Chapter 11
Datalog Knowledge Bases Il

NEGATION IN THE BoDY: CycLIC NEGATIVE DEPENDENCIES

A program whose dependency graph contains a negative cycle cannot be stratified.

« Consider the program P = {p(b) < —p(a)} (without any assured facts). It has three
models, M; = {p(b)}, M2 = {p(a)}, and M3 = {p(a), p(b)}.
Both M; and M5 are minimal.

Which of the models is “preferable”, given P as a knowledge base?
» well-founded semantics (still polynomial)
« stable semantics (answer set programming) (exponential)

« the rule is logically equivalent to p(a) V p(b) — but as a rule, it can be read to have a more
“directed” meaning:
“if p(a) cannot be shown, then assume p(b)”.

626

Example: Win-Move-Game
» 2 players,

* positions on a board that are connected by (directed) moves (relation “move(x,y)”),

first player puts a pebble on a position,
« players alternately move the pebble from z to a connected y,
- if a player cannot move, he loses.

 Question: which positions are “winning” positions, “losing” position, or “drawn” positions?

The following program “describes” the game: >
win(X) :- move(X,Y), not win(Y). /C:} Ci)\@ @

cycle: \ /V V\

oNe 58

627

WELL-FOUNDED SEMANTICS: MOTIVATION

o ~ 0D

.. switch from “stupid” bottom-up to well-founded argumentation “why or why not”.

every fact has an individual finite proof
(positive/existential part: linear; not-exists/forall part: multiple ((finitely) failed) subproofs)

but not stratified (but “dynamically stratified”/“ground-stratified”)

. basic facts,

apply rules based on existing knowledge

additional facts,

continue with (2);

including “negative facts” — under closed-world assumption (CWA).
Does this need full reasoning? (tableau proofs obviously cover it)
is resolution sufficient? (yes, it’s only rule applications)

theory: how to characterize the model?

three-valued logic: yes-no-undefined (win-move: lost/won/drawn)

how to compute the model efficiently?

628

ANALYSIS

which atoms are definitely true?

— the facts

— instantiations o(H) of rule heads of rules H <~ C1 A...ANC,, A=D1 A ... A=Dy,
« where all o(C;) are definitely true, and
« where all o(D;) are definitely false.

which atoms are definitely false (under CWA)?

— instances of EDB predicates that are not amongst the given facts,

— ground instances p(...) of IDB predicates such that for all rules whose rule head H
unifies with p(...) as o(H) (there might be several such rules with p(...) in their head):
H+«CiN..NC,N\=DyAN...\N—-Dy,

« some o(C;) is definitely false, or
« some o(D;) is definitely true.

idea: start with nothing. Derive some definitively true things and some definitively false
ones.

based on the obtained knowledge, do “next round”,

care for “still unknown” things.

629

Well-Founded Semantics: For What

» Many real problems are stratified.
» Most (relational/SQL) queries are stratified.

» WFS goes beyond classical queries:
many problems can be encoded in Datalog wrt. well-founded semantics

Non-Stratified examples:
* logical puzzles ;)

* planning problems
can_start(Y) «+ completed(X), additional conditions.

« argumentation contexts
holds(...) «+ holds(...), = holds(...), additional conditions.

Let’s have a look at the theory ...

630

REDUCT OF A PROGRAM

Consider a Herbrand interpretation (i.e., a set of ground facts) .

Definition 11.1 (Reduct of a Program)

The reduct P* of a program P wrt. a Herbrand interpretation H is obtained as follows:

- let P, denote the grounding of P, i.e. the set of all ground instances of rules in P over

elements of the Herbrand universe of H U P.

* delete from P, all rules that contain a negative literal —~a in the body such thata € H,

(these rule bodies cannot be satisfied in H)

« delete all remaining negative literals in the bodies of the remaining rules.
(for those —a, a ¢ H, i.e., these literals are satisfied in H)

Properties of P*
« P™ is a (ground) positive program.

* If H is a model of P, then Tpx (H) C H.
(note: use T+ (H here, not T, but run it on H)

631

11.1 Stable Models |

Definition 11.2 (M. Gelfond, V. Lifschitz, ICLP 1988)
A Herbrand interpretation H is a stable model of a Datalog™ program P, if

B (0) = H. 0
 note that a program P can have several stable models.
Remark and Exercise
Note that the definition of stable models is based on T, (0).

