
AG Datenbanken und Informationssysteme · Institut für Informatik · Universität Göttingen

Deductive Databases

Summer Term 2018

Prof. Dr. W. May

1. Unit: Kalkül I

Self-contained subformulas (i.e., formulas in RANF) will also be needed for translating complex
queries into Datalog programs. The transformation into RANF works in the same intuitive way as
done in the DB lecture before knowing the relational calculus at all. For complex cases (and for
the computer), a systematic formal procedure helps.

Exercise 1 (Kalkül: Sichere, Wertebereichsunabhängige Anfragen) Check for the follo-
wing queries whether they are in SRNF (give rr(G) for each of their subformulas).

For the formulas that are in RANF:

• check whether the formulas are in RANF. If not, give an equivalent formula in RANF.

• Give equivalent expressions in the relational algebra and in SQL (develop the SQL expressions
both from the original formula and from the RANF formula).

a) F (X,Y, Z) = p(X,Y) ∧ (q(Y) ∨ r(Z)),

b) F (X,Y) = p(X,Y) ∧ (q(Y) ∨ r(X)),

c) F (X,Y) = p(X,Y) ∧ ¬∃Z : r(Y, Z),

d) F (X) = p(X) ∧ ∃Y : (q(Y) ∧ ¬r(X,Y)),

e) F (X) = p(X) ∧ ¬∃Y : (q(Y) ∧ ¬r(X,Y))

f) F (X,Y) = ∃V : (r(V,X) ∧ ¬s(X,Y, V)) ∧ ∃W : (r(W,Y) ∧ ¬s(Y,X,W))

a) p(X,Y) ∧ (q(Y) ∨ r(Z)):

G rr(G)
p(x, y) X,Y

q(Y) Y

r(Z) Z

q(Y) ∨ r(Z) {Y } ∩ {Z} = ∅
p(X,Y) ∧ (q(Y) ∨ r(Z)) {X,Y } ∪ ∅ = {X,Y }

Since free(F) = {X,Y, Z} 6= {X,Y } = rr(F), F is not in SRNF (and thus also not in RANF).

F is not domain-independent: for S with S(p) = {1, a} and S(q) = {(a)} and S(r) = ∅ and
domain D is the answer set {X 7→ 1, Y 7→ a, Z 7→ d|d ∈ D}.

b) p(X,Y) ∧ (q(Y) ∨ r(X)):

G rr(G)
p(x, y) X,Y

q(Y) Y

r(X) X

q(Y) ∨ r(X) {Y } ∩ {X} = ∅
p(X,Y) ∧ (q(Y) ∨ r(X)) {X,Y } ∪ ∅ = {X,Y }

Since free(F) = {X,Y } = rr(F), F is in SRNF.

Vorlesung: Datenbanken 44

F is not in RANF since the disjunction q(Y) ∨ r(X) is not self-contained.

F can easily be expressed in SQL (with P (P1, P2), Q(Q1), R(R1)):

SELECT P1,P2

FROM P

WHERE P2 in (SELECT Q1 FROM Q)

OR P1 in (SELECT R1 FROM R)

The equivalent expression in the relational algebra is
(P ⊲⊳P2=Q1

Q) ∪ (P ⊲⊳P1=R1
R).

This is also obtained when translating from SRNF to RANF with “push-into-or”:
(p(X,Y) ∧ q(Y)) ∨ (p(X,Y) ∧ r(Z))

and then translates as usual to the relational algebra.

c) F (X,Y) = p(X,Y) ∧ ¬∃Z : r(Y, Z):

G rr(G)
p(X,Y) X,Y

r(Y, Z) Y, Z

∃Z : r(Y, Z) Y

¬∃Z : r(Y, Z) ∅
p(X,Y) ∧ ¬∃Z : r(Y, Z) X,Y

Since free(F) = {X} = rr(F), F is in SRNF.

All subformulas are self-contained.

F can easily be expressed in SQL (with P (P1, P2), R(R1, R2)):

SELECT P1,P2

FROM P

WHERE P2 NOT IN (SELECT R2 FROM R)

The equivalent expression in the relational algebra is
P ⊲⊳ (π[P2](P)− π[R1](R)).

