
... now, back into the database area:

Chapter 10
Datalog Knowledge Bases I

In this section:

• Nonrecursive Datalog with Negation:
equivalent to the relational algebra, to the relational calculus and to SQL.

• Stratified Recursive Datalog with Negation
equivalent to the relational algebra or SQL with recursion (e.g., transitive closure)

In later sections:

• the really new things: well-founded and stable model semantics.

557

CONJUNCTIVE QUERIES

• F (X1, . . . , Xn) = ∃Y1, . . . , Ym : p1(. . .) ∧ . . . ∧ pk(. . .) (note constants and variables may
occur in the pi arguments)

• Note: most systems allow also atomic comparisons over built-in datatypes:
F (X1, . . . , Xn) = ∃Y1, . . . , Ym : p1(. . .) ∧ . . . ∧ pk(. . .) ∧ atomic comparisons

• equivalent: SPJR-Algebra (selection, projection, join, renaming)

• SQL: broad SELECT X1,...,Xn FROM p1, . . . , pn WHERE cond

where cond contains the join conditions and selection conditions

• efficient evaluation using indexes etc.

• Restricted expressiveness:

– only very restricted negation (if at all) of the form xiθxj , xiθc where θ ∈ {6=, <,≤, >,≥}
– no negation/set difference,

– no universal quantification,

– no disjunction/set union,

– no recursion/no transitive closure.

558

XSB: LET’S START WITH CONJUNCTIVE QUERIES

• a PROLOG dialect developed at State Univ. of NY at Stony Brook (SUNYSB).
(so one can actually do everything that is allowed in PROLOG, but we use only Datalog)

• XSB extends the original SB-PROLOG with tabled resolution and HiLog (higher-order
logic programming).

• open source: http://xsb.sourceforge.net/

559

Starting XSB at IFI

Installed in the CIP Pool:

• alias xsb=’rlwrap ~dbis/LP-Tools/XSB/bin/xsb’ ← put this into .bashrc

• user@bla:∼$ xsb

[xsb_configuration loaded]
[sysinitrc loaded]
XSB Version 3.3.4 (Pignoletto) of July 2, 2011
[i686-pc-linux-gnu 32 bits; mode: optimal; engine: slg-wam; scheduling: local]
[Patch date: 2011/07/08 04:32:08]
| ?-

• ?- [mondial]. loads the content of a file (from the current directory).

• ?- country(CN,C,Pop,Area,Cap,CapProv). state a query

• <return>to return to XSB shell

• any key + <return>to get next answer

• CTRL-D: leave XSB

560

Datalog Syntax

Consider a CQ with only atoms in the body (i.e., positive!)

F (X1, . . . , Xn) = ∃Y1, . . . , Ym : cq(X1, . . . , Xn, Y1, . . . , Ym)

Write
?- cq(X1, . . . , Xn, _Y1, . . . , _Ym).

where

• the Xi are the free variables,

• replace Yi by _Yi if it occurs in more than one atom,

• replace Yi by _ if it occurs only once (“don’t-care-variables”).

Example: countries whose population is > 1000000 and the capital population is not known:

?- country(CN,C,_Cap,_CapProv,_,_Pop), city(_Cap,C,_CapProv,null,_,_,_),
_Pop > 1000000.

Note: null is not a built-in XSB term, but just a constant like 1, bla, ’Bla’.

561

10.1 Datalog Positive Conjunctive Queries – Formal
Semantics

Definition 10.1
Given a relational schema R and a (safe) “pure” CQ with only relational atoms in the body
(i.e., positive!, no comparisons)

F (X1, . . . , Xn) = ∃Y1, . . . , Ym : r1(ū1) ∧ . . . ∧ rk(ūk) ri ∈ R

whose Datalog syntax is q(X1, . . . , Xn) :- r1(v̄1), . . . , rk(v̄k) .
(note that the v̄j contain Xi and “_Yi”-variables, the “_” don’t-care, and constants),
its answer relation wrt. a database state S is

S(q) := {(β(X1), . . . , β(Xn)) | β(ūi) ∈ S(ri) for all 1 ≤ i ≤ k} .
✷

Proposition 10.1
• S(q) contains only values from ADOM(S ∪ q),

• For positive conjunctive queries, the Datalog semantics coincides with the classical FOL
semantics:

S(q) := {(β(X1), . . . , β(Xn)) | S |=β F (X1, . . . , Xn)} ✷

562

10.2 Positive Datalog: Views as Rules

Conjunctive queries as View Definitions

A Datalog “knowledge base” K (also called a Datalog program) consists of

• facts of the form: r(c1, . . . , cn) (SQL equivalent: the tuples in the database),

• rules of the form p(X1, . . . , Xk)← ∃Xk+1, . . . , Xn : Q(X1, . . . , Xn)

where p is a k-ary predicate and Q is a conjunctive (positive!) query.

– means: “whenever Q(X1, . . . , Xn) holds for some Xk+1, . . . , Xn, also p(X1, . . . , Xk) is
assumed to hold”.

– SQL equivalent: p is a view.

The signature Σ is partitioned into two sets:

• ΣEDB: predicates that occur only in the body of rules
(“extensional database” – the interpretation of these predicates is given as facts in the
knowledge base)

• ΣIDB: predicates that occur in the head (and possibly also in the body) of rules
(“intensional database” – the interpretation of these predicates is derived from the rules)

563

XSB Example

• compiler directive: :- include(filename).
(note: no “-” in the filename allowed)

• comments: %

:- include(mondial).
% if special characters in filename: include('bla-blubb.P')
europeanCountry(C) :- encompasses(C,'Europe',_).
asianCountry(C) :- encompasses(C,'Asia',_).
result(O) :- europeanCountry(C), country(_,C,Cap,CapP,_,_), isMember(C,O,_),

organization(O,_,Cap,C,CapP,_).
result(O) :- asianCountry(C), country(_,C,Cap,CapP,_,_), isMember(C,O,_),

organization(O,_,Cap,C,CapP,_).

[Filename: Datalog/headquartercaps.P]

> xsb
?- [headquartercaps].
?- result(X).
X = EU

564

SEMANTICS OF A DATALOG KNOWLEDGE BASE

The formal semantics is given by Herbrand Interpretations (cf. Slide 497):

Herbrand Interpretation

• the domain consists of constant symbols and datatype literals.

• an interpretation H is explicitly seen as a finite set of ground atoms over the predicate
symbols and the Herbrand Domain:
country(ger,“Germany”,“D”, berlin, 356910,83536115), encompasses(ger, eur, 100).

H |= encompasses(ger,eur,100) if and only if (ger, eur,100) ∈ encompasses

if and only if encompasses(ger, eur,100) ∈ H .

Examples

• {country(ger,“Germany”,“D”, berlin, 356910,83536115), country(aut, “Austria”, “A”,
vienna, 83850,8023244), . . . , border(aut,ger,784), border(aut,hun,366), ...}

• the file mondial.P has the same schema as Mondial for SQL and uses only atomic values
with keys/foreign keys.

