
Vorlesung: Datenbanken 45

Exercise 3 (RANF to Algebra – Minus) Give expressions in the relational algebra and in
the relational calculus for the query “Full names of all countries that have more than 1000000

inhabitants and are not member of the EU”.

Check whether the calculus expression is in SRNF and RANF, and transform it into the relational
algebra. Compare the result with the algebra expression.

A straightforward algebra expression is

π[name]

⊲⊳

σ[population>1000000]

country

−

π[code]

country

π[code]

σ[org = “EU”]

isMember

The calculus expression is

F (N) = ∃C,Cap, CapProv,A, Pop :
(country(N,C,Cap, CapProv,A, Pop) ∧ Pop > 1000000∧ ¬∃T : isMember(C, “EU” , T)) .

It is in SRNF, it is safe range, and it is in RANF. Recall that for the subformula ¬∃T : isMember(C, “EU” , T),
RANF requires rr(∃T : isMember(C, “EU” , T)) = free(∃T : isMember(C, “EU” , T)) = {C} which is
the case.

For the relational algebra,

isMember(C, “EU” , T) ⇒ ρ[$1 → C, $3 → T](π[$1, $3](σ[$2 = “EU”](isMember)))
∃T : isMember(C, “EU” , T) ⇒ π[$1](ρ[$1 → C, $3 → T](π[$1, $3](σ[$2 = “EU”](isMember))))

= ρ[$1 → C](π[$1](σ[$2 = “EU”](isMember)))

For ¬∃T : isMember(C, “EU” , T), let the expression E denote the algebra expression that enume-
rates all values of the active domain. With this,

¬∃T : isMember(C, “EU” , T) ⇒ ρ[$1 → C](E)− ρ[$1 → C](π[$1](σ[$2 = “EU”](isMember)))

Vorlesung: Datenbanken 46

Altogether, the whole query translates to

π[N]

⊲⊳

σ[P > 1000000]

ρ[$1 → N, $2 → C, $3 → Cap,
$4 → CapProv, $5 → A, $6 → P]

country

−

ρ[$1 → C]

E

ρ[$1 → C]

π[$1]

σ[$2 = “EU”]

isMember

Obviously, the term ρ[$1 → C](E) can be replaced by ρ[$2 → C](π[$2](country)) which enumerates
a superset of all values of C that can result from the left subtree.

Instead, also ρ[$2 → C](π[$2](σ[$6 > 1000000](country))) is sufficient, which makes the left subtree
(nearly) unnecessary. From it, only the full name must still be obtained.

π[N]

⊲⊳

π[N,C] −

π[C]

σ[P > 1000000]

ρ[$1 → N, $2 → C, $3 → Cap,
$4 → CapProv, $5 → A, $6 → P]

country

ρ[$1 → C]

π[$1]

σ[$2 = “EU”]

isMember

Another possibility is the anti-join ⊲ (which is one of the built-in operators of internal algebras):

Vorlesung: Datenbanken 47

π[N]

⊲

π[N,C]

σ[P > 1000000]

ρ[$1 → N, $2 → C, $3 → Cap,
$4 → CapProv, $5 → A, $6 → P]

country

ρ[$1 → C]

π[$1]

σ[$2 = “EU”]

isMember

Exercise 4 (Division: Äquivalenz von Algebra und Kalkül) For the relational algebra, the
division operator has been introduced as a derived operator (cf. lecture “Databases”). Consider the
relation schemata r(A,B) and s(B).

r ÷ s = {µ ∈ Tup(A) | {µ} × s ⊆ r} = π[A](r) \ π[A]((π[A](r) × s) \ r).

Derive a query in the relational calculus from the left-hand side, and prove the equivalence with
the right-hand side.

The left-hand side expression: the set of all possible tuples over a A is described by F (X) =
ADOM(X). The remaining task is then easy: for all values Y in S, the combination of X and Y

must be in R:

F (X) = ADOM(X) ∧ ∀Y : (s(Y) → r(X,Y)) .

Here, it is obvious that instead ADOM(X), the consideration can be restricted to the A-values of
R:

F (X) = ∃Z : r(X,Z) ∧ ∀Y : (s(Y) → r(X,Y)) .

The query is not in SRNF. It is equivalent to

F (X) = ∃Z : r(X,Z) ∧ ¬∃Y : (s(Y) ∧ ¬r(X,Y)) ,

which is in SRNF (thus, domain-independent), but not in RANF.

