
Chapter 11
Datalog Knowledge Bases II

NEGATION IN THE BODY: CYCLIC NEGATIVE DEPENDENCIES

A program whose dependency graph contains a negative cycle cannot be stratified.

• Consider the program P = {p(b)← ¬p(a)} (without any assured facts). It has three
models,M1 = {p(b)}, M2 = {p(a)}, andM3 = {p(a), p(b)}.
BothM1 andM2 are minimal.

Which of the models is “preferable”, given P as a knowledge base?

• well-founded semantics (still polynomial)

• stable semantics (answer set programming) (exponential)

• the rule is logically equivalent to p(a) ∨ p(b) – but as a rule, it can be read to have a more
“directed” meaning:
“if p(a) cannot be shown, then assume p(b)”.

626

Example: Win-Move-Game

• 2 players,

• positions on a board that are connected by (directed) moves (relation “move(x,y)”),

• first player puts a pebble on a position,

• players alternately move the pebble from x to a connected y,

• if a player cannot move, he loses.

• Question: which positions are “winning” positions, “losing” position, or “drawn” positions?

The following program “describes” the game:

win(X) :- move(X,Y), not win(Y).

• the dependency graph contains a negative
cycle:

win move

¬

a b k n

f e c g

d l h i

m j

627

WELL-FOUNDED SEMANTICS: MOTIVATION

... switch from “stupid” bottom-up to well-founded argumentation “why or why not”.

• every fact has an individual finite proof
(positive/existential part: linear; not-exists/forall part: multiple ((finitely) failed) subproofs)

• but not stratified (but “dynamically stratified”/“ground-stratified”)

1. basic facts,

2. apply rules based on existing knowledge

3. additional facts,

4. continue with (2);

5. including “negative facts” – under closed-world assumption (CWA).

• Does this need full reasoning? (tableau proofs obviously cover it)

• is resolution sufficient? (yes, it’s only rule applications)

• theory: how to characterize the model?

• three-valued logic: yes-no-undefined (win-move: lost/won/drawn)

• how to compute the model efficiently?

628

ANALYSIS

• which atoms are definitely true?

– the facts

– instantiations σ(H) of rule heads of rules H ← C1 ∧ . . . ∧ Cn ∧ ¬D1 ∧ . . . ∧ ¬Dk

* where all σ(Ci) are definitely true, and

* where all σ(Di) are definitely false.

• which atoms are definitely false (under CWA)?

– instances of EDB predicates that are not amongst the given facts,

– ground instances p(...) of IDB predicates such that for all rules whose rule head H

unifies with p(...) as σ(H) (there might be several such rules with p(...) in their head):
H ← C1 ∧ . . . ∧ Cn ∧ ¬D1 ∧ . . . ∧ ¬Dk

* some σ(Ci) is definitely false, or

* some σ(Di) is definitely true.

• idea: start with nothing. Derive some definitively true things and some definitively false
ones.

• based on the obtained knowledge, do “next round”,

• care for “still unknown” things.

629

Well-Founded Semantics: For What

• Many real problems are stratified.

• Most (relational/SQL) queries are stratified.

• WFS goes beyond classical queries:
many problems can be encoded in Datalog wrt. well-founded semantics

Non-Stratified examples:

• logical puzzles ;)

• planning problems
can_start(Y)← completed(X), additional conditions.

• argumentation contexts
holds(...) ← holds(...), ¬ holds(...), additional conditions.

Let’s have a look at the theory ...

630

REDUCT OF A PROGRAM

Consider a Herbrand interpretation (i.e., a set of ground facts) H.

Definition 11.1 (Reduct of a Program)
The reduct PH of a program P wrt. a Herbrand interpretation H is obtained as follows:

• let Pg denote the grounding of P , i.e. the set of all ground instances of rules in P over
elements of the Herbrand universe of H ∪ P .

• delete from Pg all rules that contain a negative literal ¬a in the body such that a ∈ H,
(these rule bodies cannot be satisfied in H)

• delete all remaining negative literals in the bodies of the remaining rules.
(for those ¬a, a /∈ H, i.e., these literals are satisfied in H) ✷

Properties of PH

• PH is a (ground) positive program.

• If H is a model of P , then TPH(H) ⊆ H.
(note: use TPH(H here, not Tω, but run it on H)

631

11.1 Stable Models I

Definition 11.2 (M. Gelfond, V. Lifschitz, ICLP 1988)
A Herbrand interpretation H is a stable model of a Datalog¬ program P , if

Tω
PH(∅) = H.