565

Three Approaches to Semantics

• a model-theoretic approach (that differs from traditional FOL model theory),

• a fixpoint approach (effectively computable, “bottom-up”),

• a proof-theoretic approach (efficiently computable, “top-down”, same as for PROLOG)

⇒ all of them turn out to be equivalent.

566

10.2.1 The Fixpoint Approach to Positive Datalog

Consider a positive program (i.e., rules without negation).

• facts of the form p(a1, . . . , an) can also be seen as rules:
p(a1, . . . , an) :- true

“if true holds (which is always the case) then also p(a1, . . . , an) must hold”.

• application of rules:

The set of ground atoms that is derivable by a rule H ← B1 ∧ . . . ∧Bk wrt. a given
Herbrand Interpretation H is formally specified as follows:

{ σ(H): σ is a ground substitution and there is a rule

H ← B1 ∧ . . . ∧Bk in P such that σ(B1), . . . , σ(Bk) ∈ H }

Example

Let H contain the facts from mondial.P. The rule

orgOnCont(O,Cont) :- isMember(C,O,_), encompasses(C,Cont,_).

with σ = {C 7→ “D”, O 7→ “EU”, Cont 7→ “Europe”} where isMember(“D”,“EU”,“member”) ∈ H
and where encompasses(“D”,“Europe”,100) ∈ H derives the atom orgOnCont(“EU”,“Europe”).

567

Bottom-Up-Semantics of Positive Datalog Programs

Consider a positive program P (i.e., facts, and rules without negation).

• (ground (i.e. without variables)) facts of the form p(a1, . . . , an),

• (non-ground) rules of the form head :- body.

Definition 10.2 (TP -Operator)
For a (positive) Datalog program P and a set I of ground atoms,

TP (I) := { σ(H): σ is a ground substitution and there is a rule
H ← B1 ∧ . . . ∧Bk in P such that σ(B1), . . . , σ(Bk) ∈ I }

TP (I) is called the “immediate consequence operator” since it takes I and applies the rules
once. T 0

P (I) := I

T 1
P (I) := TP (I)

Tn+1
P (I) := TP (T

n
P (I))

Tω
P (I) :=

⋃

n∈IN

Tn
P (I) infinite union!

• Tω
P := Tω

P (∅) – usually, start with ∅

• Intuition: The set Tω
P contains all ground facts that can be derived from the program.

• note: T 1
P (∅) contains the ground facts listed in the program. ✷

568

TP : Some Straightforward Examples

• Consider the program P = {p, q← p, r← q, s← r ∧ q}:
T 1
P (∅) = TP (∅) = {p},
T 2
P (∅) = TP ({p}) = {p, q}, – note: p is derived again

T 3
P (∅) = TP ({p, q}) = {p, q, r}
T 4
P (∅) = TP ({p, q, r}) = {p, q, r, s}
T 5
P (∅) = TP ({p, q, r, s}) = {p, q, r, s}

• Consider the program Q =

{p(1,2), p(2,3), p(3,4), p(3,5), p(1,6), tc(X,Y)← p(X,Y), tc(X,Y)← tc(X,Z) ∧ p(Z,Y)}:
Let EDB := T 1

P (∅) = {p(1,2), p(2,3), p(3,4), p(3,5), p(1,6)} for the ground facts.

T 2
Q(∅) = EDB ∪ {tc(1,2), tc(2,3), tc(3,4), tc(3,5), tc(1,6)},
T 3
Q(∅) = EDB ∪ {tc(1,2), tc(2,3), tc(3,4), tc(3,5), tc(1,6), tc(1,3), tc(2,4), tc(2,5)},
T 4
Q(∅) = EDB ∪ {tc(1,2), tc(2,3), tc(3,4), tc(3,5), tc(1,6), tc(1,3), tc(2,4), tc(2,5),

tc(1,4), tc(1,5)} = T 5
Q(∅)

569

TP : Non-Straightforward Examples

Obvious: (Positive) programs with no facts will not derive anything when started with ∅.

• Consider the program P = {p← p}:
– T 1

P (∅) = TP (∅) = ∅ = T 2
P (∅) = Tω

P (∅)
– when not starting with ∅, but with {p}:
T 1
P ({p}) = {p} = T 2

P ({p}) = Tω
P ({p})

• Consider the program P = {p← q, q← p, r← p ∧ q}:
– T 1

P (∅) = {∅} = T 2
P (∅) = Tω

P (∅) .

– T 1
P ({p, q}) = {p, q, r} = T 2

P ({p, q}) = Tω
P ({p, q}) .

– T 1
P ({p}) = {q} ,
T 2
P ({p}) = TP (T

1
P ({q})) = {p} ,

T 3
P ({p}) = TP (T

2
P ({p})) = TP ({p}) = {q} ,

... the sequence then alternates ...
Tω
P ({p}) =

⋃
n∈IN T

n
P ({p}) = {p, q}, which is not a model of P ! (r is missing!)

– T 1
P ({r}) = {∅} = T 2

P ({r}) = Tω
P ({r}) .

⇒ Starting with I 6= ∅ might show strange behaviour.
Don’t do that. The argument is used only for the iteration TP (Tn

P (∅)).

570

Some Theoretical Properties of TP

Proposition 10.2
Tω
P |= P . ✷

Proof:

• for all facts R(c1, . . . , cn) contained in P , Tω
P |= R(c1, . . . , cn), i.e., R(c1, . . . , cn) ∈ Tω

P

(R(c1, . . . , cn) ∈ T 1
P (∅)).

• for all rules p(X1, . . . , Xk)← ∃Xk+1, . . . , Xn : Q(X1, . . . , Xn) contained in P ,
Tω
P |= ∀X1, . . . , Xn : p(X1, . . . , Xk)← ∃Xk+1, . . . , Xn : Q(X1, . . . , Xn):

If Tn
P (∅) |=β ∃Xk+1, . . . , Xn : Q(X1, . . . , Xn), then Tn+1

P (∅) |=β p(X1, . . . , Xk) by definition
of TP .

... so Tω
P looks good. Is it special? What about the infinite union?

571

Some Theoretical Properties of TP

Proposition 10.3
TP is monotonous (recall, for positive P), i.e., if I1 ⊆ I2 then TP (I1) ⊆ TP (I2). ✷

• As a consequence of this, Tn+1
P (∅) ⊇ Tn

P (∅).

•
⋃

n∈IN

Tn
P (∅) = lim

n→∞
Tn
P (∅) ... (infinite?) iteration – does it stop somewhere?

• Let HBP denote the Herbrand Base of P , i.e., the set of all ground instances of
predicates in P over the Herbrand universe (which consists of all constants occurring in
the atoms in P).
Then, HBP |= P for every positive P .

• Tn
P (∅) ⊆ HBP for all n ∈ IN.

. a monotonously growing sequence is bounded from above:

Theorem 10.1
For some (finite) n ∈ IN, a fixpoint, i.e., TP (Tn

P (∅)) = Tn
P (∅) is reached after finitely many steps.

For this n, Tω
P = Tn

P (∅). ✷

• Tω
P can effectively be computed (“bottom-up”),

• queries are then stated against Tω
P .

