Semistructured Data and XML 1

1. Unit: Warm-up Exercises

Information about the XML course can be found at
http://www.stud.informatik.uni-goettingen.de/xml-lecture

Exercise 1.1 (XML-Tree vs Directory-Tree)

Load mondial-europe.xml into zmllint and browse through the directory structure. First, change
into the country element of Germany, then into the city of Gottingen. Then, change into the next
city in the document.

Links to zmllint and the Mondial database can be found at
http://www.stud.informatik.uni-goettingen.de/xml-lecture.

Exercise 1.2

e Write a DTD for XML documents with student data:
name, address and a student id, one or more subjects (computer science, law, chemistry, soci-
ology etc)

e Write an XML document containing student data conforming to the DTD, and check it for
validity using zmllint.

Exercise 1.3 (HTML-XHTML)

e Find a simple HTML document (e.g. your own personal student homepage) and convert it by
hand from HTML to XHTML.

e Check the XHTML document for validity using the XHTML validator
(http://validator.w3.org/detailed.html).

Hint: In your home directory in the CIP pool, there is a directory public_html which is your
personal web directory. Files there are accessible via
http://student.ifi.informatik.uni-goettingen.de/~ <username>/<filename>.

Yes, this is often a nontrivial piece of work. Most HTML pages are written very unprecise.

Why are the requirements of XML/XHTML so much stricter? The reason is the complexity of
the parser: an HTML parser must be very fault-tolerant, which means that it has a lot more
transitions that cover imprecise HTML.

Consider the following example of an HTML fragment (where nearly all closing tags are missing,
and the table markup is far from correct):

<html>
<head><title>A very unprecise HTML page
<body>
some text
<p>
<table border="1">
<tr> <td> eins.eins <td> eins.zwei
<tr> <td> zwei.eins <td> zwei.zweil
</table>
<p>
and some more text
</html>

Semistructured Data and XML 2

Consider the following fragmentary XHTML DTD fragment:

<!ELEMENT html (head?,body)>
<!'ELEMENT body (p*)>

<!ELEMENT p (#PCDATA|table)*>
<!ELEMENT table (thead?,tbody)>
<!ELEMENT tbody (tr+)>
<1ELEMENT tr (td+)>

<VELEMENT td (#PCDATA)>

The following DFA can be used to parse and validate XHTML documents wrt. the above language
fragment:

e every column is a subautomaton,

e dashed lines abstract from the structure of the subelements,

e blue lines connecting hierarchical subautomata describe transitions for opening and closing tags.

html body p table tbody tr
IS IS Ctro
I\ body I\ tbody
head \ #PCDATA thead \ 2
| \ \ \ tr /;Q_ N td /QA
K —. table [T L— L— :
| .

] V | | . :
TSP — / ol gy td tr #PCDATA
-z /-) table I - '
body /P) , :
L—F P g :

h | /body R l /ta

ble \/tr ~< /td :
body ! tb /Q T
/ /table /tbody td
/

For fault-tolerant parsing of HTML, the dotted transitions must be added. They represent tran-
sitions when

e a complete level (tbody) has been omitted, or
¢ 3 closing tag has been omitted.

These lines are depicted above in red, dotted:

e opening <tr> tag in <table>: skip <tbody> level. Note that this makes the return with the
closing </tr> nondeterministic — either jump back to the <tbody> level or to the <table> level
(thus, the parser must push down where it came from).

e opening <td> tag in <td> element: implicitly close the </td> element and jumping to the start
of a new <td>.

e opening <tr> tag in <td> element: implicitly close the </td> and the </tr>, jumping to the start
of a new <tr>.

e closing <table> tag in <td> element: implicitly close the </td>, </tr>, and </tbody>, jumping
to the transition that actually closes the <table>.

e opening <p> tag in <p> element: implicitly close the </p> element and jumping to the start of
a new <p>.

Semistructured Data and XML 3

® Some more ...

These transitions cannot be defined automatically from the DTD specification, but have to be
added manually by the parser designer (presuming that he knows what “shortcuts” the users will
apply). Such “techniques” are in general not acceptable for any DTD — thus, for XML it was
decided to have stricter rules for validation.

Exercise 1.4 (DFAs and DTDs)
Consider the following DTD:

<!ELEMENT date (day,month,year?)>
<!ELEMENT day (#PCDATA)>
<!ELEMENT month (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT a (datex)>

<!ELEMENT b (#PDCATA)>

<!ELEMENT c (b+]|(b?7,a)*)>

Define a finite automaton for each element definition which accepts the corresponding content
model.

The part of the automaton for the a and date elements are simple:

L ——day /Q
: #PCDATA
day v

date /day @
4 —— month —— O

Q \ month #PCDATA
/ ! Y
i/date \é\ fmonth \©
/date — year Q
year
1 #PCDATA
| /year X

The part for the c element is mich more complicated: note that the DTD is not allowed since it is
not deterministic (where determinism is defined according to the derived automaton), since if first
a b is read, it is not known which branch should be entered, see below:

Note that the initial state is also an accepting state since
the second branch (b?,a)* can be empty.
a the automaton shows that there it is nondeterministic if
7@ \t)\ first, a b is read.
From other lectures, it is known that the automaton can
be transformed into an equivalent deterministic one, that
b :O then also indicates an allowed content model expression.

a
\
\a/

Transformation: move the b from b?,a out (take care that the second branch can also begin with
an omitted b and then an a, and that it is completely optional!).

Semistructured Data and XML

b
A deterministic content model expression is then

(b, (b |(a, (b7,a)%)))) | (a, (b7,a)%)?.

Note that there are several more equivalent expressions.

,)O
N b

The complete automaton is then created by connecting each a step with a copy of the date au-
tomaton (copies are needed since the return jump must be determninistic — in reality this is done

by maintaining a stack), and connecting each b step with a #PCDATA automaton