✷

• note that a program P can have several stable models.

Remark and Exercise

Note that the definition of stable models is based on Tω
PH(∅).

Consider P = {p(a) :- p(a)} and H = {p(a)}; PH = P .
H is a model of P , and Tω

PH(H) = H.

But, Tω
PH(∅) = ∅, i.e., H is not a stable model (p(a) is not “supported”).

H′ = {p(a), p(b), q(b)} is also a model of P , which is also (obviously) not stable.

Obviously, ∅ is a stable model of P – and thus, is the only one.

Note that the above example is a positive Datalog program. For positive Datalog programs P ,
and any H, PH = ground(P) (i.e., all ground instances of rules of P) and
Tω
ground(P)(∅) = Tω

P (∅) is the only stable model.

632

Stable Models – Example

Consider the following program P :

q(a) :- not p(a).

[Filename: Datalog/qnotp.s]

Logically, the rule is equivalent to p(a) ∨ q(a).

• The program has one stable model:

> lparse -n 0 qnotp.s|smodels
Answer: 1
Stable Model: q(a)
True

For H = {q(a)}, PH = {q(a) :- true} and Tω
PH(∅) = {q(a)}, thus H is stable.

• Consider H′ = {p(a)}. It is a model of P .
PH′

= ∅ and Tω
PH′ (∅) = ∅.

The derivation of p(a) is “not supported” by P ; H′ is not stable.

• so, in Stable Models Semantics, the rule does not mean disjunction, but is directed.

633

Stable Models – Example

Consider the following program:
q(a) :- not p(a).
p(a) :- not q(a).

[Filename: Datalog/porq.s]

Logically, each of the rules is equivalent to p(a) ∨ q(a).

• The program has two total stable models, and one partial (which is the well-founded
model):

> lparse -n 0 --partial porq.s|smodels
Answer: 1
Stable Model: q(a)
Answer: 2
Stable Model: p(a)
Answer: 3
Stable Model: q'(a) p'(a)

• thus, both rules together represent disjunction.

• Note that {p(a), q(a)} is a model, but not a stable model.

• There is no possibility in Datalog¬ to assert ¬q(a) to forbid one of the models.
(in smodels, this will be allowed)

634

Stable Models – Example

Consider the following program:

p(a).
q(a) :- not p(a).
p(a) :- not q(a).

[Filename: Datalog/pporq.s]

• The program has only one stable model: {p(a)}.

• This model is also the well-founded model.

635

WinMove with Stable Models

• lparse does not accept don’t-care-variables.

pos(a). pos(b). pos(c). pos(d). pos(e). pos(f). pos(g).
pos(h). pos(i). pos(j). pos(k). pos(l). pos(m). pos(n).
win(X) :- move(X,Y), not win(Y).
lose(X) :- pos(X), not win(X).
move(a,b). move(a,f).
move(b,c). move(b,g). move(b,k).
move(c,d). move(c,l).
move(d,e).
move(e,a).
move(g,i). move(g,h).
move(h,m).
move(i,j).
move(l,d).
move(m,h).

[Filename: Datalog/winmove.s]

a b k n

f e c g

d l h i

m j

• lparse -n 0 -d none winmove.s | smodels yields two total two-valued stable models.

• drawn cycle between h and m: once w/l, other l/w

• wfm = intersection of stable models, minimal 3-valued model.

636

Stable Models – First Summary

• A Datalog¬ program may have several stable models.

• Finding the stable models of a program is exponential
(optimization strategies exist)

• come back to the well-founded semantics

– cheaper (polynomial),

– returns a unique reasonable result in cases where disjunction is not needed or not
intended,

– cf. win-move game: drawn positions are neither lost nor won.

• ... a closer investigation of stable models semantics will be given on Slides 671 ff.

637

11.2 Well-Founded Semantics

• recall the considerations from Slides 628 ff.:
well-founded non-stratified “argumentation” which facts can be derived to be true or false

Main Problem:

How to deal with true-unknown-false:

• model-theoretic: three-valued logic

• practically: apply a trick to be able to use the existing 2-valued TP operator for positive
Datalog.

Definition

Definition 11.3 (A. Van Gelder, K.A. Ross, J.S. Schlipf, PODS 1988)
Given a Datalog¬ program P , the well-founded model of P is the minimal 3-valued stable
model of P . ✷

• from the practical view not very promising ...
not only to guess stable models, yet even 3-valued.

• have a look at this definition later.