572

Some Theoretical Properties of TP

This is the general definition of the term “fixpoint”:

Definition 10.3
For an operator Ψ mapping from any mathematical domain X to X , a fixpoint is any x such
that Ψ(x) = x. ✷

Example:
√
. is an operator IR→ IR.

√
1 = 1 is a fixpoint of it.

TP is an operator from sets of ground atoms (i.e., Herbrand interpretations) to sets of ground
atoms.

573

Some Theoretical Properties of TP

Proposition 10.4
For a Datalog program P ,

a) every fixpoint F of TP , i.e., TP (F) = F , is a model of P (but not every model is a
fixpoint!), and

b) for every model H of a Datalog program P , TP (H) ⊆ H. ✷

Proof:

a) Since F is a fixpoint, TP (F) ⊇ F , i.e. it contains all facts in P , and all instances of heads
of applicable rule instances. Thus, it is a model of P .

b) by definition of TP : H is a model of P , so it already contains all ground instances of heads
of applicable rule instances.

Note: a model can also contain additional ground atoms (=facts) that are not required
(“supported”) by the program, as long as it contains also their consequences. It is still a
model.
[Example see next slide]

Outlook: the “Minimal Model” will be a distinguished model (later, the “Well-Founded Model”
and “Stable Models” continue this idea of minimality).

574

Models of a Program
Further models of a program can be obtained by adding additional facts (they must be
complete wrt. consequences from these).
Example 10.1
Consider P = {q(X) :- p(X); r(X) :-q(X); p(a)}.

• LetM := Tω
P (∅) = {p(a), q(a), r(a)}.

• Other, bigger models areM1 = {p(a), q(a), r(a), r(b)} and
M2 = {p(a), q(a), r(a), q(b), r(b)}.

• Note that N = {p(a), q(a), r(a), q(b)})M, but it is not a model.
Since N ⊆M2, it can obviously be extended to a model (cf. Slide 579).

• TheMi are not fixpoints of TP :
TP (M1) = {p(a), q(a), r(a)} =M (M1, and
TP (M2) = {p(a), q(a), r(a), r(b)} =M1 (M2.

– in both cases, according to Proposition 10.4, TP (Mi) ⊆Mi, shows that they are
models, i.e., all rules are satisfied.

– The “(” shows that some fact has been “invented” which is not forced (“supported”) by
the rules.

• Usually, fixpoints which are non-minimal models occur if the program contains some
“self-supporting” rule p← p. ✷

575

Some Theoretical Properties of TP

Definition 10.4
For two Herbrand interpretations, H1 and H2, H1 ≤ H2 if H1 ⊆ H2. ✷

Proposition 10.5
Tω
P is the least fixpoint of TP . ✷

Proof:

By Proposition 10.4, every fixpoint F is a model of P . To be a model of P , F contains all facts
in P , i.e., F ⊇ TP (∅). By induction, F ⊇ Tn

P (∅) for each n ∈ IN. Thus, F ⊇ Tω
P .

(the full PROLOG case, where the HBP argument does not hold and Tω
P is not necessarily

finite, follows from monotonicity by the Knaster-Tarski Theorem (fixpoint theory over complete
lattices).)

Aside: Tω
P in PROLOG

• PROLOG allows function symbols.

• Consider the program P := { p(a), p(f(X))← p(X) }:
Tω
P = {p(fn(a))|n ∈ IN} is infinite.

576

Example/Exercise

Consider the following (recursive) program (including atomic facts and rules):

P = { country(a). country(b). country(ch). country(d). country(e). country(f). . . .

border(a, d). border(a, h). border(a, i). border(d, f). border(i, f).

border(ch, f). border(ch, a). border(ch, d). border(ch, i). border(e, f). border(p, e).

border(h, ua). border(ua, r). border(ra, br). border(bol, ra). border(bol, br).

border(Y,X)← border(X,Y).

reachable(X,Y)← border(X,Y).

reachable(X,Y)← reachable(X,Z), border(Z, Y). }

• Give T 0
P (∅), T 1

P (∅), T 2
P (∅), . . . , Tω

P (∅).

• for any derived fact reachable(c1, c2) ∈ Tω
P (∅), characterize the least i such that

reachable(c1, c2) ∈ T i
P (∅).

577

10.2.2 Model-Theoretic Characterization: Minimal Model

• Note: simple “Datalog” usually means “positive Datalog”

Definition 10.5
For a (positive) Datalog program P , the minimal model is defined as the smallest Herbrand
interpretation (wrt. ≤ as in Def. 10.4) that is a model of P . ✷

Theorem 10.2
For a positive Datalog program P and its minimal modelM, for all ground atoms p(c1, . . . , cn):

• M |= p(c1, . . . , cn)⇔ p(c1, . . . , cn) ∈ Tω
P .

• M |= p(c1, . . . , cn) if and only if for all models S of P , S |= p(c1, . . . , cn) .

(recall: |= denotes the models-relation from First Order Logic) ✷

Proposition 10.6
The minimal modelM of a (positive) Datalog program P is the intersection of all models (i.e.,
models wrt. First Order Logic model theory) of P . ✷

Proof: same as for Proposition 10.5.

578

Non-minimal Models

Let P a positive Datalog program with minimal modelM = Tω
P = Tω

P (∅), and q /∈M some
ground atom.

• there exists a modelM′ of P that makes q true.
(i.e., a positive program cannot force anything to be false; there is only “negation by
default”).

• Recall Slide 570: starting with q, i.e., Tω
P ({q}) is not appropriate (it might forget q, or even

run into an alternating sequence).

• ComputeM′′ = Tω
P∪{q} = Tω

P∪{q}(∅) to obtain the solution, which is the minimal model of
P ∪ {q}.

• For Example 10.1, Tω
P∪{q(b)} =M∪ {q(b), r(b)}.

579

Some comments on Negation

• Negative Literals:

– The minimal model implements the Closed-World-Assumption (CWA): any atom that is
not contained or implied by P is assumed not to hold.

– For the minimal modelM,
if a ground atom is not inM, i.e.,M |= ¬p(a1, . . . , an), classical FOL semantics
(open-world) does not entail that P |=FOL ¬p(a1, . . . , an).
Note that P |=FOL ¬p(a1, . . . , an) does not hold for any ground atom – from a positive
program P no negative statements are entailed at all under FOL semantics.

– this coincides with the SQL semantics “WHERE NOT EXISTS ...”.

• Negative literals in rule bodies:

– The TP evaluation is not applicable for rules with negation in the body.

– Consider the previous example extended by the rule
{ unreachable(X,Y)← country(X) ∧ country(Y) ∧ ¬reachable(X,Y). }.
How would the TP evaluation proceed for it?

• derivation of negative facts/negative facts in rule heads:
not applicable since CWA assumes all negative facts that are consistent with P
(“negation by default”)

580

10.2.3 Proof-Theoretic Approach: Resolution Calculus

Given: a positive Datalog program P

Question: does p(c1, . . . , cn) hold?

