
AG Datenbanken und Informationssysteme · Institut für Informatik · Universität Göttingen

Database Theory
Winter Term 2013/14

Prof. Dr. W. May

2. Unit: Datalog

Discussion by 15./22.1.2014

Exercise 1 (Äquivalenz von Algebra und Datalog) Show that for every expression of the
relational algebra there is an equivalent stratified Datalog program.

Difference

Selection
Projection
Cartesian Product/Join
Union

recursive queries

DatalognegRelational Algebra Datalog

Union Let p, q relations. Then, for u = p ∪ q

u(X1,. . . ,XN) :– p(X1,. . . ,XN).
u(X1,. . . ,XN) :– q(X1,. . . ,XN).

Difference Let p, q relations. Then, for d = p \ q

d(X1,. . . ,XN) :– p(X1,. . . ,XN), not q(X1,. . . ,XN).

Projection Let p a relation with attributes X1, . . . , Xn. Then, for pr = π[Xi1 , . . . , Xik](p) with
Xij ∈ {X1, . . . , Xn}

pr(XI1,. . . ,XIK) :– p(X1,. . . ,XN).

Selection Let p a relation with attributes X1, . . . , Xn, α a condition over X1, . . . , Xn. Then, for
s = σ[α](p)

s(X1,. . . ,XN) :– p(X1,. . . ,XN), α.

Join Let p, q relations with common attributes Xk, . . . , Xm.
Then, for j = p ⊲⊳ q

j(X1,. . . ,XN) :– p(X1,. . . ,XK,. . . ,XM), q(XK,. . . ,XM,. . . ,XN).

The program that corresponds to a complex algebra expression is stratified since each subexpression
defines a new predicate symbol, and thus the dependency graph corresponds to the tree structure
of the expression.

Vorlesung: Datenbanken 55

Exercise 2 (Datalog to Algebra)
Consider the translation of Datalog programs with a distinguished answer predicate to the relatio-
nal algebra.

• Given a rule B ← C1 ∧ . . . ∧ Cm ∧ ¬Dm+1 ∧ . . . ∧ ¬Dm+n

where the Ci and Di are of the form Ri(a1, . . . , aℓ), aj constants or variables. Give an algebra
expression that returns the relation defined by it.

• Which additional construct must also be translated?

• Consider the following program (arbitrary arity of predicates, each rule assumed to be safe):

res(X,Z) :- v(X,_,_Y), q(_,_Y,Z), ¬r(Z,_).
res(X,Z) :- v(X,_Y,Z), ¬r(_Y,_), ¬w(X).
v(X,Y,Z) :- p(Z,_,X), q(X,Y,_).
v(X,Y,Z) :- p(X,Y,Z), Y<4.
w(X) :- s(_,X), t(X,_).

where p/3, q/3, r/2, s/2, t/2 are EDB relations, v/3, w/1 are IDB relations (views).

Give the algebra expression that corresponds to the res predicate.

• For each Ci(X1, . . . , Xki
) and Di(X1, . . . , Xki

), there is an equivalent algebra expression Ei =
ρ[. . .](π[. . .](Ri)) (note that Ri may be a complex expression if Ri is an EDB predicate) with
format (X1, . . . , Xmi

) that selects the relevant attributes/variables/columns and renames them
to X1, . . . , Xki

.

Safety implies that all variables that occur in any of the Di also occur in at least one of the Ci.

Let C := E1 ⊲⊳ . . . ⊲⊳ Em. Then,

π[Vars(B)](C ⊲⊳ (π[Vars(Dm+1)](C) −Dm+1) ⊲⊳ . . . ⊲⊳ (π[Vars(Dm+n)](C) −Dm+n)) (∗)

is the required expression.

(Note that this is analogous to the RANF to Algebra transformation; cf. Proof “Calculus to
Algebra” in the lecture.)

• – comparison atoms of the form X1 op Xj or Xi op c: selections applied to (∗).

