
Chapter 8
Relational Database Languages:
Relational Calculus
Overview
• the relational calculus is a specialization of first-order logic, tailored to relational

databases.

• straightforward: the only structuring means of relational databases are relations – each
relation can be seen as an interpretation of a predicate.

• there exists a declarative semantics.

Relational Calculus vs FOL

• FOL allows for reasoning, based on a model theory,

• the relational calculus does not require model theory,

• it is only concerned with validity of a formula in a given, fixed model (the database state).

397

8.1 Bridge Section: Motivation and Preparation for the
“Deductive Databases” Lecture

• The lecture “Database Theory” or “Deductive Databases” (MSc or advanced BSc) builds
upon the “Introduction to Databases” lecture and requires knowledge about First-Order
Logic (e.g., courses “Formal Systems” or “Artificial Intelligence”)

• for a diagram with the database concepts, notions and buzzwords related to the DBIS
lectures, see
https://www.dbis.informatik.uni-goettingen.de/Teaching/dbnotions.pdf

• This section summarizes that knowledge and motivates the main idea of the lecture.

• a database can be seen as a purely relational FOL structure

– predicate symbols of different arities,

– only 0-ary functions = constants

* in relational DB: these are the literals (numbers, strings, dates ...)

* in object-relational DB: also object identifiers

* in RDF: also URIs, which basically serve as object identifiers

398

Computer Science: Theoretical and Practical Aspects – illustrated with Deductive Databases
CS in Practice: Theoretical CS, maths, etc.:

Databases
Software Engineering,

Programming languages, ...

Formal Methods:
formalization of

commonsense reasoning

metalevel:
properties of the FMs

modeling,
symbolic reasoning,
deduction/calculi,
parsing, grammars,
semantics, ...

application-specific
formal methods:
• relational algebra
• normalization theory
• transaction theory

• polynomial
• equalities, complexity
→ optimization

SQL phil. & math. logic in general

• first-order logic • undecidable

• relational calculus • polynomial
• Datalog:

queries+rules
deductive DB∗

• polynomial,
• up to exponential

∗ I did not place deductive DB to completely practical CS

399

Relational Algebra, First-Order Logic, Relational Calculus, Datalog

Relational Model

named tables
n named columns (n ≥ 1)

First-Order Logic

n-ary predicates and functions
p(...)/n, f(...)/n (n ≥ 0)
S |= ψ S satisfies ψ
ϕ |= ψ ϕ entails ψ

Relational Algebra

n-tuples with named columns

π, σ, ρ, ⊲⊳, \,∪,∩

≡

(slotted) Relational Calculus

slotted n-records (n ≥ 1)
constants (data values)
dot-syntax (e.g. country.name)
∧,∨,¬, ∃,∀ over tuples
S |= ψ

≡

(positional) Relational Calculus

positional n-tuples/
n-ary predicates (n ≥ 1)

constants (data values)
∧,∨,¬, ∃, ∀ over values
S |= ψ , (S, β) |= ψ

SQL

tables with named columns

π, σ, ρ, ⊲⊳, \,∪,∩, ∃

Datalog

positional n-ary predicates (n ≥ 1)
Herbrand-style
queries ?− body
logical rules head← body

allows recursion/transitive closure

((

π, σ, ρ, ⊲⊳, \,∪,∩ tuple vars ∃,¬∃ ∧,→, ∃,¬∃ free vars

400

Declarative Querying & Algebraic Semantics

Query: all pairs country (name) and organization (name) such that the country is a member of
the organization.

SELECT c.name, o.name
FROM country c, organization o
WHERE (c.code, o.abbreviation) IN (SELECT country, organization

FROM ismember)

π[cname, oname]

⊲⊳

×

ρ[name→ cname,
code→ country]

country

ρ[name→ oname,
abbreviation→ organization]

organization

ismember

170
250

42500
10000

4.25 · 109 tests, 10000 results

• declarative query in SQL and as algebra tree (bottom-up inductive semantics)

• actual naive evaluation would be inefficient.