• bottom-up computation of TP provides a correct and complete (wrt. the minimal model)
procedure for checking if some fact holds in the minimal model.

Every atom that is true in the minimal model has a “proof history” (tree) via the rules and facts
that have been used for deriving it.

581

GENERAL RESOLUTION CALCULUS

• an Inference System.

• a clause is a set of literals (semantics: disjunctive).
Clause resolution takes two clauses that contain contradictory literals:

ℓ1 ∨ . . . ∨ ℓi ∨ . . . ∨ ℓk , ℓk+1 ∨ . . . ∨ ¬ℓk+j ∨ . . . ∨ ℓk+m , σ(ℓi) = σ(ℓk+j)

σ(ℓ1 ∨ . . . ∨ ℓi−1 ∨ ℓi+1 ∨ . . . ∨ ℓk ∨ ℓk+1 ∨ . . . ∨ ℓk+j−1 ∨ ℓk+j+1 ∨ . . . ∨ ℓk+m)

• rules of the form
h(x̄)← b1(x̄) ∧ b2(x̄) ∧ . . . ∧ bn(x̄)

are equivalent to Horn Clauses (named after the logician Alfred Horn)

h(x̄) ∨ ¬b1(x̄) ∨ ¬b2(x̄) ∨ . . . ∨ ¬bn(x̄)
(Disjunction with only one positive literal).

582

ASIDE: GENERAL RESOLUTION CALCULUS: COMMENTS AND EXAMPLES

• Tableau calculus:

– one rule for each FOL construct (∧,∨, ∀, ∃, and the closure rule as the rule for ¬).

– applicable to all kinds of FOL formulas.

⇒ intuitive, very general, but a high number of possible expansions in each step.

• Resolution calculus:

– only a single inference rule,

– applicable to a set of (arbitrary) disjunctions.

• Any FOL formula φ can be translated as follows:

– Prenex Normal Form: pull quantifiers in front (“prefix”): ∀a, b ∃c, d ∀e . . . : φ′ where φ′ is
quantifier-free (“matrix”),

– transform the matrix into conjunctive normal form (i.e., a conjunction of disjunctions of
literals).

⇒ resolution calculus has the same expressiveness as tableau calculus.

– it is intuitive, if a problem has a natural representation as a set of disjunctions.

583

Disjunctive Reasoning: Sudoku

Typical Sudoku situation: “cell (x, y1) is either 2 or 7, cell (x, y2) is either 2 or 6, so the “2” can
only be in one of them, there is 7 in (x, y1) or 6 in (x, y2). As 6 is already in (x2, y2), the 2 must
be in (x, y2), and the 7 must be in (x, y1).”

Consider the following example (sudoku taken from (german) wikipedia):

9 3

8 1 9 5

7 8 6

6 8 6

5 4 8 1

4 2

3 6 2 8

2 ? ? ? 4 1 9 3 5

1 7

A B C D E F G H I

• 3-ary predicate p (“position”), e.g. for B9:
p(b, 9, 3):

• exclusion clause patterns like:
{¬p(x1, y, n),¬p(x2, y, n), x1 = x2}
for rows; analogously for columns and for
subsquares.

• H2: must be 3 (all other numbers are al-
ready present in column H, in row 2 or in
the lower right subsquare).

• A2: 2 or 3 or 7.; B2: 2 or 7 or 8.

• C2: 2 or 3 or 7.

⇒ A2 and C2: 2 or 7⇒ B2: 8

584

Sudoku (cont’d)

• Query: answer(X,Y,N)← p(X,Y,N).

• Whenever the empty clause can be derived, an answer is given by the applied
substitutions. E.g. for an already known cell, {¬p(X,Y,N)} with {p(b, 9, 3} and
σ = {X ← b, Y ← 9, N ← 3} yields the first solution.

• Simple cases like H2 (must be 3):
{p(h, 2, 1), p(h, 2, 2), p(h, 2, 3), p(h, 2, 4), p(h, 2, 5),

p(h, 2, 6), p(h, 2, 7), p(h, 2, 8), p(h, 2, 9)}, {p(e, 2, 1)}, {¬p(e, 2, 1),¬p(h, 2, 1)}

{¬p(h, 2, 1)}

{p(h, 2, 2), p(h, 2, 3), p(h, 2, 4), p(h, 2, 5), p(h, 2, 6), p(h, 2, 7), p(h, 2, 8), p(h, 2, 9)} ,
...

{p(h, 2, 3)} which closes with the negated query {¬p(X,Y,N)}
• analogous reduction for cells A2, B2, C2:

– {p(a, 2, 2), p(a, 2, 3), p(a, 2, 7)}, with {¬p(a, 2, 3),¬p(h, 2, 3)} and {p(h, 2, 3)} to
{p(a, 2, 2), p(a, 2, 7)};

– {p(b, 2, 2), p(b, 2, 7), p(b, 2, 8)},
– {p(c, 2, 2), p(c, 2, 3), p(c, 2, 7)} analogously to {p(c, 2, 2), p(c, 2, 7)}

585

Sudoku (cont’d)

• Situation

– {p(a, 2, 2), p(a, 2, 7)};
– {p(b, 2, 2), p(b, 2, 7), p(b, 2, 8)},
– {p(c, 2, 2), p(c, 2, 7)}

• Both A2 and C2 are 2 or 7

• B2 (2, 7, or 8) must be 8

• no direct conclusion possible ...

• note: resolving to clauses with 2 literals usually yields two literals:
{a, b} with {¬b, c} yields {a, c}.
Unary clauses can be derived by matches like
{a, b} with {a,¬b} yields {a}.

⇒ not only clauses that are connected by a pair of contradictory literals are interesting, but
also clauses that contain the same literals can be useful.

⇒ a resolution reasoner maintains a connection graph for choosing its strategy.

• human reasoners must have a plan how to proceed ...

586

Sudoku (cont’d: Example proof for the contents of cell B2)

• write xyn for p(x, y, n):

– this is not only a notational shortcut, but also a mapping to Boolean Logic:

– the second line is assumed to contain all ground instances of the exclusion clause (cf.
Slide 584) stating which cells must not have the same value.
Note: the smodels tool for stable models is based on the same idea of creating all
ground instances and running boolean Model Checking.

{c22, c27} {a22, a27}

{¬a22,¬c22} {¬a27,¬c27} {¬b22,¬c22} {¬a22,¬b22} {¬a27,¬b27} {¬b27,¬c27}

{¬a22, c27} {¬a27, c22} {a27,¬b22} {a22,¬b27}

{¬b22, c22} {¬b27, c27}

{¬b22} {b22, b27, b28} {¬b27}

{b27, b28}

{b28}

587

General (FOL) Resolution Calculus

• Recall: open-world, with explicit negative literals.

• there are always multiple possibilities to choose pairs of clauses to be resolved

⇒ proof search strategy?

• ... not the right thing for deductive databases (closed-world-assumption, equivalence to
the relational algebra and SQL),

• ... but a good basis ...

• ... go back first to consider positive rules as a special case of disjunction head ∨ ¬body.

