg(XMLElement("city",name)))

FROM City

WHERE country=code))

FROM country;

[Filename: SQLX/xmlconcatagg.sql]

546

Constructed XML can then be used for filling tables:

FILLING A TABLE ... WITH XML ROW VALUES

CREATE TABLE CountryXML OF XMLType;

INSERT INTO CountryXML

(SELECT XMLElement("Country",

XMLAttributes(code AS "Code",

population AS "Population"),

XMLElement("Name",name),

XMLElement("Area",area),

(SELECT XMLElement("Capital",

XMLForest(name AS "Name",

population AS "Population"))

FROM city

WHERE country=country.code

AND city.name=capital))

FROM country);

[Filename: SQLX/fillcountry.sql]

547

FILLING A TABLE : XML C OLUMN VALUES

CREATE TABLE CityXML

(name XMLType,

province VARCHAR2(35),

country VARCHAR2(4),

population XMLType,

coordinates XMLType);

INSERT INTO CityXML

(SELECT XMLElement("name", name), province, country,

CASE WHEN population IS NULL THEN NULL

ELSE XMLElement("population", XMLAttributes(95 as year), population)

END ,

CASE WHEN longitude IS NULL THEN NULL

ELSE XMLElement("coordinates",

XMLElement("longitude", longitude),

XMLElement("latitude", latitude))

END

FROM city);

[Filename: SQLX/fillcity.sql]

548

HANDLING XML DATA FROM WITHIN SQL

• recall: XMLType is defined as an abstract datatype.

• it also has selectors that provide an interface for standard XML languages

• signature:

extract: XMLType × XPath_Expression→ XMLType ∪ string
extractValue: XMLType × XPath_Expression→ string
existsNode: XMLType × XPath_Expression→ Boolean

• implementation based on user-defined object types

– cf. object-relational extensions to SQL

• above operations also available as member methods

SELECT extract(value(m), '//city[name="Berlin"]') FROM mondial m;

SELECT m.extract('//city[name="Berlin"]') FROM mondial m;

SELECT extractValue(value(m), '//country[@car_code="D"]/population')

FROM mondial m;

SELECT m.extractValue('//country[@car_code="D"]/population')

FROM mondial m; -- buggy (since version 9 ... and still in 11)!!!

549

SELECT: “Extract” Function

extract(XMLType_instance, XPath_string)
XMLType_instance.extract(XPath_string)

• First argument: selects an attribute with value of type “XMLType” in the current row (use
value(.) function)

• Second argument: applies XPath_string to it

• Result: value of type XMLType or any other SQL type
(multi-valued results are concatenated)

XML Row Values

Value of the row is of type XMLType: apply methods directly

SELECT extract(value(c), '/Country/@Code'),

extract(value(c), '/Country/Capital/Name')

FROM CountryXML c;

SELECT c.extract('/Country/@Code'),

c.extract('/Country/Capital/Name')

FROM CountryXML c;

550

ASIDE: SHORT OVERVIEW OF XPATH

(use the SQLX section in different lectures)

• Navigation as in Unix: /step/step/step
/mondial/country/name

• capitalization is relevant!

• result: a sequence of XML nodes (not only values, but also trees):
/mondial/country

• steps to deeper descendants: /mondial//city/name , //city/name
(latter includes /mondial/country/city and /mondial/country/province/city)

• attributes: .../@attributname: /mondial/country/@area

• access to text contents: /mondial/country/name/text()

• evaluation of conditions during navigation:
/mondial/country[@code=’D’]/@area
/mondial/country[name/text()=’Germany’]/@area

• Comparisons automatically use only the text contents:
/mondial/country[name=’Germany’]/@area

551

SELECT: “Extract” Function (Cont’d)

XML Column Values

Recall:

CREATE TABLE CityXML (name XMLType, province VARCHAR2(35),

country VARCHAR2(4), population XMLType, coordinates XMLType);

CityXML.population is an XMLType column object:

SELECT extract(population,'/') FROM CityXML;

SELECT c.population.extract('/') FROM CityXML c;

SELECT name, extractValue(population,'/population/@YEAR'),

extractValue(population,'/population')

FROM CityXML;

SELECT name, c.population.extract('/population/@YEAR').getNumberVal(),

c.population.extract('/population/text()').getNumberVal()

FROM CityXML c

ORDER BY 3;

• exact capitalization in XPath argument!

