
Referential Actions as Logical RulesBertram Lud�ascherInstitut f�ur InformatikUniversit�at FreiburgGermanyludaesch@informatik.uni-freiburg.de Wolfgang May�Institut f�ur InformatikUniversit�at FreiburgGermanymay@informatik.uni-freiburg.de Georg LausenInstitut f�ur InformatikUniversit�at FreiburgGermanylausen@informatik.uni-freiburg.deAbstractReferential actions are specialized triggers used to automati-cally maintain referential integrity. While their local behav-ior can be grasped easily, it is far from clear what the com-bined e�ect of a set of referential actions, i.e., their globalsemantics should be. For example, di�erent execution or-ders may lead to ambiguities in determining the �nal setof updates to be applied. To resolve these problems, wepropose an abstract logical framework for rule-based main-tenance of referential integrity: First, we identify desirableabstract properties like admissibility of updates which leadto a non-constructive global semantics of referential actions.We obtain a constructive de�nition by formalizing a set ofreferential actions RA as logical rules, and show that thedeclarative semantics of the resulting logic program PRAcaptures the intended abstract semantics: The well-foundedmodel of PRA yields a unique set of updates, which is a safe,sceptical approximation of the set of all maximal admissi-ble updates; the third truth-value unde�ned is assigned toall controversial updates. Finally, we show how to obtain acharacterization of all maximal admissible subsets of a givenset of updates using certain maximal stable models.1 IntroductionWe study the following problem: Given a relational databaseD, a set of user-de�ned update requests U�, and a set ofreferential actions RA, �nd those sets of updates � which(i) preserve referential integrity in the new database D0, (ii)are maximal wrt. U�, and (iii) re
ect the intended meaningof RA.The problem is important both from a practical andtheoretical point of view: Referential integrity constraints(ric's) are a central concept of the relational database modeland frequently used in real world applications. Referentialactions (rac's) are specialized triggers used to automaticallymaintain referential integrity [Dat81]. While the local be-havior of rac's is quite intuitive and easy to understand,it is far from clear what their global semantics should be.In particular, di�erent execution orders of rac's may leadto di�erent outcomes, i.e. to ambiguities in determining theabove � and D0.�Supported by grant no. GRK 184/1-97 of the DeutscheForschungsgemeinschaft.Proc. 16th ACM Symposium on Principles of DatabaseSystems (PODS), Tucson, Arizona, 1997, c
ACM Press

Due to their practical importance, rac's have been in-cluded in the SQL2 standard and SQL3 proposal [ISO92,ISO94]. However, the standards describe the meaning ofrac's in a lengthy and procedural way, making it di�cult tounderstand or predict their global behavior. The problemof ambiguous global semantics is \solved" by �xing a ratherad-hoc run-time execution model [Hor92, CPM96]. In a dif-ferent approach, [Mar94] presents safeness conditions whichaim at avoiding ambiguities at the schema level. However,as shown in [Rei96], it is in general undecidable whether adatabase schema with rac's is ambiguous. Summarizing, theproblem is complex and, from a theoretical point of view,has not been solved in a satisfactory way.In contrast to previous work, we present an abstract log-ical framework for rule-based maintenance of referential in-tegrity: After introducing a generic language for rac's, weidentify general abstract properties which a set of updates� wrt. a given set of rac's RA may possess (Section 3).These abstract properties give rise to a natural but non-constructive global semantics. To obtain a constructive def-inition, we associate with every set of rac's RA a logic pro-gram PRA (Section 4), and show that the declarative se-mantics of PRA captures the abstract semantics (Section 5).This solves the above-mentioned problem in a rigorous andcomprehensive way.Our logical formalization has the following bene�ts:� the local behavior of an individual rac ra 2 RA is pre-cisely speci�ed, and can be understood by solely lookingat the corresponding rules Pra � PRA,� the interaction between di�erent update requests is pre-cisely de�ned by certain other rules,� the global behavior is precisely speci�ed and understand-able from the declarative semantics:{ the well-founded modelW of PRA yields a unique setof updates �, which is a safe, sceptical approximationof the set of all maximal admissible �'s (safe meansthat applying � does not lead to violation of ric's,sceptical means that all controversial updates havethe truth-value unde�ned in W),{ the maximal admissible �'s can be obtained as cer-tain stable models of PRA.2 Preliminaries and NotationA relation schema consists of a relation name R and a vectorof attributes (A1; : : : ; An). W.l.o.g. we identify attributenames Ai of a relation R with the integers between 1 and1

n. By ~A = (i1; : : : ; ik) we denote a vector of k � n distinctattributes (usually ~A will be some key).Tuples of a relation R are denoted by �rst-order logicatoms R(�X) where R is an n-ary relation symbol, and �X =X1; : : : ; Xn is a vector of variables or constants from theunderlying domain. If we want to emphasize that such avector is ground, i.e., comprises only constants, we write �xinstead of �X. The projection of tuples �X to an attributevector ~A is denoted by �X[~A], if e.g. �X = (a; b; c), ~A = (1; 3),then �X [~A] = (a; c).Let R be a relation schema with attributes ~A. A minimalsubset ~K of ~A whose values uniquely identify each tuple inR is called a candidate key. In general, the database schemaspeci�es which attribute vectors are keys. A candidate keyR: ~K has to satisfy the following �rst-order sentence 'key(the key dependency for R: ~K) for every database instanceD: 8 �X1; �X2 (R(�X1) ^R(�X2) ^ �X1[~K] = �X2[~K]! �X1[~A] = �X2[~A]) : ('key)A referential integrity constraint (ric) is an expression ofthe form RC : ~F ! RP : ~K ;where ~F is a foreign key of the child relation RC , referencinga candidate key ~K of the parent relation RP . Clearly, thearities of ~F and ~K have to coincide. Note that RC and RPmay be the same relation.A ric RC : ~F ! RP : ~K is satis�ed by a given database D,if for every tuple �x in the child RC with foreign key values�x[~F], there exists a tuple �y in RP with matching key value,i.e., �x[~F] = �y[~K]. Thus, for a database instance D, a ric issatis�ed if D j= 'ric, where 'ric is the �rst-order sentence8 �X (RC(�X) ! 9 �Y (RP (�Y) ^ �X[~F] = �Y [~K])) : ('ric)A ric is violated by D if it is not satis�ed by D.Update requests (updates) to a relation R are representedby auxiliary relations ins R(�X), del R(�X), andmod R(M; �X).Here, M is a list [a1=v1; : : : ; an=vn] of pairs prescribing thatattribute ai of R(�X) should be set to the value vi. Asa more abstract notation, [a1=v1; : : : ; an=vn] is written as(a1; : : : ; an)=(v1; : : : ; vn). For brevity, we sometimes writemod R(a=d; b; c=e) instead of mod R([1=d; 3=e]; a; b; c).Using our list notation, two modi�cations can be mergedby simply appending both lists, provided the resulting listassigns at most one value to every attribute.The restriction of a modi�cation M to a key ~K is denotedbyM [~K]; the result of applying a modi�cation M to a tuple�X is denoted byM(�X). E.g. ifM = [1=d; 3=e], �X = (a; b; c),then M [(2; 3)] = [3=e], and M(�X) = (d; b; e).Finally, given a modi�cation mod RP (M; �X) of a tuplein RP , M 0 = ~F=(M(�X)[~K]) denotes a modi�cation whichreplaces the values of the attributes ~F (of some other re-lation RC) with the values of the tuple which results fromapplying M to �X and then projecting on ~K.3 Referential ActionsRule-based approaches to referential integrity maintenanceare attractive since they describe how ric's should be en-forced using \local repairs": Given a ric RC : ~F ! RP : ~K

