3.6 Database Security

This section covers various basic aspects of security revolving the database functionality.
Security is always evolving so keep yourself updated!

» Secure password storage & Basic Password Cracking
 Authentification & HTTPS (with Tomcat)

» DB security risks and countermeasures

198

SECURE PASSWORD STORAGE

Problem: How to store passwords in a database?

« Storing login credentials (e.g. for Web services) is a typical application for databases

User Password

John Doe | securepwi
Trudy 123

 Storing passwords in plain text opens up security risks
— When attackers get (partial) read access

— Different kinds of attacking strategies: Dictionary attacks, Brute-force ...

199

Naive Solution

» Choose a cryptographic hash function (e.g. MD5, SHA1, ...

 Store the passwords not in plain text, but as a hash value

User Password
John Doe | a0719618388bf24f0d89b923df477712
Trudy 202cb962ac59075b964b07152d234b70

* On login: compute hash of input and compare

200

Cryptographic Hash Functions

Cryptograhic hash functions are "one-way" mathematical functions that are infeasable to
invert

* Arbitrary size input "m"
» Fixed size output "h"
— hash(m) =h
But! there is no way to prove that a function is not invertible

— Difference of "it cannot be broken" and "nobody knows how to break it"

201

Properties of cryptographic hash functions

» Deterministic

» Given a hash value, it is infeasable to generate the message (pre-image resistance)
« |t is infeasable to find two messages with the same hash value (collision resistance)

« Given a message, it is infeasable to find a different message with the same hash value
(second pre-image resistance)

202

Use cases of cryptographic hash functions

« Verifying the integrity of messages and files

Signature generation and verification

Password verification

Proof-of-work (deter DOS attacks, crypto-currency)

File or data identifier

203

Attacks on Hashed Passwords

* You should always assume that the attacker knows everything except the plain password!
— One or a collection of hashes of passwords

— The algorithm used for the hashing

General Types of Attacks

» Preimage attack
— Find a message with a specific hash value

— For an ideal hash function the fastest way to compute a first or second preimage is
through a brute-force attack

— For n-bit hash = 2™ complexity

204

« Birthday attack (collision attack)

— LIt is more likely to find two random messages with the same hash value than the

message for one specific hash value®

— Complexity 27/2
Bit-length | Possible outputs | 75% chance of random collision
16 216 —~ 6.4210% 430
128 2128 — 3.421038 3.1210%
512 2512 =~ 1.3210%%4 1.921077

205

Attack example

» Naive attack: Precompute every possible password for a given hash function and then
just look them up

— Saves computing time when looking up multiple hashes

— Costs an infeasible amount of space
Example: Consider all possible combinations of 62 different letters [A-Za-z0-9] in 8
positions = 628
Each pair needs the space of ~ 24 Bytes (16 for the MD5 hash, 8 for the plain text in
UTF-8)
= ~ 4766 Terabyte

— Rainbow table
— Precomputed table for reversing cryptographic hash functions

— Chains of passwords & hashes to reduce space usage

« Time-space trade-off
« Increasing the length of the chain, decreases the size of the table, but increases

time for look-ups

206

« Rainbow table
— Usage of reduction functions (r1,r2,...) to reverse a hash value back into plain text (not
the real inverse!)
Plainy ? Hashq —1> Plaine ? Hasho —2> Plains...
r r

— Only store starting point and endpoint

— For a given target hash value calculate the chain with it and compare to the stored
endpoints
+ On a hit you know that the password might be inside the chain which can be
recalculated from the starting point
« |t is not guaranteed due to collision in the Reduction-functions

— To decrease collisions in the hash chains more than one reduction function are used
periodically

207

Salted Hashes

« Assume that there are Rainbow tables, etc. for every standard hash function

» The attacker has the advantage of parallelism
— Hash one PW and compare it to a lot of the stored PWs

— Shares the cost of hashing over several attacked PWs

» Solution: Make the hash function individual for every user

= Salted Hashes

208

Add a unique code to every PW to break the hash function into different ,families® of hash
functions

Hash(m + salt) = h

Breaks the parallelism advantage of the attacker

But! Every user has to have an unique salt or else you could create Rainbow tables for
the salted hash

— If the PW is used again on a different platform, it should have a different salt

How to generate salts that are as unique as possible?

