
Chapter 9
Reasoning
Queries vs. Conclusions
• Query: (for which X) does something hold in a given database state?

• Conclusions: given some facts and some knowledge, does something hold?

Knowledge Bases

• general statements/logic formulas (cf. human knowledge and reasoning)

• often definitions: “adults are persons who are at least 18 years old”,
“parents are persons who have children”, “every person is either male or female”,
“my uncles are the male siblings of my parents, and the husbands of the female siblings
of my parents”,

• can often, but not always, be represented as rules.

• Queries against knowledge bases are answered by reasoning, not by algebraic
evaluation (although some reasoning can be implemented on an algebraic base).

500

9.1 Model Theory and Logical Entailment

For formalizing (and applying) reasoning, logical entailment,

F |= ϕ

is needed:

• F : a set of formulas, the specification

• ϕ: a formula

• does F entail ϕ,
i.e., assumed that F holds, can we conclude that ϕ also holds?

• e.g. F the specification of the notion of “uncle”, and a given database of persons:

– does “Bob is an uncle of Alice” hold?

– which persons (in the database) are uncles of Alice?

– which persons (in the database!) are not uncles of Alice?

* remark on closed world vs. open world

501

DATABASES VS. KNOWLEDGE BASES

• A database (state) is a relational structure.

We can check whether a formula holds there, or for which values of X it holds (which is
then a query).

The semantics of a database is the current database state.

• A (first-order) knowledge base is a set of closed (first-order) formulas. It contains facts,
but also other formulas.

We are interested if a knowledge base K implies a fact or a formula F . This means, if for
all models M of K, F must be true in M:

Whenever M |= K, does then M |= F hold?

The semantics of a knowledge base (or in general a set of formulas) is the set of all its
models.

• an intermediate form occurs when a database is extended by axiomatic formulas
(subclasses etc.) or rules that can be used to derive additional facts.
Then, the semantics is given by the model(s) of the database state and the rules.

502

EXAMPLE: ER DIAGRAM AS AN ONTOLOGY

Employee works-for

subordinate

Manager Dept

∪

AreaManager TopManager manages

name salary

name

< 1, 3 >

< 1, ∗ >

< 0, ∗ >

< 0, ∗ >

< 1, 1 >

< 1, 1 >

(TopManager: leads a department;
AreaManager: intermediate group leaders in a department)

What can be “models” of this ontology? How do you represent them? Give an example.

503

Semantics: Set theory

• a class is a set of instances,
Employee={alice, bob, john, mary, tom, larry} and Manager={alice, bob, john, mary},
AreaManager={mary} and TopManager={alice, bob, john},
Dept={sales, production, management}

Constraints from subclasses:
Manager = AreaManager ∪ TopManager
Manager ⊆ Employee
AreaManager ⊆ Manager and
TopManager ⊆ Manager (both redundant)

• an attribute is a set of pairs of (i) an instance and (ii) an element of a literal domain
(constraint!)
name =
{(alice, “Alice”), (bob, “Bob”), (john, “John”), (mary, “Mary”), (tom, “Tom”), (larry, “Larry”) }
salary =

{(alice, 70000), (bob, 60000), (john, 100000), (mary, 40000), (tom, 25000), (larry, 20000) }

analogously for department names.

504

Semantics: Set theory (Cont’d)

• a relationship is a pair of instances,
(or a set of n-tuples, in case of n-ary relationships)
works-for ⊆ Employee × Dept

works-for = {(alice, sales), (mary, sales), (larry, sales), (bob, production),

(bob, sales), (tom, production), (john, management) }

manages ⊆ TopManager × Dept
manages = {(alice, sales), (bob, production), (john, management) }
subordinate ⊆ Employee × Manager
subordinate = {(mary, alice), (bob, alice), (larry, mary), (larry, alice), (tom, bob) }

• not so obvious: constraints coming from the cardinality specifications, e.g.,
the set of top managers is a subset of the things that manage exactly one department,
the set of employees is a subset of the things that work for at least one and at most three
departments
(see later after the discussion of first-order logic)

505

Semantics: Set theory – Graphical Illustration

managers ⊆ employees departments

topmanagers

areamanagers

alice

bob

john

mary

tom

larry

sales

prod

mgm
works-for

manages

subordinate

• does manages ⊆ works-for hold in general?

• subordinate ⊇ works-for ◦ manages−1 ?

• subordinate ⊇ (works-for \ manages) ◦ manages−1 !! (“\” denotes set difference)

• the subordinates relationship wrt. area managers (larry→mary) cannot be derived but
must be stated explicitly.

506

Adequateness of (extended) ER Diagrams

An ontology should give a concise characterization of a domain and its constraints.

• classes, key constraints

• subclasses (specialization/generalization, disjointness)

• ranges and domains of properties (e.g., that the domain of “manages” is not all
employees but only the managers)

• cardinalities

• is manages ⊂ works-for ?

• is manages ∩ works-for = ∅ ?

• subproperty constraints cannot be expressed

• further constraints (e.g., employees that work for a department are subordinate to the
department’s manager) cannot be expressed.

Exercise

• Discuss alternatives for the cardinalities for “subordinate”.

507

ALTERNATIVE SEMANTICS: RELATIONAL MODEL

Exercise: give a relational schema and the corresponding database state to the above ER
diagram.