RP RCins del mod ins del modpropagate ok � � | ok |restrict ok � � � ok �wait ok � � � ok �ok= ric remains satis�ed� = ric may be violated, rac applicable|= ric may be violated, rac not applicableTable 1: Operations and Possible Repairsand an update operation on RP or RC , a rac de�nes anoperation to be applied to RC resp. RP . We call this thelocality principle.The updates insert, delete, and modify can be applied toRP or RC , leading to six basic cases. It is easy to see fromthe logical implication in ('ric) above that insert RP anddelete RC cannot introduce a violation, while the other fouroperations can. For these, there are in general three possibleactions (cf. Table 1):� propagate: propagate (cascade) the update from the par-ent to the child,� restrict: (i) reject an update on the parent if there existsa child referencing the parent in the current databasestate, or (ii) reject an update on the child if the ref-erenced parent does not exist in the current databasestate,� wait: similar to restrict, but look at the database stateafter (hypothetically) applying all updates.As can be seen from Table 1, not all combinations aremeaningful: e.g. it is perfectly reasonable to propagate (cas-cade) a modi�cation from the parent to the referencing child,but not vice versa.Syntax. Each rac consists of the ric which should be main-tained, the triggering update on either the parent RP or thechild RC , and the \local repair". We use the following no-tation, which should be self-explanatory:RC : ~F ! RP : ~K on fdel j ins j modg fparent j childgfpropagate j restrict j waitgReferential Actions in SQL. In SQL, rac's for a referentialintegrity constraint RC : ~F ! RP : ~K are speci�ed with thede�nition of the child table:fCREATE j ALTERg TABLE RC� � �FOREIGN KEY ~F REFERENCES RP ~K[ON UPDATE fCASCADE j RESTRICT j SET NULL jSET DEFAULT j NO ACTIONg][ON DELETE fCASCADE j RESTRICT j SET NULL jSET DEFAULT j NO ACTIONg]� � �The correspondence of SQL rac's to the above-mentionedstrategies is roughly as follows:CASCADE � propagate, NO ACTION � wait, and RESTRICT� restrict. The operations insert into RC and update RC onthe child are evaluated in the current database state, andimmediately backed out if they would result in a violation.2

Thus, for modi�cations on child tuples, the SQL behavioris less
exible than our presented formalization. The actionsSET DEFAULT and SET NULL of SQL are also covered by ourapproach, since these operations can be modeled as specialcases of modi�cations.3.1 AmbiguitiesSince rac's only specify local behavior, there are severaltypes of ambiguities leading to potentially di�erent �nalstates. Given a database D, and a set of user requests U�,a set of rac's RA is called ambiguous wrt. D and U�, ifthere are di�erent �nal states D0 (depending on the exe-cution order of referential actions). A database schema Swith rac's RA is ambiguous, if RA is ambiguous wrt. somedatabase D over S, and some U�. As shown in [Rei96] itis in general undecidable, whether a database schema withreferential actions is ambiguous.The SQL standards [ISO92, ISO94] solve the problemof ambiguity of rac's by �xing a certain run-time execu-tion model and a marking algorithm as described in [Hor92,CPM96]. In case a set of updates causes referential prob-lems, the transaction is simply aborted without giving fur-ther information, e.g. which tuples or updates caused theproblems. Often, although not all requested updates canbe accomplished, it is still possible to execute some of themwhile postponing the others. Thus, the information whichtuple or update really caused problems is valuable for prepar-ing a revised request which realizes the intended changes andis accepted by the system. In Section 5, we show that theseambiguities have a very natural and elegant representationin our framework: \controversial" updates are unde�ned inthe well-founded model; the set of all maximal solutions ischaracterized by certain stable models.Example 1 (Diamond) Consider the database with rac'sas depicted in Figure 1. Solid arcs represent ric's and pointfrom RC to RP , rac's are denoted by dashed (propagate)or double (restrict) arcs. Let U� = fdel R1(a)g be a userrequest to delete the tuple R1(a). Depending on the order ofexecution of rac's, one of two di�erent �nal states may bereached:1. If execution follows the path R1{R3{R4, the tuple R3(a; c)cannot be deleted: Since R4(a; b; c) references R3(a; c),the rac for R4 restricts the deletion of R3(a; c). This inturn also blocks the deletion of R1(a). Consequently, theuser request del R1(a) is rejected, and the database stateremains unchanged, i.e. D0 = D.2. If execution follows the path R1{R2{R4, the tuple R2(a; b)and |as a consequence| R4(a; b; c) are requested fordeletion. Hence, the rac for R4:(1; 3) ! R3:(1; 2) canassume that R4(a; b; c) is deleted, thus no referencing tu-ple exists in R4. Therefore, all deletions can be executed,resulting in a new database state D0 6= D.We argue that the second execution order is preferableto the �rst, since it accomplishes the desired user requestwithout violating referential integrity. Here, the ambiguityarises since the restrict rac considers the current databasestate, which makes the outcome dependent on the order ofexecution.This type of ambiguity can be eliminated by specifyingthat restrictions are always evaluated wrt. to the originaldatabase state instead of the current one. However, the sit-uation is more complex for rac's of type wait which have to

R11 � � �a � � �� � � � � �R21 2 � � �a b � � �� � � � � � � � � R31 2 � � �a c � � �� � � � � � � � �R41 2 3 � � �a b c � � �� � � � � � � � � � � �
R2:1!R1:1on del parent propagate R3:1!R1:1on del parent propagate

