
8.2 First-Order Logic

The relational calculus is a specialization of first-order logic.

8.2.1 Syntax

• each first-order language contains the following distinguished symbols:

– “(” and “)”, logical symbols ¬, ∧, ∨,→, quantifiers ∀, ∃,
– an infinite set of variables X,Y , X1, X2,

• An individual first-order language is then given by its signature Σ. Σ contains function
symbols and predicate symbols, each of them with a given arity.

412

Aside/Preview: First-Order Modeling Styles

• the choice between predicate and function symbols and different arities allows multiple
ways of modeling (see Slide 435).

For databases:

• the relation names are the predicate symbols (with arity),
e.g. continent/2, encompasses/3, etc.

• there are only 0-ary function symbols, i.e., constants;
in a relational database these are only the literal values (numbers and strings).

• thus, the database schema R is the signature.

413

Syntax (Cont’d)

Terms

The set of terms over Σ, TermΣ, is defined inductively as

• each variable is a term,

• for every function symbol f ∈ Σ with arity n and terms t1, . . . , tn, also f(t1, . . . , tn) is a
term.

0-ary function symbols: c, 1,2,3,4, “Berlin”,. . .

Example: for plus/2, the following are terms: plus(3, 4), plus(plus(1, 2), 4), plus(X, 2).

• ground terms are terms without variables.

For databases:

• since there are no function symbols,

• the only terms are the constants and variables
e.g., 1, 2, “D”, “Germany”, X, Y, etc.

414

Syntax (Cont’d): Formulas

Formulas are built inductively (using the above-mentioned special symbols) as follows:

Atomic Formulas

(1) For a predicate symbol (i.e., a relation name) R of arity k, and terms t1, . . . , tk,
R(t1, . . . , tk) is a formula.

(2) (for databases only, as special predicates)
A selection condition is an expression of the form t1 θ t2 where t1, t2 are terms, and θ is
a comparison operator in {=, 6=,≤,<,≥,>}.
Every selection condition is a formula.

(both are also called positive literals)

For databases:

• the atomic formulas are the predicates built over relation names and these constants,
e.g.,
continent(“Asia”,4.5E7), encompasses(“R”,“Asia”,X), country(N,CC,Cap,Prov,Pop,A).

• comparison predicates (i.e., the “selection conditions”) are atomic formulas, e.g.,
X = “Asia”, Y > 10.000.000 etc.

415

Syntax (Cont’d)

Compound Formulas

(3) For a formula F , also ¬F is a formula. If F is an atom, ¬F is called a negative literal.

(4) For a variable X and a formula F , ∀X : F and ∃X : F are formulas. F is called the scope
of ∃ or ∀, respectively.

(5) For formulas F and G , the conjunction F ∧G and the disjunction F ∨G are formulas.

For formulas F and G, where G (regarded as a string) is contained in F , G is a subformula
of F .

The usual priority rules apply (allowing to omit some parentheses).

• instead of F ∨ ¬G, the implication syntax F ← G or G→ F can be used, and

• (F → G) ∧ (F ← G) is denoted by the equivalence F ↔ G.

416

Syntax (Cont’d)

Bound and Free Variables

An occurrence of a variable X in a formula is

• bound (by a quantifier) if the occurrence is in a formula A inside ∃X : A or ∀X : A (i.e., in
the scope of an appropriate quantifier).

• free otherwise, i.e.,if it is not bound by any quantifier.

Formulas without free variables are called closed.

Example:

• continent(“Asia”, X): X is free.

• continent(“Asia”, X) ∧X > 10.000.000: X is free.

• ∃X : (continent(“Asia”, X) ∧X > 10.000.000): X is bound.
The formula is closed.

• ∃X : (continent(X,Y)): X is bound, Y is free.

• ∀Y : (∃X : (continent(X,Y))): X and Y are bound.
The formula is closed.

417

Outlook:

• closed formulas either hold in a database state, or they do not hold.

• free variables represent answers to queries:
?- continent(“Asia”, X) means “for which value x does continent(“Asia”, x) hold?”
Answer: for x = 4.5E7.

• ∃Y : (continent(X,Y)): means
“for which values x is there an y such that continent(x, y) holds? – we are not interested
in the value of y”
The answer are all names of continents, i.e., that x can be “Asia”, “Europe”, or . . .

... so we have to evaluate formulas (“semantics”).

418

8.2.2 Semantics

The semantics of first-order logic is given by first-order structures over the signature:

First-Order Structure

A first-order structure S = (I,D) over a signature Σ consists of a nonempty set D (domain;
often also denoted by U (universe)) and an interpretation I of the signature symbols over D
which maps

• every constant c to an element I(c) ∈ D,

• every n-ary function symbol f to an n-ary function I(f) : Dn → D
(note that for relational databases, there are no function symbols with arity > 0)

• every n-ary predicate symbol p to an n-ary relation I(p) ⊆ Dn.

General:

• constants are interpreted by elements of the domain

• predicate symbols and function symbols are not mapped to domain objects, but to rela-
tions/functions over the domain.
⇒ First-order logic cannot express relations/relationships between predicates/functions.

419

Aside/Preview: First-Order-based Semantic Styles

• There are different frameworks that are based on first-order logic that specialize/simplify
FOL (see Slide 435).

• Higher-Order logics allow to make statements about predicates and/or functions by
higher-order predicates.

420

First-Order Structures: An Example

Example 8.1 (First-Order Structure)
Signature: constant symbols: zero, one, two, three, four, five

predicate symbols: green/1, red/1, sees/2

function symbols: to_right/1, plus/2

Structure S:

1

23

4

5 0

Domain D = {0, 1, 2, 3, 4, 5}
Interpretation of the signature:
I(zero) = 0, I(one) = 1, . . . , I(five) = 5

I(green) = {(2), (5)}, I(red) = {(0), (1), (3), (4)}
I(sees) = {(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)}
I(to_right) = { (0) 7→ (1), (1) 7→ (2), (2) 7→ (3),

(3) 7→ (4), (4) 7→ (5), (5) 7→ (0)}
I(plus) = {(n,m) 7→ (n+m) mod 6 | n,m ∈ D}

Terms: one, to_right(four), to_right(to_right(X)), to_right(to_right(to_right(four))),
plus(X, to_right(zero)), to_right(plus(to_right(four), five))

Atomic Formulas: green(one), red(to_right(to_right(to_right(four)))), sees(X,Y),

sees(X, to_right(Z)), sees(to_right(to_right(four)), to_right(one)),
plus(to_right(to_right(four)), to_right(one)) = to_right(three) ✷

421

SUMMARY: NOTIONS FOR DATABASES

• a set R of relational schemata; logically spoken, R is the signature,

• a database state is a structure S over R

• D contains all domains of attributes of the relation schemata,

• for every single relation schema R = (X̄) where X̄ = {A1, . . . , Ak}, we write
R[A1, . . . , Ak]. k is the arity of the relation name R.

• relation names are the predicate symbols. They are interpreted by relations, e.g.,
I(encompasses)

(which we also write as S(encompasses)).

For Databases:

• no function symbols with arity > 0

• constants are interpreted “by themselves”:
I(4) = 4, I(“Asia”) = “Asia”

• care for domains of attributes.

422

Evaluation of Terms and Formulas

Terms and formulas must be evaluated under a given interpretation – i.e., wrt. a given
database state S.

• Terms can contain variables.

• variables are not interpreted by S.

A variable assignment over a universe D is a mapping

β : V ariables→ D .

For a variable assignment β, a variable X, and d ∈ D, the modified variable assignment βd
X

is identical with β except that it assigns d to the variable X:

βd
X =

Y 7→ β(Y) for Y 6= X ,

X 7→ d otherwise.

Example 8.2
For variables X,Y, Z, β = {X 7→ 1, Y 7→ “Asia”, Z 7→ 3.14} is a variable assignment.

β3
X = {X 7→ 3, Y 7→ “Asia”, Z 7→ 3.14}. ✷

423

Evaluation of Terms

Terms and formulas are interpreted

• wrt. a given structure S = (I,D), and

• wrt. a given variable assignment β.

Every structure S together with a variable assignment β induces an evaluation S of terms and
predicates:

• Terms are mapped to elements of the universe: S : TermΣ × β → D

• (Closed) formulas are true or false in a structure: S : FmlΣ × β → {true, false}

For Databases:

• Σ is a purely relational signature,

• S is a database state for Σ,

• no function symbols with arity > 0, no nontrivial terms,

• constants are interpreted “by themselves”.

424

Evaluation of Terms

S(x, β) := β(x) for a variable x ,

S(c, β) := I(c) for any constant c .

S(f(t1, . . . , tn), β) := (I(f))(S(t1, β), . . . ,S(tn, β))
for a function symbol f ∈ Σ with arity n and terms t1, . . . , tn.

Example 8.3 (Evaluation of Terms)
Consider again Example 8.1.

• For variable-free terms: β = ∅.