– If two rules define the same predicate symbol (i.e., have the same head): union.

• Subtrees/intermediate results can sometimes be used twice. This is supported by algebraic
optimization and tabling.

Vorlesung: Datenbanken 56

∪

π[X,Z]

⊲⊳

⊲⊳

πρ[X,Z → Y]

this is v

∪

⊲⊳

πρ[$1→ Z,

$3→ X]

p

πρ[$1→ X,

$2→ Y]

q

σ[Y < 4]

πρ[$1→ X,

$2→ Y,

$3→ Z]

p

πρ[$2→ Y,

$3→ Z]

q

−

π[Z] πρ[$1→ Z]

r

π[X,Z]

⊲⊳

π[X,Z](v) −

π[Y](v) π[Y]

r

−

π[X](v) ⊲⊳

πρ[$2→ X]

s

πρ[$1→ X]

t

Exercise 3 (Stratified Datalog)

Give an example for the nonmonotonicity of the stratified semantics,

show that for a stratifiable program P there can be multiple minimal models.

This can be shown and illustrated in several ways:

• use a “real” scenario and program for illustration and understanding.

• use a small typical, abstract program to focus on the formal aspects.

Both will be shown below.

Intuitive example Consider the “real” program P as follows:

All facts from the Mondial database.

borders(Y,X,Z) :- borders(X,Y,Z). % make it symmetric.

reachable(X,Y) :- borders(X,Y,_).

reachable(X,Y) :- reachable(X,Z), borders(Z,Y,_).

unreachable(X,Y) :- country(X), country(Y), not reachable(X,Y).

Vorlesung: Datenbanken 57

In the stratified model S(P), the reachable predicate contains e.g. the pairs (D,F), (D,SGP),,
The unreachable contains among many others e.g. the pairs (D,USA), (D,BR), and (M,NZ); the
last one stands for Malta and New Zealand, which are both countries that are located on islands
and do not have any neighbors.

Cf. Lecture: the stratified model S(P) of P is a minimal model, i.e., no proper subset ofM is also
a model.

Nonmonotonicity: If e.g. the fact borders(M,NZ) is added to the program (i.e., “learnt” as new
knowledge), obtaining a new program P ′. The conclusions about borders (symmetric) and
reachable (transitive hull) must be completed:

Then, S ′(P ′) = (S(P) ∪ {border(M,NZ), border(M,NZ)}
∪ {reachable(M,NZ), reachable(NZ,M)})

\ {unreachable(M,NZ), unreachable(NZ,M)}

The example exhibits nonmonotonicity: Here, a new fact has been learnt, and some conclusions
that have been valid before, namely unreachable(M,NZ) and unreachable(M,NZ), have been
withdrawn.

More general: Closed-World reasoning is inherently nonmonotonic. When some conclusion is
made from non-existence of some fact, and this fact is learned to be true later, the conclusion
must be withdrawn.

Multiple minimal models: The above S ′(P ′) is also a model of the original program P , and
also a minimal model of P (i.e., there is no proper subset of it that is also a model of P ;
especially note that S(P) is not a subset of S ′(P ′) because some conclusions from S(P) have
been withdrawn – the nonmonotonicity plays an important role to make multiple
minimal models possible)

Recall that for a purely positive program P2, the minimal model of P2 ∪{any positive atoms} is
always a superset of the minimal program of P2, i.e., the minimal model theory is monotonic.

In general, adding/“inventing” any positive fact to P can be extended to a minimal model of
P . Above, a base fact (i.e., an instance of an EDB relation) had been added, corresponding to
learn a new fact about the real world.

The same holds also when instances of IDB relations are invented:

Consider just

M′ = (S(P) ∪ {reachable(M,NZ)}) \ {unreachable(M,NZ)} , which is also a model of P , and it
is also a minimal one.

M′ better than S ′(P ′) illustrates how these minimal models of P are not “as good as” the
unique stratified model of P :

• M′ ist not “nice” from the logical point of view because it contains an “unfounded” reachable
tuple. It does not violate P , but it adds something that P would not have derived.