• extractValue currently not implemented as member method (bug)

• use getNumberVal() and getStringVal() functions

552

SUBQUERIES TO XMLTYPE IN THE WHERE CLAUSE

... for selecting and comparing values, use also extract():

SELECT name

FROM CityXML c

WHERE c.population.extract('/population/text()')

.getNumberVal() > 1000000;

SELECT c.extract('/Country/Name/text()')

FROM CountryXML c

WHERE c.extract('/Country/@Population')

.getNumberVal() > 1000000;

• Note: comparison takes place on the SQL level (WHERE)
(→ join functionality when variables are used).

• Note: if the XPath expression returns a sequence of results, these are concatenated
already during the evaluation of the extract() function ...

• ... thus, one has to use another way.

553

WHERE: “ExistsNode” Function

existsNode(XMLType_instance, XPath_string)

• Checks if item is of XMLType_instance, and XPath_string has a nonempty result set:

• note: the value for the comparison must be given in the XPath string – no joins on the
SQL level possible.

• result: 1, if a node exists, 0 otherwise.

SELECT name, extractValue(population,'/population')

FROM CityXML

WHERE existsNode(population, '/population[text()>1000000]') = 1;

SELECT name, extractValue(population,'/population')

FROM CityXML c

WHERE c.population.existsNode('/population[text()>1000000]') = 1;

554

UPDATING XML DATA

• the complete XMLType value is changed, not updated

• updateXML(...) as a (transformation) function!
Note: the statement “SELECT updateXML(...) FROM ...” does not update the DB, but
returns the value that would result from the update.

updateXML(XMLType_instance, XPath_string, new_value)

• first argument: SQL – selects an (SQL-)attribute of the current tuple (must result in an
XMLType object),

• 2nth argument: selects the node(s) to be modified by the value of the ...

• 2n + 1th argument: new value,

• result: updates instance of type XMLType.

• Note: the expression “SELECT updateXML(...) FROM ...” does not change the database
but returns only the value that would result from the update.

555

Updating XML Data (Cont’d)

SELECT updateXML(c.population,

'Population/text()','1000000',

'Population/@YEAR','2004')

FROM CityXML c WHERE name='Gottingen';

SELECT updateXML(value(c),

'/Country/Name/text()','Fidschi')

FROM CountryXML c

WHERE extractValue(value(c),'Country/Name')='Fiji';

[Filename: SQLX/updatexml.sql]

556

Updating XML Data (Cont’d)

This function is then used in the SQL SET-Statement:

UPDATE CityXML c

SET c.population -- an XMLType element

= updateXML(c.population,

'/population/text()','1000000',

'/population/@YEAR','2004')

WHERE name='Gottingen'

UPDATE CountryXML c

SET value(c) = updateXML(value(c),

'/Country/Name/text()','Fidschi')

WHERE existsNode(value(c),'/Country[Name="Fiji"]') = 1

557

CREATE OR REPLACE FUNCTION xslexample RETURN CLOB IS

xmldoc CLOB;

xsldoc CLOB;

myParser dbms_xmlparser.Parser;

indomdoc dbms_xmldom.domdocument;

xsltdomdoc dbms_xmldom.domdocument;

xsl dbms_xslprocessor.stylesheet;

outdomdocf dbms_xmldom.domdocumentfragment;

outnode dbms_xmldom.domnode;

proc dbms_xslprocessor.processor;

html CLOB DEFAULT 'BLA'; -- must be initialized;

BEGIN

-- Get the XML document as CLOB

SELECT value(m).getClobVal() INTO xmldoc FROM mondial m;

-- Get the XSL Stylesheet as CLOB

SELECT s.stylesheet.getClobVal() INTO xsldoc

FROM stylesheets s WHERE name='mondial-simple.xsl';

-- Get the new xml parser instance

myParser := dbms_xmlparser.newParser;