R4:(1; 2)!R2:(1; 2)on del parent propagate R4:(1; 3)!R3:(1; 2)on del parent restrictFigure 1: Database with Referential Actionslook at the �nal database state. As it turns out, in the pres-ence of modi�cations, there are in general several \equallyjusti�ed" �nal states, each of which has to be considered:Example 2 (Mutex) Consider modi�cations mod R(a=b)and mod R(a=c). They are mutually exclusive, since theycannot be executed simultaneously. In our logical formaliza-tion, both will be unde�ned in the well-founded model. More-over, there will be two stable models, each of which makesone modify request true, and the other false.The �nal type of ambiguity may arise due to \self-contra-dictory" requests:Example 3 (Self-Attack) Imagine a database with rac'ssuch that mod R1(a=b; a=c) triggers both mod R2(a=b) andmod R3(a=c). Then, mod R2(a=b) triggers mod R4(a=b),and mod R3(a=c) triggers mod R4(a=c). Since executing theoriginal request mod R1(a=b; a=c) causes a con
ict at R4, itcannot be executed. On the other hand, no other request isin con
ict with it, so there is no independent justi�cationnot to execute it. Thus, the original request \attacks" itself.In our formalization, there is no total stable model.3.2 Abstract SemanticsLet RA be a set of rac's, D a database instance, and U� aset of update requests given by the user. For an arbitraryset � of updates, we de�ne several abstract properties �may have wrt. RA, D and U�. These allow to de�ne theintended meaning of a set of rac's in an abstract (and non-constructive) way. D0 = D � � denotes the database ob-tained by applying � to D. We con�ne ourselves to a semi-formal de�nition; technical details can be found in [LML96].De�nition 1 (Abstract Properties) A single update iscalled founded (in n steps) wrt. given RA, D, U�, and �,if it can be justi�ed by the user requests and propagations:� A deletion del R(�x) is founded in n steps, if there isdel R(�x) 2 U� or there is a deletion del Ri(�xi) 2 �which is founded in < n steps, and a rac R:~Fi ! Ri: ~Kion del parent propagate s.t. �x[~Fi] = �xi[~Ki].� A modi�cation mod R(M; �x) is founded in n steps, ifthere are modi�cations M1; : : : ;Mk s.t. M = Si=1::kMi(not necessarily disjoint) and for every i, mod R(Mi; �x) 2U�, or mod R(Mi; �x) results from propagating a modi�-cation, i.e. there is a modi�cation mod Ri(M 0i ; �xi) 2 �which is founded in < n steps, and a rac R:~Fi ! Ri: ~Ki3

on mod parent propagate such that �xi[~Ki] 6=M 0i(�xi)[~Ki],�x[~Fi] = �xi[~Ki], and Mi = ~Fi=(M 0i(�xi)[~Ki]).� An insertion ins R(�x) is founded if ins R(�x) 2 U�.Given RA, D, and U�, a set � of updates is called� founded wrt. RA, D, and U� if every update del R(�x),mod R(M; �x), or ins R(�x) 2 � is founded wrt. RA, D,U�, and �.� complete wrt. RA and D if it is closed wrt. propagations,i.e., it satis�es the following conditions:{ if del RP (�y) 2 �, RC(�x) 2 D, RC : ~F ! RP : ~K on delparent propagate 2 RA, and �x[~F] = �y[~K] then del RC(�x) 2�.{ if mod RP (M; �y) 2 �, RC(�x) 2 D, RC : ~F ! RP : ~Kon mod parent propagate 2 RA, �y[~K] 6= M(�y)[~K], and�x[~F] = �y[~K] then there is a M 0 s.t. mod RC(M 0; �x) 2 �and M 0 � ~F=(M(�y)[~K]).� feasible if every rac of the form RC : ~F ! RP : ~K on : : :frestrict j waitg is \obeyed" by �, i.e.{ if RC : ~F ! RP : ~K on del parent restrict is in RA andfor a tuple RP (�y) there is a referencing child RC(�x) 2 D,then RP (�y) is not deleted by �;{ if RC : ~F ! RP : ~K on del parent wait is in RA anddel RP (�x) 2 �, then all children RC(�y) referencing RP (�x)are deleted or \modi�ed-away" by some updates in �;{ if RC : ~F ! RP : ~K on ins child restrict is in RA andins RC(�x) 2 �, then a referencable parent RP (�y) existsin D and is neither deleted nor modi�ed-away by �;{ if RC : ~F ! RP : ~K on ins child wait is in RA andins RC(�x) 2 �, then a referencable parent RP (�y) existsin the new database state D0.(similar for mod R(M; �x))� coherent if no contradicting updates are issued on thesame tuple, i.e. if upd = del R(�x) 2 �, then ins R(�x) =2�, and there is no M s.t. mod R(M; �x) 2 �; similarfor other updates upd. Note that if � is coherent, D0 =D �� is well-de�ned.� key-preserving if in D0 = D�� all key dependencies aresatis�ed.� admissible if � is founded, complete, feasible, coherent,and key-preserving.These abstract properties are used to formalize our intendedsemantics:De�nition 2 (Maximal Admissible Sets, Intended Se-mantics) Let RA, D, and U� be given.� The set of induced updates �(U) of a set of user re-quests U � U� is the least set � which contains U andis complete.� A set of user requests U � U� is admissible if �(U) isadmissible, and maximal admissible if there is no otheradmissible U 0, s.t. U (U 0 � U�.� The intended semantics are the maximal admissible sub-sets of U�.This semantics re
ects the intended behavior of the databasesystem, i.e., it does neither \invent" nor \forget" updatesand guarantees referential integrity:Theorem 1 (Adequacy)

R : (1; 2) V : (1; 2; : : :) S : (1; 2)T : (1; 2; 3; 4; : : :)U : (1; 2; : : :)Figure 2: Database Schema with Overlapping Keys1. If U � U�, then for every RA and D, �(U) is foundedand complete.2. If a coherent � is complete and feasible, then D0 = D��(U) satis�es all ric's in RA.Proof:1. �(U) is de�ned as the least complete set. It follows that�(U) is founded.2. Since � is complete, all updates propagated by RA arecontained in �. Feasibility of � guarantees that noupd 2 � is restricted, and all rac's which are maintainedby on : : : wait are satis�ed in D0. �The abstract semantics speci�es the notions of maximal ad-missible sets U and induced updates �(U), but providesno direct method how to compute them: Given a set of nuser requests, there are 2n subsets which may be admissible.Moreover, even if it is known that U is admissible, comput-ing �(U) is not straightforward: In contrast to deletionswhich can be propagated in a \naive" way [LMR96], in thepresence of modi�cations, simultaneous updates have to betaken into account. This can lead to an exponential numberof rules describing how modi�cations have to be propagated(see (CH) in Appendix A and Theorem 2 which describeshow �(U) can be computed).Finally, considering the e�ect of rac's in isolation as sug-gested by the locality principle (Section 3) is not su�cientif the admissible subsets of U� are unknown:Example 4 Consider the database schema depicted in Fig-ure 2. Among others there are rac's of type on mod par-ent propagate for the ric's T:(1; 2) ! R:(1; 2), T:(3; 4) !S:(1; 2), U:(1; 2)! T:(2; 3), and a rac T:(1; 4)! V:(1; 2) onmod child restrict.a) Assume D contains R(a; b), S(c; d), T (a; b; c; d; : : :),U(b; c; : : :), and V (a; d; : : :), V (a0; d; : : :), V (a; d0; : : :). Forgiven mod R(a=a0; b=b0) and mod S(c=c0; d=d0), the rac's trig-ger mod T (a=a0; b=b0; c; d; : : :) and mod T (a; b; c=c0; d=d0; : : :).Since these updates to T are coherent, they can be merged,resulting in mod T (a=a0; b=b0; c=c0; d=d0; : : :), which then trig-gers mod U(b=b0; c=c0; : : :).On the other hand, the rac T:(1; 4) ! V:(1; 2) on modchild restrict restricts this modi�cation since there is no tu-ple V (a0; d0; : : :). So each of the updates is admissible, butthey are not admissible together, even though they do notcontradict each other directly.b) Assume now, that the situation is the same as in(a), except that V = f(a; d; : : :); (a0; d0; : : :)g. Then, neithermod R(a=a0; b=b0) nor mod S(c=c0; d=d0) is admissible in iso-lation: the triggered updates mod T (a=a0; b=b0; c; d; : : :) resp.mod T (a; b; c=c0; d=d0; : : :) are both blocked since V contains4

