Chapter 8
Relational Database Languages:

Relational Calculus

Overview

* the relational calculus is a specialization of first-order logic, tailored to relational
databases.

« straightforward: the only structuring means of relational databases are relations — each
relation can be seen as an interpretation of a predicate.

* there exists a declarative semantics.

Relational Calculus vs FOL
» FOL allows for reasoning, based on a model theory,

+ the relational calculus does not require model theory,

* itis only concerned with validity of a formula in a given, fixed model (the database state).

397

8.1 Bridge Section: Motivation and Preparation for the
“Deductive Databases” Lecture

« The lecture “Database Theory” or “Deductive Databases” (MSc or advanced BSc) builds
upon the “Introduction to Databases” lecture and requires knowledge about First-Order
Logic (e.g., courses “Formal Systems” or “Artificial Intelligence”)

« for a diagram with the database concepts, notions and buzzwords related to the DBIS
lectures, see
https://www.dbis.informatik.uni-goettingen.de/Teaching/dbnotions.pdf

 This section summarizes that knowledge and motivates the main idea of the lecture.

+ a database can be seen as a purely relational FOL structure
— predicate symbols of different arities,

— only O-ary functions = constants

= in relational DB: these are the literals (numbers, strings, dates ...)
= in object-relational DB: also object identifiers
« in RDF: also URIs, which basically serve as object identifiers

398

Computer Science: Theoretical and Practical Aspects — illustrated with Deductive Databases

CS in Practice: Theoretical CS, maths, etc.:
Databases .
. | Formal_l\/lej[hods. metalevel:
Software Engineering, formalization of :
. : properties of the FMs
Programming languages, ... commonsense reasoning
modeling,

symbolic reasoning,
deduction/calculi,
parsing, grammars,
semantics, ...

application-specific

formal methods:

e relational algebra e polynomial
e equalities, complexity
— optimization

SQL phil. & math. logic in general
kofirst-order R)gic/ e undecidable
e relational calculus e polynomial
e Datalog:
queries+rules e polynomial,
deductive DB* e up to exponential

* | did not place deductive DB to completely practical CS

399

Relational Algebra, First-Order Logic, Relational Calculus, Datalog

Relational Model First-Order Logic
named tables n-ary predicates and functions
n named columns (n > 1) p(...)/n, f(...)/n (n > 0)
N SEv S satisfies ¢
AN v EY @entailsy
N
R
(slotted) Relational Calculus (positional) Relational Calculus
Relational Algebra slotted n-records (n > 1) positional n-tuples/
]) — | constants (data values) — | n-ary predicates (n > 1)
n-tuples with named columns dot-syntax (e.g. country.name) constants (data values)
T, 0, p,5d,\,U,N AV, —, 3,V over tuples A, V, =, 3,V over values
Sk SEY ., (S8 EY
SQL Datalog

tables with named columns positional n-ary predicates (n > 1)
Herbrand-style
queries 7 — body
logical rules head < body
allows recursion/transitive closure

TF,O',p,DQ,\,U,ﬂ, 3

400

Declarative Querying & Algebraic Semantics
Query: all pairs country (name) and organization (name) such that the country is a member of
the organization.

SELECT c.name, o.name

FROM country c, organization o

WHERE (c.code, o.abbreviation) IN (SELECT country, organization
FROM ismember)

mw[chame, oname]
I
> 4.25 - 107 tests, 10000 results
42500
ismember 10000

X
250 — T~
p[name — cname, plname — oname, 170
code — country| abbreviation — organization]

| L
country organization
» declarative query in SQL and as algebra tree (bottom-up inductive semantics)

+ actual naive evaluation would be inefficient.

401

Declarative Querying & Algebraic Semantics
« algebraically equivalent rewriting of the tree,

« efficient evaluation using internal algorithms (more efficient, but correct wrt. the
set-oriented algebraic semantics of the operators) and indexes (physical layer):

« start with ismember, search ismember.country—country.code primary key index,
then join results.organization—organization.abbreviation primary key index
mw[chame, oname]

I
>JI_ 10000 results

| >

10000 reswuits o o
/D<l p[name — [oname, abbreviation — organization]
p[name — cname, 10000 |

ismember organization

code — country]

|
country Z_>e

402

RELATIONAL CALCULUS: LoGIc-BASED DECLARATIVE QUERYING

* positional matching of predicate patterns:
q(pop) = 3 ce, cap, capprov, area, country(“Germany”; ce, cap, capprov, pop, area).
q(cn,on) = 3 ec, cap, capprov, cpop, ca, abbrev, hq, hqe, hgprov, est, type :
CounﬁyﬁvuCC¢xuxcappr0v¢nxnnca)A
organization(abbrev, on, hq, hqc, hqprov, est) A
ismember(cc, abbrev, type)
* purely declarative

« “conjunctive query”, translatable to relational algebra SPJR-query
(selection-projection-renaming-join)

« free variables (here, cn, on) create the result tuples,

answer = { {cn/“Germany”, on/“Europ.Union”}, {cn/“Germany”, on/“North.Atl. Tr.Org"}, . ..

{en/“France”; on/“Europ.Union”}, {cn/“France”, on/“North.Atl.Tr.Org"}, . . .,

Y

403

Logic-Based Declarative Querying: Negation — not exists
Query: all (names of) countries that are not located in Europe:

SELECT c.name
FROM country c
WHERE NOT EXISTS (SELECT *
FROM encompasses
WHERE e.continent='Europe'
AND e.country = c.code)

q(en) = 3 ce, cap, capprov, cpop, ca

country(cn, ce, cap, capprov, cpop, ca) A —Iperc : encompasses(cc, “Europe”, p)

w[name] m[name] antijoin:
qu n tz’!j .~ successful
if not found
y \\\ — >~
country minus plcode — countfy| 7[country]
— | o
plcode — country] m[country] m[code] o[continent = “Europe”]
| | | I
m[code] o[continent = “Europe”] country encompasses
| I
country encompasses

404

Closed-World-Assumption: Negation — not exists
* In databases, all tuples that are not there are implicit negative knowledge

« query from previous slide:
“all countries such that there is no tuple in the the database that states that the country
would be located in Europe”

= “Negation by default”
= consistent with the assumption that the database contains complete knowledge.