Consider P = {p(a) - p(a)} and # = {p(a)}; P* = P.
#H is a model of P, and T'5,, (H) = H.

But, T, (0) = 0, i.e., H is not a stable model (p(a) is not “supported”).

H' = {p(a),p(b),q(b)} is also a model of P, which is also (obviously) not stable.

Obviously, 0 is a stable model of P — and thus, is the only one.

Note that the above example is a positive Datalog program. For positive Datalog programs P,

and any H, P* = ground(P) (i.e., all ground instances of rules of P) and

Teround(p)(9) = TE(0) is the only stable model.

632

Stable Models — Example

Consider the following program P:

q(a) :- not p(a).
[Filename: Datalog/gnotp.s]

Logically, the rule is equivalentto p(a) V q(a).

» The program has one stable model:

> lparse -n O gnotp.s|smodels
Answer: 1

Stable Model: q(a)

True

For H = {q(a)}, P™ ={q(a) :-true} and T%,, (0) = {q(a)}, thus H is stable.

» Consider H' = {p(a)}. It is a model of P.
P =(and T%,, () = 0.
The derivation of p(a) is “not supported” by P; H’ is not stable.

* S0, in Stable Models Semantics, the rule does not mean disjunction, but is directed.

633

Stable Models — Example

Consider the following program: q(a) :- not p(a).

p(a) :- not q(a).
[Filename: Datalog/porq.s]

Logically, each of the rules is equivalent to p(a) V ¢(a).

« The program has two total stable models, and one partial (which is the well-founded
model):
> lparse -n 0 --partial porq.s|smodels
Answer: 1
Stable Model: q(a)
Answer: 2
Stable Model: p(a)
Answer: 3
Stable Model: q'(a) p'(a)

* thus, both rules together represent disjunction.
* Note that {p(a), ¢(a)} is @ model, but not a stable model.

« There is no possibility in Datalog™ to assert —¢(a) to forbid one of the models.
(in smodels, this will be allowed)

634

Stable Models — Example

Consider the following program:

p(a).

q(a) :- not p(a).

p(a) :- not q(a).
[Filename: Datalog/pporq.s]

« The program has only one stable model: {p(a)}.

« This model is also the well-founded model.

635

WinMove with Stable Models
* Iparse does not accept don’t-care-variables.

pos(a). pos(b). pos(c). pos(d). pos(e). pos(ff). pos(g).
pos(h). pos(i). pos(j). pos(k). pos(1l). pos(m). pos(n).

win(X) :- move(X,Y), not win(Y).
lose(X) :- pos(X), not win(X).
move(a,b). move(a,f).

move(b,c) . move (b,g) . move (b,k) . @———)@)@ @
move(c,d) . move(c,l). }Z/'$ *'*
move(d,e). <:> <:>

move (e,a)

move (,i): move (g,h) . \ /v \
move(i,m). : @‘@ @ Ci)
A

move(i,j).

move(1l,d). <::> (::)

move (m,h) .
[Filename: Datalog/winmove.s]

©
(e

* lparse -n 0 -d none winmove.s | smodels Yields two total two-valued stable models.
 drawn cycle between h and m: once w/l, other l/w

« wfm = intersection of stable models, minimal 3-valued model.

636

Stable Models — First Summary
« A Datalog™ program may have several stable models.

 Finding the stable models of a program is exponential
(optimization strategies exist)

» come back to the well-founded semantics
— cheaper (polynomial),

— returns a unique reasonable result in cases where disjunction is not needed or not
intended,

— cf. win-move game: drawn positions are neither lost nor won.

* ... a closer investigation of stable models semantics will be given on Slides 671 ff.

637

11.2 Well-Founded Semantics

» recall the considerations from Slides 628 ff.:
well-founded non-stratified “argumentation” which facts can be derived to be true or false

Main Problem:
How to deal with true-unknown-false:

» model-theoretic: three-valued logic

« practically: apply a trick to be able to use the existing 2-valued T'» operator for positive
Datalog.