401

Declarative Querying & Algebraic Semantics

• algebraically equivalent rewriting of the tree,

• efficient evaluation using internal algorithms (more efficient, but correct wrt. the
set-oriented algebraic semantics of the operators) and indexes (physical layer):

• start with ismember, search ismember.country→country.code primary key index,
then join results.organization→organization.abbreviation primary key index

π[cname, oname]

⊲⊳

⊲⊳

ρ[name→ cname,
code→ country]

country

ismember

ρ[name→ oname, abbreviation→ organization]

organization

•❛❛✦✦❵❵✥✥
❵❵✥✥

•✦✦❛❛✥✥❵❵
✥✥❵❵

10000 results

10000

10000 results

402

RELATIONAL CALCULUS: LOGIC-BASED DECLARATIVE QUERYING

• positional matching of predicate patterns:

q(pop) ≡ ∃ cc, cap, capprov, area, country(“Germany”, cc, cap, capprov, pop, area).

q(cn, on) ≡ ∃ cc, cap, capprov, cpop, ca, abbrev, hq, hqc, hqprov, est, type :
country(cn, cc, cap, capprov, cpop, ca) ∧
organization(abbrev, on, hq, hqc, hqprov, est) ∧
ismember(cc, abbrev, type)

• purely declarative

• “conjunctive query”, translatable to relational algebra SPJR-query
(selection-projection-renaming-join)

• free variables (here, cn, on) create the result tuples,

answer = { {cn/“Germany”, on/“Europ.Union”}, {cn/“Germany”, on/“North.Atl.Tr.Org”}, . . . ,
{cn/“France”, on/“Europ.Union”}, {cn/“France”, on/“North.Atl.Tr.Org”}, . . . ,
...

}

403

Logic-Based Declarative Querying: Negation – not exists

Query: all (names of) countries that are not located in Europe:

SELECT c.name
FROM country c
WHERE NOT EXISTS (SELECT *

FROM encompasses
WHERE e.continent='Europe'
AND e.country = c.code)

q(cn) ≡ ∃ cc, cap, capprov, cpop, ca
country(cn, cc, cap, capprov, cpop, ca) ∧ ¬∃perc : encompasses(cc, “Europe”, p)

π[name]

⊲⊳

country minus

ρ[code→ country]

π[code]

country

π[country]

σ[continent = “Europe”]

encompasses

π[name]

antijoin

ρ[code→ country]

π[code]

country

π[country]

σ[continent = “Europe”]

encompasses

¬

antijoin:
successful
if not found

404

Closed-World-Assumption: Negation – not exists

• In databases, all tuples that are not there are implicit negative knowledge

• query from previous slide:
“all countries such that there is no tuple in the the database that states that the country
would be located in Europe”

⇒ “Negation by default”

⇒ consistent with the assumption that the database contains complete knowledge.

• as a first-order/predicate logic interpretation, for all answer bindings β (that bind the
variable cn),

(S, β) |= ∃ cc, cap, capprov, cpop, ca :

country(cn, cc, cap, capprov, cpop, ca) ∧ ¬∃perc : encompasses(cc, “Europe”, p)

• let ϕ the conjunction of all facts (=atoms) that are true in the database,

ϕ 6|= ∃ cc, cap, capprov, cpop, ca :

country(cn, cc, cap, capprov, cpop, ca) ∧ ¬∃perc : encompasses(cc, “Europe”, p)

since ¬∃perc : encompasses(cc, “Europe”, p) cannot logically be concluded
(“Open World”)

405

Negation: Safety of Variables

Consider just a binary isMember relationship for mondial without the membership type:

q(c) ≡ ¬ismember(c, “EU”)

• what are the answers?

• “USA”, “AUS”, . . . , but also “Moscow”, “Berlin”, 356000, 3.1415 etc., infinitely many, for
which the tuple is not true.

⇒ depends on the considered domain.

⇒ every query must be safe, i.e., the variables must have a positive occurrence that restricts
the possible values:

q′(c) ≡ ∃ name, c, cap, capprov, cpop, ca :

country(name, c, cap, capprov, cpop, ca) ∧ ¬ismember(c, “EU”)

406

Rule-Based Languages

head← body

• SQL: body = FROM ... WHERE ...,

head = SELECT ..., DELETE

similar: MODIFY <relname> WHERE ..., INSERT INTO ... (SFW ...)