-- Parse the XML document and get its DOM

dbms_xmlparser.parseClob(myParser, xmldoc);

indomdoc := dbms_xmlparser.getDocument(myParser);

-- Parse the XSL document and get its DOM

dbms_xmlparser.parseClob(myParser, xsldoc);

xsltdomdoc := dbms_xmlparser.getDocument(myParser);

xsl := dbms_xslprocessor.newstylesheet(xsltdomdoc, '');

-- Get the new xsl processor instance

proc := dbms_xslprocessor.newProcessor;

-- Apply stylesheet to DOM document

outdomdocf := dbms_xslprocessor.processxsl(proc, xsl, indomdoc);

outnode := dbms_xmldom.makenode(outdomdocf);

-- Write the transformed output to the CLOB

dbms_xmldom.writetoCLOB(outnode, html);

-- Return the transformed output

return(html);

END;

/

SELECT xslexample FROM dual; [Filename: SQLX/xslexample.sql]

558

12.3 XQuery Support in SQLX

SQL function XMLQuery()

• SQL function xmlquery(’query ’ [passing vars clause] returning content)

• XQuery function ora:view(tablename) turns tables into sequences of XML elements:

– relational tables: Every row is turned into a ROW element as shown on Slide 514,

– object table of XMLType: sequence of the XML elements in the object table,
comparable to XQuery’s let

• the result is the sequence of nodes as returned by the XQuery statement (of type “XML
content”).

SELECT

xmlquery(

'for $c in ora:view("countryXML")/Country

where $c/Capital[Population > 1000000]

return $c/Name'

returning content)

from dual;

SELECT

XMLElement("result",

xmlquery(

'for $c in ora:view("countryXML")/Country

where $c/Capital[Population > 1000000]

return $c/Name'

returning content)) from dual;

559

Passing XML parameters to XMLQuery()

Instances of XMLType can be selected in the SQL environment and passed to XMLQuery:

• context node

• variables

SELECT

XMLElement("result",

xmlquery(

'for $c in ora:view("countryXML")/Country

where $c/Capital[Population > $pop]

return $c/Name'

passing

(SELECT population FROM City WHERE name='Tokyo') as "pop"

returning content

)) from dual;

• comma-separated value-as-varname-list

• without “as ...”: context node

• "varname" cares for capitalization ($POP and ... as pop would also be correct)

560

Syntax example

• Select names of all countries

• from the only XML element stored in table mondial (used as context element)

• that have a city that has a higher population than Tokyo (obtained from an SQL query)

SELECT

XMLElement("result",

xmlquery(

'for $c in //country

where $c//city[population > $POP]

return $c/name'

passing

(SELECT value(m) from mondial m),

(SELECT population FROM City WHERE name='Tokyo') as POP

returning content

)) from dual;

561

XMLTable(): from XML contents sequences back to relational tables

• XQuery returns a sequence of nodes, which is of XML type “content” that can be put in an
element (see above).

Turn the sequence of nodes into a table of rows:

• SQL function xmltable(’query ’ [passing vars clause] [COLUMNS column def clause])

• column-def-clause is a comma-separated list of (datatype, column name, XPath expr.),

• default: a single XMLType pseudo-column, named COLUMN_VALUE,

• the result of XMLTable can be used like a relational table.

SELECT column_value

FROM

xmltable ('

for $j in //country

return $j/name'

passing

(SELECT value(m) FROM mondial m));

every row of the table is of XMLType and contains
a <name>...</name>element

SELECT column_value

FROM

XMLTABLE ('

for $j in //country

return $j/name'

PASSING

(SELECT value(m) FROM mondial m))

WHERE column_value LIKE '%fr%';

Note: “like” is applied to the (contents of the) ele-
ment.

562

XMLTABLE columns specification

SELECT *

FROM XMLTable ('

for $j in //country

return $j/name'

PASSING

(SELECT value(m) FROM mondial m)

COLUMNS

result XMLTYPE PATH '.',

x VARCHAR2(35) PATH 'text()');

returns <name>...</name>elements.