638

ALTERNATING FIXPOINT COMPUTATION FOR WFS

The Alternating Fixpoint Computation [A. Van Gelder, PODS 1989] mirrors the
well-foundedness of the derivation:

Definition 11.4
Given a Datalog¬ program P over a signature Σ, define the sequence I0, I1, . . . of Herbrand
interpretations over Σ als follows:

I0 := ∅
Ii+1 := Tω

P Ii
(∅)

✷

• Does ((Ik)) converge?
No. And Yes.

• Is there a fixpoint?
Yes. There are two fixpoints!

... let’s have a look ...

Exercise

Evaluate ((Ik)) for the win-move example.

639

Alternating Fixpoint: Analysis

• Consider first the program P facts which consists only of the facts (= fact rules) in P :

– Tω
P facts(∅) = T 1

P facts(∅) makes all facts true that are contained in the program.

• Consider next the program P+ which is obtained from ground(P) by deleting all rules that
contain any negative literal:

– P+: corresponds to “all negative literals are false”.
Recall that HBP denotes the interpretation that makes all possible atoms over the
Herbrand Universe of P true. With this, P+ = PHBP .

– (P+ can be equivalently obtained by first deleting all rules that contain a negative
literal and then grounding the remaining (positive) rules)

– P+ is the smallest possible reduct of P ,

– Tω
P+(∅) derives all atoms that can be derived by only the remaining purely positive

rules,

– this includes all facts (recall fact rules of the form p(...) :- true.)

⇒ these are atoms that hold in all models of P (facts+positive rules force them).

⇒ a safe and very careful underestimate of true atoms.

∅ ⊆ T 1
P facts(∅) ⊆ Tω

P+(∅) ⊆ Tω
PanyI (∅) ⊆ HBP

640

Alternating Fixpoint: Analysis

Consider now the program P− which is obtained from ground(P) by simply deleting all
negative literals from all rules (corresponds to “all negative literals are satisfied”):

• P− is the reduct wrt. the empty interpretation, the starting point of the whole process,

• P− it is the biggest possible reduct of P

• Tω
P−(∅) derives all atoms that can be derived by P if all negative literals are assumed to

be satisfied.

• this includes again all facts (recall fact rules of the form p(...) :- true.)

• and everything that could by derived from them under “optimal” conditions

⇒ an overestimate of true atoms.

⇒ atoms that are not in TP−(∅) can definitely not be derived by P ,

⇒ a safe underestimate of false atoms (in any stable model/wrt. Closed-World Assumption).

• Example: Consider P = {p(a), p(b):- not p(a)}. Then, P− = {p(a), p(b):-true} and
Tω
P−(∅) = {p(a), p(b)}.

• use this for starting with I0 = ∅ and thus considering P ∅ = P−:

∅ ⊆ T 1
P facts(∅) ⊆ Tω

P+(∅) ⊆ Tω
PanyI (∅) ⊆ Tω

P−(∅) = Tω
P∅(∅) ⊆ HBP

641

Well-Founded Semantics Computation: Intuitive Analysis

⇒ coming back to the inductive definition:
I0 = ∅,
I1 = Tω

P∅(∅) is an overestimate of true atoms and an underestimate of false atoms.

• observation: the larger I, the smaller the reduct P I (delete non-satisfied negative
literals), the smaller Tω

P I (∅) (“antimonotonic”)

• P I1 is a “small” reduct program, Tω
P I1

is a “small” interpretation, but ⊇ Tω
P+(∅)

• P I2 is a “large” reduct program, Tω
P I2

is a “large” interpretation, but ⊆ Tω
P∅(∅)

lower bound upper bound

P I2 • • Tω
P I2 (∅) “large”

P I1 • • Tω
P I1 (∅)=: I2 “small”

P I0=P ∅ • • Tω
P∅(∅)=: I1

I0=∅ T 1
P facts(∅) Tω

P+(∅) HBP

size of interpretation (number of true atoms)

642

Alternating Fixpoint: Analysis

I0 := ∅
Ii+1 := Tω

P Ii
(∅)

• in each step, P Ii encodes the knowledge about false atoms from Ii into P .

• Tω
P Ii

runs the resulting positive program under consideration of these false atoms:

• if Ii is an underestimate of false atoms:

– only negative literals that are already proven to be true are assumed to be true.

⇒ underestimate of the satisfied rule bodies,

⇒ underestimate of the true heads.

⇒ Ii+1 = Tω
P Ii

is an underestimate of true atoms.

• Analogously, if Ii is an overestimate of false atoms, Ii+1 = Tω
P Ii

is an overestimate of true
atoms.

