
AG Datenbanken und Informationssysteme · Institut für Informatik · Universität Göttingen

Database Theory
Winter Term 2013/14

Prof. Dr. W. May

1. Unit: Kalkül I

Self-contained subformulas (i.e., formulas in RANF) will also be needed for translating complex
queries into Datalog programs. The RANF section has not been discussed in detail, thus, solve the
below exercises intuitively (i.e., find relational algebra expressions in the same way as you did it
for the DB lecture before knowing the relational calculus at all).

Discussion by 15.5./20.5.2015

Exercise 1 (Kalkül: Sichere, Wertebereichsunabhängige Anfragen) Check for the follo-
wing queries whether they are in SRNF (give rr(G) for each of their subformulas).

For the formulas that are in RANF:

• check whether the formulas are in RANF. If not, give an equivalent formula in RANF.

• Give equivalent expressions in the relational algebra and in SQL (develop the SQL expressions
both from the original formula and from the RANF formula).

a) F (X,Y, Z) = p(X,Y) ∧ (q(Y) ∨ r(Z)),

b) F (X,Y) = p(X,Y) ∧ (q(Y) ∨ r(X)),

c) F (X,Y) = p(X,Y) ∧ ¬∃Z : r(Y, Z),

d) F (X) = p(X) ∧ ∃Y : (q(Y) ∧ ¬r(X,Y)),

e) F (X) = p(X) ∧ ¬∃Y : (q(Y) ∧ ¬r(X,Y))

f) F (X,Y) = ∃V : (r(V,X) ∧ ¬s(X,Y, V)) ∧ ∃W : (r(W,Y) ∧ ¬s(Y,X,W))

a) p(X,Y) ∧ (q(Y) ∨ r(Z)):

G rr(G)
p(x, y) X,Y

q(Y) Y

r(Z) Z

q(Y) ∨ r(Z) {Y } ∩ {Z} = ∅
p(X,Y) ∧ (q(Y) ∨ r(Z)) {X,Y } ∪ ∅ = {X,Y }

Since free(F) = {X,Y, Z} 6= {X,Y } = rr(F), F is not in SRNF (and thus also not in RANF).

F is not domain-independent: for S with S(p) = {1, a} and S(q) = {(a)} and S(r) = ∅ and
domain D is the answer set {X 7→ 1, Y 7→ a, Z 7→ d|d ∈ D}.

b) p(X,Y) ∧ (q(Y) ∨ r(X)):

G rr(G)
p(x, y) X,Y

q(Y) Y

r(X) X

q(Y) ∨ r(X) {Y } ∩ {X} = ∅
p(X,Y) ∧ (q(Y) ∨ r(X)) {X,Y } ∪ ∅ = {X,Y }

Vorlesung: Datenbanken 41

Since free(F) = {X,Y } = rr(F), F is in SRNF.

F is not in RANF since the disjunction q(Y) ∨ r(X) is not self-contained.

F can easily be expressed in SQL (with P (P1, P2), Q(Q1), R(R1)):

SELECT P1,P2

FROM P

WHERE P2 in (SELECT Q1 FROM Q)

OR P1 in (SELECT R1 FROM R)

The equivalent expression in the relational algebra is
(P ⊲⊳P2=Q1

Q) ∪ (P ⊲⊳P1=R1
R).

This is also obtained when translating from SRNF to RANF with “push-into-or”:
(p(X,Y) ∧ q(Y)) ∨ (p(X,Y) ∧ r(Z))

and then translates as usual to the relational algebra.

c) F (X,Y) = p(X,Y) ∧ ¬∃Z : r(Y, Z):

G rr(G)
p(X,Y) X,Y

r(Y, Z) Y, Z

∃Z : r(Y, Z) Y

¬∃Z : r(Y, Z) ∅
p(X,Y) ∧ ¬∃Z : r(Y, Z) X,Y

Since free(F) = {X} = rr(F), F is in SRNF.

All subformulas are self-contained.

F can easily be expressed in SQL (with P (P1, P2), R(R1, R2)):

SELECT P1,P2

FROM P

WHERE P2 NOT IN (SELECT R2 FROM R)

The equivalent expression in the relational algebra is
P ⊲⊳ (π[P2](P)− π[R1](R)).