• S(one, ∅) = I(one) = 1

• S(to_right(four), ∅) = I(to_right(S(four, ∅)) = I(to_right(4)) = 5

• S(to_right(to_right(to_right(four))), ∅) = I(to_right(S(to_right(to_right(four)), ∅))) =
I(to_right(I(to_right(S(to_right(four), ∅))))) =
I(to_right(I(to_right(I(to_right(S(four)), ∅))))) =
I(to_right(I(to_right(I(to_right(4), ∅))))) =
I(to_right(I(to_right(5)))) = I(to_right(0)) = 1 ✷

425

Example 8.3 (Continued)
• Let β = {X 7→ 3}.
S(to_right(to_right(X)), β) = I(to_right(S(to_right(X), β))) =

I(to_right(I(to_right(S(X, β))))) = I(to_right(I(to_right(β(X))))) =

I(to_right(I(to_right(3)))) = I(to_right(4)) = 5

• Let β = {X 7→ 3}.
S(plus(X, to_right(zero)), ∅) = I(plus(S(X, β),S(to_right(zero), β))) =
I(plus(β(X), I(to_right(S(zero, β))))) = I(plus(3, I(to_right(I(zero))))) =
I(plus(3, I(to_right(0)))) = I(plus(3, 1)) = 4 ✷

426

EVALUATION OF FORMULAS

Formulas can either hold, or not hold in a database state.

Truth Value

Let F a formula, S an interpretation, and β a variable assignment of the free variables in F
(denoted by free(F)).

Then we write S |=β F if “F is true in S wrt. β”.

Formally, |= is defined inductively.

427

TRUTH VALUES OF FORMULAS: INDUCTIVE DEFINITION

Motivation: variable-free atoms

For an atom R(a1, . . . , ak), where ai, 1 ≤ i ≤ k are constants,

R(a1, . . . , ak) is true in S if and only if (I(a1), . . . , I(ak)) ∈ S(R).
Otherwise, R(a1, . . . , ak) is false in S.

Base Case: Atomic Formulas

The truth value of an atom R(t1, . . . , tk), where ti, 1 ≤ i ≤ k are terms, is given as

S |=β R(t1, . . . , tk) if and only if (S(t1, β), . . . ,S(tk, β)) ∈ S(R) .

For Databases:

• the ti can only be constants or variables.

428

TRUTH VALUES OF FORMULAS: INDUCTIVE DEFINITION

• t1 θ t2 with θ a comparison operator in {=,6=,≤,<,≥,>}:
S |=β t1 θ t2 if and only if S(t1, β) θ S(t2, β) holds.

• S |=β ¬G if and only if S 6|=β G.

• S |=β G ∧H if and only if S |=β G and S |=β H.

• S |=β G ∨H if and only if S |=β G or S |=β H.

• (Derived; cf. next slide) S |=β F → G if and only if S |=β ¬F or S |=β G.

• S |=β ∀XG if and only if for all d ∈ D, S |=βd
X
G.

• S |=β ∃XG if and only if for some d ∈ D, S |=βd
X
G.

429

Derived Boolean Operators

There are some minimal sets (e.g. {¬,∧, ∃}) of boolean operators from which the others can
be derived:

• The implication syntax F → G is a shortcut for ¬F ∨G (cf. Slide 416):
S |=β F → G if and only if S |=β ¬F or S |=β G.
“whenever F holds, also G holds” – this is called material implication instead of “causal
implication”.
Note: if F implies G causally in a scenario, then all (possible) states satisfy F → G.

• note that ∧ and ∨ can also be expressed by each other, together with ¬:
F ∧G is equivalent to ¬(¬F ∨ ¬G), and F ∨G is equivalent to ¬(¬F ∧ ¬G).

• The quantifiers ∃ and ∀ are in the same way “dual” to each other:
∃x : F is equivalent to ¬∀x : (¬F), and ∀x : F is equivalent to ¬∃x : (¬F).

• Proofs: exercise.
Show e.g. by the definitions that whenever S |=β ∃x : F then S |=β ¬∀x : (¬F).

430

Example 8.4 (Evaluation of Atomic Formulas)
Consider again Example 8.1.

• For variable-free formulas, let β = ∅
• S |=∅ green(one) ⇔ S(one) ∈ I(green) ⇔ (1) ∈ I(green) – which is not the case.

Thus, S 6|=∅ green(one).

• S |=∅ red(to_right(to_right(to_right(three)))) ⇔
(S(to_right(to_right(to_right(three))), ∅)) ∈ I(red) ⇔ (0) ∈ I(red)

which is the case. Thus, S |=∅ red(to_right(to_right(to_right(three)))).

• Let β = {X 7→ 3, Y 7→ 5}.
S |=β sees(X,Y) ⇔ (S(X, β),S(Y, β)) ∈ I(sees) ⇔ (3, 5) ∈ I(sees)
which is not the case.

• Again, β = {X 7→ 3, Y 7→ 5}.
S |=β sees(X, to_right(Y)) ⇔ (S(X, β),S(to_right(Y), β)) ∈ I(sees) ⇔ (3, 0) ∈ I(sees)
which is the case.

• S |=β plus(to_right(to_right(four)), to_right(one)) = to_right(three) ⇔
S(plus(to_right(to_right(four)), to_right(one)), ∅) = S(to_right(three), ∅) ⇔ 2 = 4

which is not the case. ✷

431

Example 8.5 (Evaluation of Compound Formulas)
Consider again Example 8.1.

• S |=∅ ∃X : red(X) ⇔
there is a d ∈ D such that S |=∅d

X
red(X) ⇔ there is a d ∈ D s.t. S |={X 7→d} red(X)

Since we have shown above that S |=∅ red(6), this is the case.

• S |=∅ ∀X : green(X) ⇔
for all d ∈ D, S |=∅d

X
green(X) ⇔ for all d ∈ D, S |={X 7→d} green(X)

Since we have shown above that S 6|=∅ green(1) this is not the case.

• S |=∅ ∀X : (green(X) ∨ red(X)) ⇔ for all d ∈ D, S |={X 7→d} (green(X) ∨ red(X)).
One has now to check whether S |={X 7→d} (green(X) ∨ red(X)) for all d ∈ domain.
We do it for d = 3:
S |={X 7→3} (green(X) ∨ red(X)) ⇔
S |={X 7→3} green(X) or S |={X 7→3} red(X) ⇔
(S(X, {X 7→ 3})) ∈ I(green) or (S(X, {X 7→ 3})) ∈ I(red) ⇔
(3) ∈ I(green) or (3) ∈ I(red)

which is the case since (3) ∈ I(red).
• Similarly, S 6|=∅ ∀X : (green(X) ∧ red(X)) ✷

432

SOME NOTIONS

Consider a formula F with some free variables.

• S is a model for F under β if S |=β F .

• (for closed formulas: S is a model for F if S |= F)

• F is satisfiable if F has some model (e.g., F = ∃x, y : (p(x) ∧ q(x, y)) is satisfiable).

• F is unsatifisfiable if F has no model (e.g., F = ∃x : (p(x) ∧ ¬p(x) is unsatisfiable)

• F is valid (german: “allgemeingültig”) if F holds in every structure:
(e.g., F = (∀x : (p(x)→ q(x)) ∧ ∀y : (q(y)→ r(y)))→ ∀z : (p(z)→ r(z))) is valid)

Application: verification of a system has the goal to show that ϕ→ ψ is valid where ϕ is a
formula that contains the specification (usually a large conjunction) and ϕ is a conjunction
of guaranteed properties.

• two FOL formulas F and G are equivalent, F ≡ G if every model of F is also a model of G
and vice versa.

• a FOL formula F entails a FOL formula G, F |= G if every model of F is also a model of G.
(note the overloading of |= for S |= F and F |= G).

433

Example 8.6
For the following pairs F and G of formulas, check whether one implies the other (if not, give a
counterexample), and whether they are equivalent:

1. F = (∀x : p(x)) ∨ (∀x : q(x)), G = ∀v : (p(v) ∨ q(v)).

2. F = ∀x : ((∃y : p(y))→ q(x)), G = ∀v, ∀w : p(v)→ q(w).

3. F = ∀x : ∃y : p(x, y), G = ∃v : ∀w : p(v, w). ✷

434

8.3 FOL-based Modeling Styles and Frameworks

• Full FOL allows for several restrictions, shortcuts and extensions

• variants developed depending on the application and the intended reasoning
mechanisms.

Recall

• note: the FOL signature is disjoint from the domain D, e.g. germany is a constant symbol,
mapped to the element germany ∈ D.

• each FOL signature consists of

– predicate symbols

* 0-ary predicates: “boolean predicates”, just being interpreted as true/false
(formally I(p0) ⊆ D0, where D0 = 1 means true, while ∅ means false).

* n-ary predicates, interpreted as I(p) ⊆ Dn.

– function symbols

* 0-ary functions: constants, interpreted by elements of the domain.
(formally I(c) : D0 → D, e.g. for the constant germany: I(germany) : () 7→ germany;
S(germany) = I(germany()) = germany)

* n-ary functions, interpreted as I(f) : Dn → D.

435

8.3.1 FOL with (atomic) Datatypes

Common extension: FOL(D1, . . . , Dn) where D1, . . . , Dn are datatypes like strings, numbers,
dates.

• for these, the values are both 0-ary constant symbols and elements of the domain,

• appropriate predicates and functions are contained in the signature and as built-in
predicates and functions (i.e., are not explicitly mentioned when giving an interpretation).