SELECT *

FROM XMLTable ('

for $j in //country

return $j'

PASSING

(SELECT value(m) FROM mondial m)

COLUMNS

name VARCHAR2(35) PATH 'name',

area NUMBER PATH '@area',

population NUMBER PATH 'population');

casts automatically to numbers.

• Additional specification of namespaces (for the paths): see documentation.

563

Back and Forth: an example

• the result of XMLTable(...) can be used like a relational table:

SELECT u.column_value, u.column_value.extract('//Name/text()')

FROM (

SELECT t.column_value

FROM

XMLTABLE ('

for $j in $X/*

return $j'

PASSING

(xmlquery(

'for $c in ora:view("countryXML")/Country

where $c/Capital[Population > $pop]

return $c/Name'

PASSING (SELECT population FROM city WHERE name='Berlin') as "pop"

RETURNING content)

) AS X) t) u

WHERE u.column_value.extract('//Name/text()') like '%ic%';

• or e.g. in insert: INSERT INTO ... (SELECT * FROM XMLTable(...)).

564

XQuery in SQLplus

• simple keyword “xquery”,

• returns the result of applying XMLTable (i.e., one row for each result of the xquery
statement:

xquery

for $c in ora:view("countryXML")/Country

where $c/Capital[Population > 1000000]

return $c/Name

/

In contrast to many XML tools, attribute nodes are output as string values:

xquery

for $i in ora:view("mondial")/mondial/country

return $i/@car_code

/

565

Namespaces and Function Declarations

• as usual in XQuery:

xquery

declare namespace local = "http://localhost:8080/defaultNS";

declare function local:density($area, $pop)

{

return $pop div $area

};

for $c in ora:view("mondial")/country

return local:density($c/population,$c/@area)

/

566

Functional Restrictions

(Oracle version 11.1.0.7)

• most XQuery/XPath functionality is supported (aggregation, context functions, string
functions, path alternatives, ...)

• id(.) and idref(.) is not supported (recall that documents do not contain a DTD reference)

• any/all is not supported

567

INDEXES

• Indexes on XML data can be defined over any literal fields:

CREATE INDEX countrycodeindex

ON countryxml c

(EXTRACTVALUE(value(c), '//Country/@Code'));

CREATE INDEX countrycapnameindex

ON countryxml c

(EXTRACTVALUE(value(c), '//Country/Capital/Name'));

CREATE INDEX mondialcitynameindex

ON mondial m

(EXTRACTVALUE(value(m), '//Country//City/Name'));

568

12.4 XML Storage in Oracle

• CLOB (Character Large Object): Default.
XML is stored in its ASCII representation.
Note: for content management/delivery (e.g., to a Web server or as a Web service that
just requires to get an ASCII stream) this is optimal.
Queries: XML is parsed internally and XPath/XQuery is applied.

• Binary XML

CREATE TABLE mondialBin OF XMLType

XMLTYPE STORE AS BINARY XML;

INSERT INTO mondialBin VALUES(

system.getxml(

'http://www.dbis.informatik.uni-goettingen.de/Teaching/DBP/XML/mondial.xml'));

• object-relational (only possible, if an XML Schema with oracle-specific annotations is
preloaded)

569

STORAGE : PERFORMANCE COMPARISON

• BinaryXML is much faster
this example: 16:1

SET PAUSE OFF;

SET TIMING ON;

select xmlquery('

for $i in ora:view("mondial")/mondial

let $city := $i//city

let $country := $i/country

where $city/@country = $country/@car_code

and $city/@id = $country/@capital

return $city/name

'returning content)

from dual;

needs first time: 8.34,
then between 7.30 and 7.90

select xmlquery('

for $i in ora:view("mondialbin")/mondial

let $city := $i//city

let $country := $i/country

where $city/@country = $country/@car_code

and $city/@id = $country/@capital

return $city/name

'returning content)

from dual;

needs first time: 0.42,
then between 0.28 and 0.30

570

Storage: Performance Comparison (Cont’d)