Definition

Definition 11.3 (A. Van Gelder, K.A. Ross, J.S. Schlipf, PODS 1988)
Given a Datalog™ program P, the well-founded model of P is the minimal 3-valued stable
model of P. o

« from the practical view not very promising ...
not only to guess stable models, yet even 3-valued.

* have a look at this definition later.

638

ALTERNATING FIXPOINT COMPUTATION FOR WFS

The Alternating Fixpoint Computation [A. Van Gelder, PODS 1989] mirrors the
well-foundedness of the derivation:

Definition 11.4
Given a Datalog™ program P over a signature 3., define the sequence Iy, I, . .. of Herbrand
interpretations over Y. als follows:

IO = @
Ii_|_1 = TI(;YIZ ((/)) o

» Does ((1;)) converge?
No. And Yes.

* Is there a fixpoint?
Yes. There are two fixpoints!

... let’s have a look ...

Exercise
Evaluate ((1x)) for the win-move example.

639

Alternating Fixpoint: Analysis

- Consider first the program Pt which consists only of the facts (= fact rules) in P:
— T8 (0) = Thieo (0) makes all facts true that are contained in the program.

« Consider next the program P which is obtained from ground(P) by deleting all rules that
contain any negative literal:

— P*: corresponds to “all negative literals are false”.
Recall that B p denotes the interpretation that makes all possible atoms over the
Herbrand Universe of P true. With this, P+ = P"5r,

— (PT can be equivalently obtained by first deleting all rules that contain a negative
literal and then grounding the remaining (positive) rules)

— P is the smallest possible reduct of P,

— T4, (0) derives all atoms that can be derived by only the remaining purely positive
rules,

— this includes all facts (recall fact rules of the formp(...) :- true.)
= these are atoms that hold in all models of P (facts+positive rules force them).
= a safe and very careful underestimate of true atoms.

0 C Thues(0) € TE, (0) € T%,yr (B) € HBp

640

Alternating Fixpoint: Analysis

Consider now the program P~ which is obtained from ground(P) by simply deleting all
negative literals from all rules (corresponds to “all negative literals are satisfied”):

» P~ is the reduct wrt. the empty interpretation, the starting point of the whole process,
« P~ itis the biggest possible reduct of P

* T5_(0) derives all atoms that can be derived by P if all negative literals are assumed to
be satisfied.

« this includes again all facts (recall fact rules of the form p(...) :- true.)
 and everything that could by derived from them under “optimal” conditions
=- an overestimate of true atoms.
= atoms that are not in T»- ({)) can definitely not be derived by P,
= a safe underestimate of false atoms (in any stable model/wrt. Closed-World Assumption).

« Example: Consider P = {p(a), p(b):-notp(a)}. Then, P~ = {p(a), p(b):-true} and
Ty (0) = {p(a),p(d)}.

« use this for starting with I, = () and thus considering P? = p—:

0 C Thias(B) C T4 (1) C Tunys (0) CTH_(0) = T35, (0) C HBp

641

Well-Founded Semantics Computation: Intuitive Analysis

= coming back to the inductive definition:
Iy =0,
Iy =T, (D) is an overestimate of true atoms and an underestimate of false atoms.

« observation: the larger I, the smaller the reduct P! (delete non-satisfied negative
literals), the smaller T, (0) (“antimonotonic”)

» Pt is a “small” reduct program, T%,, is a “small” interpretation, but 2 7%, (0)

« P’z is a “large” reduct program, T¥

1, 1S a “large” interpretation, but C T3, (0)

lower bound upper bound
P2 . >T%, (0) “large”
ph . > T%:, (0)=: I “small”
Plho=pY . >Tpe(0)=: 1

IO:® T}Dfacts (®) TIL;)]+ ((0) HBP\

size of interpretation (number of true atoms) B

642
Alternating Fixpoint: Analysis
IO = @
Livn = Tg,(0)

- in each step, P! encodes the knowledge about false atoms from I; into P.
* T'3;, runs the resulting positive program under consideration of these false atoms:

« if I; is an underestimate of false atoms:
— only negative literals that are already proven to be true are assumed to be true.
= underestimate of the satisfied rule bodies,
= underestimate of the true heads.
= I;y1 = T}, is an underestimate of true atoms.

- Analogously, if I; is an overestimate of false atoms, I;; = T;, is an overestimate of true
atoms.