Example 8.1 revisited

Example 8.1 can be formulated in FOL(INT):

• integers 0, 1, 2, . . . ∈ Σ as constant symbols (instead of one, two, . . .).

• I(0) = 0, I(1) = 1, . . . is implicit.

• no interpretation of the constant symbols one, two, . . . required.

• function +/2 (i.e., binary function “+”) instead of plus/2, its interpretation comes implicitly
from integers.

• interpretation of user-defined predicates green, sees, to_right as before (over the domain
D ⊇ INT) .

436

8.3.2 Purely Relational Object-Oriented Modeling

• Closely related with the ER Model:

• the domain D contains instances/individuals/“resources” germany, berlin, . . . and
datatype literals.

• – Entity types = Classes: unary predicates
germany ∈ I(Country), berlin ∈ I(City), eu ∈ I(Organization).

– Attributes: binary predicates
(germany, “Germany”) ∈ I(name),
(berlin, “3472009”) ∈ I(population)

– Relationships: binary predicates
(germany, berlin) ∈ I(capital),
(germany, eu) ∈ I(isMember).

• closely related: RDF – Resource Description Framework as the data model underlying
the Semantic Web (cf. Slide 440).

• closely related: Specific family of logics called “Description Logic” as a decidable subset
of FOL (cf. Slide 441)

437

Examples

The following sets specify answers to sample queries:

• Names of all countries such that there is a city with more than 1,000,000 inhabitants in
the country:

{n | ∃x : Country(x) ∧ name(x, n) ∧
∃y, p : (City(y) ∧ inCountry(x, y) ∧ population(y, p) ∧ p > 1, 000, 000) }

• Names of all countries such that all its cities have more than 1,000,000 inhabitants:

{n | ∃x : Country(x) ∧ name(x, n) ∧
∀y : (City(y) ∧ inCountry(x, y)→ ∃p : (population(y, p) ∧ p > 1, 000, 000)) }

• Names of all countries such that the capital of the country has more than 1,000,000
inhabitants:

{n | ∃x : Country(x) ∧ name(x, n) ∧
∃y, p : (City(y) ∧ capital(x, y) ∧ population(y, p) ∧ p > 1, 000, 000) }

• Names of all countries such that the country is a member of the organization with
abbreviation “EU”:

{n | ∃x : Country(x) ∧ name(x, n) ∧
∃o : (Organization(o) ∧ abbrev(o, “EU”) ∧ isMember(x, o)) }

438

Problem

⇒ attributed relationships (like isMember with membertype) can only be modeled via
reification.

Example

(deInEU) ∈ I(Membership),
(deInEU, germany) ∈ I(ofCountry).
(deInEU, eu) ∈ I(inOrganization).
(deInEU, “full member”) ∈ I(memberType).

Names of all countries such that the country is a member of the organization with
abbreviation “EU”:

{n | ∃x : (Country(x) ∧ name(x, n) ∧
∃o,m, t : (Organization(o) ∧ abbrev(o, “EU”) ∧

∧Membership(m) ∧ ofCountry(m,x) ∧ inOrganization(m, o) ∧memberType(m, t))) }

439

RDF – RESOURCE DESCRIPTION FRAMEWORK

• most prominent Semantic Web data model.

• graph-based: objects and literals are nodes, properties are the edges.

• instance data represented by (subject predicate object) triples that can be seen as unary
(class membership) and binary (properties and relationships) predicates:

:germany a mon:Country. – Country(germany)

:germany mon:name “Germany” – name(germany, “Germany”)

:germany mon:population 83536115. – population(germany, 83536115)

:germany mon:capital :berlin. – capital(germany, berlin)

• optional: XML serialization

• domain: URIs and literals (using the XML namespace concept)

– URIs serve as constant symbols and (web-wide) object/resource identifiers,

– property and class names are also URIs.

440

DESCRIPTION LOGICS

• traditional framework, became popular as a base for the Semantic Web,

• subset of FOL where the formulas are restricted,

⇒ modular family of logics, most of which are decidable.

• special syntax that can be translated into the 2-variable fragment of FOL (decidable).

• focus of DL is on the definition of concepts:

CoastCity ≡ City ⊓ ∃locatedAt.Sea .

FOL: ∀x : CoastCity(x)↔ City(x) ∧ ∃y : (locatedAt(x, y) ∧ Sea(y)).

441

8.3.3 FOL Object-Oriented Modeling with Functions

• S = (I,D) as follows:

• the domain D contains elements germany, berlin, . . . and datatype literals

• Predicates Country/1, City/1, Organization/1, ismember/2 etc. as before,

• functions capital/1, headq/1, population/1 for functional attributes and relationships:
(germany) 7→ berlin ∈ I(capital),
(eu) 7→ brussels ∈ I(headq),
(berlin) 7→ 3472009 ∈ I(population).

• some example formula that evaluates to true:

S |= ∃o, c : Organization(o) ∧ name(o) = “Europ.Union” ∧ isMember(c, o) ∧ headq(o) = capital(c)

(FOL with equality)

442

8.3.4 Relational Calculus (“Domain Relational Calculus”)

• The signature Σ is a relational database schema R = {R1, . . . , Rn}.
⇒ everything is modeled by predicates.

• the domain consists only of datatype literals (strings, numbers, dates, . . .).
• constant symbols are the literals themselves, with e.g. I(3) = 3 and I(“Berlin”) = “Berlin” .

⇒ a relational database state S = (I, (Strings + Numbers + Dates)) over R is an
interpretation of R. For every relation name Ri ∈ R, I(Ri) is a finite set of tuples:
(“Germany”, “D”, 356910, 83536115, “Berlin”, “Berlin”) ∈ I(country),
(“D”, “Europe”, 100) ∈ I(encompasses).

• I (and by this, also S) can be described as a finite set of ground atoms over predicate
symbols (= relation names): country(“Germany”, “D”, 356910, 83536115, “Berlin”, “Berlin”),
encompasses(“D”, “Europe”, 100).

• the purely value-based “modeling” without individuals/object identifiers/0-ary constant
symbols requires the use of primary/foreign keys.

• semantics and model theory as in traditional FOL;
quantifiers range over the literals – “Domain Relational Calculus”

• usage: theoretical framework for queries; mapped to nonrecursive Datalog with negation.
443

Examples

The following sets specify answers to sample queries:

• Names of all countries such that there is a city with more than 1,000,000 inhabitants in
the country:

{n | ∃cc, ca, cp, cap, capprov : Country(n, cc, ca, cp, cap, capprov) ∧
∃ctyn, ctyprov, ctypop, lat, long :
(City(ctyn, ctyprov, cc, ctypop, lat, long) ∧ ctypop > 1, 000, 000) }

• Names of all countries such that all its cities have more than 1,000,000 inhabitants:

{n | ∃cc, ca, cp, cap, capprov : Country(n, cc, ca, cp, cap, capprov) ∧
∀ctyn, ctyprov, ctypop, lat, long :
(City(ctyn, ctyprov, cc, ctypop, lat, long)→ ctypop > 1, 000, 000) }

• Names of all countries such that the country is a member of the organization with name
“Europ.Union”:

{n | ∃cc, ca, cp, cap, capprov : Country(n, cc, ca, cp, cap, capprov) ∧
∃abbr, hq, hqp, hqc, est, t :
(Organization(abbr, “Europ.Union”, hq, hqc, hqp, est) ∧ isMember(cc, abbr, t)) }

444

8.3.5 Relational Calculus (“Tuple Relational Calculus”)

• Logical connectives and quantifiers as in FOL,

• syntax and semantics different from FOL:
quantifiers range over tuples “Tuple Relational Calculus”

• Each relation name of R acts as unary predicate, holding tuples,

• attributes of tuples are accessed by path expressions variable.attrname,

Example

Names of all countries that have a city with more than 1,000,000 inhabitants:

{x.name | Country(x) ∧ ∃y : (City(y) ∧ y.country = x.code ∧ y.population > 1, 000, 000) }
• The Tuple Relational Calculus is a “parent” of SQL:

SELECT x.name
FROM country x, city y
WHERE y.country = x.code

AND y.population > 1000000

SELECT x.name
FROM country x
WHERE EXISTS (SELECT *

FROM city y
WHERE y.country = x.code
AND y.population > 1000000)

445

Examples

The following sets specify answers to sample queries:

• Names of all countries such that all its cities have more than 1,000,000 inhabitants:

{c.name | Country(c) ∧ ∀y : ((City(y) ∧ y.country = c.code)→ y.population > 1000000) }

• Names of all countries such that the capital of the country has more than 1,000,000
inhabitants:

{c.name | Country(c) ∧
∃y : (City(y) ∧ c.capital = y.name ∧ c.code = y.country ∧ c.capprov = y.province ∧

y.population > 1000000) }

• Names of all countries such that the country is a member of the organization with name
“Europ.Union”:

{c.name | Country(c) ∧ ∃o,m : (Organization(o) ∧ o.name = “Europ.Union” ∧
m.country = c.code ∧m.organization = o.abbrev) }

446

8.4 Formulas as Queries

Formulas can be seen as queries against a given database state:

• For a formula F with free variables X1, . . . , Xn, n ≥ 1, write F (X1, . . . , Xn).