neither (a0; d; : : :) nor (a; d0; : : :). On the other hand, simul-taneous execution of both updates is allowed: the triggeredupdates are merged to mod T (a=a0; b=b0; c=c0; d=d0; : : :) whichis allowed. This shows that the merge of modi�cations is animportant concept for dealing with simultaneous updates.Note that in both cases, it is completely irrelevant, whichmodi�cations are raised on the dotted parts of the tuples.Example 4 illustrates some of the problems which may arisedue to overlapping foreign keys and candidate keys, andgives a �rst impression of the inherent complexity of rule-based referential integrity maintenance. We suspect thatthese problems are the reason that commercial database sys-tems do not (yet) provide means to propagate modi�cations.We argue that the propagation of updates should behandled key-oriented and cannot be seen tuple-oriented orattribute-oriented, since keys play the central role in theconcept of referential integrity. Our claim is supported bythe observations made in Example 4a):An attribute-oriented approach would be too �ne: Bothmod T (a=a0; b=b0; c; d; : : :) and mod T (a; b; c=c0; d=d0; : : :) areallowed in isolation, but their combination is forbidden dueto the fact that the foreign key T:(1; 4) has to match theparent key V:(1; 2).On the other hand, a tuple-oriented view is too coarsesince then, the two updates mod T (a=a0; b=b0; c; d; : : :) andmod T (a; b; c=c0; d=d0; : : :) would be merged into a single mod-i�cation of T (a; b; c; d; : : :), neglecting the fact that they canalso be carried out independently.Furthermore, a key-oriented approach allows to modelthe connection between modi�cations of parent keys and thecorresponding foreign keys in a very natural way, which isnot the case for an attribute-oriented or a tuple-oriented ap-proach. In our framework, keys are regarded as the atomicunits to be considered for modi�cations. Not surprisingly,parent keys, foreign keys, propagated modi�cations, refer-ences, and overlapping keys play an important role in ourlogical formalization.4 Logical FormalizationThe meaning of a set RA of rac's is formalized as a logicprogram PRA, consisting of the sets Pra which specify thelocal behavior of every rac ra, and a set of rules specifyingthe meaning of interacting update requests.Here, we only show some rules embodying the main ideas,i.e., the handling of deletions and some aspects of modi�-cations. The remaining rules for handling references, mod-i�cations of child tuples, insertions, interferences betweenupdates, coherence, and key-preservation are listed in theAppendix.Recall that an update request upd can be any of ins R(�X),del R(�X), mod R(M; �X). U� is given as a set of facts of theform �upd. For each update type upd, pot upd holds all po-tential updates, i.e. those which are founded by RA and U�.blk upd � pot upd holds all blocked updates, i.e. those whichcannot be executed due to some interfering constraints.User Requests. The handling of user requests incorporatesthe selection of admissible update sets: every user requestraises an update to the database if it is not blocked:pot del R(�X) �del R(�X):del R(�X) �del R(�X);: blk del R(�X): (EXT1)

Analogous rules are used for ins R(�X) and mod R(M; �X).Additionally, modi�cations are decomposed into their e�ectson keys. For every candidate or foreign key R: ~A:1pot mod � R: ~A(M; �X) �mod R(M 0; �X); �X[~A] 6=M 0(�X)[~A]; M =M 0[~A] :mod � R: ~A(M; �X) �mod R(M 0; �X); �X[~A] 6=M 0(�X)[~A]; M =M 0[~A] ;: blk mod R(M 0; �X) : (EXT2)Deletions. Recall that we only need to consider rac's of theform RC : ~F ! RP : ~K on del parent : : : (see Table 1). Logicalrules are generated for these rac's as follows (cf. Table 2):� on del parent propagate: Deletions of parent tuples arepropagated downwards to every child tuple by rule (DP1).Additionally, blockings are propagated upwards: if thedeletion of a child tuple is blocked, the deletion of theparent tuple is also blocked (DP2).� on del parent restrict: The deletion of a parent tuple isblocked, if there is a referencing child tuple (DR). Here,is ref'd RP : ~K by RC : ~F (�v) holds, if in D, the key valueRP : ~K(�v) appears as foreign key value of ~F in some tupleRC(�y).� on del parent wait: The deletion of a parent tuple isblocked, if there is a corresponding child tuple whichis neither requested for deletion nor modi�ed away (i.e.,modi�ed s.t. it references another parent) (DW).rem ref'd RP : ~K by RC : ~F (�v) speci�es that there is a ref-erence to the key value RP : ~K(�v) by some tuple RC(�x)s.t. �x[~F] does not change between D and D0.Modi�cations of Parent Tuples. The handling of modi�-cations follows the same principle as presented for deletions,but since modi�cations are handled key-oriented, the detailsare more involved (cf. Table 3).In case of a partially modi�ed parent key, the referencingforeign key in the child is regarded as atomic, i.e., no otherupdate may change parts of it. Thus, with a modi�cationthe whole key value is propagated, even if not all parts of itchange. On the other hand, modi�cations on a tuple triggera rac only if the key referred to in the rac is actually changed.Imagine a modi�cation mod RP (MP ; �y) and a rac RC : ~F !RP : ~K on mod parent propagate s.t. the key value RP : ~K ofRP (�y) changes, denoted by chg RP : ~K(MP ; �y). Then, forevery referencing child RC(�x), this modi�cation is raised forthe corresponding foreign key, i.e. MC = ~F=(MP (�y)[~K]).This is stored in mod RP : ~K RC : ~F (MC ; �x).� on mod parent propagate: Changes of parent keys arepropagated downwards to foreign keys (MPP1). If theresulting modi�cation of the foreign key of some childis blocked, the change of the parent key is also blocked(MPP2).� on mod parent restrict: The change of the parent keyRP : ~K is blocked, if there is a referencing child in theoriginal database D (MPR).1As a mnemonic aid, we encode some hints on the meaning ofauxiliary relations into relation names. Therefore, relation namesmay contain unusual characters like \ ", \�", etc.5