• join between two XPaths on a single XML table

SELECT * FROM XMLTABLE('

for $i in ora:view("mondial")//country

$j in ora:view("mondial")//city,

where $i/@car_code = $j/@country

and $i/@capital = $j/@id =

return $j/name/text()');

• without XMLTYPE STORE AS BINARY XML: to do

• with XMLTYPE STORE AS BINARY XML: to do

571

Storage: Performance Comparison (Cont’d)

CREATE TABLE mcity OF XMLType XMLTYPE STORE AS BINARY XML;

CREATE TABLE mcountry OF XMLType XMLTYPE STORE AS BINARY XML;

INSERT INTO mcity (SELECT COLUMN_VALUE FROM XMLTABLE(

'for $c in ora:view("mondial")//city return $c'));

INSERT INTO mcountry (SELECT COLUMN_VALUE FROM XMLTABLE(

'for $c in ora:view("mondial")//country return $c'));

CREATE INDEX mcountrycode ON mcountry c

(EXTRACTVALUE(value(c), '//country/@car_code'));

CREATE INDEX mcountrycap ON mcountry c

(EXTRACTVALUE(value(c), '//country/@capital'));

CREATE INDEX mcitycountry ON mcity c

(EXTRACTVALUE(value(c), '//city/@country'));

CREATE INDEX mcityid ON mcity c

(EXTRACTVALUE(value(c), '//city/@id'));

SELECT * FROM XMLTABLE('

for $i in ora:view("mcountry")/country,

$j in ora:view("mcity")/city

where $i/@car_code = $j/@country and $i/@capital = $j/@id

return $j/name'); -- /text() -> error/bug

572

Storage: Performance Comparison (Cont’d)

• without XMLTYPE STORE AS BINARY XML: even for restricted size (cities > 200000
inhabitants, countries with area >1000000) 26 minutes.

• with XMLTYPE STORE AS BINARY XML: 3 minutes

• without indexes: first run needs longer (e.g., 26min/20min); then nearly same time as with
indexes.

573

12.5 Background: XMLType as Object Type

(cf. “Practical Training in SQL” course)

Since SQL3 Standard: Object(-relational) types

• user-definable: CREATE TYPE AS OBJECT ... / CREATE TYPE BODY

• stored as row or column objects
CREATE TABLE cities OF CityObjectType;

• member methods

– programmed in PL/SQL or recently also in Java

– calls are embedded into SQL: SELECT object.method(args)

• reference attributes:
CREATE TABLE COUNTRY (..., capital REF CityType, ...);
SELECT c.capital ...;

⇒ now used for implementing XMLType

• as predefined internal classes/types

• can be used high-level from SQL, or low-level inside PL/SQL

574

XSLT IN ORACLE : “T RANSFORM” M EMBER METHOD

Member Method of XMLType: XML-instance.transform(Stylesheet-as-XMLValue)
as SQL function: SELECT XMLTransform(XML-instance,Stylesheet-as-XMLValue)

CREATE TABLE stylesheets

(name VARCHAR2(100),

stylesheet XMLTYPE);

INSERT INTO stylesheets VALUES('mondial-simple.xsl',

system.getxml('http://www.dbis.informatik.uni-goettingen.de' ||

'/Teaching/DBP/XML/mondial-simple.xsl'));

SELECT value(m).transform(s.stylesheet)

FROM mondial m, stylesheets s

WHERE s.name = 'mondial-simple.xsl';

SELECT XMLTransform(value(m),s.stylesheet)

FROM mondial m, stylesheets s

WHERE s.name = 'mondial-simple.xsl';

[Filename: SQLX/applystylesheet.sql]

575

Using built-in DOM, Parser, and XSL Engine

Tools from several packages can be explicitly used inside PL/SQL procedures:

• dbms_xmldom: implements DOM (usually, XML is transformed into DOM for processing it
in detail)
PL/SQL call: dbms_xmldom.dosomething(object,args)

• dbms_xmlparser: parses documents from CLOB or URL, parses DTD from CLOB or URL
(and stores the result);
access to the DOM instance/DTD in the parser then by “getdocument” or “getdoctype”

• dbms_xslprocessor: processxsl(different arguments);
clob2file/file2clob allows for reading/writing;
selectnodes/selectsinglenode/valueof: XPath queries

... for details: Oracle Documentation, google ...