588

RESOLUTION CALCULUS FOR (POSITIVE) RULES

• a derivation rule head(x̄)← b1(x̄) ∧ b2(x̄) ∧ . . . ∧ bn(x̄) is equivalent to
¬b1(x̄) ∨ ¬b2(x̄) ∨ . . . ∨ ¬bn(x̄) ∨ head(x̄), or, written as a Horn clause,

{¬b1(x̄),¬b2(x̄), . . . ,¬bn(x̄), head(x̄)}

• such a Horn clause can be seen as a directed disjunction with a single distinguished
positive (head) literal.

• a fact p(c̄) corresponds to a unary clause consisting of a single positive literal {p(c̄)}.

589

Bottom-Up: Resolution as Forward Reasoning

Example:

Consider the rule subordinate(x, y)← works-for(x, d) ∧manages(y, d)
(forget about x 6= y for now)

The corresponding clause is

{subordinate(X,Y),¬works-for(X,D),¬manages(Y,D)} .
Consider the (unary) fact clauses {works-for(mary,sales)} and {manages(alice,sales)}.

{sub(X,Y), ¬wf(X,D), ¬mg(Y ,D)} {wf(m,s)} {mg(a,s)}

{sub(m,Y),¬mg(Y ,s)}

{X → m, D → s}

{sub(m,a)}

{Y → a}

... derives subordinate(mary,alice).

• obviously, for every ground atom p(a1, . . . , an), P ⊢Res p(a1, . . . , an) if and only if
p(a1, . . . , an) ∈ Tω

P .

590

TOP-DOWN: RESOLUTION CALCULUS AS BACKWARD REASONING

• used in PROLOG systems:
SLD Resolution (Selection-Rule-Driven Linear Resolution for Definite Clauses)

• given: a “program” P of rules and facts, and a claimed fact answer(c̄). Show:
P |= answer(c̄)?

• Resolution as a refutation strategy: prove that ¬answer(c̄) is inconsistent with P .

• a negated atom can be refuted if it matches the head of a rule and all of the body atoms
of the rule can be proven. Apply recursively:

– get a new “goal clause” (i.e., a clause containing only negative literals)
[⇒] linear proof;

– note that multiple rule heads can match (SLD: first rule first);

– note that multiple literals can match: resolve literals from left to right (i.e., depth-first).

• try to derive the empty (goal) clause: then it is shown that P ∪ {¬answer(c̄)} is
unsatisfiable, i.e., P |= answer(c̄).

591

SLD RESOLUTION: EXAMPLE

Consider again the rule

subordinate(x, y)← works-for(x, d) ∧manages(y, d)

and the corresponding clause

{subordinate(X,Y),¬works-for(X,D),¬manages(Y,D)} .
and e.g. ground fact clauses {works-for(mary,sales)} and {manages(alice,sales)}. For which
V,W does subordinate(V ,W) hold?

{¬sub(V,W)} {sub(X,Y), ¬wf(X,D), ¬mg(Y ,D)} {wf(m,s)} {mg(a,s)}

{¬wf(V ,D), ¬mg(W ,D)}

{X 7→ V , Y 7→ W }

{¬mg(W,s)}

{V 7→ m, D 7→ s}

✷
{W → a}

derives the answer substitution {V 7→ m,W 7→ s}
(in Prolog style written as {V/m,W/s})
With a bigger database, further answers can be derived by other matches.

592

SLD RESOLUTION FOR ANSWERS

• the initial goal (=query) contains free variables,

• collect the union/concatenation of all substitutions applied

• if the empty clause is derived, the restriction of the resulting substitution to the variables
in the query is the answer substitution.

• do backtracking (alternative closing substitutions with other facts, alternative rules with
the same head),

• compute further answers.

593

SLD RESOLUTION WITH ANSWERS: EXAMPLE

“All organizations that have their headquarters in the capital of a European member country
with more than 10000000 inhabitants”

:- include(mondial).
europeanBigCountry(C) :- encompasses(C,'Europe',_),

country(_,C,_,_,_,Pop), Pop > 10000000.
hqInCapOf(O,C) :- country(_,C,Cap,CapP,_,_), organization(O,_,Cap,C,CapP,_).
result(O) :- europeanBigCountry(C), isMember(C,O,_), hqInCapOf(O,C).
?- result(X).

[Filename: Datalog/headquartercapsbig.P]

C1 : {¬res(X)}
C2 : {eBC(C),¬enc(C, “Europe”, _),¬c(_, C, _, _, _, P),¬P > 10000000}
C3 : {hC(O,C),¬c(_, C, Cap, CapP, _, _),¬org(O, _, Cap, C,CapP, _)}
C4 : {res(O),¬eBC(C),¬isM(C,O, _),¬hC(O,C)}

Resolve C1 with C4 (the only rule that matches) by σ1 : {O → X}:
C5 : {¬eBC(C),¬isM(C,X, _),¬hC(X,C)} .

594

Resolve C5 with C2 (first literal):

C6 : {¬enc(C, “Europe”, _),¬c(_, C, _, _, _, P),¬P > 10000000,¬isM(C,X, _),¬hC(X,C)} .
Resolve C6 with fact enc(“B”, “Europe”, 100) (one out of many candidates) by σ2 : {C → “B”}:
C7 : {¬c(_, “B”, _, _, _, P),¬P > 10000000,¬isM(“B”, X, _),¬hC(X, “B”)} .
Resolve with fact c(“Belgium”,“B”,“Brussels”,“Brabant”, _, 10170241) by σ6 : {P → 10170241}
and remove the (false) instantiated literal ¬10170241 > 10000000:

C8 : {¬isM(“B”, X, _),¬hC(X, “B”)} .
Resolve with fact isM(“B”,“EU”,“member”) by σ4 : {X → “EU”}:
C9 : {¬hC(“EU”, “B”)} .
Resolve with C3 by σ5 : {O → “EU”, C → “B”}:
C10 : {¬c(_, “B”, Cap, CapP, _, _),¬org(“EU”, _, Cap, “B”, CapP, _)} .

Resolve with fact c(“Belgium”,“B”,“Brussels”,“Brabant”, _, _):

C11 : {¬org(“EU”,“Brussels”,“B”,“Brabant”, _)} .

Resolve with fact org(“EU”, _, “Brussels”, “B”, “Brabant”, _) and obtain the empty clause.

This generates the first answer X/“EU”.

Backtracking ... resolve C8 with fact isM(“B”, “UN”) to obtain

595

C11 : {¬hC(“UN”, “B”)} .

Resolve again with C3 by {O → “UN”, C → “B”} and continue as above. The empty clause
cannot be derived (the headquarters of the UN are in New York). Backtrack again, resolve C8

with NATO, return X/“NATO”, analogously check all organizations where Belgium is a
member, and return all organizations located in Brussels.

Backtracking then to C5, try the next european country etc.

• Note that all intermediate clauses only con-
tain negative literals (“goal clauses”).

• at each timepoint there is exactly one
(open) goal clause.

Comparison

The evaluation is actually an iterator-based
evaluation of the algebra tree shown on the
right.