del RC(�X) del RP (�Y); RC(�X); �X[~F] = �Y [~K]:pot del RC(�X) pot del RP (�Y); RC(�X); �X[~F] = �Y [~K]: (DP1)blk del RP (�Y) pot del RP (�Y); blk del RC(�X); �X[~F] = �Y [~K] : (DP2)blk del RP (�Y) pot del RP (�Y); is ref'd RP : ~K by RC : ~F (�Y [~K]) : (DR)blk del RP (�Y) pot del RP (�Y); rem ref'd RP : ~K by RC : ~F (�Y [~K]) : (DW)Table 2: Local Rules for Deletions� on mod parent wait: The change of the parent key RP : ~Kis blocked, if there is a referencing child which is neitherrequested for deletion nor modi�ed away (MPW).5 Declarative Semantics and Formal ResultsIn this section, we show how the well-founded model andcertain stable models of PRA are related to the abstract se-mantics presented in Section 3.2. Note that PRA containsnon-strati�ed negation due to possible negative cyclic de-pendencies between updates (see e.g. the rules (ABC) inTable 7). In contrast, computing the set �(U) of updatesinduced by a given set of updates U can be accomplishedusing a negation-free set of rules:Let Ppot be the subset of EXT1[EXT2[DP1[MPP1[CH consisting of all rules where the head is of the formpot : : : . Ppot models the propagation of changes (but notthe propagation of blockings). Note that Ppot is positiveand has a unique minimal model MPpot . Since EXT1=2guarantee that all user requests are considered, and DP1,MPP1, and CH guarantee completeness wrt. deletions andmodi�cations, we have the following result:Theorem 2 For every database D, and every set U� of ex-ternal updates:�(U�) = fupd j MPpot (D [U�) j= pot updg :The examples in Section 3.1 illustrate di�erent types of am-biguities which can occur for a set of rac's RA. These am-biguities become apparent by the declarative semantics ofPRA:Given the logical formalization PRA of a set of rac'sRA, a database D, and a set of user requests U�, the well-founded modelW(PRA; D; U�) assigns truth-values true andfalse to all uncontroversial update requests, i.e., which aretrue or false under any \well-behaved"2 semantics of PRA.The atoms which are unde�ned in W are controversial dueto some kind of ambiguity (cf. Section 3.1):Diamond: Consider Example 1 and the \diamond" in Fig-ure 1. Assume the rac R4:(1; 3)!R3:(1; 2) on del parentrestrict is replaced by R4:(1; 3)!R3:(1; 2) on del parentwait. Then the rules of PRA de�ne that the deletionof R1(a) is blocked (via R4{R3{R1) if R4(a; b; c) cannotbe deleted. R4(a; b; c) can be deleted (via R1{R2{R4) ifthe deletion of R1(a) is not blocked. Hence there is anegative cycle of the formblock : exec: exec : block:thus, either setting all requests in the diamond to trueor to false will result in a stable model.2Dix [Dix95] formally de�nes this notion using certain abstractproperties of semantics.

Mutex: For two mutually exclusive operations (cf. Exam-ple 2), if one of them is rejected, the other can be ex-ecuted: Here, some requests which are unde�ned in Wcan be set to false, resulting in other unde�ned requeststo be set to true such that eventually, a stable model isobtained. This situation is analogous to the program:block1 exec2: block2 exec1:exec1 : block1: exec2 : block2:Self-Attack: For a self-attacking request (cf. Example 3),there is no other support for rejecting it than its \inter-nal contradiction". Therefore, neither assigning true norfalse to such a request will yield a stable model. Thissituation corresponds toexec : block: block exec:where no total stable model exists.Every 3-valued model M(PRA; D; U�) de�nes sets of up-dates �M and user requests UM � U� which are true (t),false (f) or unde�ned (u) inM. Let upd be any of ins R(�x),del R(�x), mod R(M; �x). Then:�tM := fupd j M(upd) = tg ; and UtM := �tM \ U� :�fM, UfM, and �uM, UuM are de�ned analogously.The well-founded model W(PRA; D; U�) provides a safeand sceptical semantics which is computable in polynomialtime. Here, sceptical means that all controversial updatesare assigned the truth-value unde�ned.By safe, we mean that updates which are true in W canbe executed without violating referential integrity. Moreprecisely, the set �(UtW) of updates induced by UtW is ad-missible and equal to �tW ; submitting UtW results in the newdatabase D0 = D ��tW :Theorem 3 (Correctness: Well-Founded Semantics)Let W be the well-founded model of PRA [D [U�. Then:i) �tW is admissible,ii) �tW = �(UtW),iii) UtW is admissible.Proof: (Sketch)i) Foundedness, completeness, and feasibility are provenusing the rules of all rac's ra 2 RA; coherence and key-preservation is guaranteed by the rules specifying theinteraction of updates.ii) �tW � �(UtW) follows from foundedness, �tW � �(UtW)from completeness.iii) follows from (i), (ii), and De�nition 2. �The relation between the well-founded model and maximaladmissible sets will be investigated in Theorem 6.The di�erent types of unde�ned update requests upd 2UuW can be characterized according to the di�erent types ofcontroversial atoms:6

mod RP : ~K RC : ~F (MC ; �X) chg RP : ~K(MP ; �Y); RC(�X); �X[~F] = �Y [~K]; MC = ~F=(MP (�Y)[~K]) :pot mod RP : ~K RC : ~F (MC ; �X) pot chg RP : ~K(MP ; �Y); RC(�X); �X [~F] = �Y [~K]; MC = ~F=(MP (�Y)[~K]) : (MPP1)blk chg RP : ~K(MP ; �Y) pot chg RP : ~K(MP ; �Y); blk mod RP : ~K RC : ~F (MC ; �X);�X[~F] = �Y [~K]; MC = ~F=(MP (�Y)[~K]) : (MPP2)blk chg RP : ~K(MP ; �Y) pot chg RP : ~K(MP ; �Y); is ref'd RP : ~K by RC : ~F (�Y [~K]) : (MPR)blk chg RP : ~K(MP ; �Y) pot chg RP : ~K(MP ; �Y); rem ref'd RP : ~K by RC : ~F (�Y [~K]) : (MPW)Table 3: Local Rules for Modi�cations� upd 2 U for every maximal admissible U � U� (\dia-mond"), or� there are maximal admissible sets U;U 0 � U� s.t. upd 2U and upd =2 U 0 (\mutex"), or� upd =2 U for any admissible U � U� (\self-attack").For further investigation of these cases, we use stable mod-els which provide a more detailed logical semantics for nor-mal logic programs. Since self-attacking updates excludethe possiblity of total stable models, we have to considerP-stable (partial stable) models:De�nition 3 (P-, M-Stable Models) [ELS96] Let I =hIt; If i be a 3-valued interpretation. The reduction P=I of aground instantiated logic program P is obtained by replacingevery negative literal in P by its truth-value wrt. I. Thus,P=I is positive and has a unique minimal (wrt. the truth-order f <t u <t t) 3-valued model MP=I .I is a P-stable model, ifMP=I = I. A P-stable model Iis M-stable (maximal stable) if there is no P-stable modelJ 6= I such that Jt � It and Jf � If .In contrast to the well-founded model which is the \mostsceptical" P-stable model, M-stable models are \more brave"and handle mutually exclusive requests as expected; in par-ticular, all maximal admissible solutions are represented bythe set of P-stable models. This fact, and the generalizationof Theorem 3 is expressed byTheorem 4 (Correctness and Completeness: StableSemantics)� For every P-stable model PS of PRA [D [U�:i) �tPS is admissible,ii) �tPS = �(UtPS),iii) UtPS is admissible.� For every maximal admissible U � U�, there is an M-stable model MS s.t. U = UtMS and �(U) = �tMS .Proof: (Sketch) The �rst part is proven analogously as inthe proof of Theorem 3. The second part follows from thede�nition of M-stable. �Theorem 4 implies the following logical characterizationof admissible subsets of user requests:Corollary 5 A set U� of user requests is admissible i�there is a P-stable model PS of PRA[D[U� s.t. U� = UtPS.Then �(U�) = �tPS, and submitting U� results in the newdatabase D0 = D ��tPS.The following theorem states that the well-founded modelrepresents the \least common denominator" of all maximalsolutions:

Theorem 6 Every maximal admissible U � U� extendsUtW , and updates classi�ed as false by W(PRA; D; U�) arenot contained in any admissible set:i) If U is maximal admissible, then UtW � U .ii) UfW � U� n U .Proof: (Sketch)i) By Theorem 4, there is an M-stable model for every max-imal admissible set. Since every M-stable model extendsthe well-founded model, every upd 2 UtW is true in everyM-stable model.ii) Given an update upd 2 UfW , for every P-stable modelPS of PRA [D [U�, upd 2 UfPS since every P-stablemodel extends the well-founded model. Together withTheorem 4 this implies that upd is not contained in any(maximal) admissible set. �M-stable models of PRA almost capture the notion of \op-timal" (maximal admissible) solutions. The only exceptionis that in case of a \diamond" fblock : exec; exec : blockg there are two M-stable models:Example 5 Recall Example 1. For U� = f�del R1(a)g,bothM1 = fblk del R1(a); blk del :::(:::); pot del :::(:::);rem ref'd R1:1 by R2:1(a);rem ref'd R1:1 by R3:1(a);rem ref'd R2:(1; 2) by R4:(1; 2)(a; b);rem ref'd R3:(1; 2) by R4:(1; 3)(a; c); : : :g; andM2 = fdel R1(a); del R2(a; b); del R3(a; c); del R4(a; b; c);pot del : : : (: : :); : : :g(where only the true atoms ofM1 andM2 are sketched) aretotal and M-stable.However, executing an update should be preferred toblocking it in order to capture the notion of maximal ad-missibility. Therefore, we de�ne an ordering <a on P-stablemodels which re
ects this \application-speci�c" preference.PS1 <a PS2 :, UtPS1 � UtPS2 :Finally, our main result can be stated. The maximal stablemodels wrt. <a represent exactly the maximal admissiblesets:Theorem 7 (Maximality) The set of all maximal admis-sible sets U � U�, and the set of all UtAS s.t. AS is anM-stable model of PRA [D [U� which is maximal wrt. <acoincide.
7

6 ConclusionBy formalizing referential actions as logical rules and ex-ploiting the power of declarative semantics, we have solvedthe problem given in the introduction in a rigorous and com-prehensive way. In [LMR96] we presented preliminary stepstowards a logical semantics of referential actions in SQL.However, the complex case of modi�cations was not con-sidered, and no abstract, SQL-independent semantics wasgiven.Production rules have recently been reconsidered, sincethey seem well-suited as a language for active rules. There-fore, referential actions { which are specialized active rules {can also be formalized by production rules, e.g. in the style of[AV91, PV95]. However, by axiomatizing referential actionsas a logic program P and employing a declarative semantics,the resulting set of updates can be \justi�ed" and explainedin a more intuitive way using the rules of P . This is due tothe fact that declarative semantics like the well-founded orstable semantics treat negative cyclic dependencies (whichoccur from inherent interdependencies between requests andblockings) in a more adequate way than production rule se-mantics (see e.g. [Via97]).In contrast to the somewhat ad-hoc execution model ofreferential actions in SQL [ISO94, Hor92, CPM96], whichsimply aborts a transaction if a violation is detected, oursemantics also provides valuable information in that case,i.e., if the given set of user requests is not executable: Theadditional information about maximal admissible sets canbe used to explain the user why her updates are not admis-sible, and allows to revise the desired update in such a waythat it is accepted by the system.Acknowledgments. The �rst author would like to thankJoachim Reinert for fruitful discussions, especially on thepeculiarities of triggers in SQL.References[AV91] S. Abiteboul and V. Vianu. Datalog Extensions forDatabase Queries and Updates. Journal of Com-puter and System Sciences, 43(1):62{124, 1991.[CPM96] R. Cochrane, H. Pirahesh, and N. Mattos. In-tegrating Triggers and Declarative Constraints inSQL Database Sytems. In Proc. Intl. Conferenceon Very Large Data Bases, pages 567{578, Mum-bai (Bombay), India, 1996.[Dat81] C. J. Date. Referential Integrity. In Proc. Intl.Conference on Very Large Data Bases, pages 2{12,Cannes, France, March 1981. IEEE Computer So-ciety Press.[Dix95] J. Dix. Semantics of Logic Programs: Their Intu-itions and Formal Properties. In A. Fuhrmann andH. Rott, editors, Logic, Action and Information. deGruyter, 1995.[ELS96] T. Eiter, N. Leone, and D. Sacc�a. The ExpressivePower of Partial Models for Disjunctive DeductiveDatabases. In D. Pedreschi and C. Zaniolo, editors,Proc. Intl. Workshop on Logic in Databases (LID),number 1154 in LNCS, pages 197{222, San Miniato,Italy, 1996. Springer.[Hor92] B. M. Horowitz. A Run-Time Execution Model forReferential Integrity Maintenance. In Proc. Intl.

Conference on Data Engineering, pages 548{556,1992.[ISO92] ISO/IEC JTC1/SC21. Information Technology -Database Languages { SQL2, July 1992. ANSI,1430 Broadway, New York, NY 10018.[ISO94] ISO/IEC JTC1/SC21/WG3. ISO/ANSI workingdraft Database Languages { SQL3, August 1994.J. Melton (Ed.), ANSI, 1430 Broadway, New York,NY 10018.[LML96] B. Lud�ascher, W. May, and G. Lausen. Trig-gers, Games, and Stable Models. Techni-cal report, Institut f�ur Informatik, Univer-sit�at Freiburg, 1996. http://www.informatik.uni-freiburg.de/~ludaesch/Paper/tgsm.ps.gz.[LMR96] B. Lud�ascher, W. May, and J. Reinert. Towards aLogical Semantics for Referential Actions in SQL.In Proc. 6th Intl. Workshop on Foundations of Mod-els and Languages for Data and Objects: Integrityin Databases, Dagstuhl, Germany, 1996.[Mar94] V. M. Markowitz. Safe Referential Integrity andNull Constraint Structures in Relational Databases.Information Systems, 19(4):359{378, 1994.[PV95] P. Picouet and V. Vianu. Semantics and Ex-pressiveness Issues in Active Databases. In Proc.ACM Symposium on Principles of Database Sys-tems, 1995.[Rei96] J. Reinert. Ambiguity for Referential Integrity isUndecidable. In G. Kuper and M. Wallace, edi-tors, Constraint Databases and Applications, num-ber 1034 in LNCS, pages 132{147. Springer, 1996.[Via97] V. Vianu. Rule-Based Languages. Annals of Mathe-matics and Arti�cial Intelligence, 19(I{II):215{259,1997.