643

Alternating Fixpoint: Analysis

Ip, = 0
Ii+1 — T;IL(Q))

Iy is an underestimate of true atoms and an overestimate of false atoms,
» I, is an overestimate of true atoms and an underestimate of false atoms,
« [,, is an underestimate of true atoms and an overestimate of false atoms,

« I>,+1 is an overestimate of true atoms and an underestimate of false atom,

and with each step, the estimates get better.

 To be proven by interleaved induction:
— increasing sequence of underestimates:
Iy(n41) > 12, (base case obvious: I, > Iy = ()
— decreasing sequence of overestimates:

Ipi3 > Iony1 (firstelement I = T, (0) = T5-(0) (cf. Slide 641)

644

Well-Founded Semantics Computation

« alternating sequence of growing underestimates and shrinking overestimates

Plznt o ° > T (D)=: Iopn42

plan . . :

/’> Tolghn ((b): I2n+1

P%IQ . a
.
pfo; po . .
Iy=0 Thoa(0) Ty, (0) HBp

size of interpretation (number of true atoms)

645

Alternating Fixpoint: Analysis

Lemma 11.1
The mapping I — T, (0) is antimonotonic:
If1 < J,thenTg,(0) > T, (0). O

Proof I < .J meansthatl C J, i.e., in I more atoms evaluate fo false. Thus, in P; more
negative literals are removed (because they are satisfied in I), thus less rules are removed
due to remaining negative literals (which are not satisfied). Thus, P O P, (as sets of ground
rules), thus T, (0) 2 T, (). O

646

Alternating Fixpoint: Analysis

Theorem 11.1
With the above deﬁniﬂon, I < <...<I, < Ign_|_2 <...< 12n+1 <Ipp1<...< 4. O

Proof Obviously, Iy =) < I, and Iy < I. Thus, I, = Ty, (0) < Tg,, (0) = 1.

IS Tlug)IQ (@) < ngo (@) = Il.

Analogously by induction:
Since Iy, —1 > Ippy1: Iopio =T%

plant1
Since I5,,_o < Iy,: Ign_|_1 = T;D)Qn (@) <7T¥

plan— 2()
Since I2n+1 > Iy, Ign_|_2 = T;)J12n+1 (@) < T‘;IQ”()
)

Since Iy, < Inp—1: Iop1 =15, (0) > T35, (0

@) =Tgr,_, (@

)=
I,
I 2n41-
Iy,

» The I,,, are a monotonically increasing (and limited) sequence:
the underestimates of true atoms.

» The 15,1, are a monotonically decreasing (and limited) sequence:
the overestimates of true atoms.

e lim I, < hm Iopq.
n—oo

» do the limits coincide? — sometimes yes, but not always!

647

Well-Founded Semantics Computation: Alternating Fixpoints Case
« either there is an n such that 7,, = 1,1 = I, = ... (single fixpoint), or

* thereisannsuchthat [,, = I,,;2 = ... and I,,.1 = I, 3 = ... (alternating fixpoints):

= o T n (Q))_’: Iop 3
UJ;IQ”+1 ((Z)) : 127L+2 .< clj o
w . Thr,, (0)=: Iop1q
(@) : IQn ‘ :

plan—1

plo=p? o .- \~Tg¢ 0)=: 1,

\ 4 >

To=0) Thues(0) Ty, (0) HBp

size of interpretation (number of true atoms)

648

Alternating Fixpoint: Example
Consider the small win-move game consisting of

N -
& O——0—0

®]0:@

« I; = {move(a,b), move(b,a), move(b,c), move(c,d), win(c), win(b), win(a)} — d is already
—win(d) since there is no move from it.

« I, = {move(a,b), move(b,a), move(b,c), move(c,d), win(c)} — now c is known to be won.

+ I3 = {move(a,b), move(b,a), move(b,c), move(c,d), win(c), win(b), win(a)} = I
win(b) is still there since there is the move to a.

« Fromthen (n > 2)on, I, = I, and Iz, = I;.
How to interpret this?

« all facts in lim I, have a well-founded derivation “to hold”: win(c).

n— o0

« all facts notin lim I»,.; have a well-founded derivation “not to hold”: —win(d).
n—oo

« all others: ?? —game: a and b are drawn positions.