The standard translation that uses the enumeration formula for the active domain (here: those
that occur in P and R) reads as:
P ⊲⊳ ((π[P1](P) ∪ π[P2](P) ∪ π[R1](R) ∪ π[R2](R))− π[R1](R)).

d) F (X) = p(X) ∧ ∃Y : (q(Y) ∧ ¬r(X,Y)):

G rr(G)
p(X) X

q(Y) Y

r(X,Y) X,Y

¬r(X,Y) ∅
q(Y) ∧ ¬r(X,Y) Y

∃Y : q(Y) ∧ ¬r(X,Y) ∅
p(X) ∧ ∃Y : q(Y) ∧ ¬r(X,Y) X

Since free(F) = {X} = rr(F), F is in SRNF.

F is not in RANF since the subformula G = ∃Y : q(Y)∧¬r(X,Y) is not self-contained: for the
body H = q(Y) ∧ ¬r(X,Y) there is free(H) = {X,Y }) {Y } = rr(H) (note that the SAFE
criterion from the lecture would already detect H as the problem).

F can easily be expressed in SQL (with P (P1), Q(Q1), R(R1, R2)):

SELECT P1

FROM P

WHERE EXISTS (SELECT Q1

Vorlesung: Datenbanken 45

FROM Q

WHERE (P1,Q1) NOT IN (SELECT R1,R2 FROM R))

The equivalent expression in the relational algebra is
π[P1]((P ×Q)− ρ[R1 → P1, R2 → P2]R.

This is also obtained when translating from SRNF to RANF with “push-into-exist”:
F (X) = ∃Y : (p(X) ∧ q(Y) ∧ ¬r(X,Y)),

and then translates as usual to the relational algebra.

This corresponds to the (simpler) SQL query

SELECT P1

FROM P, Q

WHERE (P1,Q1) NOT IN (SELECT R1,R2 FROM R)

e) This formula is the pattern of the relational division, r ÷ q. Es ist äquivalent zu F (X) =
p(X) ∧ ∀Y : (q(Y) → r(X,Y)).

F (X) = p(X) ∧ ¬∃Y : (q(Y) ∧ ¬r(X,Y)),

G rr(G)
p(X) X

q(Y) Y

r(X,Y) X,Y

¬r(X,Y) ∅
q(Y) ∧ ¬r(X,Y) Y

∃Y : q(Y) ∧ ¬r(X,Y) ∅
¬∃Y : q(Y) ∧ ¬r(X,Y) ∅
p(X) ∧ ¬∃Y : q(Y) ∧ ¬r(X,Y) X

Since free(F) = {X} = rr(F), F is in SRNF.

F is –as in (d)– not in RANF since the subformula G = ∃Y : q(Y) ∧ ¬r(X,Y) is not self-
contained.

F can easily be expressed in SQL (with P (P1), Q(Q1), R(R1, R2)):

SELECT P1

FROM P

WHERE NOT EXISTS (SELECT Q1

FROM Q

WHERE (P1,Q1) NOT IN (SELECT R1,R2 FROM R))

The equivalent expression in the relational algebra is
P − π[P1]((P ×Q)− ρ[R1 → P1, R2 → P2](R)).

This is also obtained when translating from SRNF to RANF with “push-into-not-exist”:
F (X) = p(X) ∧ ¬∃Y : (p(X) ∧ q(Y) ∧ ¬r(X,Y)),

and then translates as usual to the relational algebra.

f) This is an example for a conjunction, where none of the conjuncts is self-contained:

Vorlesung: Datenbanken 46

F (X,Y) = ∃V : (r(V,X) ∧ ¬s(X,Y, V)) ∧ ∃W : (r(W,Y) ∧ ¬s(Y,X,W))

G rr(G)
r(V,X) X,V

s(X,Y, V) X,Y, V

¬s(X,Y, V) ∅
r(V,X) ∧ ¬s(X,Y, V) X,V

∃V : (r(V,X) ∧ ¬s(X,Y, V)) X

r(W,Y) W,Y

s(Y,X,W) X,Y,W

¬s(Y,X,W) ∅
r(W,Y) ∧ ¬s(Y,X,W) W,Y

∃W : (r(W,Y) ∧ ¬s(Y,X,W)) Y

(. . .) ∧ (. . .) X,Y

Since free(F) = {X,Y } = rr(F), F is in SRNF.

F is not in RANF since the subformulas ∃V : (r(V,X) ∧ ¬s(X,Y, V)) and ∃W : (r(W,Y) ∧
¬s(Y,X,W)) are not self-contained (again, the problem is located inside each of the subformu-
las, as SAFE would complain about).