8

A The Remainder of the Logical FormalizationWe present the remaining rules needed to formalize a set ofrac's RA as the logic program PRA.Auxiliary Relations. There are several auxiliary relationswhich have to be maintained. They contain the followinginformation about referenced and referencable candidate keyvalues:� is ref'able R: ~K(�x): the key value R: ~K(�x) is referencable.� rem ref'able R: ~K(�x): the key value R: ~K(�x) remains ref-erencable.� new ref'able R: ~K(�x): the key value R: ~K(�x) becomes ref-erencable by some update.� is ref'd RP : ~K by RC : ~F (~v): in the current database, thekey value R: ~K(�v) appears as foreign key value of ~F insome tuple RC(�y).� rem ref'd RP : ~K by RC : ~F (�v): there is a reference to thekey value R: ~K(�v) as foreign key value of ~F in some tupleRC(�x) s.t. �x[~F] does not change.� new ref'd RP : ~K by RC : ~F (�v): a reference to the key valueR: ~K(�v) as foreign key ~F in some tuple RC(�x) is intro-duced by some update.The rules for maintaining these additional relations are shownin Table 4.User Requests. The following rules have to be added tothe rules (EXT1) from Section 4:pot ins R(�X) �ins R(�X) :ins R(�X) �ins R(�X);: blk ins R(�X) :pot mod R(M; �X) �mod R(M; �X):mod R(M; �X) �mod R(M; �X);: blk mod R(M; �X):(EXT1)For dealing with several user-requested modi�cations to thesame tuple, for every foreign or candidate key ~A, the follow-ing rules have to be added to EXT2:pot mod � R: ~A(M; �X) pot mod � R: ~A(M1; �X);pot mod � R: ~A(M2; �X);M =M1 [M2 is consistent.mod � R: ~A(M; �X) mod � R: ~A(M1; �X);mod � R: ~A(M2; �X);M =M1 [M2 is consistent.(EXT2)Modi�cations on Child Tuples. A modi�cation of a foreignkey value RC : ~F 0 of a child tuple can be problematic due to aric RC : ~F 0 ! R0P : ~K0 only if the it is in
uenced by a propaga-tion along another ric RC : ~F ! RP : ~K (i.e., RC : ~F ! RP : ~Kon mod parent propagate and RC : ~F and RC : ~F 0 overlap) orby an external modi�cation.Thus, for a ric RC : ~F 0 ! R0P : ~K0 on mod child restrict,in those cases it is checked whether there is a referencabletuple in the current database. If there is no such tuple,then the modi�cation is blocked, otherwise any modi�cationof the attributes RP : ~K or deletion of this tuple is blocked((MCR1) and (MCR2) in Table 5).For RC : ~F 0 ! R0P : ~K0 on mod child wait, the situationis analogous, but now the database after execution of � ischecked (cf. (MCW1) and (MCW2)).

By considering only changes which are propagated alonganother ric, the negative cycle of \propagation allowed ifresult's reference exists", \result's reference exists if parentis modi�ed", and \parent is modi�ed if propagation is al-lowed" does not matter (i.e. on modify parent propagate haspriority over on modify child restrict).Insertions. Since insertions on parent tuples are not criti-cal, only insertions of child tuples have to be handled. Thisis done analogously to (MCR) and (MCW) by (ICR) and(ICW) (see Table 6).Interaction. The changes of candidate and foreign key val-ues are determined depending on the elementary modifyrequests. Modi�cations can be founded either on externalrequests or by propagating modi�cations from parent rela-tions. For a given database schema, (CH) (see Table 7)de�nes a set of rules for computing all possibilities how akey can change.Additionally, the interferences between blockings of changesof overlapping keys must be considered: A change on theintersection of two overlapping keys is allowed, if each keycan change agreeing with the value on the intersection. Fur-thermore, a change of a key is forbidden, if its e�ect onthe intersection with another key is not allowed (ABC) (seeTable 7).If a propagated modi�cation would change a foreign keyin a forbidden way, the propagation of the modi�cation isforbidden (which by (MPP2) further blocks the change ofthe respective parent key) (BMC2) (see Table 7).As blockings propagate upwards by rac's of the form R:~F !RP : ~K on mod parent propagate, they �nally cause a blockingon their founding external requests (EXT2) (also see Table7).Coherence and Key-Preservation. The following rule pre-vents requests which are directly incoherent:blk ins R(�X) pot ins R(�X); del R(�X) :blk del R(�X) pot del R(�X); ins R(�X) :blk mod R(M; �X) �mod R(M; �X); del R(�X) :blk del R(�X) pot del R(�X); �mod R(M; �X) :(C)For every ric RC : ~F ! RP : ~K:blk del R(�X) pot del R(�X); mod RP :K R:~F (M; �X) :blk mod RP :K R:~F (M; �X) pot mod RP :K R:~F (M; �X); del R(�X) : (C)Since propagated modi�cations are handled key-oriented asforeign-key-modi�cations, it is su�cient to handle contra-dicting modi�cations at this granularity: For every pair ofrac's RP1 : ~K1 ! R:~F1 on mod parent propagate andRP2 : ~K2 !R:~F2 on mod parent propagate s.t. R:~F1 and R:~F2 overlap,overlapping but contradictory modi�cations are forbidden:blk mod RP1 : ~K1 R:~F1(M1; �X) pot mod RP1 : ~K1 R:~F1(M1; �X);mod RP2 : ~K2 R:~F2(M2; �X);M1 [M2 inconsistent : (C)The uniqueness of a candidate key R: ~K is guaranteed by therules (K) (see Table 8).9