— Use randomness!

209

Salt Generation

» Cryptographically Secure Pseudorandom Number Generators (CSPRNG)

— "Quality" of randomness required varies for different applications

+ Nonce require only uniqueness
« One-time pads require also high entropy

— Uses entropy obtained from a high-quality source

« Operating system’s randomness API
« Timings of hardware interrupts, etc.

210

+ Universally Unique Identifier (UUID)

— 128 bit number, representation in 32 hexedecimals in 8-4-4-4-12 format
+ 123e4567-e89b-12d3-a456-426655440000

— Often used as database keys
« Microsoft SQL Server: NEWID function
« PostgreSQL: UUID datatype + functions
« MySQL: UUID function
+ Oracle DB: SYS_GUID function (not quite a standard GUID, but close enough)

211

Aside: Pepper
* A salt, but secret!

= Just like a key

» Only increases security if the attacker has access to the hash, but not the pepper
— Store pepper on a different "secure" hardware

Aside: "broken" MD5

» The MD5 Hash-function is considered broken

= It is "easy" to find collisions

» But password hashing is not concerned about collisions

— Preimage attacks are important!
» MD5 has other problems in that regard

— One of the fastest cryptographic hash function to compute

212

Brute-force attacks

* Recall:

— An ideal hash function has complexity 2" to find the message of a specific hash value

» But:
— What if these hash values can be computed really fast?

— Modern hardware can compute millions of "easy" hash values in mere seconds

213

Slow Hash Functions

» Counter faster & faster hardware

— Make deliberate slow algorithms

= Key Derivation Function (KDF) with sliding computational cost
«+ Hash = KDF(pw , salt , workFactor)

— PBKDF2
— bcrypt
— scrypt
— Argon2

— How many iterations?
— As many as possible without hurting the user

214

PBKDF2

» Password-Based Key Derivation Function 2

— Combines

« A hash-based message authentication code (HMAC) function (MD5, SHA1,...)
« Salt

— lterates a predefined time

+ Recommended in 2000: 1000 iterations
+ Recommended in 2011: 100000 iterations

215

bcrypt

« Based on the Blowfish block cipher

— Eksblowfish (expensive key schedule Blowfish)

+ Use PW & Salt to generate a set of subkeys (P-array & S-box)
« |terate depending on the specified cost

— lterate 64 times:

« Use standard Blowfish algorithm in ECB (Electronic Codebook) mode
= Block encryption with the set of subkeys and the text "OrpheanBeholderScryDoubt"

— Password length of up to 56 bytes
— Uses 4KB RAM

216

Time-Space Tradeoff

» Specialized hardware is extremely efficient at multi-threading

— Field Programmable Gate Arrays (FPGA)
— GPUs

 But experience difficulties when operating on a large amount of memory

= Design memory-hard functions with exponential memory usage
* SCrypt
« Argon2

* LN

217

scrypt

» Used as proof-of-work algorithm in many cryptocurrencies (e.g. Dogecoin)

» Uses PBKDF2y\ac—sHA256 amongst other algorithms

» Generates a large vector of pseudorandom bit strings which are accessed in
pseudo-random order to produce the derived key

— Trade-off:
— Store the vector (high memory cost)

VS
— Generate the elements of the vector as needed (high computational cost)

218

Argon2
» Winner of the Password Hashing Competition (PHC)(2013-2015)
» Based on the Blake2b hash function

+ Variants of Argon2

— Argon2d

« data-dependent memory access
= highest resistance against GPU cracking attacks
= possible side-channel attacks

— Argon2i
« data-independent memory access
« safest against side-channel attacks

— Argon2id
« hybrid of Argon2d & Argon2i

219

Closing Words of Advice

« Home-brew vs public standard hash algorithms

— "Security through obscurity" (does not work!)