Relational Schema as an Ontology

• basically non-graphical, can be supported e.g. by dependency diagrams (cf. the Mondial
documentation)

• no distinction between “classes” and “relationships”

• key constraints, foreign key/referential constraints

• keys/foreign key allow to guess classes vs. relationships

• cardinality “1”: functional dependencies (adding n:1-relationships into a table like
department/manages country/capital)

• no general cardinality constraints

• sometimes: domain constraints (by foreign keys)

• no further (inter- and intra-relation) constraints

508

EXAMPLE: AXIOMATIZATION OF THE “COMPANY” ONTOLOGY

Consider again the ER diagram from Slide 503.

• give the first-order signature Σ of the ontology,

• formalize the constraints given in the

– subclass constraints

– range and domain constraints

– cardinality constraints

and

– additional constraints/definitions that cannot be expressed by the ER model.

(this set of formulas is called a first-order “theory” or “axiomatization” of the ontology)

• express the instance level as an interpretation of the signature Σ.

509

Example: Signature

• Classes are represented by unary predicates: Emp/1, Mgr/1, AMgr/1, TMgr/1, Dept/1.

• Attributes are represented by binary predicates: name/2, salary/2 (optionally, this could
be modeled by unary functions)

• (binary) relationships are represented by binary relationships: wf/2, mg/2, sub/2.

Thus,
Σcompany = {Emp/1, Mgr/1, AMgr/1, TMgr/1, Dept/1, name/2, salary/2, wf/2, mg/2, sub/2}.

Example: Subclass Constraints

∀x : Mgr(x) → Emp(x) ,

∀x : AMgr(x) → Mgr(x) ,

∀x : TMgr(x) → Mgr(x) ,

∀x : Mgr(x) → (AMgr(x) ∨ TMgr(x)) since declared as covering

510

Example: Domain and Range Constraints

∀x : (∃n : name(x, n) → (Emp(x) ∨ Dept(x))) ,

∀x : (∃s : salary(x, s) → (Emp(x))) ,

∀x, y : (sub(x, y) → (Emp(x) ∧ Mgr(y))) ,

∀x, d : (wf(x, d) → (Emp(x) ∧ Dept(d))) ,

∀x, d : (mg(y, d) → (Mgr(y) ∧ Dept(d))) .

Example: Cardinality Constraints

∀m : (TMgr(m) → ∃d : mg(m, d)) ,

∀m, d1, d2 : ((mg(m, d1) ∧ mg(m, d2)) → d1 = d2) ,

∀d : (Dept(d) → ∃m : mg(m, d)) ,

∀d,m1,m2 : ((mg(m1, d) ∧ mg(m2, d)) → m1 = m2) ,

∀d : (Dept(d) → ∃x : wf(x, d)) ,

∀x : (Emp(x) → ∃d : wf(x, d)) ,

∀x : ((∃d1, d2, d3, d4 : wf(x, d1) ∧ wf(x, d2) ∧ wf(x, d3) ∧ wf(x, d4)) →
(d1 = d2 ∨ d1 = d3 ∨ d1 = d4 ∨ d2 = d3 ∨ d2 = d4 ∨ d3 = d4))

511

Example: Further Constraints

• a person is subordinate to the manager of each department he/she works for:

∀x, y, d : wf(x, d) ∧ mg(y, d) ∧ x 6= y → sub(x, y)

• should we have mg ⊆ wf, or mg ∩ wf = ∅?
The first is OK: ∀y, d : mg(y, d) → wf(y, d)

• add axioms that guarantee irreflexivity and transitivity for “subordinate”:
∀x : ¬sub(x, x) and ∀x, y, z : (sub(x, y) ∧ sub(y, z) → sub(x, z)).

Constraints that are not added

• cardinality of “subordinate”? “Every employee has a boss”

∀x : Emp(x) → ∃y : sub(x, y)

This causes a semantical problem with the boss: an infinite chain is needed - leading
either to only infinite models, or a cycle.

• add an axiom that guarantees that the company has at least one employee:
∃x : Emp(x) – then the set of axioms is unsatisfiable.

• such investigations help to validate an ontology.
Ontology design tools allow to check for inconsistency, empty classes etc.

512

Axiomatization of the “company” scenario

Denote the conjunction of the above formulas by Axiomscompany.

• For any database/knowledge base S using this scenario, S |= Axiomscompany is
required.

• a database then describes the individuals and their individual properties in this world.

513

Example: Instances

• The signature is extended by constant symbols for all named elements of the domain:

Σmy_company := Σcompany ∪ {Alice/f0, Bob/f0, John/f0, Mary/f0, Tom/f0, . . . , Sales/f0, . . . }

(Note: the signature symbols are capitalized, wereas alice, bob etc denote the elements
of the domain).

• first-order structure S = (I,D) as ...

• Domain D = {alice, bob, john, mary, tom, larry, sales, prod, mgm}

• map constant symbols (nullary function symbols) to D:
I(Alice) = alice, I(Bob) = bob, . . . , I(Sales) = sales,

• map unary predicates to subsets of the domain D:
I(Emp) = {alice, bob, john, mary, tom, larry}, I(Mgr) = . . . , I(Dept) = . . . , . . .,

• map binary predicates to subsets of D ×D:

I(wf) = {(alice, sales), (mary, sales), (larry, sales), (bob, prod), (bob, sales),

(tom, prod), (john, mgm) }
I(mg), I(sub), I(name), I(salary) see Slide 505.

514

AXIOMATIZATION OF A SCENARIO

The axiomatization of a scenario (general formulas + a given instance) consists of

• the general axiomatization of the entity types/classes and relationships,

• literals describing the individuals (class membership and relationships),

• closure formulas that state that no other things/relationships exist.

DB Queries vs. Reasoning

• queries:

– for which X,Y does S |= F (X,Y) hold?

– against a single instance,

– this allows algebraic evaluation (if the query can expressed in the algebra).