What about a logical semantics? — three-valued logic: true/false/undefined.

649

EXAMPLE: WIN-MOVE-GAME IN DATALOG

« XSB: use tnot (tabled!) — applies SLG resolution (SLD + memoing/tabling)

:- auto_table.

pos(a). pos(b). pos(c). pos(d). 7- win(X).
move(a,b). move(b,a). move(b,c). move(c,d). X=c¢

win(X) :- move(X,Y), tnot win(Y). X = b undefined
lose(X) :- pos(X), tnot win(X). X = a undefined
% ?7- win(X) no

[Filename: Datalog/winmovesmall.P]

» ciswon, dis lost, a and b are undefined (to be interpreted as drawn).

Aside: References

» The win-move game is used in the above-mentioned papers [M. Gelfond, V. Lifschitz,
ICLP 1988], [A. Van Gelder, K.A. Ross, J.S. Schlipf, PODS 1988], [A. Van Gelder, PODS
1989].

650

Example: Win-Move-Game in Datalog

:- auto_table.
% :- table win/1.
pos(a). pos(b). pos(c). pos(d). pos(e). pos(ff). pos(g).
pos(h). pos(i). pos(j). pos(k). pos(1l). pos(m). pos(n).
win(X) :- move(X,Y), tnot win(Y).
lose(X) :- pos(X), tnot win(X).

move(a,b). move(a,f). @-—)@)@ @
move(b,c). move (b,g) . move (b,k) .

¥ A Y\
move(c,d). move(c,l). <:> <:> <:> <::>
move(d,e) .
move(e,a). \ /v V\
move(g,i). move(g,h). @‘@ @ @

move (h,m) . V$ ¢
move(i,j).

move(1l,d). <::> <::>
move (m,h) .

[Filename: Datalog/winmove.P]

651

11.3 3-Valued Logic

» same syntax as FOL

truth values ¢ (true, 1), u (undefined, 0.5), f (false, 0), ordered by ¢ > u > f.

All three-valued logics coincide in the definition of A, Vv, and —:
AN B =min(A, B) AV B = max(A, B) —A=1-a

AB J ou t AB f u t A -A
fFr f J u t f t
f u U U ou t U U
f ou ot ¢ t t /

there is not a single 3-valued logic. There are multiple variants, depending on what
should be done with the logic.

652

3-Valued Logic for Logic Programming Semantics
 does not require actual reasoning in a 3-valued world,
+ define a model theory for Datalog with negation,

» express partial models:
— consider Datalog with disjunction in the head (or similar situations e.g. in Description
Logics/OWL):
Consider an axiom VX : person(X) — (male(X) v female(X)).
Consider an interpretation Z where there is an individual a s.t. Z |= person(a). From
7 = VX :person(X) — (male(X) v female(X)).
the intended semantics of = and — (both must still be defined!) should imply that
7 = male(a) Vv female(a).
Since it is not known whether a is male or female, the model theory for partial models
with negation in the head should allow that neither male(a) nor female(a) belong to Z.

« this chapter: allow to define and compute T'» (1) for rules with negation in the body:
— evaluate conjunctive bodies with negation,
— T'p for such rules: if the truth value of the body is «, that of the head should also be w.
— an appropriate notion for I = P for partial interpretations wrt. such programs.

653

3-Valued Logic: Implication
For implication, there are different definitions (here, only two are listed):

1. Logic K3, Stephen Kleene (1938): R
A— B=-AV B=max(1—-A,B) Fole ot ot
follows the definition of — as a derived operator from u ot
boolean logic.

t | f u t

« Fits with intuitive “if the truth value of the body is unknown and the truth value of the
head is unknown, then the truth value of A — B is also unknown”.

* Does not fit with the intention to handle Z = head < body where the truth value of the
body (and that of the head) is w.

2. based on the ordering of the domain: ¢t > u > f: B : head
A— B=(A<B) f u t
* the truth value of A — B is always ¢ or f, 2 t tt
Q
« For a rule head <+ body, S oulf t
if I(body) = u and I(head) = u, = f ft

then I(head < body) = t.

= use the second alternative.