• each formula F (X1, . . . , Xn) defines – dependent on a given interpretation S – an
answer relation S(F (X1, . . . , Xn)).

The answer set to F (X1, . . . , Xn) wrt. S is the set of tuples (a1, . . . , an), ai ∈ D,
1 ≤ i ≤ n, such that F is true in S when assigning each of the variables Xi to the
constant ai, 1 ≤ i ≤ n.

Formally:

S(F) = {{β(X1), . . . , β(Xn)} | S |=β F where β is a variable assignment of free(F)}.
Each β such that S |=β F is called an answer.

• for n = 0, the answer to F is true if S |=∅ F for the empty variable assignment ∅;
the answer to F is false if S 6|=∅ F for the empty variable assignment ∅.

447

Example

Consider the query F (X) = r(X) ∧ ∃Y : s(X,Y)

and the database state S:
r

1
2

s

1 a
1 b
3 a

The answer set is given by variable assignments β (for X), such that S |=β F :

S |=β F ⇔ S |=β r(X) and S |=β ∃Y : s(X,Y)

⇔ (β(X) ∈ r) and for a variable assignment β′ = βd
Y , that assigns Y with some d ∈ D

and which is identical with β up to Y , S |=β′ s(X,Y)

⇔ “ (β′(X), β′(Y)) ∈ s
⇔ “ (β(X), β′(Y)) ∈ s
⇔ (β(X) = 1 or β(X) = 2) and ((β(X) = 1 and β′(Y) ∈ {a, b}) or (β(X) = 3 and β′(Y) = a))

⇔ β(X) = 1 and β′(Y) ∈ {a, b}

So, the answer set is {{X/1}}.

448

Example 8.7
Consider the MONDIAL schema.

• Which cities (CName, Country) have at least 1,000,000 inhabitants?

F (CN,C) = ∃ Pr, Pop, L1, L2 : (city(CN,C, Pr, Pop, L1, L2) ∧ Pop ≥ 1000000)

The answer set is
{{CN/“Berlin”, C/“D”}, {CN/“Munich”, C/“D”}, {CN/“Hamburg”, C/“D”},
{CN/“Paris”, C/“F”}, {CN/“London”, C/“GB”}, {CN/“Birmingham”, C/“GB”}, . . .}.

• Which countries (CName) belong to Europe?

F (CName) = ∃ CCode, Cap, Capprov, Pop,A,ContName,ContArea, Perc :
(country(CName,CCode, Cap, Capprov, Pop,A) ∧
continent(ContName,ContArea) ∧
ContName = “Europe” ∧ encompasses(CCode, ContName, Perc))

✷

449

CONJUNCTIVE QUERIES

... the above ones are conjunctive queries:

• use only logical conjunction of positive literals
(i.e., no disjunction, universal quantification, negation)

• conjunctive queries play an important role in database optimization and research.

• in SQL: only a single simple SFW clause without subqueries.

450

Example 8.7 (Continued)
• Again, relational division ...

Which organizations have at least one member on each continent

F (Abbrev) = ∃O,HeadqN,HeadqC,HeadqP,Est :
(organization(O,Abbrev,HeadqN,HeadqC,HeadqP,Est)∧
∀Cont : ((∃ContArea : continent(Cont, ContArea))→

∃Country, Perc, Type : (encompasses(Country, Cont, Perc) ∧
isMember(Country, Abbrev, Type))))

• Negation
All pairs (country,organization) such that the country is a member in the organization, and
all its neighbors are not.

F (CCode,Org) = ∃CName,Cap, Capprov, Pop,Area, Type :
(country(CName,CCode, Cap, Capprov, Pop,Area)∧
isMember(CCode,Org, Type) ∧
∀CCode′ : (∃Length : sym_borders(CCode, CCode′, Length)→

¬∃Type′ : isMember(CCode′, Org, Type′)))

✷

451

8.5 Comparison of the Algebra and the Calculus

Algebra:

• The semantics is given by evaluating an algebraic expression (i.e., an operator tree)
“algebraic Semantics” (which is also some form of a declarative semantics).

• The algebraic semantics also induces a naive, but already polynomial bottom-up
evaluation algorithm based on the algebra tree.

Calculus:

• The semantics (= answer) of a query in the relational calculus is defined via the truth
value of a logical formula wrt. an interpretation
“logical Semantics” (which is some form of a declarative semantics)

• The logical semantics can be evaluated by a (FOL) Reasoner
FOL is undecidable.

⇒ translate “FOL” formulas over a simple database into the algebra ...

452

Example: Expressing Algebra Operations in the Calculus

Consider relation schemata R[A,B], S[B,C], and T [A].

(Note: [A,B] is the format of the relationships wrt. the relational model with named columns;
X and Y are variables used in the positional relational calculus)

Projection π[A](R): F (X) = ∃Y R(X,Y)

Selection σ[A = B](R): F (X,Y) = R(X,Y) ∧X = Y

Join R ⊲⊳ S: F (X,Y, Z) = R(X,Y) ∧ S(Y, Z)

Union R ∪ (T × {b}): F (X,Y) = R(X,Y) ∨ (T (X) ∧ Y = b)

Difference R− (T × {B : b}): F (X,Y) = R(X,Y) ∧ ¬(T (X) ∧ Y = b)

Division R÷ T : F (Y) = (∃X : R(X,Y)) ∧ ∀X : (T (X)→ R(X,Y)) or

F (Y) = (∃X : R(X,Y)) ∧ ¬∃X : (T (X) ∧ ¬R(X,Y))

453

SAFETY AND DOMAIN-INDEPENDENCE

• For some formulas, the actual answer set does not depend on the actual database state,
but on the domain of the interpretation.

• If the domain is infinite, the answer relations to some expressions of the calculus can be
infinite!

Example 8.8
Recall S = (I,D), usually D = Strings + Numbers + Dates (cf. Slide 443).

• Consider F (X) = ¬R(X) (“all a such that R(a) does not hold”)
where I(R) = {(1)}.
For every domain D, the answers to S(F) are all elements of the domain. For an infinite
domain, e.g., D = IN, the set of answers is infinite.

• Consider F (X,Z) = ∃Y (R(X,Y) ∨ S(Y, Z)),
where I(R) = {(1, 2)}, arbitrary S(S) (even empty).

How to determine Z? – return {X/1, Y/d} for every element d of the domain?

• Consider F (X) = ∀Y : R(X,Y)

where I(R) = {(1, 1), (1, 2)}. For D = {1, 2} the answer set is {{X/1}}, for any larger
domain, the answer set is empty. ✷

454

Example 8.9
Consider a FOL interpretation S = (I,D) of persons:

Signature Σ = {married/2}, married(X,Y): X is married with Y .

F (X) = ¬married(john,X) ∧ ¬(X = john).

What is the answer?

• Consider D = {john,mary}, I(married) = {(john,mary), (mary, john)}.
S(F) = ∅.
– there is no person (except John) who is not married with John

– all persons are married with John??? ✷

• Consider D = {john,mary, sue}, I(married) = {(john,mary), (mary, john)}.
S(F) = {{X/sue}}.
The answer depends not only on the database, but on the domain (that is a purely logical
notion)

Obviously, it is meant “All persons in the database who are not married with john”.

455

Active Domain

Requirement: the answer to a query depends only on

• constants given in the query

• constants in the database

Definition 8.1
Given a formula F of the relational calculus and a database state S = (I,D), ADOM(F)

contains

• all constants in F ,

• and all constants in I(R) where R is a relation name that occurs in F .

ADOM(F ∪ I) is called the active domain domain of F wrt. the interpretation I. ✷

ADOM(F ∪ I) is finite.

456

Domain-Independence

Formulas in the relational calculus are required to be domain-independent:

Definition 8.2
A formula F (X1, . . . , Xn) is domain-independent if for all interpretations I of the predicates
and constants, and for all D ⊇ ADOM := ADOM(F ∪ I),

(I, ADOM)(F) =

= {(β(X1), . . . , β(Xn)) | (I, ADOM) |=β F, β(Xi) ∈ ADOM for all 1 ≤ i ≤ n}
= {(β(X1), . . . , β(Xn)) | (I,D) |=β F, β(Xi) ∈ D for all 1 ≤ i ≤ n} = (I,D)(F).

✷

It is undecidable whether a formula F is domain-independent!
(follows from Rice’s Theorem).

Instead, (syntactical) safety is required for queries:

• stronger condition

• can be tested algorithmically

Idea: every formula guarantees that variables can only be bound to values from the database
or that occur in the formula.

457

Safety: SRNF

Definition 8.3
A formula F is in SRNF (Safe Range Normal Form) [Abiteboul, Hull, Vianu: Foundations of
Databases] if and only if it satisfies the following conditions:

• variable renaming: no variable symbol is bound twice with different scopes by different
quantifiers; no variable symbol occurs both free and bound.

• remove universal quantifiers by replacing ∀X : G by ¬∃X : ¬G,

• remove implication by replacing F → G by ¬F ∨G,

• push negations down through ∧ and ∨.
Negated formulas are then either of the form ¬∃F or ¬atom (push negations down
through ∧ and ∨),

• flatten ∧, ∨ and ∃ (i.e., replace F ∧ (G∧H) by F ∧G∧H, and ∃X : ∃Y : F by ∃X,Y : F).✷

... then, check, if it is safe range.