643

Alternating Fixpoint: Analysis

I0 = ∅
Ii+1 = Tω

P Ii
(∅)

• I0 is an underestimate of true atoms and an overestimate of false atoms,

• I1 is an overestimate of true atoms and an underestimate of false atoms,

• I2n is an underestimate of true atoms and an overestimate of false atoms,

• I2n+1 is an overestimate of true atoms and an underestimate of false atom,

• and with each step, the estimates get better.

• To be proven by interleaved induction:

– increasing sequence of underestimates:
I2(n+1) ≥ I2n (base case obvious: I2 ≥ I0 = ∅)

– decreasing sequence of overestimates:
I2n+3 ≥ I2n+1 (first element I1 = Tω

P∅(∅) = Tω
P−(∅) (cf. Slide 641)

644

Well-Founded Semantics Computation

• alternating sequence of growing underestimates and shrinking overestimates

P I0=P ∅ • • Tω
P∅(∅)=: I1

I0=∅ T 1
P facts(∅) Tω

P+(∅) HBP

size of interpretation (number of true atoms)

P I1

P I2

P I3

P I2n

P I2n+1

•

•

•

•

•

•

•

•

•

•

Tω
P I1 (∅)=: I2

Tω
P I3 (∅)=: I4

Tω
P I2n+1 (∅)=: I2n+2

Tω
P I2 (∅)=: I3

Tω
P I2n (∅)=: I2n+1

645

Alternating Fixpoint: Analysis

Lemma 11.1
The mapping I → Tω

P I (∅) is antimonotonic:
If I ≤ J , then Tω

P I (∅) ≥ Tω
PJ (∅). ✷

Proof I ≤ J means that I ⊆ J , i.e., in I more atoms evaluate fo false. Thus, in PI more
negative literals are removed (because they are satisfied in I), thus less rules are removed
due to remaining negative literals (which are not satisfied). Thus, PI ⊇ PJ (as sets of ground
rules), thus Tω

P I (∅) ⊇ Tω
PJ (∅). ✷

646

Alternating Fixpoint: Analysis

Theorem 11.1
With the above definition, I0 ≤ I2 ≤ . . . ≤ I2n ≤ I2n+2 ≤ . . . ≤ I2n+1 ≤ I2n−1 ≤ . . . ≤ I1. ✷

Proof Obviously, I0 = ∅ ≤ I1 and I0 ≤ I2. Thus, I2 = Tω
P I1

(∅) ≤ Tω
P I0

(∅) = I1.
I3 = Tω

P I2
(∅) ≤ Tω

P I0
(∅) = I1.

Analogously by induction:
Since I2n−1 ≥ I2n+1: I2n+2 = Tω

P I2n+1
(∅) ≥ Tω

P I2n−1
(∅) = I2n.

Since I2n−2 ≤ I2n: I2n+1 = Tω
P I2n

(∅) ≤ Tω
P I2n−2

(∅) = I2n−1.
Since I2n+1 ≥ I2n: I2n+2 = Tω

P I2n+1
(∅) ≤ Tω

P I2n
(∅) = I2n+1.

Since I2n ≤ I2n−1: I2n+1 = Tω
P I2n

(∅) ≥ Tω
P I2n−1

(∅) = I2n. ✷

• The I2n are a monotonically increasing (and limited) sequence:
the underestimates of true atoms.

• The I2n+1 are a monotonically decreasing (and limited) sequence:
the overestimates of true atoms.

• lim
n→∞

I2n ≤ lim
n→∞

I2n+1.

• do the limits coincide? – sometimes yes, but not always!

647

Well-Founded Semantics Computation: Alternating Fixpoints Case

• either there is an n such that In = In+1 = In+2 = ... (single fixpoint), or

• there is an n such that In = In+2 = ... and In+1 = In+3 = ... (alternating fixpoints):

P I0=P ∅ • • Tω
P∅(∅)=: I1

I0=∅ T 1
P facts(∅) Tω

P+(∅) HBP

size of interpretation (number of true atoms)

•Tω
P I2n−1 (∅)=: I2n

•Tω
P I2n+1 (∅)=: I2n+2 • Tω

P I2n (∅)=: I2n+1

• Tω
P I2n+2 (∅)=: I2n+3

648

Alternating Fixpoint: Example

Consider the small win-move game consisting of

a b c d

• I0 = ∅.
• I1 = {move(a,b), move(b,a), move(b,c), move(c,d), win(c), win(b), win(a)} – d is already
¬win(d) since there is no move from it.

