
AG Datenbanken und Informationssysteme · Institut für Informatik · Universität Göttingen

Database Theory
Winter Term 2013/14

Prof. Dr. W. May

5. Unit: Well-founded and Stable Semantics

Discussion by 5./7.2.2014

Exercise 1 (Well-Founded Model) a) Show that there are non-stratifiable Datalog¬ programs
that have a total well-founded model (i.e., no atoms undefined).

b) Are there non-stratifiable Datalog¬ programs that have a total well-founded model for all EDB
instances?

a) Take a simple win-move game that has only won and lost positions, no drawn ones:

pos(a). pos(b). pos(c).

move(a,b).

move(b,c).

win(X) :- move(X,Y), not win(Y).

The well-founded model is

({pos(a). pos(b). pos(c). move(a,b). move(b,c). win(b)},
{move(a,a). move(a,c). move(b,a). move(b,a). move(c,a). move(c,b). move(c,c). win(a). win(c).})

b) Consider EDB relations p/1, q/1, s0/1, t0/1. The program P is as follows:

r(x) :- p(x), not q(x).

s(x) :- s0(x).

s(x) :- q(x), not t(x).

t(x) :- t0(x).

t(x) :- r(x), not s(x).

Sketch: The program describes a partition that is based on splitting p into q vs. r. p ∧ q is one
side, p ∧ ¬q the other.

Based on this, relations s vs. t are defined (which are not necessarily disjoint): By “default”,
elements of q belong to s, while elements of r belong to t. The membership of elements can be
influenced by s0 and t0 that “overwrites” the above defaults, which is encoded into the q → s
and r → t rules that create a negative cyclic dependency. (Note that elements a can be assigned
to be both in s and t via s0(a) and t0(a)).

The dependency graph is q s s0

p

r t t0

¬ ¬ ¬

For each EDB instance that defines I(p), I(q), I(s0), I(t0), the well-founded model is total.

Exercise 2 (Well-Founded Model) Give an instance of the win-move game that has no total
stable model.

Vorlesung: Datenbanken 62

Cycle with three positions:

a

c

b

win(X) :- move(X,Y), not win(Y).

lose(X) :- pos(X), not win(X).

pos(a).

pos(b).

pos(c).

move(a,b).

move(b,c).

move(c,a).

% lparse -n 0 -d none --partial winmovenontotal1.s |smodels

[Filename: winmovenontotal1.s]

The only stable model is M with

valM (win(a)) = valM (win(b)) = valM (win(b)) = u,
valM (lose(a)) = valM (lose(b)) = valM (lose(b)) = u.

In general: any cycle with an odd number of positions, and where no position is lost due to an exit
from the cycle.

a1

c1 d1

b1

a2

c2 d2 e2

b2

win(X) :- move(X,Y), not win(Y).

lose(X) :- pos(X), not win(X).

pos(a1).

pos(b1).

pos(c1).

pos(d1).

move(a1,b1).

move(b1,c1).

move(c1,a1).

move(c1,d1).

pos(a2).

pos(b2).

pos(c2).

pos(d2).

pos(e2).

move(a2,b2).

Vorlesung: Datenbanken 63

move(b2,c2).

move(c2,a2).

move(c2,d2).

move(d2,e2).

% lparse -n 0 -d none --partial winmovenontotal2.s |smodels

[Filename: winmovenontotal2.s]

In the “1” game, the exit makes d1 a losing position and thus c1 is a winning position (move to
d1). Thus, b1 is lost and a1 is won.

In the “2” game, the exit makes e1 lost and d1 won, but c1 is not lost, since he player will move to
a1 and stay in the cycle.