576

12.6 Storing XML Data in Database Systems

• “shredding” and distributing over suitable tables (of object-relational object types)
(queries are translated into SQL joins/dereferencing)

– Schema-based

– Generic mapping of the graph structure

• storing it as VARCHAR, CLOB (Character Large Object), or as separate file with special
functionality

• storing it “natively”/binary/model-based: internal object model

Literature

Klettke/Meyer “XML & Datenbanken” (dpunkt-Verlag), Ch. 8
Schöning: “XML und Datenbanken” (Hanser), Ch. 7,8
Chaudhri/Rashid/Zicari: XML Data Management

577

12.6.1 Mapping XML → Relational Model

two basic approaches:

• Schema-based: one or more “customized” tables for each element type
(→ similar to relational normalization theory)

– (possibly) many null values

– efficient access on data that belongs together

• one generic large table based on the graph structure:
(element-id, name of the property, value/id of the property)

– no null values

– although memory-consuming (keys/names that are stored once in (1) are now stored
for each occurrence)

– data that belongs together is split over several tuples

⇒ in both cases, theory and efficiency of relational database systems can be exploited.

578

SCHEMA-BASED STORAGE

necessary: DTD or XML Schema of the instance.

1. For each element type that has children or attributes, define a table that contains

• a column that holds the primary key of the parent,

• a primary key column if the element type has a member that satisfies (1) or (2),

• for each scalar attribute and child element type with text-only contents that appears at
most once, a column that holds the text contents.

2. for each multi-valued attribute or text-only subelement type that occurs more than once
for some element type, a separate table is created with the following columns:

• key of the parent node,

• the (attribute or text) value

(similar to 1:n relationships in the relational model).

• for mixed content: possible solutions depend on the specific structure

• special treatment for infrequent properties (to avoid nulls): handling in a separate
XMLType column that holds all these properties together.

579

Schema-Based Storage: Example

For Mondial countries, provinces and cities, the following relations are created:

• country: key(mondial), key, name, code, population, area, . . .

• border: ref(country), ref(other country), length

• language: ref(country), language, percentage

• province: ref(country), key, name, population, area

• city: ref(country), ref(province), key, name, longitude, latitude

• city-population: ref(city), year, value

Exercise

• give an excerpt of the instance

• translate some XPath/XQuery queries to SQL

• extended exercise: generate and populate the schema in SQL

Supported: Oracle (with augmented XML Schema), IBM DB2 (with DAD – Data Access
Definition), MS SQL Server (extended Data-Reduced XML)

580

OBJECT-RELATIONAL APPROACH : INTERNAL OBJECT TYPES

• “shredded storage” of XML data is in general not implemented by plain relational tables,
but using object-relational technology:
object types, collections, varrays etc ...

• collections/varrays: with value- and path indexes

• XPath expressions are rewritten into these structures

Integration of “legacy” object types

• application-dependent object types (as used in SQL3 in pre-XML times): standard
mapping to XML (e.g. for data exchange)

581

Oracle & XML Schema

... register XMLSchema (must be typed in one single line!)

EXEC dbms_xmlschema.registerURI('http://mondial.de/m.xsd',

'http://dbis.informatik.uni-goettingen.de/Mondial/mondial.xsd');

can be deleted with

EXEC dbms_xmlschema.deleteSchema('http://mondial.de/m.xsd',

dbms_xmlschema.DELETE_CASCADE_FORCE);

• ... now, it knows http://mondial.de/m.xsd and created object tables for all root element
types:
SELECT * from ALL_XML_TABLES;

CREATE TABLE mondial2 OF XMLType

XMLTYPE STORE AS OBJECT RELATIONAL

XMLSCHEMA "http://mondial.de/m.xsd"

ELEMENT "mondial";

INSERT INTO mondial2 VALUES(

system.getxml(

'http://www.dbis.informatik.uni-goettingen.de/Teaching/DBP/XML/mondial.xml'));

SELECT XMLisValid(value(m)) FROM mondial2 m;

582

GRAPH-STRUCTURE-BASED STORAGE

Without any schema knowledge, the graph structure can be represented in a single large
table:

NodeNumber ParentNode [SiblingNo if ordered] Name Value

(see next page)

Alternatives

• separate table for elements and attributes (without node number and sibling number)

• separate between no-value, string value and numeric values for storing adequate types.

