
3.2 SQL

SQL: Structured (Standard) Query Language

Literature: A Guide to the SQL Standard, 3rd Edition, C.J. Date and H. Darwen,
Addison-Wesley 1993

History: about 1974 as SEQUEL (IBM System R, INGRES@Univ. Berkeley, first product:
Oracle in 1978)

Standardization:

SQL-86 and SQL-89: core language, based on existing implementations, including
procedural extensions

SQL-92 (SQL2): some additions

SQL-99 (SQL3):

• active rules (triggers)

• recursion

• object-relational and object-oriented concepts

114

Underlying Data Model

SQL uses the relational model:

• SQL relations are multisets (bags) of tuples (i.e., they can contain duplicates)

• Notions: Relation ❀ Table

Tuple ❀ Row

Attribute ❀ Column

The relational algebra serves as theoretical base for SQL as a query language.

• comprehensive treatment in the “Practical Training SQL”
(http://dbis.informatik.uni-goettingen.de/Teaching/DBP/)

115

BASIC STRUCTURE OF SQL QUERIES

SELECT A1, . . . , An (. . . corresponds to π in the algebra)
FROM R1, . . . , Rm (. . . specifies the contributing relations)
WHERE F (. . . corresponds to σ in the algebra)

corresponds to the algebra expression π[A1, . . . , An](σ[F](r1 × . . .× rm))

• Note: cartesian product → prefixing (optional)

Example

SELECT code, capital, country.population, city.population
FROM country, city
WHERE country.code = city.country

AND city.name = country.capital
AND city.province = country.province;

116

PREFIXING, ALIASING AND RENAMING

• Prefixing: tablename.attr

• Aliasing of relations in the FROM clause:

SELECT alias1.attr1,alias2.attr2
FROM table1 alias1, table2 alias2

WHERE ...

• Renaming of result columns of queries:

SELECT attr1 AS name1, attr2 AS name2

FROM ... WHERE ...

(formal algebra equivalent: renaming)

117

SUBQUERIES

Subqueries of the form (SELECT ... FROM ... WHERE ...) can be used anywhere where a
relation is required:

Subqueries in the FROM clause allow for selection/projection/computation of intermediate
results/subtrees before the join:

SELECT ...
FROM (SELECT ... FROM ... WHERE ...),

(SELECT ... FROM ... WHERE ...)
WHERE ...

(interestingly, although “basic relational algebra”, this has been introduced e.g. in Oracle only
in the early 90s.)

Subqueries in other places allow to express other intermediate results:

SELECT ... (SELECT ... FROM ... WHERE ...) FROM ...
WHERE [NOT] value1 IN (SELECT ... FROM ... WHERE)
AND [NOT] value2 comparison-op [ALL|ANY] (SELECT ... FROM ... WHERE)
AND [NOT] EXISTS (SELECT ... FROM ... WHERE);

118

SUBQUERIES IN THE FROM CLAUSE

• often in combination with aliasing and renaming of the results of the subqueries.

SELECT alias1.name1,alias2.name2

FROM (SELECT attr1 AS name1 FROM ... WHERE ...) alias1,
(SELECT attr2 AS name2 FROM ... WHERE ...) alias2 WHERE ...

... all big cities that belong to large countries:

SELECT city, country
FROM (SELECT name AS city, country AS code2

FROM city
WHERE population > 1000000
),
(SELECT name AS country, code
FROM country
WHERE area > 1000000
)

WHERE code = code2;

119

SUBQUERIES

• Subqueries of the form (SELECT ... FROM ... WHERE ...) that result in a single value
can be used anywhere where a value is required

SELECT function(..., (SELECT ... FROM ... WHERE ...))
FROM ... ;

SELECT ...
FROM ...
WHERE value1 = (SELECT ... FROM ... WHERE ...)
AND value2 < (SELECT ... FROM ... WHERE ...);

120

Subqueries in the WHERE clause

Non-Correlated subqueries

... the simple ones. Inner SFW independent from outer SFW

SELECT name
FROM country
WHERE area >

(SELECT area
FROM country
WHERE code=’D’);

SELECT name
FROM country
WHERE code IN

(SELECT country
FROM encompasses
WHERE continent=’Europe’);