• reasoning:

– for which X,Y does a specification F logically imply that F (X,Y) holds?

– There are all models of F considered (although, if it is a complete specification with
closure axioms, there is only one model).

– allows “querying” general specifications for e.g. guaranteeing correctness properties.

515

Example: Company Ontology

The axiomatization of “my company” with the given individuals is then

Axiomscompany ∧ Emp(Alice) ∧ Emp(Bob) ∧ . . . ∧ Dept(Sales) ∧ . . . ∧
wf(Alice,Sales) ∧ . . . ∧ mg(Alice,Sales) ∧ . . . ∧
∀x : Emp(x) → (x = Alice ∨ x = Bob ∨ . . .) ∧
∀x : Dept(x) → (x = Sales ∨ x = Prod ∨ . . .) ∧
∀x, y : wf(x, y) → ((x = Alice ∧ y = Sales) ∨ . . .) ∧ . . .

Example: Instances (Alternative)

• alternatively, instead of constant symbols, all individuals can be described by existentially
quantified variables:

Axiomscompany ∧
∃alice, bob, . . . , sales, . . . : (name(alice, “Alice”)∧. . .∧Emp(alice)∧Emp(bob)∧. . .∧Dept(sales)∧
. . . ∧ Mgr(alice) ∧ . . . ∧ wf(alice, sales) ∧ . . . ∧ mg(alice, sales) ∧ . . . ∧ sub(mary, alice) ∧ . . .)

516

9.2 Logical Entailment

Definition 9.1
Let F and G two (closed) formulas over a signature Σ. We write

F |= G (F logically entails G)

if for each structure S over Σ, if S |= F then also S |= G. ✷

Example

∀x : ((p(x) → q(x)) ∧ (q(x) → r(x)))) |= ∀x : (p(x) → r(x))

Logical Entailment as Proof

• usually F is a “large” conjunctive formula, containing the specification, and G is a “claim”
to be shown to be a logical consequence of F .

• note: for an interpretation I, the notation I |= F from the previous section can be
regarded as representing I by its axiomatization φI (cf. Slide 515) and then

I |= F ⇔ φI |= F .

517

LOGICAL ENTAILMENT IN A KNOWLEDGE BASE

• for a FOL knowledge base, it is not always necessary to give all facts explicitly,

• axioms and some “basic” facts are often sufficient,

• further facts can be proven/added to the KB by logical entailment,

• further universally quantified formulas can be derived,

• entailment is also relevant when verifying consistency (satisfiability) of an ontology
specification.

(most of this: see later)

How to Prove Entailment?

• it is not necessary (and not possible) to compute all models of F to check if F |= G,
instead

• prove it on the semantical level by symbolic reasoning ...

518

LOGICAL ENTAILMENT: EXAMPLE

Consider Axiomscompany ∧ mg(Alice,Sales).

Does Emp(Alice) hold in each model S = (D, I) of Axiomscompany (= is it logically entailed by
the axioms)?

• S |= mg(Alice,Sales) implies (I(Alice), I(Sales)) ∈ I(mg), i.e., (alice, sales) ∈ I(mg).

• S |= ∀y, d : mg(y, d) → wf(y, d) (axiom)
implies that for all d1, d2 ∈ D, S |={y/d1,d/d2} mg(y, d) → wf(y, d) which means that if
S |={y/d1,d/d2} mg(y, d), then also S |={y/d1,d/d2} wf(y, d). The former is equivalent to
(d1, d2) ∈ I(mg) that we have shown above for (alice, sales). Thus, we know that
(alice, sales) ∈ I(wf).

• With the same argument as above, use the axiom
S |= ∀x, d : (wf(x, d) → (Emp(x) ∧ Dept(d))) for concluding that alice ∈ I(Emp) which
means that S |= Emp(Alice).

519

REASONING

• prove by symbolic reasoning that a formula is implied by a knowledge base:
Algorithms for deriving entailed facts or formulas, or for checking entailment by
automated, symbolic reasoning.

VALIDITY AND DECIDABILITY

• preferably use a decidable logic/formalism

• with a complete calculus/reasoning mechanism

• Propositional logic: decidable

• First-order logic: undecidable

• Horn subset (= positive rules, with a special model theory) of FOL: decidable;
with negation in the body: still decidable

• 2-variable-subset of FOL: decidable

• Description Logic subsets of FOL: range from decidable to undecidable

520

A SIMPLE NATURAL REASONING SYSTEM

Inference rule “Modus Ponens”:

∀x̄ : (P → Q) , P ′

σ(Q)
where P ′ = σ(P) for a substitution σ.

Consider again the derivation from Slide 519:

∀y, d : (mg(y, d) → wf(y, d)) , mg(Alice,Sales)

wf(Alice,Sales)

∀x, d : (wf(x, d) → (Emp(x) ∧ Dept(d))) , wf(Alice,Sales)

Emp(Alice) ∧ Dept(Sales)

• forward-reasoning,

• uses only knowledge by implication rules “if . . . then . . . ”.

– no disjunction (disjunction is not part of daily common reasoning, but merely part of
puzzles like Sudoku),

– no existential quantification (reasoning with things that are known to exist but cannot
be named explicitly)

521

... towards automated symbolic reasoning:

Prenex Form

Definition 9.2
A formula F is in prenex form if it has the form

F = Q1x1 Q2x2 . . . Qnxn : G

where each Qi ∈ {∀, ∃} is a quantifier and the xi are variables, and G is quantifier-free. ✷

Theorem 9.1
For each formula F , there is an equivalent formula F ′ which is in prenex form. ✷

Proof: by induction. Pull quantifiers to the outside.