458

Safety Check for SRNF formulas

Definition 8.4
1. For a formula F in SRNF, rr(F) is defined (and computable) via structural induction:

(1) F = R(t1, . . . , tn) ⇒ rr(F) is the set of variables occurring in t1, . . . , tn

(2) F = x = a or a = b ⇒ rr(F) = {x}
(3) F = F1 ∧ F2 ⇒ rr(F) = rr(F1) ∪ rr(F2)

(4) F = F1 ∧X = Y ⇒

rr(F) = rr(F1) ∪ {x, y} if rr(F1) ∩ {x, y} 6= ∅
rr(F) = rr(F1) if rr(F1) ∩ {x, y} = ∅

(5) F = F1 ∨ F2 ⇒ rr(F) = rr(F1) ∩ rr(F2)

(6) F = ¬F1 ⇒ rr(F) = ∅

(7) F = ∃X̄ : F1 ⇒

rr(F) = rr(F1)− X̄ if X̄ ⊆ rr(F1)

return ⊥ if X̄ 6⊆ rr(F1)

2. if free(F) = rr(F) and no subformula returned ⊥, F is safe range. ✷

Note:
∗ The ∀-quantifier is not allowed in any formula in SRNF (i.e. replace ∀XF by ¬∃X¬F).
∗ The definition does not contain any explicit syntactical hints how to write such a formula.

459

Example 8.10
and Exercise

Consider the formulas

1. F (X,Y, Z) = p(X,Y) ∧ (q(Y) ∨ r(Z)),

2. F (X,Y) = p(X,Y) ∧ (q(Y) ∨ r(X)),

3. F (X) = p(X) ∧ ∃Y : (q(Y) ∧ ¬r(X,Y)),

4. F (X) = p(X) ∧ ¬∃Y : (q(Y) ∧ ¬r(X,Y)) – the relational division pattern,

5. F (X,Y) = p(X,Y) ∧ ¬∃Z : r(Y, Z),

Are they safe-range?

Give rr(G) for each of their subformulas.

Translate the formulas into SQL and into the relational algebra. ✷

460

Safe Range and Domain Independence

Theorem 8.1
If a formula F is in SRNF and is safe-range, then it is domain-independent. ✷

... one can prove this by induction, but this will also follow in a more useful way.

How to evaluate calculus queries?

• the underlying framework is FOL, undecidable, no complete reasoners exist.
incomplete reasoners would do it, but they have high complexity and bad performance.

(this issue will be the same when continuing with Datalog “knowledge” bases.)

• the goal is that the relational calculus is equivalent with the relational algebra; i.e. much
weaker than full FOL, but polynomial.

(Datalog variants are also weaker than FOL, but some of them harder than polynomial)

⇒ get a translation to the relational algebra.

(this problem will be solved by algebra+fixpoint and Logic-Programming-based
implementations)

461

Comments on SRNF

• underlying idea: the formula can be evaluated from the database relations, never using
the (purely logical concept of) “domain”.

• subformulas of a conjunction F (. . . , X, . . .) ∧G(X,Y) whose evaluation would not be
domain-independent alone (i.e., rr(G) (free(G)) are “cured” by other parts of the
conjunction (cf. solution to Example 8.10);

– cf. correlated subqueries (SQL) or correlated joins in SQL/OQL/XQuery;

– cf. index-based join in SQL: compute E1 ⊲⊳ E2 by iterating over results of E1 and
accessing matching tuples in E2 via index.

– also called “sideways information passing strategy”.

• ... but the relational algebra does not have correlated subqueries (no subqueries in
selection conditions at all!) and no correlated joins.
The algebra’s theory is only bottom-up (cf. the relational algebra translations from
Example 8.10 which provide some insights into the next definition ...).

462

Self-Containedness of Subformulas

Definition 8.5
A formula F that is in SRNF and which is safe-range is in RANF (Relational Algebra Normal
Form) if:

1. (from SRNF) F does not contain ∀ quantifiers (replace ∀XG by ¬∃X¬G),

2. (from SRNF) negated formulas are either of the form ¬∃F or ¬atom (push negations
down through ∧ and ∨),

3. and if each subformula G of F is self-contained, where a subformula G is self-contained if

(0) if G is an atom, or if G = G1 ∧ . . . ∧Gk

(in this case, no additional explicit condition is stated, but requirements are made
whenever such a G is used as a subformula in (i)-(iii)),

(i) if G = H1 ∨ . . . ∨Hk and for all i, rr(Hi) = free(G)

(which implies that free(Hi) = free(G) = rr(Hi) for all i),

(ii) if G = ∃X̄ : H and rr(H) = free(H)

(which due to SRNF(7) is equivalent to rr(G) = free(G)),

(iii) if G = ¬H and rr(H) = free(H). ✷

(note: typo in [Abiteboul, Hull, Vianu: Foundations of Databases] in (ii) and (iii)!)

463

Self-Containedness of Subformulas

• Recall “correlated joins/subqueries” via F (. . . , X, . . .) ∧G(X,Y) that refer to an “outer”
query that provides bindings for –in this case– X.

• self-containedness requires that the evaluation of G does actually not depend on
propagation of bindings from “outside”.

• For that,
rr(G) = free(G) (∗)

would be a sufficient criterion
(i.e., each subformula G is in SRNF itself).
This criterion is enforceable, except for negated subformulas.

464

Self-Containedness

Consider again
rr(F) = free(F) (∗)

• The definition of “self-contained” does not state any explicit condition on conjunctions
G = G1 ∧ . . . ∧Gk.
For them, the property (∗) follows from the other requirements:
if G is in a disjunction (from (3a)), in a negated subformula (from (3b)), and in an
existence formula (from (3c) and SRNF (1.7)), and if G = F , then from SRNF (2).

• Self-containedness implies and requires that (∗) holds for all formulas that are not of the
form F = ¬G.

• For negations F = ¬G, rr(F) = ∅, and (∗) is implied and required only for their body:
rr(G) = free(G).
Negations as a whole and isolated cannot satisfy (∗) – they depend on propagation from
outside.

• idea: hardcode the subformula that generates the relevant bindings into the subformula.

465

From SRNF to RANF
Application of the following rewriting rules (recursively – top-down) translates SRNF formulas
to RANF.
[Abiteboul, Hull, Vianu: Foundations of Databases]

1. Assume that (∗) holds for the whole formula F : free(F) = rr(F).

2. This is the case for each SRNF formula, so the starting point is well-defined.

3. input to each rewriting rule is a conjunction F of the form F = F1 ∧ . . . ∧ Fn s.t.
free(F) = rr(F) where one or more of the Fi are not self-contained (let m the number of
such Fi).

⇒ Make them self-contained!

4. each application of a rewriting rule will handle one such conjunct.

5. after m applications, F has been transformed into a conjunction F ′ = F ′
1 ∧ . . .∧ F ′

k, k ≤ n,
where all F ′

i are self-contained.

6. then, the assumption in (∗) is valid for them (for negations: for their immediate
subformula), and the formulas on lower levels can be rewritten.

7. as seen above, rewriting rules must only care for conjunctions (where the bindings
propagation takes place).

466

From SRNF to RANF -2-

• W.l.o.g. assume that the conjunct to be treated is the rightmost one.

• Push-into-or: F = F1 ∧ . . . ∧ Fn ∧G where G = G1, . . . , Gm is a disjunction, G is not
self-contained, i.e., rr(G) (free(G) (which actually is the case if for some disjunct
rr(Gi) (free(G)).
(w.l.o.g., G is the last conjunct)

Known: rr(F) = free(F); the missing variable(s) must be in rr(F1, . . . , Fn).

Choose any subset Fi1 , . . . , Fik , k ≤ n such that
G′ = (Fi1 ∧ . . . ∧ Fik ∧G1) ∨ . . . ∨ (Fi1 ∧ . . . ∧ Fik ∧Gm) satisfies rr(G′) = free(G′).

– choosing all Fi is correct, but usually “inefficient”.

– note: rr(G′) ⊇ rr(G) (“=” in the best case), and for each disjunct G′
i in G′,

rr(G′
i) = free(G′

i) = free(G′) (before, free(Gi) 6= free(Gj) was possible)

Let j1, . . . , jn−k the indexes from {1, . . . , n} \ {i1, . . . , ik}; i.e., the non-chosen ones.

Replace F by F ′ = SRNF (Fj1 ∧ . . . ∧ Fjn−k
∧G′) and go on recursively.

(SRNF (_) for renaming vars, flattening, etc.)

• ... two more rewriting rules see next slide.

467

From SRNF to RANF -3-

Example 8.11
• Recall Example 8.10 (2) and its algebra translation.

• Recall Example 8.10 (3) for guessing the next rule.

• ... recall Example 8.10 (4) for guessing the third rule. ✷

... other rewriting rules in the same style:

• Push-into-exists: F = F1 ∧ . . . ∧ Fn ∧ ∃X̄ : G where rr(F) = free(F); rr(G) (free(G).