F can easily be expressed in SQL (with P (P1), Q(Q1), R(R1, R2)):

SELECT rv.R2, rw.R2

FROM R rv, R rw

WHERE NOT EXISTS (SELECT * FROM S

WHERE S1=rv.R2 and S2=rw.R2 and S3=rv.R1)

AND NOT EXISTS (SELECT * FROM S

WHERE S1=rw.R2 and S2=rv.R2 and S3=rw.R1)

or

SELECT rv.R2, rw.R2

FROM R rv, R rw

WHERE NOT (rv.R2, rw.R2, rv.R1 IN (SELECT * FROM S))

AND NOT (rw.R2, rv.R2, rw.R1 IN (SELECT * FROM S))

The equivalent expression in the relational algebra is ... not that easy.

Thus, F has to be transformed from SRNF to RANF by moving the first conjunct into the
second by “push-into-exists” (or the vice versa, the final result is the same):

∃W : ∃V : (r(V,X) ∧ ¬s(X,Y, V)) ∧ (r(W,Y) ∧ ¬s(Y,X,W))

Flatten existential quantifiers, flatten conjunction:

∃V,W : B(X,Y, V,W)

with B = (r(V,X) ∧ r(W,Y) ∧ ¬s(X,Y, V) ∧ ¬s(Y,X,W))

is self-contained with free(B) = {V,W,X, Y } = rr(B)

According to the transformation algorithm given in the lecture, the following has to be done:

• build the (XY V) component of B, subtract s,

• in parallel build the (XYW) component of B, subtract s,

• these are the triples of bindings that “survive”,

• join them,

Vorlesung: Datenbanken 47

• and project to:

π[X,Y]((π[X,Y, V](ρ[R1 → V,R2 → X](r)× ρ[R1 → W,R2 → Y](r))
−ρ[S1 → X,S2 → Y,R2 → V](s))

⊲⊳ (π[X,Y,W](ρ[R1 → V,R2 → X](r) × ρ[R1 → W,R2 → Y](r))
−ρ[S1 → Y, S2 → X,R2 → W](s)))

Exercise 2 (Relationale Anfragen an Mondial: Schweizer Sprachen) Give expressions in
the relational calculus for the following queries against the Mondial database. Compare with the
same queries in the relational Algebra and in SQL.

a) All codes of countries, in which some languages is spoken that is also spoken in Switzerland.

b) All codes of countries, in which only languages are spoken that are not spoken in Switzerland.

c) All codes of countries, in which only languages are spoken that are also spoken in Switzerland.

d) All codes of countries in which all languages that are spoken in Switzerland are also spoken.

a) F (C) = ∃L, Perc1, P erc2 : (language(′CH ′, L, Perc1) ∧ language(C,L, Perc2))

b) F (C) =∃CN,A, Pop, Cap, CapP :
(country(CN,C,A, Pop, Cap, CapP)∧
¬∃L, Perc1, P erc2 : (language(′CH ′, L, Perc1) ∧ language(C,L, Perc2)))

Algebra:
a) π[country]

⊲⊳

π[name]

σ[country=“CH”]

language

language

(b) \

ρ[code→country]

π[code]

country

tree from (a)

c) F (C) =(∃CN,A, Pop, Cap, CapP : country(CN,C,A, Pop, Cap, CapP)) ∧
¬∃L, Perc1 : (language(C,L, Perc1) ∧ ¬∃Perc1 : language(′CH ′, L, Perc2))

d) F (C) =(∃CN,A, Pop, Cap, CapP : country(CN,C,A, Pop, Cap, CapP)) ∧
∀L : ((∃Perc1 : language(′CH ′, L, Perc1)) → (∃Perc2 : language(C,L, Perc2)))

Exercise 3 (RANF to Algebra – Minus) Give expressions in the relational algebra and in
the relational calculus for the query “Full names of all countries that have more than 1000000

inhabitants and are not member of the EU”.

Check whether the calculus expression is in SRNF and RANF, and transform it into the relational
algebra. Compare the result with the algebra expression.

A straightforward algebra expression is

Vorlesung: Datenbanken 48

π[name]

⊲⊳

σ[population>1000000]

country

−

π[code]

country

π[code]

σ[org = “EU”]

isMember

The calculus expression is

F (N) = ∃C,Cap, CapProv,A, Pop :
(country(N,C,Cap, CapProv,A, Pop) ∧ Pop > 1000000∧ ¬∃T : isMember(C, “EU” , T)) .