• M′ is also not nice from the application point of view: reachable(NZ,M) is not there, but
unreachable(NZ,M) – since the rules do not require reachable to be symmetric (it is symmetric
in the stratified model of the original P since borders is required to be symmetric and
reachable is its transitive closure).

The intuition becomes clear with this example: “invent” a fact, adapt the resulting conclusions
accordingly and obtain a new minimal model.

Here, it was a “lucky choice” to retain a relatively simple example.

Consider an uglier case: add reachable(P,USA). Lots of reachable atoms are added, i.e. all american
countries are now reachable from all european countries (and via Russia) also from all asian
countries, and (via Egypt) then also from all african countries, but not the other way round
(Details: self-study).

Vorlesung: Datenbanken 58

Finally consider to add border(P,USA) (Details: self-study).

This intuitive example gives an understanding what happens, but contains too much overhead for
theoretical characterizations.

For that, logicians prefer minimal, abstract examples.

Abstract, minimal example Consider the program P := {p :- ¬q}

Its dependency graph is p q
¬

.

Thus, there is a stratification S1 = {q}, S2 = {p}, resulting in P1 = ∅ and P2 = {p :- ¬q}.

Thus, I0 = ∅,
I1 = ∅ ∪ Tω

P1
(∅) = ∅,

I2 = ∅ ∪ Tω
P2
(∅) = {p} =: S(P)

The (unique) stratified model S(P) is a model of P and it is a minimal model.

Consider M′ := {∐} (invented: fact q). It is a model of P (i.e. satisfies all its rules), and it is a
minimal model (i.e. no proper subset of it is also a model of P).

Nonmonotonicity: the set of conclusions from P := {p :- ¬q} is {p} while the set of conclusions
from P ∪ {q} is {q} – i.e., conclusion p must be withdrawn when learning that q holds.

In the rest of the lecture, some more notions of models will be considered: The above M′ are
neither well-founded (i.e., each atom in them has some derivation), nor stable (i.e., they do not
reproduce themselves).

Exercise 4 (Datalog-Anfragen an Mondial: Landlocked)

• Give a Datalog program that returns the names of all countries that have no coast.

• Give a Datalog program that returns the names of all countries that have no coast and that
have no neighbor country that has any coast.

• Give the dependency graph of your program.

:- auto_table.

:- include(mondial).

borders(Y,X,L) :- borders(X,Y,L).

coast(C) :- geo_sea(S,C,P).

landlocked(C) :- country(_,C,_,_,_,_), not coast(C).

hasnonlandlockedneighbor(C) :- landlocked(C), borders(C,C2,_), not landlocked(C2).

landlandlocked(C) :- landlocked(C), not hasnonlandlockedneighbor(C).

Asking ?- hasnonlandlockedneighbor(C) yields many countries several times, e.g., MK (Mace-
donia) three times since C2 can be bound by three ways to coastal neighbors: AL, GR, BG.

This can be avoided by a Prolog cut in the “subquery” that searches for possible C2 bindings:

:- auto_table.

:- include(mondial).

borders(Y,X,L) :- borders(X,Y,L).

coast(C) :- geo_sea(S,C,P).

landlocked(C) :- country(_,C,_,_,_,_), not coast(C).

Vorlesung: Datenbanken 59

%hasnonlandlockedneighbor(C) :- landlocked(C), borders(C,C2,_), not landlocked(C2).

hasnlln(C) :- landlocked(C), hasnlln2(C).

hasnlln2(C) :- borders(C,C2,_), not landlocked(C2),!.

landlandlocked(C) :- landlocked(C), not hasnlln(C).

Exercise 5 (Aggregation in Datalog/XSB) Define the aggregation operators in XSB in a mo-
dule aggs.P.

The syntax of the comparison predicates and of the arithmetic operators is given in Sections 3.10.5
(Inline Predicates) and 4.3 (Operators) of the XSB Manual Part I.