Next step: handling existentials:

• Consider ∀x : (Emp(x) → ∃d : wf(x, d)) and ∀d : (Dept(d) → ∃m : mg(m, d))

• for x = Alice: “the department Alice works for”, and “the person that manages this
department”

⇒ implicit way to name things: fdept(Alice) and fmanages(fdept(Alice)).

522

SKOLEMIZATION

Consider formula F from Example 8.6(3): F = ∀x∃y : p(x, y).

When talking about models of it, “given a certain x1, there is an y1 such that ...”.

One can imagine a (new) function f which returns “the (or one of them, if there are many) y
for a given x”: f(x1) := y1.

Definition 9.3 (Skolem Form)
[after Thoralf Skolem, a Norwegian Mathematician]

For a formula F in prenex form, its Skolem form sk(F) is defined as follows:

For each subformula of the form G = ∃y : H(x1, . . . , xn, y) where the xi are the free variables
of H that are universally quantified by a subformula F ′ of F that contains G, replace each
occurrence of y by the term f(x1, . . . , xn) where f is a new function symbol. ✷

Example 9.1
Consider F = ∀x∃y∀z : p(x, y, z).
For skolemizing y consider G(x) = ∃y∀z : p(x, y, z) and replace y by f(x).

sk(∀x∃y∀z : p(x, y, z)) = ∀x, z : p(x, f(x), z) ✷

523

Notes

• The definition is originally applied only to prenex normal form
(i.e. all quantifiers on top, quantifier-free body);

• it holds in the same way for formulas that are not in prenex form (but the proof uses
prenex form).

• There is an improvement:
take only those universally quantified variables that are free in the body of the respective
quantified subformula ∃y : F (xi1 , . . . , xim).

• Further examples: Slide 528.

Usage of Skolemization

The formula sk(F) is obviously not equivalent with F (it even uses an extended signature),
but:

Theorem 9.2
For every formula F (in prenex form), sk(F) is satisfiable if and only F is satisfiable. ✷

Idea: extend the interpretation I with the new function symbols by mapping f(d1, . . . , dn) to a
d ∈ D which exists for the given x1, . . . , xn.

524

Proof ... needs a definition and a lemma before:

Definition 9.4 (Substitution)
A substitution is a mapping σ : Variables → TermΣ.

For a formula F , variables x1, . . . , xn and terms t1, . . . , tn, the application of
σ = [x1/t1, . . . , xn/tn] to F , written as F [x1/t1, . . . , xn/tn], replaces every free occurrence of
xi in F by ti.

A substitution is collision-free if the mapped variables do not occur in any of the replacement
terms. ✷

Example: σ = [x/f(a), y/g(v, 3), z/f(g(a, w))] is collision-free, and
σ(p(x, y, z)) = p(f(a), g(v, 3), f(g(a, w))).

Lemma 9.1 (Substitution Lemma)
For every structure S, and every variable assignment β, every terms s, t, every variable x, and
every formula F ,

• S(s[x/t], β) = I(s, βd
x) where d = S(t, β),

• S |=β F [x/t] ⇔ S |=βd
x
F where d = S(t, β). ✷

(Proof by structural induction over s and F)

525

Proof of Theorem 9.2

Induction over the number of replacements, top-down (replacing outer ∃-quantifiers first).
Consider F in prenex form
F = ∀x1, . . . , xn∃y : G(x1, . . . , xn, y), and its skolemization
F ′ = ∀x1, . . . , xn∃y : G[y/f(x1, . . . , xn)].

“⇒”: Assume that F is satisfiable; there exists a structure S = (I,D) s.t. S |= F .

Thus, for all d1, . . . , dn ∈ D,
S |=β ∃y : G(x1, . . . , xn, y)

where β = {x1 7→ d1, . . . , xn 7→ dn}.

This is exactly the case if there is a d ∈ D (dependent on the di) s.t.

S |=βd
y
G(x1, . . . , xn, y) .

Define a new structure S ′ = (I ′,D) such that I ′ coincides with I wherever I is defined,
and defines the new n-ary function symbol f to map every n-tuple (d1, . . . , dn) to the
above d (which depends on the di).
(using the Axiom of Choice which guarantees the existence of this function).

526

Proof of Theorem 9.2

“⇒” (cont’d): By the substitution lemma,

S ′ |=β G(x1, . . . , xn, y)[y/f(x1, . . . , xn)

an since this holds for all d1, . . . , dn ∈ D,

S ′ |= ∀x1, . . . , ∀xn : G(x1, . . . , xn, y)[y/f(x1, . . . , xn)],

i.e., S ′ |= F ′ – and F ′ is satisfiable (and there is a constructive description how (a
possible) S ′ is obtained by extending S).

“⇐”: analogously.
S ′(f(x1, . . . , xn)) is the “witness” element of the domain that satisfies the ∃y.

What is this good for??

• symbolic reasoning: the skolemized formula is sufficient to develop a “typical” model of
the formula with the relationships between its constants in tableau proofs.

527

Example 9.2
Consider the formula

F = ∀x∃y : (p(x, y) ∧ ∃z : (r(z) ∧ ¬q(x, y, z)))

• prenex form: ∀x∃y∃z : (p(x, y) ∧ r(z) ∧ ¬q(x, y, z))
(aside: this is the same logical transformation as the “push-into-exists” rule of RANF)

• skolemize with fy and fz:
sk(F) = ∀x : (p(x, fy(x)) ∧ r(fz(x)) ∧ ¬q(x, fy(x), fz(x))).