654

3-VALUED LoGic: NOTATION AND MINIMAL MODELS

Extend and adapt FOL notation:

« 3-valued Herbrand interpretations are given as tuples I = (T, F') where T is the set of
true atoms and F is the set of false atoms.
All other atoms are undefined.

* [; < I, is defined wrt. the amount of information:
with partial order u < tand u < f
— I < I, if for all ground atoms a , I1(a) < Iz(a),
— orequivalently (71, Fy) < (15, F3) < Ty C Ty and Fy C Fs.

« The minimal interpretation is thus formally correctly written as (0, 0).

« instead of I |= ¢ or I =3 ¢ (which can only express true/false),
write I(¢) = v orval; g(¢) = v forv € {t,u, f}.
Convention: write I = ¢ (“I is a model of ¢”) in 3-valued context if I(¢) = ¢.
(= will only be applied to programs and rules, the semantics of — has been defined
above toresultintor f.)

655

11.4 3-Valued Well-Founded Model

Given a program P, define a certain 3-valued Herbrand interpretation I = (T, F') as follows;
Definition 11.5

For a Datalog™ program P with Iy = 0, 11, . .., Is, Isn11, . . . the Alternating Fixpoint
Computation, let Wp := ({ala € lim Is,},{ala € Bp,a ¢ lim Is,41}) .
n— oo n— oo

» “true”: all facts that are in the final underestimate of true atoms;

 “false”: all facts that are outside of the final overestimate of true atoms — they are
definitely false.

It will be proven later that Wp is the well-founded model of P (cf. Definition 11.3).

656

Example
Consider again the simple win-move game from Slide 649.

The corresponding program is P =

pos(a). pos(b). pos(c). pos(d).

move(a,b). move(b,a). move(b,c). move(c,d).
win(X) :- move(X,Y), not win(Y).

lose(X) :- pos(X), not win(X).

[Filename: Datalog/winmove-small.s]

With the sequence ((I)) as given on Slide 649, the alternating fixpoint computation stops at
Is = I, (EDB shown in gray):

W(P) = ({ pos(a), pos(b), pos(c), pos(d),

move(a,b), move(b,a), move(b,c), move(c,d), win(c), 1,

{ move(a,a), move(a,c), move(a,d), move(b,a), move(b,b), move(b,d), move(c,a),
move(c,b), move(c,c), move(d,a), move(d,a), move(d,b), move(d,c), move(d,d),
win(d),)

undefined: win(a), win(b), lose(a), lose(b)

(usually one omits the EDB predicates when listing well-founded or stable models).

657

3-VALUED Tp»-OPERATOR

Definition 10.2 carries over to 3-valued interpretations as follows:

Definition 11.6 (37 »-Operator)
For a ground Datalog™ program P, (which might contain the boolean atom undef in the body)
and a 3-valued interpretation I = (T, F"), for each ground atom a,

3Tp,(I)(a) := max({I(body) : a < body € P,}

For a non-ground Datalog™ program P and a 3-valued interpretation I = (T, F),
3Tp(I) := 31Tp,(I) where P, is the grounding of P wrt. the Herbrand Universe of P
(i.e., the set of all possible ground instances of the rules of P).

3T%(1) = I
3TH(I) = 3Tp(I)
3TptH(I) = 3Tp(3TH(I))
3TE(I) = | 3Tp()
neN
3T% = 3Ts(0,0). o

658

3-VALUED REDUCT

Definition 11.1 (Slide 631) carries over to 3-valued interpretations as follows:

Definition 11.7 (3-Valued Reduct)
For a Datalog~ program P, and a 3-valued interpretation I = (T, F), the reduct P! of P wrt. I
is obtained as follows:

» let P, denote the grounding of P,
* delete from P, all rules that contain a negative literal —~a in the body such that I(a) = t,

* replace all negative literals —a in the remaining rules s.t. I(a) = u by the boolean atom
undef (since undef is neither in T' nor in F it will be evaluated as I(undef) = u),

« delete all remaining negative literals in the bodies of the remaining rules. o

Properties of P!
« P is a ground positive program.

« If I is a model of P, then for each ground atom a, (37%;(0))(a) < I(a).

659

3-STABLE MODELS

Definition 11.8
A 3-valued interpretation I = (T, F) is a 3-stable model of a Datalog™ program P, if

37, (0,0) = 1.