« Gode gets reverse engineered
« Algorithm should be secure even if all information except the PW is known
« Lots of testing on public algorithms

— Still deemed secure even after many years

« Common or short passwords kill every secure hash algorithm

— Recommended: 128 bit (of entropy) ~ 22 chars

220

Implementation: How to

« CSPRNG in Java:

— Java.security.SecureRandom

« Seeds automatically
« Uses the secure random function of an installed security Provider (e.g. SUN)

221

import java.nio.charset.Charset;
import java.security.x*;
import java.util.Arrays;

public class PasswordHash {
public static void main(String[] args){
//Checks the installed security Providers
Provider[] providers = Security.getProviders();

for(Provider prov : providers){
System.out.println(prov.getName()) ;

//Use an SecureRandom object

SecureRandom sr = new SecureRandom() ;

//SecureRandom sr = SecureRandom.getInstanceStrong();
//SecureRandom sr = SecureRandom.getInstance("SHA1PRNG", "SUN");

byte[] salt = new byte[20];

sr.nextBytes(salt);

System.out.println(Arrays.toString(salt));

System.out.println(new String(salt,Charset.forName("IS0-8859-1")));

[Filename: Servlet/PasswordHash.java]

222

» Argon2 in Java:
— Oiriginal implemented in C

— Two Java bindings:
« https://github.com/phxgl/argon2-jvm
« https://github.com/kosprov/jargon2-api

— Best included via Maven

<dependencies>

<dependency>
<groupld>com.kosprov. jargon2</groupld>
<artifactId>jargon2-api</artifactId>
<version>1.1.1</version>

</dependency>

<dependency>
<groupld>com.kosprov. jargon2</groupld>
<artifactId>jargon2-native-ri-backend</artifactId>
<version>1.1.1</version>

</dependency>

</dependencies>

223

Aside: Maven in Eclipse

« Maven plugin should be pre-installed
— If not: Help — Install New Software...

— Search for "m2e"

« Convert project into Maven project

— Right Click — Configure — Convert to Maven Project ...

« Add listed dependencies to the project
— Right Click -> Maven -> Add Dependency
— OR: Add them manually to the pom.xml

224

» Argon2 in Java:

— Follow instructions in the chosen repository (E.g. Jargon2)

import static com.kosprov.jargon2.api.Jargon2.*;
import java.util.Arrays;

public class TestArgon2 {
public static void main(String[] args) {
byte[] salt = "this is a salt".getBytes();
byte[] password = "this is a password".getBytes(Q);

Type type = Type.ARGON2d;
int memoryCost = 65536;
int timeCost = 3;

int parallelism = 4;

int hashlLength = 16;

// Configure the hasher

Hasher hasher = jargon2Hasher()
.type (type)
.memoryCost (memoryCost)
.timeCost (timeCost)
.parallelism(parallelism)
.hashLength(hashLength) ;

225

// Configure the verifier with the same settings as the hasher
Verifier verifier = jargon2Verifier()

.type (type)

.memoryCost (memoryCost)
.timeCost (timeCost)
.parallelism(parallelism);

// Set the salt and password to calculate the raw hash
byte[] rawHash = hasher.salt(salt).password(password) .rawHash() ;

System.out.printf ("Hash: ¥%s%n", Arrays.toString(rawHash));

// Set the raw hash, salt and password and verify
boolean matches = verifier.hash(rawHash).salt(salt).password(password).verifyRaw();

System.out.printf ("Matches: %s%n", matches);

[Filename: Servlet/TestArgon2.java]

226

Regulars’ table (Stammtisch) Knowledge

» Char[] is more secure than String
— Strings are immutable
= There is no way to delete it from memory before the Garbage Collector kicks in
« Allowing ultra long passwords enables DOS attacks

— Passwords can be hashed beforehand to prevent that (e.g. with SHA-512)

227