• understand that it is sufficient to describe z as f(x), not as a function of x and y:
with y → f1(x) and z → f2(x, y), follows z → f2(x, f1(x)) which is effectively a function
only of x. ✷

528

Example 9.3
Consider the formula

F = (∀x1∃y : p(x1, y)) ∧ (∀x2∃z : (q(x2, z))

• prenex form (one alternative): ∀x1, x2∃y, z : (p(x1, y) ∧ q(x2, z))

• skolemize with fy and fz:
∀x1, x2 : (p(x1, fy(x1, x2)) ∧ q(x2, fz(x1, x2)))

which is a lot longer than necessary!

• skolemize without intermediate prenex step:
(∀x1 : p(x1, fy(x1))) ∧ (∀x2 : q(x2, fz(x2))) ✷

529

Aside: Skolem Normal Form

Definition 9.5 (Skolem Normal Form)
A formula is in Skolem Normal Form if it is

• closed (i.e., no free variables),

• of the form ∀x1 . . .∀xn : B,

• and B is in conjunctive normal form (CNF), i.e., of the form
(a11 ∨ . . . ∨ a1k1

) ∧ . . . ∧ (am1 ∨ . . . ∨ amkm
) ✷

• every formula F can be transformed in an equivalent formula F ′ in Skolem Normal Form.

• Skolem Normal Form is used for Resolution Proofs.

• in this lecture, we will not apply resolution to arbitrary inputs, but only to logical rules
(Datalog rules) – which come automatically in CNF (and without function symbols).

• the idea of skolemization “on demand” is also used in Tableau proofs.

530

REASONING

• prove by symbolic reasoning if a formula F is implied by a knowledge base K (which is a
set of closed formulas):

K |= F ?

• Equivalently, let K denote the conjunction of all formulas in K:

∅ |= K → F does K → F hold in all interpretations?

• Equivalently,
show that there is no interpretation where ¬(K → F) holds.

• Equivalently,
show that ¬(K → F) (which is the same as K ∧ ¬F , i.e. a model of K ∧ ¬F would be a
model of K and not of F) is unsatisfiable.

⇒ try to systematically develop a model of K ∧ ¬F .
If this fails, then, K ∧ ¬F is unsatisfiable.

531

9.3 First Order Tableau Calculus

• Systematic construction of a model of a formula.

• Goal: show that this is not possible. Otherwise a counterexample is generated.

• counterexamples can be interpreted as answers to a query.

Start the tableau with a set F of formulas:

input set F
F for all F ∈ F

The tableau is then extended by expansion rules.

532

TABLEAU RULES

Original Definition: Raymond Smullyan: First-Order Logic. Springer, New York, 1968.

α-rule (conjunctive): F ∧G

F

G

¬(F ∨G)

¬F
¬G

β-rule (disjunctive): F ∨G

F G

¬(F ∧G)

¬F ¬G

γ-rule (universal): ∀x : F

F [X/x]

¬∃x : F

¬F [X/x]

where X is a new variable.

Closure Rule:
σ(A)

¬σ(A)

⊥
(σ a substitution)

apply σ to the whole tableau.

δ-rule (existential): ∃x : F

F [f(free(F))/x]

¬∀x : F

¬F [f(free(F))/x]

where f is a new Skolem function symbol.
Note: δ-Rule according to Reiner Hähnle, Peter H. Schmitt: The Liberalized delta-Rule in
Free Variable Semantic Tableaux. J. Autom. Reasoning 13(2): 211-221 (1994)

533

RESULT

Definition 9.6
A branch T in a tableau T is closed, if it contains the formula ⊥.
A tableau T is closed if every branch is closed. ✷

CORRECTNESS

Definition 9.7
A Tableau T is satisfiable it there exists a structure S = (I,D) such that for every assignment
β of the free variables there is a branch T in T such that S |=β T holds. ✷

Theorem 9.3
If a tableau T is satisfiable, and T ′ is obtained from T by application of one of the above
rules, then T ′ is also satisfiable. ✷

Examples, Proof: to do in the lecture, sketch of two cases on Slide 535.

Issues: completeness of the method (only possible for decidable logics) and termination of
the algorithm: how to detect when a tableau cannot be closed, and to restrict the expansion to
promising rule applications.

534

CORRECTNESS OF THE FOL TABLEAU CALCULUS: PROOF SKETCH

Assume T satisfiable; T ′ obtained from applying a tableau rule. We show only two cases:

• Disjunction: Application of the rule to a formula of the form A ∨B. There is an
interpretation M such that for each assignments β of free variables, there is some branch
T (= the set of formulas on this branch) such that M |=β T . If T is not the branch of T
that is extended in this step, T does not change. Otherwise, M |=β A ∨B . By definition,
M |=β A or M |=β B. Thus, for (at least one) one of the two branches, T ∗

1 or T ∗
2 obtained

from the application, M |=β T ∗.

• Existential: Application of the rule to a formula of the form ∃y : F (X1, . . . , Xn, y) to a
branch T . Again, consider any β (which assigns β(X1), . . . , β(Xn) to the free variables in
F) such that M |=β T .

This means, for every β(X1), . . . , β(Xn), there is some element of the universe that “fits”
for the existential formula. Extend the signature with a new n-ary “Skolem” function fF
that takes the values of X1, . . . , Xn as input and is interpreted to return the appropriate
element (and that returns an arbitrary value for those β′ where M 6|=β′ T).

The extended branch T ∗ appends F (X1, . . . , Xn, fF (X1, . . . , Xn)) to T .

For the extended interpretation M′ (which is the same as M except for the new function),
M′ |=β T ∗ whenever M |=β T .