* as a first-order/predicate logic interpretation, for all answer bindings 5 (that bind the
variable cn),
(S,8) & 3 ce, cap, capprov, cpop, ca :
country(cn, ce, cap, capprov, cpop, ca) A —~Iperc : encompasses(cc, “Europe”, p)

* let p the conjunction of all facts (=atoms) that are true in the database,
w = 3 ce, cap, capprov, cpop, ca :
country(cn, ce, cap, capprov, cpop, ca) A ~Iperc : encompasses(cc, “Europe”, p)

since —dperc : encompasses(cc, “Europe”, p) cannot logically be concluded
(“Open World”)

405

Negation: Safety of Variables

Consider just a binary isMember relationship for mondial without the membership type:
q(c) = —ismember(c, “EU”)
« what are the answers?

« “USA”, “AUS”, ..., but also “Moscow”, “Berlin”, 356000, 3.1415 etc., infinitely many, for
which the tuple is not true.

= depends on the considered domain.

= every query must be safe, i.e., the variables must have a positive occurrence that restricts
the possible values:

¢ (¢) = I name,c,cap, capprov, cpop, ca :

country(name, ¢, cap, capprov, cpop, ca) A ~ismember(c, “EU”)

406

Rule-Based Languages
head <+ body

- SQL: body = FROM ... WHERE ...,
head = SELECT ..., DELETE
similar: MODIFY <relname> WHERE ..., INSERT INTO ... (SFW ...)

« SQL views: derive new tuple(s) when body is satisfied

« An SQL view must not be recursive (i.e., contain itself in the “body” part)

Datalog: Queries and Logical Rules

?- country(N, _C, _Cap, _CapProv, _Pop, _Area), not isMember(_C, 'EU', _).

Two rules that together compute for each river, to which sea its water finally flows:

:- include(mondial).
tc(N,S) :- river(N,R,L,S,_,_,_s_»s_s_»_s_>_), not (S = null).
tc(N,S) :- river(N,R,L,S2,_,_,_s_s_>_s_>_5_), not (R = null), tc(R,S).

[Filename: Datalog/icRivers.P]

» Declarative “fixpoint” semantics: apply rules bottom-up as long as possible.

407

The Universal Quantifier in Query Languages

« SQL: EXISTS/NOT EXISTS has been integrated into the SQL syntax
(implemented via Join, Minus, Anti-Join)

» The universal quantifier must be rewritten as NOT EXISTS ... WHERE NOT EXISTS ...
» the relational calculus obviously allows it:
qg(en) = 3 cc, cap, capprov, pop, area :
(country(cn, cc, cap, capprov, pop, area) A

Vn, prov, cpoplat, long, el : (City(n, cc, prov, cpop, lat, long, el) — cpop > 1000000)

Datalog: universal quantifier must be encoded into rules

» XQuery (query language for XML data) has it:

//country[.//city/population
and

(every $cp in .//city/population satisfies $cp > 1000000)]/name

note: null values and missing values (in XML) have been ignored here.

408

TYPES OF KNOWLEDGE

(positive) atomic facts:

— DB: tuples in an n-column table of the database

- FOL: § = (I, D): for an n-ary predicate, I(p) C D"
— atoms in a formula

= conjunctions/sets of atomic facts

* negative atomic facts/knowledge:
— rather “implicit”: the n-tuples “not there” in a DB or not in I(p).

= queries under CWA and S = ¢.

« atomic positive conclusions: INSERT into DB, Views

atomic negative conclusions: DELETE, or inconsistencies

409

Disjunctive Knowledge
* “p(z) or q(y) does hold”
» cannot be represented by a database or a single FOL interpretation, only by formulas

= conclusions in “knowledge base”

Disjunctive Knowledge in Human Reasoning: Sudoku

9
8 I
3\/6/72 :\6\/7 B8:6 Vv H8:6
/ \ (and “6” nowhere
6 here 7' else in row 8)
g !
3l 4 6 here
3
2
1

A B C D E F G H |
= B8:3 v H8:7

410

Existential Knowledge
 “every country has some city that is its capital (and which is located in this country)”
Y :country(x)— Jy: (city(y) N hasCapital(x,y) N located _in(y, x))

— SQL: country.capital not null and a foreign-key-to-primary-key reference:
country.(code, capital, capprov) references city.(country, name, province)
only as a passive constraint, cannot conclude and insert the city (name is not known)

— ER-Diagram: minCardinality for capital, but not that isCapital C locatedin
— OWL/Description Logic: Country C 3 hasCapital.City and isCapitalOf C locatedIn

« “everything which is a parent has some child (which is a person)”
ER Diagram: Parentis a subclass of Person, minCardinality of hasChild is 1

OWL/Description Logic: Parent = 3hasChild.Person
«<: SQL: view, FOL: conclude an atom

=-: SQL: not possible
FOL, e.g. tableau calculus use a skolem function and derive

hasChild(alice, f.niiqa(alice)) and Person(f.n.iqa(alice))
 “every person has two parents which are persons”
— would create/insert infinitely many new objects — needs a blocking strategy
— in general, created objects may be equal or not (tableau calculus: — branching)

411