For every candidate key ~K mentioned in some ric RC : ~F ! RP : ~K:remains R(�X) R(�X); : del R(�X); :9M : mod R(M; �X) :is ref'able RP : ~K(�V) RP (�X); �V = �X[~K] :rem ref'able RP : ~K(�V) RP (�X); �V = �X[~K] ; : del RP (�X);:9M : chg RP : ~K(M; �X) :new ref'able RP : ~K(�V) ins RP (�X); �V = �X[~K] :new ref'able RP : ~K(�V) chg RP : ~K(M; �X); M(�X)[~K] = �V : (RA)For every ric RC : ~F ! RP : ~K:is ref'd RP : ~K by RC : ~F (�V) RC(�X); V = �X[~F] :rem ref'd RP : ~K by RC : ~F (�V) remains RC(�X); V = �X [~F] :rem ref'd RP : ~K by RC : ~F (�V) RC(�X); V = �X[~F]; : del RC(�X); :9M : chg RC : ~F (M; �X) :new ref'd RP : ~K by RC : ~F (�V) ins RC(�X); �V = �X[~F] :new ref'd RP : ~K by RC : ~F (�V) RC(�X); chg RC : ~F (M; �X); M(�X)[~F] = �V : (RD)Table 4: Rules for Maintaining Auxiliary RelationsFor every ric RC : ~F 0 ! R0P : ~K0 and rac RC : ~F ! RP : ~K on mod child restrict s.t. RC : ~F 6= RC : ~F 0 or RP : ~K 6= R0P : ~K0 and RC : ~Fand RC : ~F 0 overlap:blk chg RC : ~F (M; �X) pot chg RC : ~F (M; �X); mod R0P : ~K0 RC : ~F 0(M 0; �X); M [~F \ ~F 0] =M 0[~F \ ~F 0];: is ref'able RP : ~K(M(�X)[~F]) :blk chg RP : ~K(MP ; �Y) pot chg RP : ~K(MP ; �Y); chg RC : ~F (MC ; �X); mod R0P : ~K0 RC : ~F 0(M 0; �X);M [~F \ ~F 0] =M 0[~F \ ~F 0]; M(�X)[~F] = �Y [~K] : (MCR1)For every rac RC : ~F ! RP : ~K on mod child restrict:blk chg RC : ~F (M; �X) pot chg RC : ~F (M; �X); mod � RC : ~F (M 0; �X); M 0 �M; : is ref'able RP : ~K(M(�X)[~F]) :blk chg RP : ~K(MP ; �Y) pot chg RP : ~K(MP ; �Y); chg RC : ~F (M; �X); mod � RC : ~F (M 0; �X); M 0 �M; M(�X)[~F] = �Y [~K] :blk del RP (�Y) pot del RP (�Y); RC(�X); chg RC : ~F (MC ; �X); M(�X)[~F] = �Y [~K] : (MCR2)For every ric RC : ~F 0 ! R0P : ~K0 and rac RC : ~F ! RP : ~K on mod child wait s.t. RC : ~F 6= RC : ~F 0 or RP : ~K 6= R0P : ~K0 and RC : ~Fand RC : ~F 0 overlap:blk chg RC : ~F (M; �X) pot chg RC : ~F (M; �X); mod R0P : ~K0 RC : ~F 0(M 0; �X); M [~F \ ~F 0] =M 0[~F \ ~F 0];: rem ref'able R0P : ~K(M(�X)[~F 0]); : new ref'able R0P : ~K(M(�X)[~F 0]) : (MCW1)For every rac RC : ~F ! RP : ~K on mod child wait:blk chg RC : ~F (M; �X) pot chg RC : ~F (M; �X); mod � RC : ~F (M 0; �X); M 0 �M;: rem ref'able R0P : ~K(M(�X)[~F 0]); : new ref'able R0P : ~K(M(�X)[~F 0]) : (MCW2)Table 5: Rules for Handling Modi�cationsFor every rac RC : ~F ! RP : ~K on ins child restrict:blk ins RC(�X) pot ins RC(�C); : is ref'able RP : ~K(�X[~F]) :blk chg RP : ~K(M; �Y) pot chg RP : ~K(M; �Y); ins RC(�X) ; �X [~F] = �Y [~K] :blk del RP (�Y) pot del RP (�Y); ins RC(�X); �X[~F] = �Y [~K] : (ICR)For every rac RC : ~F ! RP : ~K on ins child wait:blk ins RC(�X) pot ins RC(�X); : rem ref'able RP : ~K(�X[~F]); : new ref'able RP : ~K(�X[~F]) : (ICW)Table 6: Rules for Handling Insertions10

For a given foreign resp. candidate key R: ~A, letM ~A := f(R0: ~K;R: ~F) j R:~F ! R0: ~K on mod parent propagate 2 RA and ~F overlaps ~Ag [f(�; R: ~A)gbe the set of referential dependencies along which modi�cations can be propagated which in
uence the value of ~A. Note thatthe cardinality n of M ~A only depends on the given database schema, but not on the size of the database. Moreover, we mayassume that the elements of M ~A are numbered by i = 1; : : : ; n such that (Ri: ~Ki; R: ~Fi) denotes the i-th element of M ~A.For every set of indices I � f1; : : : ; ng there are rulespot chg R: ~A(M; �X) �Vi2I pot mod Ri: ~Ki R:~Fi(Mi; �X); Mi(�X)[~A] 6= �X[~A]� ; M = Si2I Mi :chg R: ~A(M; �X) �Vi2I mod Ri: ~Ki R:~Fi(Mi; �X); Mi(�X)[~A] 6= �X[~A]� ;�Vi2f1;:::;ngnI :9Mi : mod Ri: ~Ki R:~Fi(Mi; �X) ^Mi(�X)[~A] 6= �X[~A]� ; M = Si2I Mi : (CH)To illustrate this de�nition, the rules obtained when instantiating the schema for n = 2 (i.e., only one foreign key ~F overlaps~A) are given:pot chg R: ~A(M; �X) M = ; : % I = ;pot chg R: ~A(M; �X) pot mod R1: ~K1 R:~F (M1; �X); M1(�X)[~A] 6= �X[~A]; M =M1 : % I = f1gpot chg R: ~A(M; �X) pot mod � R: ~A(M2; �X); M2(�X)[~A] 6= �X[~A]; M =M2 : % I = f2gpot chg R: ~A(M; �X) pot mod R1: ~K1 R:~F (M1; �X); M1(�X)[~A] 6= �X[~A]; % I = f1; 2gpot mod � R: ~A(M2; �X); M2(�X)[~A] 6= �X[~A]; M =M1 [M2 :For every foreign key ~F and foreign or candidate key ~A s.t. ~F and ~A overlap:allow chg R:~F\ ~A (M; �X) chg R:~F (M1; �X); : blk chg R:~F (M1; �X); M =M1[~F [~A];chg R:~F (M2; �X); : blk chg R:~F (M2; �X); M =M2[~F [~A] :blk chg R:~F (M; �X) pot chg R:~F (M; �X); : allow chg R:~F\ ~A (M 0; �X); M 0 =M [~F [~A] : (ABC)For every rac RC : ~F ! RP : ~K on mod parent propagate:blk mod RP : ~K RC : ~F (M; �X) pot mod RP : ~K RC : ~F (M; �X); blk chg RC : ~F (M; �X) : (BMC)For every rac RC : ~F ! RP : ~K on mod parent propagate:blk mod RC(M; �X) �mod RC(M; �X); blk mod � RC : ~F (M 0; �X); M 0 =M [~F] :mod RC(M; �X) mod RP : ~K RC : ~F (M; �X) : (EXT2)Table 7: Rules for Dealing with Interfering Modi�cationsFor every candidate key R: ~K:blk ins R(�X) pot ins R(�X); rem ref'able R: ~K(�X[~K]) :blk chg R: ~K(M; �X) chg R: ~K(M; �X); rem ref'able R: ~K(M(�X)[~K]) :blk ins R(�X) pot ins R(�X); ins R(�Y); �X[~K] = �Y [~K] :blk ins R(�X) pot ins R(�X); chg R: ~K(M; �Y); �X[~K] =M(�Y)[~K] :blk chg R: ~K(M; �Y) pot chg R: ~K(M; �Y); ins R(�X); �X[~K] =M(�Y)[~K] :blk chg R: ~K(M; �X) pot chg R: ~K(M; �X); chg R: ~K(M 0; �Y); M(�X)[~K] =M 0(�Y)[~K] : (K)Table 8: Rules for Preserving Key Dependencies
11