535

TABLEAU CALCULUS: EXAMPLE

Consider again the derivation from Slide 519: Does

Axiomscompany ∧ mg(Alice,Sales). imply Emp(Alice)?

• start the tableau with Axiomscompany, mg(Alice,Sales), and the negated claim
¬Emp(Alice),

• see tableau next slide.

• this example: follow human reasoning:

– the proof steps are known,

– “apply” ∀y, d : (mg(y, d) → wf(y, d)) with y/Alice, d/Sales, “obtain” wf(Alice,Sales)

– “apply” ∀x, d : (wf(x, d) → (Emp(x) ∧ Dept(d))) for x/Alice, d/Sales and obtain
Emp(Alice).

• the tableau illustrates the application of “rules”:

– close left branch “not body” immediately, propagate closure substitution to the right
branch.

⇒ illustrative, but naive example driven by human forward reasoning.

536

Tableau Calculus: Example
∀y, d : (mg(y, d) → wf(y, d))

∀x, d : (wf(x, d) → (Emp(x) ∧ Dept(d)))

mg(Alice,Sales)

¬Emp(Alice) (∗∗)
|

mg(Y1, D1) → wf(Y1, D1)

/

¬mg(Y1, D1)

✷{Y1 → Alice, D1 → Sales}

\
wf(Y1, D1)

wf(Alice,Sales)

|
wf(X2, D2) → (Emp(X2) ∧ Dept(D2)))

/

¬wf(X2, D2)

✷{X2 → Alice, D2 → Sales}

\
Emp(X2) ∧ Dept(D2)

Emp(Alice) ∧ Dept(Sales)

Emp(Alice) (∗∗)
Dept(Sales)

✷(∗∗)

537

Automated Reasoning

• do not close branches immediately by replacing variables

– if there are multiple possible closing substitutions, keep the variable until the whole
tableau can be closed,

• this also illustrates the use of skolem functions better.

EXAMPLE: TABLEAU EXPANSION FOR AN EXISTENTIAL VARIABLE

Consider again the Company scenario. Show: for every employee x, there is an employee y

(x = y allowed) such that sub(x, y) holds. (sketch: for every employee x there is a at least a
“primary” department fdept(x) where this person works, and every department d has a
manager fmg(d) that manages the department and that thus is a subordinate of x).

Note that in case that x works in several departments, any of them can be chosen for fdept(x).
e is subordinate to fmg(fdept(x)).

Tableau: next slide.

• again: followed human reasoning steps.

• automated reasoning: how to choose which axioms to use?

538

∀x : (Emp(x) → ∃d : wf(x, d))

∀d : (Dept(d) → ∃m : mg(m,d))

∀x, d : (wf(x, d) → (Emp(x) ∧ Dept(d))) ,

∀x, y, d : wf(x, d) ∧ mg(y, d) → sub(x, y)

∃e : Emp(e) ∧ ¬∃y : sub(e, y) claim – refute it

|
Emp(e0) ∧ ¬∃y : sub(e0, y) e0 from Skolemization

Emp(e0)

¬∃y : sub(e0, y)

¬sub(e0, Y0)

|
Emp(X1) → ∃d : wf(X1, d))

/

¬Emp(X1)

close that only later ...

\
∃d : wf(X1, d))

wf(X1, fdept(X1))

wf(X2, D2) → (Emp(X2) ∧ Dept(D2)))

/

¬wf(X2, D2)

✷ {X2 → X1, D2 → fdept(X1)

\
Emp(X2) ∧ Dept(D2)

Emp(X1)

Dept(fdept(X1))

/

Dept(D3) → ∃m : mg(m,D3))

/

¬Dept(D3)

✷ {D3 → fdept(X1)}

\
∃m : mg(m,D3))

mg(fmgr(D3), D3)

... and now replace D3

/

mg(fmgr(fdept(X1)), fdept(X1))
/

(wf(X4, D4) ∧ mg(Y4, D4)) → sub(X4, Y4)

/

¬(wf(X4, D4) ∧ mg(Y4,D4))

/ \
¬wf(X4, D4) ¬mg(Y4, D4)

✷{X4 → X1,

D4 → fdept(X1)}
✷{Y4 → fmgr(fdept(X1)),

D4 → fdept(X1)}

\
sub(X4, Y4)

sub(X1, fmgr(fdept(X1)))

|
close now everything by

{X1 → e0,
Y0 → fmgr(fdept(e0))}

539

TABLEAU CALCULUS: EXAMPLE

Consider again the tableau proof from Slide 536:

Does Axiomscompany ∧ mg(Alice,Sales) imply Emp(Alice)?

• again, start the tableau with Axiomscompany, mg(Alice,Sales), and the negated claim
¬Emp(Alice).

• automated reasoning: how to choose which axioms to use?

• consider the “goal” ¬Emp(Alice):
clearly, some formula (here: rule) that derives Emp(Alice) is needed. Start with
expanding ∀x, d : (wf(x, d) → (Emp(x) ∧ Dept(d))).

• close the right branch with x/Alice, get a new “goal” ¬wf(Alice, D) in the left branch. Now,
some formula (here: rule) that derives wf(Alice, _) is needed. Expand
∀y, d : (mg(y, d) → wf(y, d)).

• see tableau next slide.