• previous-sibling and following-sibling columns instead of sibling-no (DOM style)

Querying

• requires recursive queries (PL/SQL; CONNECT BY)

• large joins (using the same large table several times)

• not implemented in any commercial system [according to Schöning 2003]

583

NodeNumber ParentNode SiblingNo Name Value

1 doc 1 mondial

2 1 1 country

3 2 @code D

4 2 @membership ref(eu)

: : : :

41 2 @membership ref(un)

42 2 @area 356910

43 2 @capital ref(92)

44 2 1 name Germany

45 2 2 population 83536115

: : : :

90 2 47 province

91 90 1 name Berlin

92 90 2 city

93 92 @country ref(2)

94 92 1 name Berlin

95 92 2 population

96 95 @year 1995

97 95 text() 3472009

: : : :

584

12.6.2 “Opaque” Storage

XML documents are stored as a whole as special datatype that can be used as row type or
column data type (most commercial DBS; as described above for SQL/XML)

• approaches with text-based storage (CLOBs, files)

• specialized functionality for this datatype
(cf. object-relational DBs: member functions)

– XPath querying, XSLT support

– validation

– text search functions

• syntax embedded into SQL

• supported by indexes

– full text indexes

– path indexes/ “functional” indexes (user-defined, e.g. over //city/@country)

– application and refinement of classical algorithms

• optimization of queries below the relational level!

585

12.6.3 “Native” Storage

Using “original” concepts of the database for storing XML (internal XML or object model)
instead of mapping it or “simply” representing it as ASCII.

• often based on existing object-oriented DB-systems with application of concepts from
hierarchical and network-DBs

• no document transformation to another data model

• data model/classes based on the notions of “tree”, “element”, “attribute”, “document order”

• navigation

• XPath/XQuery/XSQL APIs

586

“Native” Storage: Systems and Products

Many early implementations came from the object-oriented area:

• XML-QL, based on the Strudel system

• LoPiX, based on F-Logic

• Lorel-XML, based on Lorel/OEM

• Tamino (Software AG, Darmstadt, founded 1969 (Adabas, hierarchical DB), Tamino 1999,
with XQL, first native XML DBMS),

• Excelon (until 1998: ObjectDesign with “ObjectStore”; since 12.2002: acquired by
Progress Software Corp.)

• POET (Hamburg, “Persistent Objects and Extended Database Technology”, product
1990, spin-off from BKS 1992, OQL interfaces, SGML Document Repository 1997,
Content Management Suite since 1998, merger with Versant 2004)

• Infonyte (GMD IPSI XQL 1998, based on a “Persistent DOM”, 12.2000: spinoff TU
Darmstadt/Fraunhofer-IPSI)

587

GENERIC DATABASE BEHAVIOR FOR XML DATABASES

Everything that has been developed and dicussed for relational databases is also relevant for
XML:

• physical storage + storage management

• optimization, evaluation algorithms

• multiuser operation, transactions (ACID), safety, access control

• ECA-rules, triggers

The algorithms and theoretical foundations are very similar.

Often, relational (or hierarchical) DB technology is actually used inside.

588

COEXISTENCE OF XML AND RELATIONAL DATA

• generating XML (views, data exchange packets, ...) from stored relational data

• relational (and object-relational) techniques used for efficiently storing data-centric XML

• storing text-oriented data in RDB with specialized “native” datatypes

• XPath is also accepted by SQL/XML

• additional XML processing functionality by packages and object types

• XQuery is still not the “winner” for data-oriented applications!