For returning also partial models, invoke smodels with --partial.
» output p(a) means that p(a) can be derived to be true

« output p’ (a) means that val(p(a) > u is at least undefined (p(a) might also be listed to
be true)

« this avoids to have to list all possible ground instantiations of atoms that are false.

(see next slide)

660

Example/Syntax: Partial Stable Model in smodels

Example 11.1

p(a) :- not p(a).
[Filename: Datalog/pnotp.s]

... has only one partial stable model: p(a) is undefined:

lparse -n 0 --partial pnotp.s|smodels
smodels version 2.34. Reading...done
Answer: 1

Stable Model: p'(a)

Interpretation of the result M = {p'(a)} (smodels Section 4.8.2):

» for every ground atom p(...), an atom p'(...) is added to the internal program, which
means “p(...) is potentially true”

« ifbothp(...)andp'(...) arein M, thenvaly (p(...)) =1,
e ifp’(...) e M and p(...) ¢ M, thenvaly (p(...)) = u,

» otherwise valy (p(...)) = f.

661

Example

Example 11.2
Consider once more the program from Slide 634:

q(a) :- not p(a).
p(a) :- not q(a). [Filename: Datalog/porq.s]

Exercise: give the Alternating Fixpoint Computation for P.

e S:=(0,0),ie.,S(pla)) =S(q(a)) = u, is a 3-stable model. It is the minimal 3-stable
model.

» On Slide 634, {p(a)} and {q(a)} have been identified as total stable models of P.
Note: as partial models, these are written as (T, F')-pairs as ({p(a)},{q(a)}) and

({a(a)}, {p(a)}) o
Example 11.3
Consider winmove.p with —partial.

* here, the unique partial stable model (= the well-founded model) is the “intended” one
with drawn positions.

* the total stable models arbitrarily “fix” some drawn positions to be won/lost (in an
admissible way wrt. the program). o

662

WELL-FOUNDED MODEL

Recall Definition 11.3 (638):

For a Datalog™ program P, the (in general three-valued) well-founded model of P is the
(unique) minimal 3-stable model of P.

Theorem 11.2
Wp (as defined on Slide 656) is the well-founded model of P. o

Proof:
» Show that Wp is 3-stable [Abiteboul, Hull, Vianu: Foundations of Databases, Thm. 15.3.9]

« minimality and uniqueness follow from Lemma 11.2:

Lemma 11.2
For a Datalog™ program P, Wp = (T, F') is the intersection of all 3-stable models of P, i.e., for
every 3-stable model (T",F"), T" D T and F' D F. o

Proof: minimality of 7" wrt. all models and minimality of F* wrt. all stable models follows from
the properties proven for the AFP computation.

663

Comments: Well-Founded Model

« The AFP gives a (polynomial!) computation for the non-constructive definition of
“well-founded model”.

« all stable models extend the well-founded model
= computation/guessing can be based on the well-founded model.

» starting the Alternating Fixpoint Computation with the contents of the EDB relations as
initial interpretation J, leads to the same final result
(but the intermediate J; are different and J, serves as an underestimate).

664

Recall: Non-Monotonicity of Closed-World-Assumption
“Negation by default” is non-monotonous:

Consider a program P and its well-founded model W(P) = (T, F):

« recall that any program (we have only positive atoms in the head) cannot imply that any
atom must be false in all models
= any positive fact can be added to a Datalog/Datalog™ program without being
inconsistent.

« there are non-stable models M = (7", F’) of P where T — T # () (containing atoms that
are not supported by P), and for these, often also F' — F’ # ()

— e.g. add an edge to the win-move game, and some other positions are won, but some
that were won before are now lost, or

— e.g. just fix that a certain (drawn or even lost) position is won.

— F — F' # () = Things that have been concluded before to hold do now turn out not to
hold; “Belief Revision”.

« M is then a 3-stable model of a (more or less slightly) different program P’ 2 P.
(e.g., P = PU{move(x,y)} or P’ = P U {win(x)})
= corresponds to “learning” about a new fact,
= requires to recompute the whole well-founded model from scratch.

665

Exercise: Well-Founded Model

 show that for every positive Datalog program P, the well-founded model is total (i.e., all

ground atoms are either true or false).