The standard translation that uses the enumeration formula for the active domain (here: those
that occur in P and R) reads as:
P ⊲⊳ ((π[P1](P) ∪ π[P2](P) ∪ π[R1](R) ∪ π[R2](R))− π[R1](R)).

d) F (X) = p(X) ∧ ∃Y : (q(Y) ∧ ¬r(X,Y)):

G rr(G)
p(X) X

q(Y) Y

r(X,Y) X,Y

¬r(X,Y) ∅
q(Y) ∧ ¬r(X,Y) Y

∃Y : q(Y) ∧ ¬r(X,Y) ∅
p(X) ∧ ∃Y : q(Y) ∧ ¬r(X,Y) X

Since free(F) = {X} = rr(F), F is in SRNF.

F is not in RANF since the subformula G = ∃Y : q(Y)∧¬r(X,Y) is not self-contained: for the
body H = q(Y) ∧ ¬r(X,Y) there is free(H) = {X,Y }) {Y } = rr(H) (note that the SAFE
criterion from the lecture would already detect H as the problem).

F can easily be expressed in SQL (with P (P1), Q(Q1), R(R1, R2)):

SELECT P1

FROM P

Vorlesung: Datenbanken 42

WHERE EXISTS (SELECT Q1

FROM Q

WHERE (P1,Q1) NOT IN (SELECT R1,R2 FROM R))

The equivalent expression in the relational algebra is
π[P1]((P ×Q)− ρ[R1 → P1, R2 → P2]R.

This is also obtained when translating from SRNF to RANF with “push-into-exist”:
F (X) = ∃Y : (p(X) ∧ q(Y) ∧ ¬r(X,Y)),

and then translates as usual to the relational algebra.

This corresponds to the (simpler) SQL query

SELECT P1

FROM P, Q

WHERE (P1,Q1) NOT IN (SELECT R1,R2 FROM R)

e) This formula is the pattern of the relational division, r ÷ q. Es ist äquivalent zu F (X) =
p(X) ∧ ∀Y : (q(Y) → r(X,Y)).

F (X) = p(X) ∧ ¬∃Y : (q(Y) ∧ ¬r(X,Y)),

G rr(G)
p(X) X

q(Y) Y

r(X,Y) X,Y

¬r(X,Y) ∅
q(Y) ∧ ¬r(X,Y) Y

∃Y : q(Y) ∧ ¬r(X,Y) ∅
¬∃Y : q(Y) ∧ ¬r(X,Y) ∅
p(X) ∧ ¬∃Y : q(Y) ∧ ¬r(X,Y) X

Since free(F) = {X} = rr(F), F is in SRNF.

F is –as in (d)– not in RANF since the subformula G = ∃Y : q(Y) ∧ ¬r(X,Y) is not self-
contained.

F can easily be expressed in SQL (with P (P1), Q(Q1), R(R1, R2)):

SELECT P1

FROM P

WHERE NOT EXISTS (SELECT Q1

FROM Q

WHERE (P1,Q1) NOT IN (SELECT R1,R2 FROM R))

The equivalent expression in the relational algebra is
P − π[P1]((P ×Q)− ρ[R1 → P1, R2 → P2](R)).

This is also obtained when translating from SRNF to RANF with “push-into-not-exist”:
F (X) = p(X) ∧ ¬∃Y : (p(X) ∧ q(Y) ∧ ¬r(X,Y)),

and then translates as usual to the relational algebra.

f) This is an example for a conjunction, where none of the conjuncts is self-contained:

Vorlesung: Datenbanken 43

F (X,Y) = ∃V : (r(V,X) ∧ ¬s(X,Y, V)) ∧ ∃W : (r(W,Y) ∧ ¬s(Y,X,W))

G rr(G)
r(V,X) X,V

s(X,Y, V) X,Y, V

¬s(X,Y, V) ∅
r(V,X) ∧ ¬s(X,Y, V) X,V

∃V : (r(V,X) ∧ ¬s(X,Y, V)) X

r(W,Y) W,Y

s(Y,X,W) X,Y,W

¬s(Y,X,W) ∅
r(W,Y) ∧ ¬s(Y,X,W) W,Y

∃W : (r(W,Y) ∧ ¬s(Y,X,W)) Y

(. . .) ∧ (. . .) X,Y

Since free(F) = {X,Y } = rr(F), F is in SRNF.

F is not in RANF since the subformulas ∃V : (r(V,X) ∧ ¬s(X,Y, V)) and ∃W : (r(W,Y) ∧
¬s(Y,X,W)) are not self-contained (again, the problem is located inside each of the subformu-
las, as SAFE would complain about).