• is it the winner for document-oriented applications?
http://www.w3.org/TR/xquery-full-text/

589

Chapter 13
Miscellaneous
Shortcomings in this lecture

• XML: namespaces (used e.g. for XSL, XLink – but in this lecture really interesting only in
combination with RDF)

• XML: processing instructions

• theory: XML Data Model, XPath/XQuery Formal Semantics
(currently in an alignment process with XML Schema)

Application areas:

• Web Services

• Multimedia applications with XML

• Semantic Web

590

XML A PPLICATIONS (= LANGUAGES)

• XHTML

• MathML; see e.g. http://www.w3.org/Math/XSL/

• SMIL (Synchronized Multimedia Integration Language): description of multimedia
presentations

• MPEG-7: meta-metalevel description of audiovisual contents (i.e., used to describe
description languages)

• Web Services (kind of XML-style CORBA successor): WSDL (WS Description
Language), WSFL (Web Services Flow Language; Workflows), SOAP (Simple Object
Access Protocol – messaging format, not only for Web Services) UDDI (Universal
Description, Discovery and Integration); ebXML, MS-BizTalk

• Health Care: HL-7; clinical data exchange

• BIOML (polymer structures), GML (geographic ML), CML (chemical ML)

591

EPILOGUE

What should have been taught?

• knowledge for practical use of XML

• XML is more than only angle brackets

• the XML world provides examples for many basic concepts of computer science and their
combination,

• illustrating how concepts in computer science evolve, and

• ... an idea of developments in the near future:
the DBIS group is part of it with
http://dbis.informatik.uni-goettingen.de/rewerse/

592

13.1 Overview of some Books ...

• There is not a single book that gives a good introduction the everything about XML

• several books on specific, advanced topics

• german books: comments in german.

• recommended sections are marked with→.

• very recommended sections are marked with⇒.

Note: the selection of books is a bit randomly. There are also other good ones.

593

“ XML Family of Specifications: A Practical Guide”; Kenneth Sall; Addison-Wesley, May 2002

• historical overview: “professional” focus, no mention of previous research topics

• XML, DTD, SAX; DOM, JDOM; CSS, XSL, XSLT; XLink, XPointer, XPath, XML Schema,
RDF, ...

• comprehensive, but often superficial

• 2002 - a bit outdated.

“ XPath, XLink, XPointer and XML”; Erik Wilde, David Lowe; Addison-Wesley, July 2002

• ⇒ I recommend the book for its excellent overview of concepts and ideas around XML
and the Web (Sections 1-5)

• → Sect.6,7: XLink, XPointer

• Sect.8: Usage, Sect.9: Future

“XSLT Programmers Reference”, 2nd Edition; Michael Kay, Wrox Press, June 2003

• ⇒ The Book on XSLT.

“XQuery”, Wolfgang Lehner and Harald Schöning, dpunkt, 2004

• ⇒ The (german) Book on XQuery.

594

“XML & Datenbanken – Konzepte Sprachen und Systeme”; Meike Klettke Holger Meyer;
dpunkt-Verlag, 2003

• Kap.3,4 (XML), Kap.10 (Anfragesprachen)

• Kap 2,5,6,7: Allgemeines zu XML und DB

• → Kap.8: XML-Datenbanken, Speicherungstechniken

• → Kap.9: Indexstrukturen

• → Kap.11: XML-Datenbanken: Systeme

“XML und Datenbanken”; Harald Schöning, Hanser-Verlag, 2004

• Kap.1: XML, DTD, DOM, SAX, XSL: oberflächlich

• Kap.2,4: XML Schema, Entwurf

• Kap.3: Allgemeines zum Einsatz von XML

• → Kap.5: XML in Datenbanksystemen: allgemeine Betrachtungen

• Kap.6: XPath/XQuery: oberflächlich

• ⇒ Kap.7,8: XML und Datenbanksysteme, allgemein sowie Produkte (Oracle, IBM, MS
SQL, Tamino)

595

“XML und Datenmodellierung”; Rainer Eckstein, Silke Eckstein; dpunkt-Verlag, 2004

• grobe Einführung XML, DTD, XPath; (kein XQuery)

• ⇒ Kap.4: XML Schema

• (Kap 5: DTD/XML Schema und UML)

• ⇒ Kap.6,7: RDF, RFDS, (OWL)

596