Exercise

Do the same for European and Asian Big Coun-
tries.

π[abbrev]

⊲⊳

⊲⊳

⊲⊳

π[code]

σ[pop>10000000]

⊲⊳

σ[cont=“Europe”]

encompasses

country

isMember

country

org

596

10.3 Aside: Full Prolog

• allows function symbols

• not just matching, but unification of terms (that contain variables someewhere):
p(f(X, g(Y))) unifies with ¬p(f(h(Z), Z)) via σ = {Z → g(Y), X → h(g(Y))}.

• derives the empty clause and an answer substitution
e.g. when asking ?-subordinate(X,alice).

X/mary

X/bob

• uses backtracking:

– if search for an answer is not successful, try another way,

– if an answer is found, report it and try another way (next substitution, next rule),

– generates a proof search tree.

• Prolog Programming goes even further: “cut” and “fail” to control the exploration of the
search space.
Then, the order of rules and literals becomes extremely important.

597

Aside: Prolog Programming: Cut

The “cut” predicate (written as “!”) fixes the bindings up to that literal and does not search for
other proofs (e.g., for alternative bindings for existential variables):

F (C) ≡ ∃CN,Cap, CapP,A, Pop : country(CN,C,Cap, CapP,A, Pop) ∧
∃Org,Abbr, Est, T : organization(Org,Abbr, Cap, C,CapP,Est), isMember(C,Org, T).

• ?-res(C) returns every result country several times – for each organization that has its
city in the capital.

• ?-res2(C) returns every result country only once, since there is no backtracking in rule
hqInCap2 that would cause to search other proofs for e.g. hqInCap2(“B”)

:- include(mondial).
res(C) :- country(_,C,Cap,CapP,_,_), hqInCap(C,Cap,CapP).
hqInCap(C,Cap,CapP) :- organization(Org,_,Cap,C,CapP,_), isMember(C,Org,_).
res2(C) :- country(_,C,Cap,CapP,_,_), hqInCap2(C,Cap,CapP).
hqInCap2(C,Cap,CapP) :- organization(Org,_,Cap,C,CapP,_), isMember(C,Org,_),!.

[Filename: Datalog/prologcut.P]

• cut san serve –declaratively– as a SQL DISTINCT

• in combination with EXISTS (each existing thing would otherwise be checked),

• and for optimization of traversing proof trees.

598

Aside: Prolog Programming: Output

• the “cut” predicate fixes the bindings up to that literal and does not search for other proofs:

• write any term to stdout with write(term),

• the nl predicate outputs a newline to stdout.

• tell me, when Paris is investigated ...

:- include(mondial).
res(C) :- country(_,C,Cap,CapP,_,_), hqInCap(C,Cap,CapP).
hqInCap(C,Cap,CapP) :- organization(Org,_,Cap,C,CapProv,_), check(Cap,Org),

country(_,C,Cap,CapProv,_,_), isMember(C,Org,_).
check(X,Y) :- X = 'Paris', write('test '), write(X), write(' '),

write(Y), nl.
check(X,Y) :- X \= 'Paris'.

[Filename: Datalog/prologparis.P]

• in check(X,Y), Y must be bound upon calling it (XSB warns) – the rules are not safe,

• but “safe” is a bottom-up Datalog issue, in Prolog Programming, such unsafe procedural
rules are common. (when called, the variables are already bound from atoms evaluated
before)

599

Aside: Prolog Programming: Input and fail

• read(X) reads a term. The input must be finished by a “.”.

• predicate fail is used when Prolog should “execute” the rule as “proof search” to do
something, and then ... fail:

• below, shouldI fails if “N” is input. Then, also shouldICheck(X) fails, and the body for
res(C) is not satisfied for this C. Try next C.

:- include(mondial).
res(C) :- country(_,C,_,_,_,_), shouldICheck(C), hqInCap(C).
hqInCap(C) :- country(_,C,Cap,CapProv,_,_), write('CAP found ... '),

isMember(C,Org,_), write('check Org: '), write(Org), nl,
organization(Org,_,Cap,C,CapProv,_).

shouldICheck(X) :- write('Should I check '), write(X),
write(' ("y."/"n.")?'), read(Z), shouldI(Z,X).

shouldI(Z,X) :- write('test if yes ... '), nl, Z = 'y'.
shouldI(Z,X) :- write('here ... country is still '), write(X), nl, fail.
shouldI(Z,X) :- Z \= 'y', write('OK, I will skip '), write(X), nl, fail.

[Filename: Datalog/prologask.P]

600

Aside: Prolog Exercise

Consider again the program prologask.P from the previous slide.
When running it, the output “here ... country is still ...” when it is actually already finished with
the respective country, demonstrates that useless work is done.
Where to place a cut to avoid this?

Aside: Prolog Documentation

• see XSB Manual Part I, Section 6 “Standard Predicates and Predicates of General Use”.

601

10.4 Positive Recursive Datalog

• a Datalog Program is called recursive if ...

Dependency Graph

Definition 10.6
For a positive Datalog program P over a (relational) signature R = {R1, . . . , Rn}, its
Dependency Graph G = (V,E) is defined as follows:

• V = {R1, . . . , Rn} is the set of vertexes,

• Ri → Rj ∈ E if P contains a rule with head predicate Rj and Ri occurs in its body
(“Rj depends on Ri”). ✷

Definition 10.7
A Datalog program is called recursive if its dependency graph contains a cycle. ✷

602

Consequences

... the definitions up to now hold for nonrecursive programs and for recursive ones:

• the minimal model is defined as usual,

• TP and Tω
P are defined as usual,

• the resolution proofs exist.

– Systems based on PROLOG’s SLD resolution potentially run into infinite proof search
trees
(can be blocked by (expensive) bookkeeping)

– XSB supports “tabling” which makes it more efficient and prevents it from infinite loops
(tabling stores derived facts for reuse),

– must be activated (see below).

603

Example: Transitive Closure

• tc(x,y)← p(x,y).
tc(x,y)← ∃ z: tc(x,z) ∧ tc(z,y).

• XSB: % as comment sign,

• :- auto_table. for activating automatic tabling,

• manual tabling can be switched on with
:- table R1/k1, ..., Rn/kn.
for ki-ary table Ri.

% :- auto_table.
:- table borders/3, reachable/2.
:- include(mondial).
borders(Y,X,Z) :- borders(X,Y,Z). % make it symmetric.
reachable(X,Y) :- borders(X,Y,_).
reachable(X,Y) :- reachable(X,Z), borders(Z,Y,_).

[Filename: Datalog/transitiveclosure.P]

Exercise
Complete the program from Slide 407 such that it also includes rivers flowing through lakes
into others.

604

Additional Syntax, Built-Ins

• arithmetic operations: + - * /

• assignment by var is term in the body

• comparisons: as usual, \= for 6=, =< and >= for ≤ and ≥.

• see also XSB Manual Part I Sections 3.10.5 (Inline Predicates) and 4.3 (Operators).

:- include(mondial).
cview(N,C,Pop,A,Density) :- country(N,C,_,_,A,Pop), Density is Pop/A.