Correlated subqueries

Inner SELECT ... FROM ... WHERE references value of outer SFW in its WHERE clause:

SELECT name
FROM city
WHERE population > 0.25 *
(SELECT population
FROM country
WHERE country.code = city.country);

SELECT name, continent
FROM country, encompasses enc
WHERE country.code = enc.country
AND area > 0.25 *
(SELECT area
FROM continent
WHERE name = enc.continent);

121

Subqueries: EXISTS

• EXISTS makes only sense with a correlated subquery:

SELECT name
FROM country
WHERE EXISTS (SELECT *

FROM city
WHERE country.code = city.country

AND population > 1000000);

algebra equivalent: semijoin.

• NOT EXISTS can be used to express things that otherwise cannot be expressed by SFW:

SELECT name
FROM country
WHERE NOT EXISTS (SELECT *

FROM city
WHERE country.code = city.country

AND population > 1000000);

Alternative: use (SFW) MINUS (SFW)

122

SET OPERATIONS: UNION, INTERSECT, MINUS/EXCEPT

(SELECT name FROM city) INTERSECT (SELECT name FROM country);

Often applied with renaming:

SELECT *
FROM ((SELECT river AS name, country, province FROM geo_river)

UNION
(SELECT lake AS name, country, province FROM geo_lake)
UNION
(SELECT sea AS name, country, province FROM geo_sea))

WHERE country = 'D';

123

Set Operations and Attribute Names

The relational algebra requires X̄ = Ȳ for R(X̄) ∪ S(X̄), R(X̄) ∩ S(X̄), and R(X̄) \ S(X̄):

• attributes are unordered, the tuple model is a “slotted” model.

In SQL,

(SELECT river, country, province FROM geo_river)
UNION
(SELECT lake, country, province FROM geo_lake)

is allowed and the resulting table has the format (river, country, province) (note that the name
of the first column may be indeterministic due to internal optimization).

• the SQL model is a “positional” model, where the name of the i-th column is just inferred
“somehow”,

• cf. usage of column number in ... ORDER BY 1,

• note that column numbers can only be used if there is no ambiguity with numeric values,
e.g.,
SELECT name, 3 FROM country
yields a table whose second column has always the value 3.

124

SYNTACTICAL SUGAR: JOIN

• basic SQL syntax: list of relations in the FROM clause, cartesian product, conditions in
the WHERE clause.

• explicit JOIN syntax in the FROM clause:

SELECT ...
FROM R1 NATURAL JOIN R2 ON join-cond1,2 [NATURAL JOIN R3 ON join-cond1,2,3 ...]
WHERE ...

• usage of parentheses is optional,

• same translation to internal algebra.

OUTER JOIN

• Syntax as above, as LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN (and
FULL JOIN, which is equivalent to FULL OUTER JOIN).

• usage of parentheses is optional, otherwise left-first application (!).

• can be translated to internal outer joins, much more efficient than handwritten outer join
using UNION and NOT EXISTS.

125

HANDLING OF DUPLICATES

In contrast to algebra relations, SQL tables may contain duplicates (cf. Slide 115):

• some applications require them

• duplicate elimination is relatively expensive (O(n logn))

⇒ do not do it automatically

⇒ SQL allows for explicit removal of duplicates:
Keyword: SELECT DISTINCT A1, . . . , An FROM ...

The internal optimization can sometimes put it at a position where it does not incur
additional costs.

126

GENERAL STRUCTURE OF SQL QUERIES:

SELECT [DISTINCT] A1, . . . , An list of expressions
FROM R1, . . . , Rm list of relations
WHERE F condition(s)
GROUP BY B1, . . . , Bk list of grouping attributes
HAVING G condition on groups, same syntax as WHERE clause
ORDER BY H sort order – only relevant for output

• ORDER BY: specifies output order of tuples

SELECT name, population FROM city;

full syntax: ORDER BY attribute-list [ASC|DESC] [NULLS FIRST|LAST]
(ascending/descending)
Multiple attributes allowed:

SELECT * FROM city ORDER BY country, province;

Next: How many people live in the cities in each country?

