generate the ground instances of rules of the program that can be useful

basis: all ground instances. Let them, as they are (for copying)

win(a) :-

win(a) :-
win(b) :-
win(b) :-
win(b) :-

() :-

in(c

=
=1

=
S

in(c) :-
in(d) :-
win(e) :-
) -

) i

=3
=1

win(g
win(g

win(h) :-

win(i) :-
win(l) :-
win(m) :-

not win(b).

move(a,b),
e(a,f), not win(f).

move(a,f)

move(,C), not win(c).
move(b,g), not win(g).
move(b,k), not win(k).
move(c,d), not win(d).
move(c,l), not win(l).
move(d

move(e

,e), not win(e).
,a), hot win(a).

- move(g,h), not win(h).

- move(qg,i), not win(i).
move(h,m), not win(m).
- move(i,j), not win(j).

move(l,d), not win(d).
:- move(m,h), not win(h).

first round:

H 0 =emptyset~ no, start with H_.0 = EDB. => win(X) false for all X

win(a) :- ove(a,b), notwin(b),
win(a) :- ve(a,f), not-win{f).
win(b) :- move(,c), not-win{e).
win(b) :- move(b,g), notwintg)}—
win(b) :- move(b, k) notwin(k).
wm(c) move(c,d), not-win{d).—
c) :- move(c,l), not-win{l).

(C) :- _
in(d) :- move(d,e), notwin(e).

=
S

win(e) :- move(e,a), notwina)._
win(g) :- move(g,h), netwin(h).
win(g) :- move(g,i), not win(i).

)
win(h) :- move(h,m), not win{m).
win(i) :- move(i,j), notwin{)~
win(l) :- move(l,d), notwin(d).
win(m) :- move(m,h), not-winth)~—

(P = the above + all "move"-facts)

new program P™H

run T P7H ... \omega ... until it stops.
Here, it will stop after one T_P round:
H 1 = {the moves} U { the instantiated heads of these rules }

= {moves} U {win(a), win(b), win(c), win(d), win(e), win(g),
win(h), win(i), win(l), win(m) }

... consider this result:

H 1 = {the moves} U { the instantiated heads of these rules }
= {moves} U {win(a), win(b), win(c), win(d), win(e), win(g),
win(h), win(i), win(l), win(m) }

note: for win(f), win(k), win(n) and win(j) there were no rules, so they
have not been derived in H 1

=> we know that f,k,n,jj are definitely lost positions

=> from "nothing" , we got an overestimate of the win nodes
and a (safe!) underestimate of the lost nodes

2nd round: H_1: win: abcdeghilm
(means: not win: fjkn)

again, build the reduct P H 1:

first step:

delete from PH1 all rules that contain a negative literal —a in the body
such that a € H1,

- second step:

delete all remaining negative literals in the bodies of the remaining rules.
(because those are true ... fix them intermediately)

win(a) :.- moe(a,f), not-win{f).—
n(b) - b) in(c
win(b) :- move(b,k), notwin(k).”

win(i) :- move(i,j), notwin{j)=—
N vetl-dr :

’ ’

run T_PH1 -> omega ... finished after one round:

result: win(a), win(b), win(i), all other wins are false. =>H 2
=> underestimate of true atoms

3rd round: H 2 = {the moves} U {win(a), win(b), win(i)}

as befor, now build the reduct P_H 2:
first step:

delete from P_H2 all rules that contain a negative literal —a in the body
such that a € H2,

- second step:

delete all remaining negative literals in the bodies of the remaining rules.
(because those are true ... fix them intermediately)

’ ’

win(a) :- move(a,f)

win(b) :- move(b,c), not-win{c)—

win(b) :- move(b,g), not-win{g)-
win(b) :- move(b,k), notwintk).
win(c) :- move(c,d), not-win{d)-
win(c) :- move(c,l), not-winh).~
win(d) :- move(d,e), not-winf{e).
win(g) :- move(g,h), notwin{h)—

n(q) i) in(i

win(h) :- move(h,m), net-wintm)—
win(i) :- move(i,j), not win{j)-—
win(l) :- move(l,d), not-win(d).
win(m) :- move(m,h), not-winth).

run T_PH2 -> omega ... finished after one round:
result: win: a,b,c,d,g,h,i,l,m

... What is missing: not win: e, f, j, k, n
=> overstimate of win, but some (more) are known to be definitively lost