Choose again Fis such that G′ = Fi1 ∧ . . . ∧ Fik ∧G as above. Replace F by
F ′ = SRNF (Fj1 ∧ . . . ∧ Fjn−k

∧ ∃x : G′) and go on recursively.

• Push-into-not-exists: F = F1 ∧ . . . ∧ Fn ∧ ¬∃X̄ : G where rr(F) = free(F);
rr(G) (free(G).

Do the same as above for G′ = Fi1 ∧ . . . ∧ Fik ∧G, replace F by
F ′ = SRNF (F1 ∧ . . . ∧ Fn ∧ ¬∃x : G′) (keeping all Fi also outside!) and go on recursively.

• what about “Push-into-negation”?
Recall from Definition 8.5(2) that ¬ occurs only as ¬∃F (see above) or ¬atom (always
self-contained).

468

Exercise

Consider the formula

F (X,Y) = ∃V : (r(V,X) ∧ ¬s(X,Y, V)) ∧ ∃W : (r(W,Y) ∧ ¬s(Y,X,W))

• Give rr(F) for all its subformulas,

• is it in SRNF?

• if yes, transform it to RANF.

This is an example, where no conjunct of the original formula is self-contained.

Exercise

Give an algorithm that transforms RANF formulas to the Relational Algebra.

PREVIEW

RANF is not only necessary for the translation into the Relational Algebra, but also for
translation into (Nonrecursive Stratified) Datalog; cf. next section.

469

An Alternative Formulation

[Ullman, J. D., Principles of Database and Knowledge-Base Systems, Vol. 1]

Definition 8.6
A formula F is safe (SAFE) if:

1. F does not contain ∀ quantifiers (replace ∀XG by ¬∃X¬G),

2. if F1 ∨ F2 is a subformula of F , then F1 and F2 must have the same free variables,

3. for all maximal conjunctive subformulas F1 ∧ . . . ∧ Fm,m ≥ 1 of F :

All free variables must be limited, where limited is defined as follows:

• if Fi is neither a comparison, nor a negated formula, any free variable in Fi is limited,

• if Fi is of the form X = a or a = X with a a constant, then X is limited,

• if Fi is of the form X = Y or Y = X and Y is limited, then X is also limited.

(a subformula G of a formula F is a maximal conjunctive subformula, if there is no
conjunctive subformula H of F such that G is a subformula of H). ✷

Theorem 8.2
Safe formulas are domain-independent. ✷

470

Safety (Cont’d)

Example 8.12
• p(X,Y) ∨X = Y is not safe: X = Y is a maximal conjunctive subformula where none of

the variables is limited (it is also not domain-independent).

• p(X,Y) ∧X = Z is safe: p(X,Y) limits X and Y, then X = Z also limits Z.

• p(X,Y) ∧ (q(X) ∨ r(Y)) is not safe, but the equivalent formula
(p(X,Y) ∧ q(X)) ∨ (p(X,Y) ∧ q(Y)) is safe.

• p(X,Y, Z) ∧ ¬(q(X,Y) ∨ r(Y, Z)) is not safe, but the logically equivalent formula
p(X,Y, Z) ∧ ¬q(X,Y) ∧ ¬r(Y, Z) is safe.

• F (X) = p(X) ∧ ¬∃Y : (q(Y) ∧ ¬s(X,Y)) is not safe
because F ′(X) = ∃Y : (q(Y) ∧ ¬r(X,Y) is a maximal conjunctive subformula, but it does
not limit X);
the logically equivalent, but less intuitive formula
F (X) = p(X) ∧ ¬∃Y : (p(X) ∧ q(Y) ∧ ¬r(X,Y)) is safe.
(again the relational division pattern) ✷

471

Notes

• condition RANF(3b) is not required by SAFE. Nevertheless, since in ¬G, G is a maximal
conjunctive formula (maybe with m = 1), SAFE(3) applies to it and implies RANF(3b).

• condition RANF(3a) is stronger than SAFE(2), but implied by SAFE(3) since in G1 ∨G2

each disjunct is a maximal conjunctive subformula which implies that all its variables must
be limited.

• SAFE(3) explicitly requires for each negated formula ¬F (X̄) that it must occur in some
conjunction G = (. . . ∧ F (X̄) ∧ . . .) with positive formulas that limit the Xs:

Otherwise, if any non-conjunctive formula G contains ¬F (X̄) as an immediate
subformula, ¬F (X̄) would be a maximal conjunctive formula in F where X̄ are not limited.

• In contrast, RANF does not state an explicit condition on the occurrence of negated
subformulas. Implicitly, the same condition follows from the fact that rr(¬F (X̄)) = ∅
(SNRF(6)), and the remark on the bottom of Slide 463: X̄ ⊂ free(G), so there must be a
conjunct Gi “neighboring” the negated formula to such that rr(Gi) ⊆ X̄.

472

Safety: universal quantification

Consider again from Example 8.8:

F (X) = ∀Y : R(X,Y)

• This formula is not allowed to be considered since ∀ must be rewritten:

F2(X) = ¬∃Y : ¬R(X,Y)

is not safe since ¬R(X,Y) is a maximal conjunctive subformula.

• Start again with F : the problem in Example 8.8 was that it is not known which Y have to
be considered (the whole domain?)

• restrict to Y that satisfy some condition (e.g., all country codes).

An upper bound is to consider all elements of the active domain, let
(assume relations R/2, S/1, . . .)

ADOM(Z) = (∃Y : R(Z, Y) ∨ ∃X : R(X,Z) ∨ S(Z) ∨ . . .) :

F3(X) = ∀Y : (ADOM(Y)→ R(X,Y))

(continue next slide)

473

Safety: universal quantification (cont’d)

• ... and rewrite ∀:

F4(X) = ¬∃Y : ¬(ADOM(Y)→ R(X,Y))

push negation down and rewrite F → G as ¬F ∨G:

F5(X) = ¬∃Y : (ADOM(Y) ∧ ¬R(X,Y))

• ADOM(Y) ∧ ¬R(X,Y) is still not safe. X must be bound; use again ADOM :

F6(X) = ¬∃Y : (ADOM(X) ∧ADOM(Y) ∧ ¬R(X,Y))

• is safe, but unintuitive. Pulling out X yields ...

F7(X) = ADOM(X) ∧ ¬∃Y : (ADOM(Y) ∧ ¬R(X,Y))

... which is the relational division pattern!

474

Aside: Another Alternative Formulation
[Allen Van Gelder and Rodney W. Topor. Safety and translation of relational calculus queries.
ACM Transactions on Database Systems (TODS), 16(2):235-278, 1991.]

• based on two syntactical, inductively defined properties con(X) (“constrained”) and
gen(X) (“generated”),

• a formula is “evaluable” if

– for every free variable in Q(X) = F (X), gen(X,F) holds,

– for every subformula ∃X : F , con(X,F) holds,

– for every subformula ∀X : F , con(X,¬F) holds,

• claimed that this definition is the largest class of domain-independent formulas that can
be characterized by syntactical restrictions;

• proven that for queries without repetitions of predicate symbols the definition coincides
with domain-independence.

– The (simple) formula Q(x) = p(x) ∧ ∀y : ¬q(x, y) is in SRNF, and evaluable, but the
equivalent PLNF (prenex literal normal form) Q′(x) = ∀y : (p(x) ∧ ¬q(x, y)) is not in
SRNF (equivalent to ¬∃y : ¬(p(x) ∨ ¬q(x, y)), where y /∈ rr(¬(p(x) ∨ ¬q(x, y)))), but
still “evaluable”. Later, for Datalog always the (SRNF-compatible) variant where the
scope of the universal quantifier is only a single, negative literal is relevant.

475

SUMMARY: A HIGHER-LEVEL VIEW ON DOMAIN INDEPENDENCE/SAFETY

VS RANF

Domain Independence

• Domain independence is absolutely necessary for a query to have a well-defined meaning
(humans evaluate such queries when the context gives the domain, e.g. “who is not
registered for the exam?” [domain: the participants of the lecture]).

• Domain independence is undecidable.

Safety

• safety is defined purely syntactically,

• safety can be tested effectively,

• safety implies domain-independence.

476

METALEVEL: RECONSIDER FOL VS HERBRAND STYLE

• FOL:
Σ: predicate symbols p, q, r, . . ., function symbols f, g, . . ., constant symbols a, b, c, . . .,
I = (I,D); I(p) ⊆ Dn for n-ary p.
I |= p(a, b, c) ⇔ (I(a), I(b), I(c)) ∈ I(p).
– The abstraction level of I is needed in FOL model theory, especially if function

symbols are used.

– the notion of the domain D is needed for the semantics of the universal quantifier and
proving validity of a formula.

• Herbrand/DB with safe formulas:
Σ: predicate symbols p, q, r, . . . ,

constants a, b, c, . . . + datatype values 1, 2, 3, . . . , “D”,“CH”, . . .
Database state S over the relations p, q, r,. . . ;
with values from the constants and datatype values,
S |= p(a, b, c) ⇔ (a, b, c) ∈ p.
⇒ neither need the notions of I nor D – everything is immediately contained in S.