• SQL views: derive new tuple(s) when body is satisfied

• An SQL view must not be recursive (i.e., contain itself in the “body” part)

Datalog: Queries and Logical Rules

?- country(N, _C, _Cap, _CapProv, _Pop, _Area), not isMember(_C, 'EU', _).

Two rules that together compute for each river, to which sea its water finally flows:

:- include(mondial).
tc(N,S) :- river(N,R,L,S,_,_,_,_,_,_,_,_,_), not (S = null).
tc(N,S) :- river(N,R,L,S2,_,_,_,_,_,_,_,_,_), not (R = null), tc(R,S).

[Filename: Datalog/tcRivers.P]

• Declarative “fixpoint” semantics: apply rules bottom-up as long as possible.

407

The Universal Quantifier in Query Languages

• SQL: EXISTS/NOT EXISTS has been integrated into the SQL syntax
(implemented via Join, Minus, Anti-Join)

• The universal quantifier must be rewritten as NOT EXISTS ... WHERE NOT EXISTS ...

• the relational calculus obviously allows it:

q(cn) ≡ ∃ cc, cap, capprov, pop, area :

(country(cn, cc, cap, capprov, pop, area) ∧
∀n, prov, cpoplat, long, el : (city(n, cc, prov, cpop, lat, long, el)→ cpop > 1000000))

• Datalog: universal quantifier must be encoded into rules

• XQuery (query language for XML data) has it:

//country[.//city/population
and
(every $cp in .//city/population satisfies $cp > 1000000)]/name

• note: null values and missing values (in XML) have been ignored here.

408

TYPES OF KNOWLEDGE

• (positive) atomic facts:

– DB: tuples in an n-column table of the database

– FOL: S = (I,D): for an n-ary predicate, I(p) ⊆ Dn

– atoms in a formula

⇒ conjunctions/sets of atomic facts

• negative atomic facts/knowledge:

– rather “implicit”: the n-tuples “not there” in a DB or not in I(p).

⇒ queries under CWA and S |= ϕ.

• atomic positive conclusions: INSERT into DB, Views

• atomic negative conclusions: DELETE, or inconsistencies

409

Disjunctive Knowledge

• “p(x) or q(y) does hold”

• cannot be represented by a database or a single FOL interpretation, only by formulas

⇒ conclusions in “knowledge base”

Disjunctive Knowledge in Human Reasoning: Sudoku

3 ∨ 6

6 here

3!

9

8

7

6

5

4

3

2

1

A B C D E F G H I

6 ∨ 7 B8:6 ∨ H8:6
(and “6” nowhere

else in row 8)7!

6 here

⇒ B8:3 ∨ H8:7

410

Existential Knowledge

• “every country has some city that is its capital (and which is located in this country)”
∀x:country(x)→ ∃y: (city(y) ∧ hasCapital(x, y) ∧ located_in(y, x))

– SQL: country.capital not null and a foreign-key-to-primary-key reference:
country.(code, capital, capprov) references city.(country, name, province)
only as a passive constraint, cannot conclude and insert the city (name is not known)

– ER-Diagram: minCardinality for capital, but not that isCapital ⊆ locatedIn

– OWL/Description Logic: Country ⊑ ∃ hasCapital.City and isCapitalOf ⊑ locatedIn

• “everything which is a parent has some child (which is a person)”
ER Diagram: Parent is a subclass of Person, minCardinality of hasChild is 1
OWL/Description Logic: Parent ≡ ∃hasChild.Person
⇐: SQL: view, FOL: conclude an atom

⇒: SQL: not possible
FOL, e.g. tableau calculus use a skolem function and derive

hasChild(alice, fchild(alice)) and Person(fchild(alice))

• “every person has two parents which are persons”

– would create/insert infinitely many new objects→ needs a blocking strategy

– in general, created objects may be equal or not (tableau calculus: → branching)

411