• I2 = {move(a,b), move(b,a), move(b,c), move(c,d), win(c)} – now c is known to be won.

• I3 = {move(a,b), move(b,a), move(b,c), move(c,d), win(c), win(b), win(a)} = I1
win(b) is still there since there is the move to a.

• From then (n ≥ 2) on, I2n = I2 and I2n+1 = I1.

How to interpret this?

• all facts in lim
n→∞

I2n have a well-founded derivation “to hold”: win(c).

• all facts not in lim
n→∞

I2n+1 have a well-founded derivation “not to hold”: ¬win(d).

• all others: ?? – game: a and b are drawn positions.

What about a logical semantics? – three-valued logic: true/false/undefined.

649

EXAMPLE: WIN-MOVE-GAME IN DATALOG

• XSB: use tnot (tabled!) – applies SLG resolution (SLD + memoing/tabling)

:- auto_table.
pos(a). pos(b). pos(c). pos(d).
move(a,b). move(b,a). move(b,c). move(c,d).
win(X) :- move(X,Y), tnot win(Y).
lose(X) :- pos(X), tnot win(X).
% ?- win(X)

[Filename: Datalog/winmovesmall.P]

?- win(X).
X = c
X = b undefined
X = a undefined
no

• c is won, d is lost, a and b are undefined (to be interpreted as drawn).

Aside: References

• The win-move game is used in the above-mentioned papers [M. Gelfond, V. Lifschitz,
ICLP 1988], [A. Van Gelder, K.A. Ross, J.S. Schlipf, PODS 1988], [A. Van Gelder, PODS
1989].

650

Example: Win-Move-Game in Datalog

:- auto_table.
% :- table win/1.
pos(a). pos(b). pos(c). pos(d). pos(e). pos(f). pos(g).
pos(h). pos(i). pos(j). pos(k). pos(l). pos(m). pos(n).
win(X) :- move(X,Y), tnot win(Y).
lose(X) :- pos(X), tnot win(X).
move(a,b). move(a,f).
move(b,c). move(b,g). move(b,k).
move(c,d). move(c,l).
move(d,e).
move(e,a).
move(g,i). move(g,h).
move(h,m).
move(i,j).
move(l,d).
move(m,h).

[Filename: Datalog/winmove.P]

a b k n

f e c g

d l h i

m j

651

11.3 3-Valued Logic

• same syntax as FOL

• truth values t (true, 1), u (undefined, 0.5), f (false, 0), ordered by t > u > f .

• All three-valued logics coincide in the definition of ∧, ∨, and ¬:

A ∧B = min(A,B)

A
B

f u t

f f f f

u f u u

t f u t

A ∨B = max(A,B)

A
B

f u t

f f u t

u u u t

t t t t

¬A = 1− a

A ¬A
f t

u u

t f

• there is not a single 3-valued logic. There are multiple variants, depending on what
should be done with the logic.

652

3-Valued Logic for Logic Programming Semantics

• does not require actual reasoning in a 3-valued world,

• define a model theory for Datalog with negation,

• express partial models:

– consider Datalog with disjunction in the head (or similar situations e.g. in Description
Logics/OWL):
Consider an axiom ∀X : person(X)→ (male(X) ∨ female(X)).
Consider an interpretation I where there is an individual a s.t. I |= person(a). From
I |= ∀X : person(X)→ (male(X) ∨ female(X)).
the intended semantics of |= and→ (both must still be defined!) should imply that
I |= male(a) ∨ female(a).
Since it is not known whether a is male or female, the model theory for partial models
with negation in the head should allow that neither male(a) nor female(a) belong to I.

• this chapter: allow to define and compute TP (I) for rules with negation in the body:

– evaluate conjunctive bodies with negation,

– TP for such rules: if the truth value of the body is u, that of the head should also be u.

– an appropriate notion for I |= P for partial interpretations wrt. such programs.

653

3-Valued Logic: Implication

For implication, there are different definitions (here, only two are listed):

1. Logic K3, Stephen Kleene (1938):
A→ B = ¬A ∨B = max(1− A,B)

follows the definition of → as a derived operator from
boolean logic.

A
B

f u t

f t t t

u u u t

t f u t

• Fits with intuitive “if the truth value of the body is unknown and the truth value of the
head is unknown, then the truth value of A→ B is also unknown”.

• Does not fit with the intention to handle I |= head← body where the truth value of the
body (and that of the head) is u.

2. based on the ordering of the domain: t > u > f :
A→ B = (A ≤ B)

• the truth value of A→ B is always t or f ,

• For a rule head← body,
if I(body) = u and I(head) = u,
then I(head← body) = t.