F can easily be expressed in SQL (with P (P1), Q(Q1), R(R1, R2)):

SELECT rv.R2, rw.R2

FROM R rv, R rw

WHERE NOT EXISTS (SELECT * FROM S

WHERE S1=rv.R2 and S2=rw.R2 and S3=rv.R1)

AND NOT EXISTS (SELECT * FROM S

WHERE S1=rw.R2 and S2=rv.R2 and S3=rw.R1)

or

SELECT rv.R2, rw.R2

FROM R rv, R rw

WHERE NOT (rv.R2, rw.R2, rv.R1 IN (SELECT * FROM S))

AND NOT (rw.R2, rv.R2, rw.R1 IN (SELECT * FROM S))

The equivalent expression in the relational algebra is ... not that easy.

Thus, F has to be transformed from SRNF to RANF by moving the first conjunct into the
second by “push-into-exists” (or the vice versa, the final result is the same):

∃W : ∃V : (r(V,X) ∧ ¬s(X,Y, V)) ∧ (r(W,Y) ∧ ¬s(Y,X,W))

Flatten existential quantifiers, flatten conjunction:

∃V,W : B(X,Y, V,W)

with B = (r(V,X) ∧ r(W,Y) ∧ ¬s(X,Y, V) ∧ ¬s(Y,X,W))

is self-contained with free(B) = {V,W,X, Y } = rr(B)

According to the transformation algorithm given in the lecture, the following has to be done:

• build the (XY V) component of B, subtract s,

• in parallel build the (XYW) component of B, subtract s,

• these are the triples of bindings that “survive”,

• join them,

Vorlesung: Datenbanken 44

• and project to:

π[X,Y]((π[X,Y, V](ρ[R1 → V,R2 → X](r)× ρ[R1 → W,R2 → Y](r))
−ρ[S1 → X,S2 → Y,R2 → V](s))

⊲⊳ (π[X,Y,W](ρ[R1 → V,R2 → X](r) × ρ[R1 → W,R2 → Y](r))
−ρ[S1 → Y, S2 → X,R2 → W](s)))

Exercise 2 (Relationale Anfragen an Mondial: Schweizer Sprachen) Give expressions in
the relational calculus for the following queries against the Mondial database. Compare with the
same queries in the relational Algebra and in SQL.

a) All codes of countries, in which some languages is spoken that is also spoken in Switzerland.

b) All codes of countries, in which only languages are spoken that are not spoken in Switzerland.

c) All codes of countries, in which only languages are spoken that are also spoken in Switzerland.

d) All codes of countries in which all languages that are spoken in Switzerland are also spoken.

a) F (C) = ∃L, Perc1, P erc2 : (language(′CH ′, L, Perc1) ∧ language(C,L, Perc2))

b) F (C) =∃CN,A, Pop, Cap, CapP :
(country(CN,C,A, Pop, Cap, CapP)∧
¬∃L, Perc1, P erc2 : (language(′CH ′, L, Perc1) ∧ language(C,L, Perc2)))

Algebra:
a) π[country]

⊲⊳

π[name]

σ[country=“CH”]

language

language

(b) \

ρ[code→country]

π[code]

country

tree from (a)

c) F (C) =(∃CN,A, Pop, Cap, CapP : country(CN,C,A, Pop, Cap, CapP)) ∧
¬∃L, Perc1 : (language(C,L, Perc1) ∧ ¬∃Perc1 : language(′CH ′, L, Perc2))

d) F (C) =(∃CN,A, Pop, Cap, CapP : country(CN,C,A, Pop, Cap, CapP)) ∧
∀L : ((∃Perc1 : language(′CH ′, L, Perc1)) → (∃Perc2 : language(C,L, Perc2)))

In the discussion, also the Datalog queries have been discussed:

:- auto_table.

:- include(mondial).

aufgA(C) :- language(C,_X,_), language('CH',_X,_).

aufgB(C) :- country(_,C,_,_,_,_), not aufgA(C).

nonCHLgCtry(C) :- language(C,_L,_), not language('CH',_L,_).

onlyCHLgCtry(C) :- country(_,C,_,_,_,_), not nonCHLgCtry(C).

chLgMissing(C) :- country(_,C,_,_,_,_), language('CH',_L,_), not language(C,_L,_).

noCHLgMissing(C) :- country(_,C,_,_,_,_), not chLgMissing(C).

?- aufgA(C).

?- aufgB(C).

?- onlyCHLgCtry(C). % note: also countries with no language!

?- noCHLgMissing(C).