477

Domain Independence is inherent in the relational algebra and in SQL

Algebra

• Basic algebra expressions/leaves of the algebra tree are always relations (database
relations or constants),

• (non-atomic) “negation” in the relation algebra only via “minus”,

• proof by structural induction: the left subtree of “minus” is always domain-independent⇒
the whole expression is domain-independent.

SQL

• FROM clause always refers (positively) to relations or to SQL subqueries,

• (non-atomic) negation only in subqueries in the WHERE clause,
sideways-information-passing.

• whole SQL expression is domain-independent.

478

A Higher-Level View on Domain Independence/Safety vs RANF

• Logics: domain-independent formulas can be evaluated;

• Relational algebra: requires RANF for strict bottom-up evaluation;

• SQL:

– relaxed criterion (cf. Example 8.10) for (negated) existential quantification;

– not relaxed for disjunction/union;

⇒ internal compiler from SQL into an internal (relational) algebra that supports sideways
information passing;

• SPARQL (query language for RDF): also relaxed for disjunction/union.

• Datalog will require RANF since every subexpression is represented by an own “local”
rule;
“global” semantics and internal compilation by Logic Programming-based (Prolog)
top-down proof tree strategy supports sideways information passing.

479

8.6 Equivalence of Algebra and (safe) Calculus

As for the algebra, the attributes of each relation are assumed to be ordered.

Theorem 8.3
For each expression Q of the relational algebra there is an equivalent safe formula F of the
relational calculus, and vice versa; i.e., for every state S, Q and F define the same answer
relation. ✷

Proof Summary

• give mappings (A) “Algebra→ Calculus” and (B) “Calculus→ Algebra”

• (A) gives insights how to express a textual (or SQL) query by Datalog Rules,

• (B) gives insight how to write SQL statements for a given textual (or logical) query
(and how one could implement a Calculus evaluation engine via SQL).

480

Proof: (A) Algebra to Calculus

Let Q an expression of the relational algebra. The proof is done by induction over the
structure of Q (as an operator tree).

All generated formulas are safe.
As an invariant, the variable names A,B,C, . . . correspond always to the column names
A,B,C,. . . of the format of the respective algebra expression.

Induction base: Q does not contain operators.

• if Q = R where R is a relation symbol of arity n ≥ 1 with format A1, . . . ,An:

F (A1, . . . , An) = R(A1, . . . , An)
R

A1 A2

a 1

b 2

answer to R(A1, A2):

A1 A2

a 1

b 2

• otherwise, Q = {A:c} where c is a constant.
Then, F (A) = (A = c).

A:c

A

c

Answer to A = c: A

c

481

Induction step:

• Case Q = Q1 ∪Q2. Thus, ΣQ1
= ΣQ2

= A1, . . . ,An.

F (A1, . . . , An) = F1(A1, . . . , An) ∨ F2(A1, . . . , An)

Example: Q1

A1 A2

a b

c d

F1(A1 A2)

a b

c d

Q2

A1 A2

1 2

c d

F2(A1 A2)

1 2

c d

F (A1 A2)

a b

c d

1 2

482

• Case Q = Q1 −Q2. Analogously; replace . . .∨ . . . by (. . .)∧¬(. . .).

• Case Q = π[Ȳ](Q1) with Ȳ = {Ai1 , . . . , Aik} ⊆ ΣQ1 , k ≥ 1.
Let {j1, . . . , jn−k} = {1, . . . , n} \ {i1, . . . , ik} (the indices not in Ȳ).

F (Aj1 , . . . , Ajn−k
) = ∃Ai1 , . . . , Aik : F1(A1, . . . , An) .

Example:

Q1

A1 A2

a b

c d

F1(A1 A2)

a b

c d

Let Ȳ = {A2}: F (A2) = ∃A1 : F1(A1, A2)

F (A2)

b

d

483

• Case Q = σ[α](Q1) where α is a condition over ΣQ1
= {A1, . . . ,An}.

F (A1, . . . , An) = F1(A1, . . . , An) ∧ α′ , where α′ is obtained by replacing

each column name Ai by the variable Ai in σ.

Example:

Q1

A1 A2

1 2

3 4

F1(A1 A2)

1 2

3 4

Let σ = “A1 = 3”: F (A1, A2) = F1(A1, A2) ∧A1 = 3

F (A1 A2)

3 4

484

• Case Q = ρ[A1 → B1, . . . ,Am → Bm](Q1), ΣQ1 = {A1, . . . ,An}, n ≥ m.

F (B1, . . . , Bm, Am+1, . . . , An) = ∃A1, . . . , Am : (F1(A1, . . . , An)∧B1 = A1 . . .∧Bm = Am)

Example:

Q1

A1 A2

1 2

3 4

F1(A1 A2)

1 2

3 4

Consider ρ[A1 → B1](Q1): F (B1, A2) = ∃A1 : (F1(A1, A2) ∧ A1 = B1)

F (B1 A2)

1 2

3 4

485

• Case Q = Q1 ⊲⊳ Q2 and ΣQ1
= {A1, . . . ,An}, ΣQ2

= {A1, . . . ,Ak,Bk+1, . . . ,Bm, },
n,m ≥ 1 and 0 ≤ k ≤ n,m.

F (A1, . . . , An, Bk+1, . . . , Bm) = F1(A1, . . . , An) ∧ F2(A1, . . . , Ak, Bk+1, . . . , Bk) .

Example:

Q1

A1 A2

1 2

3 4

Q2

A1 B2

5 6

1 7

F1(A1 A2)

1 2

3 4

F2(A1 B2)

5 6

1 7

F (A1, A2, B2) = F1(A1, A2) ∧ F2(A1, B2)

F (A1 A2 B2)

1 2 7

• Note that in all cases, the resulting formulas F are domain-independent, in SRNF, RANF,
and SAFE.
(which came up automatically, because it is built-in in the structure induced by the algebra
expressions)

486

(B) Calculus to Algebra

Consider a relational schema Σ = {R1, . . . , Rn} and a SAFE formula F (X1, . . . , Xn), n ≥ 1 of
the relational calculus.

First, an algebra expression ADOM that computes the active domain ADOM(S) of the
database state is derived:

For every Ri with arity ki,

ADOM(Ri) = π[$1](Ri) ∪ . . . ∪ π[$ki](Ri).

(where π[$i] denotes the projection to the i-th column).
Let

ADOM = ADOM(R1) ∪ . . . ∪ ADOM(Rn) ∪ {a1, . . . , am},

where a1, . . . , am are the constants occurring in F .

• For a given database state S over Σ, ADOM(S) is a unary relation that contains the
whole active domain of the database, i.e., all values occurring in any tuple in any position.

487

An equivalent algebra expression Q is now constructed by induction over the number of
maximal conjunctive subformulas of F .

Induction base: F is a conjunction of positive literals. Thus, F = G1 ∧ . . . ∧Gl, l ≥ 1.

(1) Case l = 1. F is a single positive safe literal.
Then, either is of the form F = Ri(a1, . . . , aik), where each aj is a variable or a constant,
or F is a comparison of one of the forms F = (X = c) or F = (c = X), where X is a
variable and c is a constant (note that all other comparisons would not be safe).

– Case F = R(a1, . . . , aik): contains some (free, maybe duplicate) variables, and some
constants that state a condition on the matching tuples.
⇒ encode the condition into a selection, and do a projection to the columns where

variables occur – one column for each variable and name the columns with the
variables:

e.g. F (X,Y) = R(a,X, b, Y, a,X). Then, let

Q(F) = ρ[$2→ X, $4→ Y](π[$2, $4](σ[Θ1 ∧Θ2](R))) ,

where Θ1 = ($1 = a ∧ $3 = b ∧ $5 = a) and Θ2 = ($2 = $6).

– Case F = (X = c) or F = (c = X). Let Q(F) = {X : c}
X

c

488

(2) Case l > 1 (cf. example below) Then, w.l.o.g.

F = G1 ∧ . . . ∧Gm ∧Gm+1 ∧ . . . ∧Gl

s.t. 1 < m ≤ l, where all Gi, 1 ≤ i ≤ m as in (1) and all Gj , m+ 1 ≤ j ≤ l are other
comparisons (i.e., unsafe literals like X = Y , X < 3).

For every Gi, 1 ≤ i ≤ m take an algebra expression Q(Gi) as done in (1). The format
ΣQ(Gi) is the set of free variables in Gi. Let

Q′ = ⊲⊳mi=1 Q(Gi).

With Θ the conjunction of the additional conditions Gm+1, . . . , Gl,

Q(F) = σ[Θ](Q′) .

Example 8.13
Consider F = R(a,X, b, Y, a,X) ∧ S(X,Z, a) ∧X = Y ∧ Z < 3

as F = G1 ∧G2 ∧G3 ∧G4:

Q(G1) = ρ[$2→ X, $4→ Y](π[$2, $4](σ[$1 = a ∧ $3 = b ∧ $5 = a ∧ $2 = $6](R)))

Q(G2) = ρ[$1→ X, $2→ Z](π[$1, $2](σ[$3 = a](S)))

Q(F) = σ[X = Y ∧ Z < 3](Q(G1) ⊲⊳ Q(G2))
✷

489

Structural Induction Step: For formulas G,G1, . . . , Gl, H the equivalent algebra expressions
are Q(G), Q(G1), . . . , Q(Gl), Q(H),

(3) F = G ∨H:
Q(F) = Q(G) ∪Q(H)

(safety guarantees that G and H have the same free variables, thus, Q(G) and Q(H)

have the same format).