B : head

f u t

f t t t

u f t t

A
:
bo
d
y

t f f t

⇒ use the second alternative.

654

3-VALUED LOGIC: NOTATION AND MINIMAL MODELS

Extend and adapt FOL notation:

• 3-valued Herbrand interpretations are given as tuples I = (T, F) where T is the set of
true atoms and F is the set of false atoms.
All other atoms are undefined.

• I1 ≤ I2 is defined wrt. the amount of information:
with partial order u ≺ t and u ≺ f

– I1 ≤ I2 if for all ground atoms a , I1(a) � I2(a),

– or equivalently (T1, F1) ≤ (T2, F2) ⇔ T1 ⊆ T2 and F1 ⊆ F2.

• The minimal interpretation is thus formally correctly written as (∅, ∅).

• instead of I |= φ or I |=β φ (which can only express true/false),
write I(φ) = v or valI,β(φ) = v for v ∈ {t, u, f}.
Convention: write I |= φ (“I is a model of φ”) in 3-valued context if I(φ) = t.
(|= will only be applied to programs and rules, the semantics of→ has been defined
above to result in t or f .)

655

11.4 3-Valued Well-Founded Model

Given a program P , define a certain 3-valued Herbrand interpretation I = (T, F) as follows;

Definition 11.5
For a Datalog¬ program P with I0 = ∅, I1, . . . , I2n, I2n+1, . . . the Alternating Fixpoint
Computation, let WP := ({a|a ∈ lim

n→∞
I2n}, {a|a ∈ BP , a /∈ lim

n→∞
I2n+1}) . ✷

• “true”: all facts that are in the final underestimate of true atoms;

• “false”: all facts that are outside of the final overestimate of true atoms – they are
definitely false.

It will be proven later thatWP is the well-founded model of P (cf. Definition 11.3).

656

Example

Consider again the simple win-move game from Slide 649.

The corresponding program is P =

pos(a). pos(b). pos(c). pos(d).
move(a,b). move(b,a). move(b,c). move(c,d).
win(X) :- move(X,Y), not win(Y).
lose(X) :- pos(X), not win(X).

[Filename: Datalog/winmove-small.s]

With the sequence ((Ik)) as given on Slide 649, the alternating fixpoint computation stops at
I3 = I1 (EDB shown in gray):

W(P) = ({ pos(a), pos(b), pos(c), pos(d),

move(a,b), move(b,a), move(b,c), move(c,d), win(c), lose(d)},
{ move(a,a), move(a,c), move(a,d), move(b,a), move(b,b), move(b,d), move(c,a),

move(c,b), move(c,c), move(d,a), move(d,a), move(d,b), move(d,c), move(d,d),

win(d), lose(c)})
undefined: win(a), win(b), lose(a), lose(b)

(usually one omits the EDB predicates when listing well-founded or stable models).

657

3-VALUED TP -OPERATOR

Definition 10.2 carries over to 3-valued interpretations as follows:

Definition 11.6 (3TP -Operator)
For a ground Datalog¬ program Pg (which might contain the boolean atom undef in the body)
and a 3-valued interpretation I = (T, F), for each ground atom a,

3TPg
(I)(a) := max({I(body) : a← body ∈ Pg}

For a non-ground Datalog¬ program P and a 3-valued interpretation I = (T, F),
3TP (I) := 3TPg (I) where Pg is the grounding of P wrt. the Herbrand Universe of P
(i.e., the set of all possible ground instances of the rules of P).

3T 0
P (I) := I

3T 1
P (I) := 3TP (I)

3Tn+1
P (I) := 3TP (3T

n
P (I))

3Tω
P (I) :=

⋃

n∈IN

3Tn
P (I)

3Tω
P := 3Tω

P (∅, ∅). ✷

658

3-VALUED REDUCT

Definition 11.1 (Slide 631) carries over to 3-valued interpretations as follows:

Definition 11.7 (3-Valued Reduct)
For a Datalog¬ program P , and a 3-valued interpretation I = (T, F), the reduct P I of P wrt. I
is obtained as follows:

• let Pg denote the grounding of P ,

• delete from Pg all rules that contain a negative literal ¬a in the body such that I(a) = t,

• replace all negative literals ¬a in the remaining rules s.t. I(a) = u by the boolean atom
undef (since undef is neither in T nor in F it will be evaluated as I(undef) = u),

• delete all remaining negative literals in the bodies of the remaining rules. ✷

Properties of P I

• P I is a ground positive program.