540

Tableau Calculus: Example
Axiomscompany

mg(Alice,Sales)

¬Emp(Alice) (∗∗)
|

∀x, d : (wf(x, d) → (Emp(x) ∧ Dept(d)))

wf(X1,D1) → (Emp(X1) ∧ Dept(D1)))

/

¬wf(X1, D1)

|
¬wf(Alice, D1)

∀y, d : (mg(y, d) → wf(y, d))

mg(Y2, D2) → wf(Y2, D2)

/

¬mg(Y2, D2)

|
¬mg(Alice, D1)

✷{D1 → Sales}

\
wf(Y2, D2)

✷{Y2 → Alice, D2 → D1}

\
Emp(X1) ∧ Dept(D1)

Emp(X1) (∗∗)
Dept(D1)

✷{X1/Alice}(∗∗)

541

Comments

Consider again the tableaux from Slides 537 and 541.

• both used only formulas of the form P → Q where P and Q are conjunctions,

– forward reasoning: close left branch immediately,

– backward reasoning: close right branch immediately,

⇒ linear proofs (if the correct rule is always chosen)

⇒ preview:
the resolution calculus provides an efficient calculus for such cases where only rules are
used (Datalog)

• tableaux have higher expressiveness: can handle full disjunction etc.:
Description Logics and OWL (Semantic Web) use tableaux

542

NON-CLOSED TABLEAUX: (TYPICAL) SAMPLE MODELS

Is the axiom ∀x : ¬(p(x) ∧ q(x)) together with the “database” {p(a), q(b)} consistent?
p(a)

q(b)

∀x : ¬(p(x) ∧ q(x))

¬(p(X1) ∧ q(X1))

/

¬p(X1)

✷ {X1 → a}

\
¬q(X1)

¬q(a)

¬(p(X2) ∧ q(X2))

/

¬p(X2)

¬p(b)

\
¬q(X2)

✷ {X2 → b}

• there is no way to close the tableau

• its non-closed path describes a model of the input formula
(where ¬q(a) and ¬p(b) hold which are not specified in the database – open world
reasoning)

543

TABLEAU CALCULI: APPLICATION FOR QUERY ANSWERING

Consider the database {∀x : (p(x) → q(x)), p(a), q(b)} and the query ?− q(X).

∀x : (p(x) → q(x))

p(a)

q(b)

¬q(X) add the negated query with a free variable

• collect all substitutions of X that can be used to close the tableau.

• note: the substitution can comprise a the application of a Skolem function. Then, the
“answer” can only be described as a thing that satisfies a certain existential formula.

Consider ∀x : (person(x) → (∃y : person(y) ∧ father(x, y))),
∀x, y, z : ((father(x, y) ∧ father(y, z)) → grandfather(x, z)),
person(john), person(jack), father(john,jack) and the query ?- grandfather(john,X).

544

TABLEAU CALCULI IN GENERAL

• intuitive idea

• can be designed in this way for any logic (modal logics, description logics etc.)

• implementations use more efficient heuristics

Examples + Exercises

• prove that
∀x : ((p(x) → q(x)) ∧ (q(x) → r(x)))) |= ∀x : (p(x) → r(x))

and
∀x : ((p(x) → q(x)) ∧ (q(x) → r(x)))) |= (p(a) → r(a))

• Consider the italian-vs-english ontology from Slide 546. Consider the statement “all
Italians are lazy”. Prove it or give a counterexample.

• Consider the italian-professors ontology from Slide 547. Is there anything interesting to
prove?

545

EXAMPLE: ITALIANS AND ENGLISHMEN

Person

Italian English

Lazy LatinLover Gentleman Hooligan

{disjoint}

{disjoint,covering}

Exercise: write down as concise as possible everything that is implied by this ontology in text,
set theory and first-order logic.

[by Enrico Franconi, REWERSE Summer School 2005]

[see Slide 548 for an excerpt and a relevant proof]

546

.

EXAMPLE: ITALIAN PROFESSORS

Italian

Lazy Mafioso LatinLover ItalianProf

{disjoint,complete}

disjoint

disjoint

Exercise: write down as concise as possible everything that is implied by this ontology in text,
set theory and first-order logic.

[by Enrico Franconi, REWERSE Summer School 2005]

547

Tableau Proof (Example)

Tableau for the italian-vs-english ontology from Slide 546 and
the statement “all Italians are lazy”.

∀x : italian(x) → ¬english(x) [1]

∀x : english(x) → ¬italian(x) [2]

∀x : italian(x) → (lazy(x) ∨ latinlover(x)) [3]

∀x : lazy(x) → ¬latinlover(x)) [4]

∀x : latinlover(x) → ¬lazy(x) [5]

∀x : latinlover(x) → gentleman(x) [6]

∀x : gentleman(x) → english(x) [7]

∃x : italian(x) ∧ ¬lazy(x) [8] (negation of the claim)

| (skolemization of [8])

italian(c) ∧ ¬lazy(c)

italian(c)

¬lazy(c)

| (use [3])

∀x : italian(x) → (lazy(x) ∨ latinlover(x))

italian(X1) → (lazy(X1) ∨ latinlover(X1))

/

¬italian(X1)

✷ {X1 → c}

\
lazy(X1) ∨ latinlover(X1)

lazy(c) ∨ latinlover(c)

/

lazy(c)

✷

\
latinlover(c)

Continue right branch using [6], [7] and finally [1] or [2].

548

TABLEAUX AND CONJUNCTIVE QUERY ANSWERING

“All organizations that have their headquarters in the capital of a European member country”

Using a simplified Mondial signature:

F (org) = ∃cty, ctry(headq(org, cty, ctry) ∧ capital(ctry, cty) ∧
enc(ctry, “Europe”) ∧ member(ctry, org))

Start the tableau with ¬F (X).