• GROUP BY: form groups of “related” tuples and generate one output tuple for each group

• HAVING: conditions evaluated on the groups

127

Grouping and Aggregation

• First Normal Form: all values in a tuple are atomic (string, number, date, . . .)

• GROUP BY attribute-list : forms groups of tuples that have the same values for
attribute-list

SELECT country, SUM(population), MAX(population), COUNT(*)
FROM City
GROUP BY country
HAVING SUM(population) > 10000000;

• each group yields one tuple
which may contain:

– the group-by attributes

: : : :

Innsbruck A Tirol 118000

Vienna A Vienna 1583000

: : : :

Graz A Steiermark 238000

: : : :

– aggregations of all values in a column: SUM, AVG, MIN, MAX, COUNT

: : : :

country: A SUM(population): 2434525 MAX(population): 1583000 COUNT(*): 9

: : : :

• SELECT and HAVING: use these terms.

128

Aggregation

• Aggregation can be applied to a whole relation:

SELECT COUNT(*), SUM(population), MAX(population)
FROM country;

• Aggregation with DISTINCT:

SELECT COUNT (DISTINCT country)
FROM CITY
WHERE population > 1000000;

129

ALTOGETHER: EVALUATION STRATEGY

SELECT [DISTINCT] A1, . . . , An list of expressions
FROM R1, . . . , Rm list of relations
WHERE F condition(s)
GROUP BY B1, . . . , Bk list of grouping attributes
HAVING G condition on groups, same syntax as WHERE clause
ORDER BY H sort order – only relevant for output

1. evaluate FROM and WHERE,

2. evaluate GROUP BY → yields groups,

3. generate a tuple for each group containing all expressions in HAVING and SELECT,

4. evaluate HAVING on groups,

5. evaluate SELECT (projection, removes things only needed in HAVING),

6. output result according to ORDER BY.

130

CONSTRUCTING QUERIES

For each problem there are multiple possible equivalent queries in SQL (cf. Example 3.14).
The choice is mainly a matter of personal taste.

• analyze the problem “systematically”:

– collect all relations (in the FROM clause) that are needed

– generate a suitable conjunctive WHERE clause

⇒ leads to a single “broad” SFW query
(cf. conjunctive queries, relational calculus)

• analyze the problem “top-down”:

– take the relations that directly contribute to the result in the (outer) FROM clause

– do all further work in correlated subquery/-queries in the WHERE clause

⇒ leads to a “main” part and nested subproblems

• decomposition of the problem into subproblems:

– subproblems are solved by nested SFW queries that are combined in the FROM
clause of a surrounding query

131

COMPARISON

SQL:

SELECT A1, . . . , An FROM R1,...,Rm WHERE F

• equivalent expression in the relational algebra:

π[A1, . . . , An](σ[F](r1 × . . .× rm))

• Algorithm (nested-loop):
FOR each tuple t1 in relation R1 DO

FOR each tuple t2 in relation R2 DO
:

FOR each tuple tn in relation Rn DO
IF tuples t1, . . . , tn satisfy the WHERE-clause THEN

evaluate the SELECT clause and generate the result tuple (projection).

Note: the tuple variables can also be introduced in SQL explicitly as alias variables:

SELECT A1, . . . , An FROM R1 t1,...,Rm tm WHERE F

(then optionally using ti.attr in SELECT and WHERE)

132

Comparison: Subqueries

• Subqueries in the FROM-clause (cf. Slide 119): joined subtrees in the algebra

SELECT city, country
FROM (SELECT name AS city,

country AS code2
FROM city
WHERE population > 1000000

),
(SELECT name AS country, code
FROM country
WHERE area > 1000000

)
WHERE code = code2;

π[city, country]

σ[code=code2]

×

ρ[name→ city, country→ code2]

π[name, country]

σ[population>1000000]

city

ρ[name→ country]

π[name, code]

σ[area>1000000]

country

• the relation from evaluating the from clause has columns city, code2, country, code1 that can be
used in the where clause and in the select clause.