• If I is a model of P , then for each ground atom a, (3Tω
P I (∅))(a) ≤ I(a).

659

3-STABLE MODELS

Definition 11.8
A 3-valued interpretation I = (T, F) is a 3-stable model of a Datalog¬ program P , if

3Tω
P I (∅, ∅) = I.

✷

For returning also partial models, invoke smodels with --partial.

• output p(a) means that p(a) can be derived to be true

• output p’(a) means that val(p(a) ≥ u is at least undefined (p(a) might also be listed to
be true)

• this avoids to have to list all possible ground instantiations of atoms that are false.

(see next slide)

660

Example/Syntax: Partial Stable Model in smodels

Example 11.1
p(a) :- not p(a).

[Filename: Datalog/pnotp.s]

... has only one partial stable model: p(a) is undefined:

lparse -n 0 --partial pnotp.s|smodels
smodels version 2.34. Reading...done
Answer: 1
Stable Model: p'(a)

Interpretation of the result M = {p′(a)} (smodels Section 4.8.2):

• for every ground atom p(. . .), an atom p′(. . .) is added to the internal program, which
means “p(. . .) is potentially true”

• if both p(. . .) and p′(. . .) are in M , then valM (p(. . .)) = t,

• if p′(. . .) ∈M and p(. . .) /∈M , then valM (p(. . .)) = u,

• otherwise valM(p(. . .)) = f . ✷

661

Example

Example 11.2
Consider once more the program from Slide 634:

q(a) :- not p(a).
p(a) :- not q(a). [Filename: Datalog/porq.s]

Exercise: give the Alternating Fixpoint Computation for P .

• S := (∅, ∅), i.e., S(p(a)) = S(q(a)) = u, is a 3-stable model. It is the minimal 3-stable
model.

• On Slide 634, {p(a)} and {q(a)} have been identified as total stable models of P .
Note: as partial models, these are written as (T, F)-pairs as ({p(a)}, {q(a)}) and
({q(a)}, {p(a)}) ✷

Example 11.3
Consider winmove.p with –partial.

• here, the unique partial stable model (= the well-founded model) is the “intended” one
with drawn positions.

• the total stable models arbitrarily “fix” some drawn positions to be won/lost (in an
admissible way wrt. the program). ✷

662

WELL-FOUNDED MODEL

Recall Definition 11.3 (638):

For a Datalog¬ program P , the (in general three-valued) well-founded model of P is the
(unique) minimal 3-stable model of P .

Theorem 11.2
WP (as defined on Slide 656) is the well-founded model of P . ✷

Proof:

• Show thatWP is 3-stable [Abiteboul, Hull, Vianu: Foundations of Databases, Thm. 15.3.9]

• minimality and uniqueness follow from Lemma 11.2:

Lemma 11.2
For a Datalog¬ program P ,WP = (T, F) is the intersection of all 3-stable models of P , i.e., for
every 3-stable model (T ′, F ′), T ′ ⊇ T and F ′ ⊇ F . ✷

Proof: minimality of T wrt. all models and minimality of F wrt. all stable models follows from
the properties proven for the AFP computation.

663

Comments: Well-Founded Model

• The AFP gives a (polynomial!) computation for the non-constructive definition of
“well-founded model”.

• all stable models extend the well-founded model
⇒ computation/guessing can be based on the well-founded model.

• starting the Alternating Fixpoint Computation with the contents of the EDB relations as
initial interpretation J0 leads to the same final result
(but the intermediate Ji are different and J0 serves as an underestimate).

664

Recall: Non-Monotonicity of Closed-World-Assumption

“Negation by default” is non-monotonous:

Consider a program P and its well-founded modelW(P) = (T, F):

• recall that any program (we have only positive atoms in the head) cannot imply that any
atom must be false in all models
⇒ any positive fact can be added to a Datalog/Datalog¬ program without being
inconsistent.

• there are non-stable modelsM = (T ′, F ′) of P where T ′ − T 6= ∅ (containing atoms that
are not supported by P), and for these, often also F − F ′ 6= ∅
– e.g. add an edge to the win-move game, and some other positions are won, but some

that were won before are now lost, or

– e.g. just fix that a certain (drawn or even lost) position is won.

– F − F ′ 6= ∅ ⇒ Things that have been concluded before to hold do now turn out not to
hold; “Belief Revision”.

• M is then a 3-stable model of a (more or less slightly) different program P ′) P .
(e.g., P ′ = P ∪ {move(x,y)} or P ′ = P ∪ {win(x)})
⇒ corresponds to “learning” about a new fact,
⇒ requires to recompute the whole well-founded model from scratch.