Transformation to RANF (“push-into-not-exists”):

F (X) = ∃Z : r(X,Z) ∧ ¬∃Y : (∃Z2 : r(X,Z2)) ∧ s(Y) ∧ ¬r(X,Y))

Derivation of the algebra expression:

Vorlesung: Datenbanken 48

F Algebra

(∃Z : r(X,Z)) ∧ s(Y) ∧ ¬r(X,Y) (π[A](r) × s) \ r
∃Y : (∃Z : r(X,Z)) ∧ s(Y) ∧ ¬r(X,Y) π[A]((π[A](r) × s) \ r)

(the expression has the format A)
∃Z : r(X,Z) π[A](r) (has again the format A)
F (X) as above π[A](r) \ π[A]((π[A](r) × s) \ r)

... is exactly the right-hand side.

Exercise 5 (Kalkül: Gruppierung und Aggregation) Define a syntactical extension for the
relational calulus, that allows to use aggregate functions similar to the GROUP BY functionality of
SQL.

For this, consider only aggregate functions as simple applications over single attributes like max(population),
but not more complex expressions like max(population/area).

• What is the result of an aggregate function, and how can it be used in the calculus?

• Which inputs does an aggregate function have?

• how can this input be obtained from the database?

Give a calculus expression for the query “For each country give the name and the total number of
people living in its cities”.

The result is a number. It can be bound to a variable or it can be used in a comparison. Thus, the
aggregate function is to be considered as a term (whose evaluation yields a value).

The immediate input to an aggregate function is a set/list of values, over which the aggregate is
computed (sum, count, . . .).

This list can be obtained as results of a (sub)formula (similar to a correlated subquery) with a free
variable.

The results are grouped by zero, one or more free variables of the subquery. Usually, these also
occur in other literals outside the aggregation.

X = agg-op{var [group-by-vars]; subq-fml}

where in subq-fml the group-by-vars and var have free occurrences. E.g.,

F (CN,SumCityPop) =
∃C,A, P,Cap, CapProv : country(CN,C,A, P, Cap, CapProv) ∧
SumCityPop = sum{CityPop [C];

∃CtyN,CtyProv, L1, L2 : city(CtyN,CtyProv, C,CityPop, L1, L2)}

groups by C, computes the sum over CityPop and binds the value to SumCityPop.

Comments:

• a similar syntax is used in F-Logic;

• the usage in XSB is similar, but the user has to program it more explicitly:

– the list is created by the Prolog predicate “bagof”;

– the aggregation operation over the list must be programmed in the common Prolog style for
handling a list.

Vorlesung: Datenbanken 49

Exercise 6 (Kalkül→Algebra) Consider the relation schemata R(A,B), S(B,C) und T (A,B,C).

a) Give an equivalent algebra expression for the following safe relational calculus expression:

F1(X,Y) = T (Y, a, Y) ∧ (R(a,X) ∨ S(X, c)) ∧ ¬T (a,X, Y)

Proceed as shown in the lecture for the equivalence proof.

b) Simplify the expression.

c) Extend the expression from 8a) to

F2(Y) = ∃X : (F1(X,Y) ∧X > 3)

a) First, consider each of the three conjuncts (denoted as F2, F1 and F3) separately:

The literal F1(Y) = T (Y, a, Y) corresponds to the subexpression

E1 = ρ[A → Y](π[A](σ[(A = C) ∧ (B = a)](T))) .

The subformula F2(X) = R(a,X) ∨ S(X, c) corresponds to the expression

E2 = ρ[B → X](π[B](σ[A = a](R))) ∪ ρ[B → X](π[B](σ[C = c](S))) .

Negated literal F3(X,Y) = ¬T (a,X, Y): The literal F4(X,Y) = T (a,X, Y) corresponds to the
expression

E4 = ρ[B → X,C → Y](π[B,C](σ[A = a](T)))

According to the lecture, the expression corresponding to F3(X,Y) is then

E3 = ρ[$1 → X, $2 → Y](ADOM2)− ρ[B → X,C → Y](π[B,C](σ[A = a](T)))

where ADOM2 = ((π[A](R) ∪ π[B](R) ∪ π[B](S) ∪ π[C](S) ∪ π[A](T) ∪ π[B](T) ∪ π[C](T)) ×
(π[A](R) ∪ π[B](R) ∪ π[B](S) ∪ π[C](S) ∪ π[A](T) ∪ π[B](T) ∪ π[C](T))) contains all 2-tuples
of values from the database.

Thus, E = E1 ⊲⊳ E2 ⊲⊳ (ADOM2 − E4) is the complete algebra expression.

b) Simplify: E1 and E2 have no variable/column in common, thus it can be simplified as (E1 ×
E2) ⊲⊳ (ADOM2−E4). Both subterms bind X and Y , thus, ADOM2 can be omitted, obtaining
E′ = (E1 × E2)− E4.

c) The additional comparison is expressed as a selection, and the ∃X quantification is expressed
as a projection to Y :

π[Y](σ[X > 3](E′))