It is in SRNF, it is safe range, and it is in RANF. Recall that for the subformula ¬∃T : isMember(C, “EU” , T),
RANF requires rr(∃T : isMember(C, “EU” , T)) = free(∃T : isMember(C, “EU” , T)) = {C} which is
the case.

For the relational algebra,

isMember(C, “EU” , T) ⇒ ρ[$1 → C, $3 → T](π[$1, $3](σ[$2 = “EU”](isMember)))
∃T : isMember(C, “EU” , T) ⇒ π[$1](ρ[$1 → C, $3 → T](π[$1, $3](σ[$2 = “EU”](isMember))))

= ρ[$1 → C](π[$1](σ[$2 = “EU”](isMember)))

For ¬∃T : isMember(C, “EU” , T), let the expression E denote the algebra expression that enume-
rates all values of the active domain. With this,

¬∃T : isMember(C, “EU” , T) ⇒ ρ[$1 → C](E)− ρ[$1 → C](π[$1](σ[$2 = “EU”](isMember)))

Altogether, the whole query translates to

π[N]

⊲⊳

σ[P > 1000000]

ρ[$1 → N, $2 → C, $3 → Cap,
$4 → CapProv, $5 → A, $6 → P]

country

−

ρ[$1 → C]

E

ρ[$1 → C]

π[$1]

σ[$2 = “EU”]

isMember

Obviously, the term ρ[$1 → C](E) can be replaced by ρ[$2 → C](π[$2](country)) which enumerates
a superset of all values of C that can result from the left subtree.

Vorlesung: Datenbanken 49

Instead, also ρ[$2 → C](π[$2](σ[$6 > 1000000](country))) is sufficient, which makes the left subtree
(nearly) unnecessary. From it, only the full name must still be obtained.

π[N]

⊲⊳

π[N,C] −

π[C]

σ[P > 1000000]

ρ[$1 → N, $2 → C, $3 → Cap,
$4 → CapProv, $5 → A, $6 → P]

country

ρ[$1 → C]

π[$1]

σ[$2 = “EU”]

isMember

Another possibility is the anti-join ⊲ (which is one of the built-in operators of internal algebras):

π[N]

⊲

π[N,C]

σ[P > 1000000]

ρ[$1 → N, $2 → C, $3 → Cap,
$4 → CapProv, $5 → A, $6 → P]

country

ρ[$1 → C]

π[$1]

σ[$2 = “EU”]

isMember

Exercise 4 (Division: Äquivalenz von Algebra und Kalkül) For the relational algebra, the
division operator has been introduced as a derived operator (cf. lecture “Databases”). Consider the
relation schemata r(A,B) and s(B).

r ÷ s = {µ ∈ Tup(A) | {µ} × s ⊆ r} = π[A](r) \ π[A]((π[A](r) × s) \ r).

Derive a query in the relational calculus from the left-hand side, and prove the equivalence with
the right-hand side.

The left-hand side expression: the set of all possible tuples over a A is described by F (X) =
ADOM(X). The remaining task is then easy: for all values Y in S, the combination of X and Y

must be in R:

F (X) = ADOM(X) ∧ ∀Y : (s(Y) → r(X,Y)) .

Vorlesung: Datenbanken 50

Here, it is obvious that instead ADOM(X), the consideration can be restricted to the A-values of
R:

F (X) = ∃Z : r(X,Z) ∧ ∀Y : (s(Y) → r(X,Y)) .

The query is not in SRNF. It is equivalent to

F (X) = ∃Z : r(X,Z) ∧ ¬∃Y : (s(Y) ∧ ¬r(X,Y)) ,

which is in SRNF (thus, domain-independent), but not in RANF.

Transformation to RANF (“push-into-not-exists”):

F (X) = ∃Z : r(X,Z) ∧ ¬∃Y : (∃Z2 : r(X,Z2)) ∧ s(Y) ∧ ¬r(X,Y))

Derivation of the algebra expression:

F Algebra

(∃Z : r(X,Z)) ∧ s(Y) ∧ ¬r(X,Y) (π[A](r) × s) \ r
∃Y : (∃Z : r(X,Z)) ∧ s(Y) ∧ ¬r(X,Y) π[A]((π[A](r) × s) \ r)

(the expression has the format A)
∃Z : r(X,Z) π[A](r) (has again the format A)
F (X) as above π[A](r) \ π[A]((π[A](r) × s) \ r)

... is exactly the right-hand side.