665

Exercise: Well-Founded Model

• show that for every positive Datalog program P , the well-founded model is total (i.e., all
ground atoms are either true or false).

• show that for every stratifiable Datalog¬ program P , the well-founded model is total.

Exercise: Well-Founded Model

• Are there non-stratifiable Datalog¬ programs that have a total well-founded model (i.e., no
atoms undefined)?

• Are there (non-ground) non-stratifiable Datalog¬ programs that have a total well-founded
model for all EDB instances?

666

Well-founded Semantics: Literature

• definition of reduct and stable model taken from documentation of smodels,

• alternating fixpoint taken from ??TO BE EXTENDED??

• further reading: [Abiteboul, Hull, Vianu: Foundations of Databases]

• Original Paper: Allen Van Gelder, Kenneth A. Ross, John S. Schlipf: Unfounded Sets and
Well-Founded Semantics for General Logic Programs. PODS 1988: 221-230

• Long version: Allen Van Gelder, Kenneth A. Ross, John S. Schlipf: The Well-Founded
Semantics for General Logic Programs. J. ACM 38(3): 620-650 (1991)

• Alternating Fixpoint: Allen Van Gelder: The Alternating Fixpoint of Logic Programs with
Negation. PODS 1989: 1-10

• online literature database (started with database + logic programming, now for everything
in CS): http://dblp.uni-trier.de/
(from university computers, access to most pdfs is allowed)

667

RESTRICTIONS OF THE DATALOG/MINIMAL/WELL-FOUNDED MODEL

SEMANTICS

Given a Datalog/Datalog¬ program P , the minimal model, well-founded model, and the AFP
procedure cannot decide the following:

• for a given general FOL formula φ, does φ hold in all models of P?

• if p(c1, . . . , cn) can not be confirmed by the minimal, stratified, or well-founded model, this
does not mean, that there is no model of P where p(c1, . . . , cn) holds.
Even more, any positive fact can be added to a Datalog/Datalog¬ program without being
inconsistent.

Closed-World-Assumption (CWA)

• For all facts that are not given in the database and that are not derivable, it is assumed
that they do not hold (more explicitly: that their negation holds).

• CWA not appropriate in the Web: for things that I do not find in the Web, simply nothing is
said.
[Example: travel planning]

668

THE LIMITS – NO REAL DISJUNCTION

:- auto_table.
p(a) :- tnot p(b).
p(b) :- tnot p(a).
q(c) :- p(X).

[Filename: Datalog/pq.P]

?-p(X).
X = b undefined
X = a undefined
?- q(X).
X = c undefined
X = c undefined

• “q(c) undefined” is computed twice by SLG resolution, i.e. two proof paths exist.

• W(P) = (∅, {q(a), q(b), p(c)}), the “interesting” ground atoms {p(a), p(b), q(c)} are undefined.
The model theories of the minimal model and well-founded model define truth/entailment
only for ground atoms.

• P as a FOL formula: (p(b) ∨ p(a)) ∧ ∀x : p(x)→ q(c) |=FOL q(c)

• (general) resolution proof: clauses
{p(a), p(b)} (which is the clause corre-
sponding to both the two first rules) and
{¬p(X), q(c)} together with query/goal
clause ¬q(c) allow to derive ✷:

• SLD/SLG resolution tries only linear proofs.

{p(b), p(a)} {¬p(X), q(c)} {¬q(c)}

{¬p(X1)} {¬p(X2)}

{p(b)}

✷669

THE LIMITS – NO REAL DISJUNCTION

The same program interpreted by stable models:

thing(a). thing(b). thing(c).
p(a) :- not p(b).
p(b) :- not p(a).
q(c) :- thing(X), p(X).

[Filename: Datalog/pq.s]

lparse -n 0 --partial pq.s|smodels
models version 2.34. Reading...done
Answer: 1
Stable Model: p(a) q(c)
Answer: 2
Stable Model: p(b) q(c)
Answer: 3
Stable Model: p'(a) p'(b) q'(c)
False

• two total stable models:

– “either p(a) or p(b) hold”

– “q(c) holds in any case”

• the user can interpret the result as a 3-valued interpretation I where
valI(p(a)) = valI(p(b)) = u and valI(q(c)) = t.

I is a model of P (i.e., 3Tω
PI
(∅) ≤ I), but I is not a stable model of P (i.e., 3Tω

PI
(∅) 6= I)!

670