Then use aggs.P for answering the following queries in Datalog:

a) Give for each country the name and the number of neighbors.

b) Give the name of the country that has the highest number of neighbors (and how many).

c) Give the average area of all continents (to test avg).

d) Give the average latitude and longitude of all cities.

:- table avg/2.

sum(X,[H|T]) :- sum(Y,T), H \= null, Y \= null, X is H + Y.

sum(H,[H|T]) :- sum(null,T), H \= null.

sum(X,[null|T]) :- sum(X,T).

sum(null,[]).

?- sum(N, [1,2,3]).

count(X,[H|T]) :- count(Y,T), H \= null, X is Y + 1.

count(X,[null|T]) :- count(X,T).

count(0,[]).

?- count(N, [1,2,3]).

avg(X,L) :- sum(Y,L), count(C,L), Y \= null, C \= 0, X is Y / C.

avg(null,L) :- sum(Y,L), Y = null.

avg(null,L) :- count(C,L), C = 0.

avg(null,[]).

?- avg(N, [1,2,3]).

min(Y,[H|T]) :- min(Y,T), H \= null, Y \= null, H > Y.

min(H,[H|T]) :- min(Y,T), H \= null, Y \= null, H =< Y.

min(H,[H|T]) :- min(null,T), H \= null.

min(X,[null|T]) :- min(X,T).

min(null,[]).

max(Y,[H|T]) :- max(Y,T), H \= null, Y \= null, H =< Y.

max(H,[H|T]) :- max(Y,T), H \= null, Y \= null, H > Y.

max(H,[H|T]) :- max(null,T), H \= null.

max(X,[null|T]) :- max(X,T).

max(null,[]).

Vorlesung: Datenbanken 60

:- auto_table.

:- table neighbourscount/2, neighbourscount2/2, maxneighbourscount/1.

:- include(mondial).

:- include(aggs).

borders(X,Y) :- borders(X,Y,_).

borders(X,Y) :- borders(Y,X,_).

neighbours(X,NList) :- bagof(Y,borders(X,Y),NList).

neighbourscount(C,N) :- neighbours(C,NList), count(N,NList).

?- neighbourscount(_C,N), country(CName,_C,_,_,_,_).

?- neighbourscount(C,N), N > 10.

% oder kurz auch so:

neighbourscount2(C,N) :- bagof(Y,borders(C,Y),NList), count(N,NList).

%neighbourscounts(CList) :- bagof(N,C^neighbourscount(C,N),CList).

maxneighbourscount(M) :- bagof(_N,_C^neighbourscount(_C,_N),_CList), max(M,_CList).

% ?- maxneighbourscount(N).

% 16

?- maxneighbourscount(N), neighbourscount(_C,N), country(CName,_C,_,_,_,_).

?- neighbourscount(_C,N), country(CName,_C,_,_,_,_), maxneighbourscount(N).

% ?- avg(N,[9562488,45095292,8503474,30254708,39872000]).

% N = 26657592.4000

% ?- bagof(_Area,_CN^continent(_CN,_Area),_AreaList), avg(AvgArea,_AreaList).

% AvgArea = 26657592.4000

% ?- city('Stuttgart',_,_,_,Long,Lat).

% ?- bagof(Long,A^B^C^D^E^city(A,B,C,D,Long,E),_LongList), avg(AvgLong,_LongList).

% ?- bagof(Lat,A^B^C^D^E^city(A,B,C,D,E,Lat),_LatList), avg(AvgLat,_LatList).

avglonglat(AvgLong,AvgLat) :-

bagof(_Long,_A^_B^_C^_D^_E^city(_A,_B,_C,_D,_Long,_E,_),_LongList), avg(AvgLong,_LongList),

bagof(_Lat,_A^_B^_C^_D^_E^city(_A,_B,_C,_D,_E,_Lat,_),_LatList), avg(AvgLat,_LatList).