[Filename: Datalog/arithmetics.P]

605

10.5 Datalog with Negation

Consider conjunctive queries that include negative Literals.

• e.g. F (C) = ∃CN,Cap, CapP,A, Pop :
(country(CN,C,Cap, CapP,A, Pop) ∧ ¬ismember(C, “EU”, “member”))

.

• the database contains only positive facts, so no negative information can be logically
implied!

• SQL:

SELECT code FROM country
WHERE NOT (code,'EU','member') IN (SELECT * FROM ismember);

yields 214 results.

• Databases: “Closed World Semantics” – tuples that are not stored are assumed not to
hold.

⇒ database query semantics deviates from standard FOL model theory.

⇒ a different model theory applies!

606

Closed World/Default Negation

• actually known + used in SQL without problems,

• the idea of the Minimal Model is analogous:
everything that cannot be proven is false in the Minimal Model.

– But the Minimal Model is not well-defined in presence of negation:
Consider P = {p← ¬q}:
BothM1 = {p} andM2 = {q} are minimal models of P .

• Prolog: SLD-resolution extended to SLD-NF-resolution:

– NF: Negation (of p(c1, . . . , cn)) as “(finite) failure” to prove p(c1, . . . , cn) (only for ground
atoms; cf. safety):

– Open a resolution proof for ¬p(c1, . . . , cn) as usual and show that after finitely many
steps there is no more progress towards the empty clause.

– Example: For P = {p← ¬q}, SLD-NF for ?- p starts a proof for the body, i.e., for ¬q
which fails (the rule is equivalent to the clause {p, q}) immediately.
Thus ¬q is “proven” and p is confirmed – the answer to ?- p is “yes”.

• Preview: both {p← ¬q} and {q ← ¬p} are logically equivalent to p ∨ q, but, as programs,
have different semantics!

607

NEGATION IN THE BODY: DATALOG¬

The language Datalog¬ extends positive Datalog as follows:

• the rule body is allowed to contain also negative literals:
Rules are now of the form

H ← L1 ∧ . . . ∧ Lk

where each Li is a positive (p(a1, . . . , an)) or negative (¬p(a1, . . . , am)) literal.

• Safety requirement: every variable that occurs in a negative literal must also occur in a
positive one, e.g.

unreachable(X,Y)← country(X) ∧ country(Y) ∧ ¬reachable(X,Y).

608

Formal Semantics

The TP operator (cf. Slide 568) is extended as follows:

For a set I of ground atoms,

TP (I) := { σ(H): σ is a ground substitution and there is a rule
H ← L1 ∧ . . . ∧ Lk in P such that for each i = 1..k

σ(pi(ā)) ∈ I if Li = pi(ā) is positive,

σ(pi(ā)) /∈ I if Li = ¬pi(ā) is negative }

• The plain Tω
P computation is not suitable: In the first “round” things are false that will

become true later

⇒ “wait” before evaluating a negative literal ¬p(c1, . . . , cn) until the predicate p is
completely computed.

(note: SLD resolution does automatically “stratify” when it opens the subproof for
¬p(c1, . . . , cn) and tries to complete it with the rules for p.)

609

STRATIFICATION

Dependency Graph with Negation

Extend Definition 10.6:

Definition 10.8
For a Datalog¬ program P over a (relational) signature R = {R1, . . . , Rn}, its Dependency
Graph G = (V,E) is defined as follows:

• V = {R1, . . . , Rn} is the set of vertexes,

• Ri → Rj ∈ E if P contains a rule with head predicate Rj and Ri occurs positively in its
body (“Rj depends positively on Ri”).

• Ri
¬→ Rj ∈ E if P contains a rule with head predicate Rj and Ri occurs negatively in its

body (“Rj depends negatively on Ri”). ✷

If the dependency graph does not contain a negative cycle (i.e., a cycle where at least one
edge is negative) then there exists a simple, intuitive semantics
(note that positive cycles are allowed).

610

Stratification

Definition 10.9
Given a Datalog¬ program P without negative cycles over a signature Σ, a stratification is a
partitioning of Σ into strata S1, . . . , Sn by a stratification mapping σ : Σ→ {1, . . . , n} such that

• if p depends positively on q, then σ(p) ≥ σ(q),
• if p depends negatively on q, then σ(p) > σ(q),

• if such a stratification is possible, P is called stratifiable.

Define Pi to be the set of rules in P whose head predicate is in Si. ✷

Properties

• S1: predicate symbols (incl. facts) that do not depend negatively on any other predicate,

• Si: predicate symbols that depend positively only on predicate symbols in S0, . . . , Si,

• Si: predicate symbols that depend negatively only on predicate symbols in S0, . . . , Si−1.

• predicates that are positively cyclic dependent on each other belong to the same stratum.

• {P1, . . . , Pn} is a partitioning of P .

Note: there may be several stratifications of a program (any partitioning that is compatible
with the priority order given by the negative dependencies).

611

Stratification

Proposition 10.7
• every nonrecursive Datalog¬ program is stratifiable,

• many recursive Datalog¬ programs are also stratifiable.
(cf. reachable, non-reachable) ✷

612

STRATIFIED MODEL

Stratification allows to compute a model incrementally (bottom-up): Compute each stratum by
“freezing” the IDB predicates defined in the previous stratum like EDB relations/facts:

Definition 10.10
Let P = {P1, P2, . . . , Pn} be a stratified program. Then, S(P) defined as follows is the
stratified model of P :

I0 = ∅
Ik = Tω

Pk∪Ik−1
(∅) for 1 ≤ k ≤ n

S(P) = In
(with every Pi a set of rules and every Ii a set of ground atoms, Pk ∪ Ik−1 is a Datalog
program that fits into stratum Sk). ✷

Proposition 10.8
• S(P) does not depend on the chosen stratification,

• S(P) is a model of P ,

• S(P) is minimal (i.e., noM′ (S(P) is a model of P),

• for programs containing negation, there are in general several models that are minimal. ✷

613

Comments

• bottom-up stratified evaluation is the counterpart to top-down SLD-NF evaluation,

• tabling fits well with stratification,

• XSB does stratification automatically if a program contains negation.

Exercise

Prove that Definition 10.10 is equivalent to the following characterization:

J0 = ∅
Jk = Tω

P1∪...∪Pk
(Jk−1) for 1 ≤ k ≤ n

S ′(P) = Jn

614

Monotonic vs. Nonmonotonic Reasoning

Definition 10.11
For a given set of input formulas φ, and a reasoning mechanism M , let ThM (φ) denote the
“theory of φ wrt. M ”, i.e., the set of conclusions ψ such that φ |=M ψ.

A reasoning mechanism M is monotonic if

φ1 ⊆ φ2 ⇒ ThM (φ1) ⊆ ThM (φ2) ✷

• FOL is monotonic,

• The Minimal Model semantics is monotonic,

• Default Logic and Human Reasoning is nonmonotonic (allowing conclusions in presence
of incomplete knowledge that can be revised upon additional information),

• Stratified semantics is nonmonotonic.