» show that for every stratifiable Datalog™ program P, the well-founded model is total.

Exercise: Well-Founded Model

 Are there non-stratifiable Datalog™ programs that have a total well-founded model (i.e., no

atoms undefined)?

« Are there (non-ground) non-stratifiable Datalog™ programs that have a total well-founded

model for all EDB instances?

666

Well-founded Semantics: Literature

definition of reduct and stable model taken from documentation of smodels,
alternating fixpoint taken from ??TO BE EXTENDED??
further reading: [Abiteboul, Hull, Vianu: Foundations of Databases]

Original Paper: Allen Van Gelder, Kenneth A. Ross, John S. Schlipf: Unfounded Sets and
Well-Founded Semantics for General Logic Programs. PODS 1988: 221-230

Long version: Allen Van Gelder, Kenneth A. Ross, John S. Schlipf: The Well-Founded
Semantics for General Logic Programs. J. ACM 38(3): 620-650 (1991)

Alternating Fixpoint: Allen Van Gelder: The Alternating Fixpoint of Logic Programs with
Negation. PODS 1989: 1-10

online literature database (started with database + logic programming, now for everything
in CS): http://dblp.uni-trier.de/
(from university computers, access to most pdfs is allowed)

667

RESTRICTIONS OF THE DATALOG/MINIMAL/WELL-FOUNDED MODEL
SEMANTICS

Given a Datalog/Datalog™ program P, the minimal model, well-founded model, and the AFP
procedure cannot decide the following:

« for a given general FOL formula ¢, does ¢ hold in all models of P?

* if p(c1,...,cn) can not be confirmed by the minimal, stratified, or well-founded model, this
does not mean, that there is no model of P where p(c4,...,c,) holds.
Even more, any positive fact can be added to a Datalog/Datalog™ program without being
inconsistent.

Closed-World-Assumption (CWA)

 For all facts that are not given in the database and that are not derivable, it is assumed
that they do not hold (more explicitly: that their negation holds).

« CWA not appropriate in the Web: for things that | do not find in the Web, simply nothing is
said.
[Example: travel planning]

668

THE LIMITS — NO REAL DISJUNCTION

7-p(X).

X = b undefined
X = a undefined
7- q(X).

X = ¢ undefined

:- auto_table.
p(a) :- tnot p(b).
p(b) :- tnot p(a).
qlc) :- p(X).

[Filename: Datalog/pg.P]

X = ¢ undefined

* “q(c) undefined” is computed twice by SLG resolution, i.e. two proof paths exist.

* W(P) = (0,{q(a),q(b),p(c)}), the “interesting” ground atoms {p(a), p(b),¢(c)} are undefined.
The model theories of the minimal model and well-founded model define truth/entailment
only for ground atoms.

« PasaFOL formula: (p(b) V p(a)) AVz : p(z) — q(c) EgoL 4(c)
* (general) resolution prOOf: clauses {p(b) p(a)} {_'p(X) q(c)} {_\Q(C)}

{p(a),p(b)} (which is the clause corre- | > |
sponding to both the two first rules) and {-p(X1)} {-p(X2)}
{-p(X),q(c)} together with query/goal y
clause —¢(c) allow to derive O: {p(d)}

« SLD/SLG resolution tries only linear proofs. \ﬁ

669 =

THE LIMITS — NO REAL DISJUNCTION

The same program interpreted by stable models:

thing(a). thing(b). thing(c).
p(a) :- not p(b).

p(b) :- not p(a).

q(c) :- thing(X), pX).

[Filename: Datalog/pg.s]

* two total stable models:
— “either p(a) or p(b) hold”
— “q(c) holds in any case”

lparse -n 0 --partial pq.s|smodels

models version 2.34. Reading...done
Answer: 1

Stable Model: p(a) q(c)

Answer: 2

Stable Model: p(b) q(c)

Answer: 3

Stable Model: p'(a) p'(b) q'(c)

False

* the user can interpret the result as a 3-valued interpretation I where
valy(p(a)) = val(p(b)) = v and wal;(q(c)) = t.

I is a model of P (i.e., 3T, (0) < I), but I is not a stable model of P (i.e., 3T% (0) # I)!

670