(4) F = ∃X : G:
Q(F) = π[Vars(Q(G)) \ {X}](Q(G)) ,

(5) F = ¬G, where Q(G) has columns/variables X1, . . . , Xk:

Q(F) = ρ[$1→ X1, . . . , $k → Xk](ADOM
k)−Q(G)

(6) F = G1 ∧ . . . ∧Gl, l ≥ 2 is a maximal conjunctive subformula (difference to (2): now it’s
the induction step where the conjuncts are allowed to be complex subformulas):
Q(F) is then constructed analogously to (2) as a join.

490

Understanding the Proof: Negation as Minus

The ADOMk in “calculus to algebra” item (5) looks awkward. What is it good for? What does
it mean?

• according to Def. 8.3 (4) (max. conjunctive subformulas), all the variables X1, . . . , Xk in a
negative conjunct ¬G must occur positively in some other conjunct (and be bound by this).

⇒ instead of ADOMk, the cartesian product (or any overestimate of it) of the possible
values of X1, . . . , Xk can be used.

• Formal example next slide,

• practical MONDIAL example second next slide.

491

Understanding the Proof: Negation as Minus

Formal Example

F (X,Y) = p(X,Y, Z) ∧ ¬∃V : q(Y, Z, V) .

• F1(X,Y, Z) = p(X,Y, Z) ⇒ E1 = ρ[$1→X, $2→Y, $3→Z](p),

• F2(Y, Z, V) = q(Y, Z, V) ⇒ E2 = ρ[$1→Y, $2→Z, $3→V](q),

• F3(Y, Z) = ∃V : F2(Y, Z, V) ⇒ E3 = π[Y, Z](E2) =

π[Y, Z](ρ[$1→Y, $2→Z, $3→V](q)),

• F4(Y, Z) = ¬F3(Y, Z) ⇒ ρ[$1→Y, $2→Z](ADOM2)−E3 =

ρ[$1→Y, $2→Z](ADOM2)− π[Y, Z](ρ[$1→Y, $2→Z, $3→V](q))

(yields all possible (y, z) ∈ ADOM2 that are not in ...)

• F5(X,Y, Z) = F1 ∧ F4 ⇒ E1 ⊲⊳ E4 =

E1 ⊲⊳ (ρ[$1→ Y, $2→ Z](ADOM2)− π[Y, Z](ρ[$1→Y, $2→Z, $3→V](q)))

Only pairs (Y, Z) can survive the join that are in the result of the first component. Thus,
instead taking the “overestimate” ADOM2, π[Y, Z](E1) can be used:

E1 ⊲⊳ (π[Y, Z](E1)− π[Y, Z](ρ[$1→Y, $2→Z, $3→V](q))).

492

Negation as Minus - A practical example

• Ever seen this ADOM construct in exercises to the relational algebra? – No. Why not?

Consider relations country(name,country) and city(name,country,population):

F (CN,C) = country(CN,C) ∧ ¬∃Cty, Pop : (city(Cty, C, Pop) ∧ Pop > 1000000)

Structural generation of an equivalent algebra expression:

• F1(CN,C) = country(CN,C) ⇒ E1 = ρ[$1→ CN, $2→ C](country),

• F2(Cty, C, Pop) = city(Cty, C, Pop) ∧ Pop > 1000000

⇒ E2 = ρ[$1→ Cty, $2→ C, $3→ Pop](σ[$3 > 1000000](city)),

• F3(C) = ∃Cty, Pop : F2(Cty, C, Pop)

⇒ E3 = π[C](ρ[$1→ Cty, $2→ C, $3→ Pop](σ[$3 > 1000000](city))),

• F4(C) = ¬F3(C) ⇒ E4 = ρ[$1→ C](ADOM) − E3 (abbreviating π(ρ(...)) in E3)

= ρ[$1→ C](ADOM)− π[$2→ C](σ[$3 > 1000000](city))
(yields all possible C that are not in ...)
At this point, one knows that not the complete ADOM (all values anywhere in the
database) has to be considered, but that it is sufficient to consider all countrycodes:
E′

4 = π[$2→ C](country)− π[$2→ C](σ[$3 > 1000000](city))

493

Example (Cont’d)

And now, both parts of the outer conjunction are combined by a join:

F (CN,C) = F1(CN,C) ∧ F4(C)

⇒ E1 ⊲⊳ E
′
4 =

ρ[$1→CN, $2→C](country) ⊲⊳ (π[$2→C](country)− π[$2→C](σ[$3 > 1000000](city)))

494

8.7 Symbolic Reasoning

• Logics in general, and FOL are mathematical concepts.
Research mathematically investigates different logics and their properties.

• Symbolic Reasoning applies logic-based algorithms on concrete problems, e.g.,

– Software and hardware verification (e.g., correctness of automobile or airplane
systems)

– Answering queries against knowledge bases

• algorithms must operate on the syntax level:

– formulas (i.e., parse-trees of formulas)

– terms (i.e., parse-trees of terms)

– sets of variable bindings

* term unification,

* answer bindings (to unification/matching and to queries)

495

DATALOG: HERBRAND SEMANTICS

Logic programming (LP) frameworks (e.g., Prolog and Datalog) use the Herbrand Semantics
(after the French logician Jacques Herbrand):

• a Herbrand Interpretation H = (H,DΣ) for a given signature Σ uses always the Herbrand
Universe DΣ that consists of all terms that can be constructed from the function symbols
(incl. constants) in Σ: john, father(john), germany, capital(germany), berlin,

⇒ “every term is interpreted by itself”

• the relation names are the predicate symbols in Σ, and they are also “interpreted by
themselves (as a relation)”, i.e., H(encompasses) = encompasses.

• the Herbrand Base HBΣ is the set of all ground atoms over elements of the Herbrand
Universe and the predicate symbols of Σ.

⇒ A Herbrand Interpretation is a (finite or infinite) subset of the Herbrand Base.

• H |= hasAncestor(john,father(john)) if (john, father(john)) ∈ hasAncestor.

• in contrast, in traditional FOL:
(I,D) |= hasAncestor(john,father(john)) if (I(john), I(father(I(john)))) ∈ I(hasAncestor).

• if function symbols are allowed, usually with equality predicate ≈, e.g., father(john) ≈ jack.

496

Deductive Databases: Datalog

• the domain consists of constant symbols and datatype literals.

• an interpretation H is explicitly seen as a finite set of ground atoms over the predicate
symbols and the Herbrand Universe:
country(ger,“Germany”,“D”, berlin, 356910,83536115), encompasses(ger, eur, 100).

H |= encompasses(ger,eur,100) if and only if (ger, eur,100) ∈ H(encompasses)

if and only if encompasses(ger, eur,100) ∈ H .

• Unique Name Assumption (UNA): different symbols mean different things.

• Datalog restricts the allowed formulas (cf. Slides 557 ff.):

– conjunctive queries,

– Datalog knowledge bases consist of rules of the form head← body

(variants: positive nonrecursive, recursive, + negation in the body, + disjunction in the
head)

• special semantics/model theories for each of the variants: minimal model, stratified
model, well-founded model, stable models
– each of them characterized as sets of ground atoms.

497

SEMANTIC WEB: RDF, RDFS, AND OWL

• RDF data model (see also Slide 440)

– unary and binary predicates over literal values and URIs (Object (identifier)s; classes
and properties are also represented by URIs)

• RDFS (RDF Schema): adds second order flavour:

– RDF triples can have properties or classes as subject and object,

– then use predefined RDFS predicates:

– capital rdfs:domain Country; rdfs:range City.
capital rdfs:subPropertyOf hasCity

– semantics can be encoded in FOL rule patterns:
∀x, y : capital(x, y)→ Country(x) ∧ City(y)
∀x, y : capital(x, y)→ hasCity(x, y)

– mapped to FOL model theory.

– RDFS and “OWL Lite” (see next slide) can be mapped to positive recursive Datalog
⇒ polynomial

* just positive rules: CWA and OWA semantics coincide

498

Semantic Web: RDF, RDFS, and OWL (cont’d)

• OWL: additional specialized vocabulary for describing Description Logic concepts

• Second order predicates – predicates about predicates:

borders a owl:SymmetricProperty. SymmetricProperty(borders)

hasChild rdfs:subPropertyOf hasDescendant hasChild ⊑ hasDescendant

hasDescendant a owl:TransitiveProperty. TransitiveProperty(hasDescendant)

• many OWL (OWL Lite) constructs can be translated into FOL (and Datalog) rule patterns:
∀x, y : borders(x, y)→ borders(y, x).
∀x, y : hasChild(x, y)→ hasDescendant(x, y).
∀x, y, z : hasDescendant(x, y) ∧ hasDescendant(y, z)→ hasDescendant(x, z).

• Queries about data against RDF(+RDFS+OWL Lite) knowledge bases: algebraic
evaluation, polynomial.

• Queries against RDF+OWL DL knowledge base: reasoning, exponential.

499