Exercise 5 (Kalkül: Gruppierung und Aggregation) Define a syntactical extension for the
relational calulus, that allows to use aggregate functions similar to the GROUP BY functionality of
SQL.

For this, consider only aggregate functions as simple applications over single attributes like max(population),
but not more complex expressions like max(population/area).

• What is the result of an aggregate function, and how can it be used in the calculus?

• Which inputs does an aggregate function have?

• how can this input be obtained from the database?

Give a calculus expression for the query “For each country give the name and the total number of
people living in its cities”.

The result is a number. It can be bound to a variable or it can be used in a comparison. Thus, the
aggregate function is to be considered as a term (whose evaluation yields a value).

The immediate input to an aggregate function is a set/list of values, over which the aggregate is
computed (sum, count, . . .).

This list can be obtained as results of a (sub)formula (similar to a correlated subquery) with a free
variable.

The results are grouped by zero, one or more free variables of the subquery. Usually, these also
occur in other literals outside the aggregation.

X = agg-op{var [group-by-vars]; subq-fml}

Vorlesung: Datenbanken 51

where in subq-fml the group-by-vars and var have free occurrences. E.g.,

F (CN,SumCityPop) =
∃C,A, P,Cap, CapProv : country(CN,C,A, P, Cap, CapProv) ∧
SumCityPop = sum{CityPop [C];

∃CtyN,CtyProv, L1, L2 : city(CtyN,CtyProv, C,CityPop, L1, L2)}

groups by C, computes the sum over CityPop and binds the value to SumCityPop.

Comments:

• a similar syntax is used in F-Logic;

• the usage in XSB is similar, but the user has to program it more explicitly:

– the list is created by the Prolog predicate “bagof”;

– the aggregation operation over the list must be programmed in the common Prolog style for
handling a list.

Exercise 6 (Kalkül→Algebra) Consider the relation schemata R(A,B), S(B,C) und T (A,B,C).

a) Give an equivalent algebra expression for the following safe relational calculus expression:

F1(X,Y) = T (Y, a, Y) ∧ (R(a,X) ∨ S(X, c)) ∧ ¬T (a,X, Y)

Proceed as shown in the lecture for the equivalence proof.

b) Simplify the expression.

c) Extend the expression from (a) to

F2(Y) = ∃X : (F1(X,Y) ∧X > 3)

a) First, consider each of the three conjuncts (denoted as F2, F1 and F3) separately:

The literal F1(Y) = T (Y, a, Y) corresponds to the subexpression

E1 = ρ[A → Y](π[A](σ[(A = C) ∧ (B = a)](T))) .

The subformula F2(X) = R(a,X) ∨ S(X, c) corresponds to the expression

E2 = ρ[B → X](π[B](σ[A = a](R))) ∪ ρ[B → X](π[B](σ[C = c](S))) .

The negated literal F3(X,Y) = ¬T (a,X, Y) corresponds to the expression

E4 = ρ[B → X,C → Y](π[B,C](σ[A = a](T)))

The expression corresponding to F3(X,Y) is then

E3 = ρ[$1 → X, $2 → Y](ADOM2)− ρ[B → X,C → Y](π[B,C](σ[A = a](T)))

where ADOM2 = ((π[A](R) ∪ π[B](R) ∪ π[B](S) ∪ π[C](S) ∪ π[A](T) ∪ π[B](T) ∪ π[C](T)) ×
(π[A](R) ∪ π[B](R) ∪ π[B](S) ∪ π[C](S) ∪ π[A](T) ∪ π[B](T) ∪ π[C](T))) contains all 2-tuples
of values from the database.

Thus, E = E1 ⊲⊳ E2 ⊲⊳ (ADOM2 − E4) is the complete algebra expression.

b) Simplify: E1 and E2 have no variable/column in common, thus it can be simplified as (E1 ×
E2) ⊲⊳ (ADOM2−E4). Both subterms bind X and Y , thus, ADOM2 can be omitted, obtaining
E′ = (E1 × E2)− E4.

c) The additional comparison is expressed as a selection, and the ∃X quantification is expressed
as a projection to Y :

π[Y](σ[X > 3](E′))