Exercise

• Give an example for the nonmonotonicity of the stratified semantics,

• show that for a stratifiable program P there can be multiple minimal models.

615

10.5.1 (Stratified) Nonrecursive Datalog with Negation vs. Relational
Algebra and SQL

Theorem 10.3
Nonrecursive Datalog with (stratified) negation with a single-predicate result is equivalent to
the relational calculus and to the relational algebra. ✷

• Means: every nonrecursive Datalog¬ program that defines a single n-ary result predicate
res/n can be expressed by a calculus query with n free variables, and equivalently by a
relational algebra expression with an N -ary result relation, and

• every n-ary relational algebra expression can be expressed by a nonrecursive Datalog¬

program that defines a single n-ary result predicate res/n.

Exercise:

• prove the “Algebra→ Datalog” direction (by structural induction).

• Given a (safe) rule H ← C1 ∧ . . . ∧ Cn ∧Dn+1 ∧ . . . ∧Dn+k

where the Ci are positive literals and the Di are negative literals, give a relational algebra
expression that returns the relation defined by it.

616

Example: Relational Division

• recall: the relational division is defined in the relational algebra by two negations

Organizations that have at least one member on each continent:

% :- auto_table. % here not necessary
:- include(mondial).
orgOnCont(O,Cont) :- isMember(_C,O,_), encompasses(_C, Cont,_).
notResult(O) :- organization(O,_,_,_,_,_), continent(_Cont,_),

not orgOnCont(O,_Cont).
result(O) :- organization(O,_,_,_,_,_), not notResult(O).
% ?-result(O).
% ?- findall(_O, result(_O), L).

[Filename: Datalog/orgOnContsDiv.P]

• note: call of the PROLOG standard predicate

?- findall(_O, result(_O), L).

returns all answers as a PROLOG list.

• compare with expressing this query in SQL.

617

PROLOG FINDALL

Syntax:
findall(variable, predicate(many variables), listvariable)

• the variable must be bound in the predicate query; all other variables in the predicate
query are local to it,

• listvariable does not occur in the predicate query.

?- findall(A,continent(N,A),L).

A = _h44
N = _h66
L = [9562488,45095292,8503474,30254708,39872000]

?- findall(N,city(N,'D',P,Pop,La,Lo,El),L).
% all names of german cities.

Large lists sometimes lead to a crash:

?- findall(Pop,city(N,C,P,Pop,La,Lo,El),L).

618

AGGREGATION

• example see next slide.

• PROLOG dialects supports aggregation

• XSB: via PROLOG collections:

– collect values in a bag:
bagof(var1, var2 ˆ. . .ˆvarnˆ pred(var1, . . . , varn), collvar)

for collvar := bagof{var1 | ∃var2, . . . , varn : pred(var1, . . . , varn)}
– explicitly program the aggregation operator recursively over the collection.

– collection is a PROLOG list organized as head, tail:
Syntax: [H|T] or .(H,T), empty list is [].

• Note: aggregation operations also require stratification – the predicates used in the
subquery must be computed before.

619

:- include(mondial).
citypops(C,B) :- bagof(Pop,N^P^Lo^La^El^city(N,C,P,Pop,La,Lo,El),B).

% citypops('A',L).
% L = [1583000,10102,87321,null,144000,203000,118000,238000,51102]
% citypops('A',.(H,T)).
% H = 1583000
% T = [10102,87321,null,144000,203000,118000,238000,51102]

sum(X,[H|T]) :- sum(Y,T), H \= null, Y \= null, X is H + Y.
sum(H,[H|T]) :- sum(null,T), H \= null.
sum(X,[null|T]) :- sum(X,T).
sum(null,[]).

% Test: ?- sum(N,[1,2,3,4,5]). yields 15

citypopsum(C,X) :- citypops(C,B), sum(X,B).

% citypopsum('A',X).
% X = 2434525 [Filename: Datalog/aggregation.P]

620

Demonstrate both collection syntaxes:

:- include(mondial).
citypops(C,B) :- bagof(Pop,N^P^Lo^La^El^city(N,C,P,Pop,La,Lo,El),B).

sum1(X,[H|T]) :- sum1(Y,T), H \= null, Y \= null, X is H + Y.
sum1(H,[H|T]) :- sum1(null,T), H \= null.
sum1(X,[null|T]) :- sum1(X,T).
sum1(null,[]).

sum2(X,.(H,T)) :- sum2(Y,T), H \= null, Y \= null, X is H + Y.
sum2(H,.(H,T)) :- sum2(null,T), H \= null.
sum2(X,.(null,T)) :- sum2(X,T).
sum2(null,[]).

citypopsum(C,X,Y) :- citypops(C,B), sum1(X,B), sum2(Y,B).

[Filename: Datalog/aggregation2.P]

621

Aside: Tabling with Answer Subsumption

• XSB Documentation, Section 5.4

• tabling with subsumption: “subsumed” (wrt. some ordering) answers are not stored

⇒ only “maximal” ones remain.

:- include(mondial).
:- table citypopmax(_,po(> /2)). %% blank before "/" is important!
citypopmax(C,N) :- city(_,C,_,N,_,_,_), N \= null.
?- citypopmax('D',P).

[Filename: Datalog/aggrsubsumpt.P]

• works only for min/max, not count/sum (these are not idempotent)

• see documentation: shortest paths

622

10.5.2 (Stratified) Recursive Datalog with Negation

• The stratified semantics seamlessly covers stratifiable recursive Datalog¬ programs.

• expressiveness covers Algebra/Calculus + Recursion.

% :- auto_table.
:- table borders/3, reachable/2.
:- include(mondial).
borders(Y,X,Z) :- borders(X,Y,Z). % make it symmetric.
reachable(X,Y) :- borders(X,Y,_).
reachable(X,Y) :- reachable(X,Z), borders(Z,Y,_).
notReachable(X,Y) :- country(_,X,_,_,_,_), country(_,Y,_,_,_,_),

not reachable(X,Y).
[Filename: Datalog/transitiveclosure2.P]

Exercise

• Give the intermediate steps of the Tω
P -based stratified evaluation for the above program.

623

Summary

• bottom-up inefficient when regarding a single query.

• IDB predicates can be seen as views:

– materialization of views not unusual in DB
(when frequently used, seldomly changing)

– view maintenance strategies (upon updates of underlying tables) in LP exist:

– seminaive evaluation of Tn
P : consider only rule instantiations where at least one atom

has been derived in the previous round for computing the next one.

• tabling is already a mixture between bottom-up and top-down.

• data transformation/integration applications:

– transform the whole input database(s),

– export certain IDB relations as “resulting database”,

– (e.g. generation of the MONDIAL database from Web sources with F-Logic in 1998).

624

Summary: Expressiveness of Datalog¬

• negation in the body restricted to stratifiable knowledge bases

• no existentials
note: it is e.g. not possible to express that every country has a capital if not all of them are
explicitly known.
Datalog is a database language, not an ontology language.
⇒ Semantic Web uses different languages.

• no disjunction in the head P → (Q ∨R)

• unique name assumption, no equality

625