549

¬∃cty, ctry(headq(org, cty, ctry) ∧ capital(ctry, cty) ∧ enc(ctry, “Europe”) ∧ member(ctry, org))

|
¬(headq(Org,Cty, Ctry) ∧ capital(Ctry,Cty) ∧ enc(Ctry, “Europe”) ∧ member(Ctry,Org))

(β-rule + reordering)

/ / \ \
¬enc(Ctry, “Europe”) ¬capital(Ctry,Cty) ¬headq(Org,Cty, Ctry) ¬member(Ctry,Org))

• Close left branch by “local answer set” Ctry/’D’, Ctry/’B’, etc.

• propagate answer set to 2nd branch, close for each Ctry with appropriate value for Cty,
e.g. (Ctry/’D’, Cty/’Berlin’) and (Ctry/’B’, Cty/’Brussels’).

• propagate answer sets to 3rd branch, close for each (Ctry, Cty) with appropriate
organization: (Org/’EU’, Ctry/’B’, Cty/’Brussels’),
(Org/’NATO’, Ctry/’B’, Cty/’Brussels’), – no tuple for ’Berlin’.

• propagate answer sets to 4th branch, closes if Ctry is a member of Org.

⇒ in this “simple” case (conjunctive query), the evaluation results in
(σ[Continent=’Europe’](enc)) ⊲⊳ capital ⊲⊳ headq ✄< member

Exercise: do the same for “. . . of a European or Asian member country”.

550

Tableaux and body → head Rules

Consider again the tableaux from Slides 537 and 541.

• all used axioms are of the form ∀x1, . . . , xn : body → head,

• plus a (negated) query (“goal”) ¬F (X̄),

• standard tableau pattern:

∀x1, . . . , xn : body(x1, . . . , xn) → head(x1, . . . , xn)

body(X1, . . . , Xn) → head(X1, . . . , Xn)

¬body(X1, . . . , Xn) ∨ head(X1, . . . , Xn)

/ \
¬body(X1, . . . , Xn) head(X1, . . . , Xn)

• close one branch immediately (forward: left, backward: right),
obtain a set of tuples binding (X1, . . . , Xn) (i.e., that satisfy body), propagate to the other
branch,

• continue with next axiom.

• Again, the tableau is closed for all bindings of X̄ that are answers.

551

SUMMARY: TABLEAU REASONING

• covers full first-order logic,

• theoretically incomplete,

• most practical cases result in acceptable performance,

• reasons for more complex tableaux:

– search for proof tableaux/trees

– disjunction (explore several branches where only one contributes)

– multiple instantiations of universally quantified variables

* needed for self-joins, transitivity,

* especially in combination with skolemized ∃-terms.

• simple patterns (rules, conjunctive body/head) result in effectively nearly-algebraic
evaluation.

• But: for simple patterns one does not need a full first-order reasoner.

552

PROPERTIES OF FIRST-ORDER LOGIC DECISION PROCEDURES

• calculi (=algorithms) for checking if F |= G

(often by proving that F ∧ ¬G is unsatisfiable)

• write F ⊢C G if calculus C proves that F |= G.

• Correctness of a calculus: F ⊢C G ⇒ F |= G

• Completeness of a calculus: F |= G ⇒ F ⊢C G

• there are complete calculi and proof procedures for propositional logic (e.g., Tableau
Calculus or Model Checking)

• if a logic is undecidable (like first-order logic) then there cannot be any complete calculus!

What to do?

⇒ use an undecidable logic and a correct, but (theoretically) incomplete calculus.

• e.g. Software Verification.

⇒ use a decidable logic (i.e., weaker than FOL).

• often a restricted set of formulas (Description Logic [Semantic Web], Datalog Variants
[Database Theory])

553

ASIDE: WHY “FIRST-ORDER”-LOGIC?

Recall:

• there is a domain D. Functions and precidates talk about elements of D.

• there is no way to talk about functions or predicates.

Higher-Order-Logics

• the elements of the domain D are “first-order things”

• sets, functions and predicates are “second-order things”

• predicates about predicates are higher-order things

• higher-order logics can be used for reasoning about metadata

Example

• Transitivity as a property of predicates is second order:
∀p : transitive(p) → (∀x, z : (∃y : (p(x, y) ∧ p(y, z)) → p(x, z)))

Note that transitivity of a certain predicate is first-order:
∀x, z : ((∃y : (ancestor(x, y) ∧ ancestor(y, z))) → ancestor(x, z))

554

Aside: Induction Axiom as Example for Second Order Logic

• a well-founded domain d (i.e., a finite set of minimal elements (for which min(d,x) holds)
from which the domain can be enumerated by a successor predicate
(Natural numbers: 1, succ(i,i+1))

• well-founded: unary 2nd-order predicate over sets

• The induction axiom as a 2nd order logic formula:

∀p, d : (well-founded(d) ∧ (∀x : min(d, x) → p(x)) ∧ (∀x, y : p(x) ∧ succ(x, y) → p(y))) →
(∀x : d(x) → p(x))

For natural numbers:

∀p : (p(1) ∧ (∀x : p(x) → p(x+ 1))) → (∀x ∈ IN : p(x))

555

Aside: Paradoxes can be formulated in 2nd Order Logic

“X is the set of all sets that do not contain themselves”

X = {z : z /∈ z}
A set “is” a unary predicate: X(z) holds if z is an element of X
(for example, classes, i.e., Person(x), City(x))

Logical characterization of X: X(z) ↔ ¬z(z),

applied to z := X – is X in X? X(X) ↔ ¬X(X).

... can neither be true nor false.

How to avoid paradoxes

Paradoxes can be avoided if each variable either ranges over first-order things (elements of
the domain) or over second-order things (predicates).

556