133

Comparison: Subqueries in the WHERE clause

• WHERE ... IN uncorrelated-subquery (cf. Slide 121):
Natural semijoin of outer tree with the subquery tree;

SELECT name
FROM country
WHERE code IN

(SELECT country
FROM encompasses
WHERE continent=’Europe’);

π[name]

✄<

country ρ[country→ code]

π[country]

σ[continent=’Europe’]

encompasses

Note that the natural semijoin serves as an equi-selection where all tuples from the outer
expression qualify that match an element of the result of the inner expression.

134

Comparison: Subqueries

• WHERE value op uncorrelated-subquery:
(cf. Slide 121):
join of outer expression with subquery, selection, projection to outer attributes

SELECT name
FROM country
WHERE area >

(SELECT area
FROM country
WHERE code=’D’);

π[name]

⊲⊳[area > germanyArea]

country ρ[area→ germanyArea]

π[area]

σ[code=’D’]

country
Note: the table that results from the join has the format (name, code, area, population,
. . . , germanyArea).

135

Comparison: Correlated Subqueries

• WHERE value op correlated-subquery:

– tree1: outer expression

– tree2: subquery, uncorrelated

– natural join/semijoin of both trees contains the correlating condition

– afterwards: WHERE condition

SELECT name, continent
FROM country, encompasses enc
WHERE country.code = enc.country
AND area > 0.25 *
(SELECT area
FROM continent
WHERE name=enc.continent);

π[name,continent]

σ[area > 0.25 * cont.area]

⊲⊳[enc.cont=cont.name]

⊲⊳[country.code = enc.country]

country encompasses

continent

• equivalent with semijoin: ✄< [enc.cont=cont.name ∧ area > 0.25 * cont.area]

136

Comparison: Correlated Subqueries

... comment to previous slide:

• although the tree expression looks less target-oriented than the SQL correlated subquery,
it does the same:

• instead of iterating over the tuples of the outer SQL expression and evaluating the inner
one for each of the tuples,

• the results of the inner expression are “precomputed” and iteration over the outer result
just fetches the corresponding one.

• effectiveness depends on the situation:

– how many of the results of the subquery are actually needed (worst case: no tuple
survives the outer local WHERE clause).

– are there results of the subquery that are needed several times.

database systems are often able to internally choose the most effective solution
(schema-based and statistics-based)
... see next section.

137

Comparison: EXISTS-Subqueries

• WHERE EXISTS: similar to above:
correlated subquery, no additional condition after natural semijoin

• SELECT ... FROM X,Y,Z WHERE NOT EXISTS (SFW):

SELECT ...
FROM ((SELECT * FROM X,Y,Z) MINUS

(SELECT X,Y,Z WHERE EXISTS (SFW)))

Results

• all queries (without NOT-operator) including subqueries without grouping/aggregation can
be translated into SPJR-trees (selection, projection, join, renaming)

• they can even be flattened into a single broad cartesian product, followed by a selection
and a projection.

138

Comparison: the differences between Algebra and SQL

• The relational algebra has no notion of grouping and aggregate functions

• SQL has no clause that corresponds to relational division

Example 3.16
Consider again Example 3.13 (Slide 101):

“Compute those organizations that have at least one member on each continent”:

orgOnCont÷ π[name](continent).

Exercise: Use the algebraic expression for r ÷ s from Slide 100 for stating the query in SQL
(use the SQL statement for orgOnCont from Slide 101):

r ÷ s = π[Z̄](r) \ π[Z̄]((π[Z̄](r)× s) \ r).

139

Example 3.16 (Cont’d – Solution to Exercise)

(select org
from (select distinct i.organization as org, e.continent as cont

from ismember i, encompasses e
where i.country = e.country))

minus
(select o1

from ((select o1,n1
from (select org as o1

from (select distinct i.organization as org, e.continent as cont
from ismember i, encompasses e
where i.country = e.country))

,
(select name as n1 from continent)

)
minus
(select distinct i.organization as org, e.continent as cont
from ismember i, encompasses e
where i.country = e.country)

)
)

Nobody would do this:

• learn this formula,

• copy&paste and fight with parentheses!

140

Example 3.16 (Cont’d)
• Instead of π[Z̄](r), a simpler query yielding the Z̄ values can be used.

These often correspond to the keys of some relation that represents the instances of
some entity type (here: the organizations):

orgOnCont÷ π[name](continent) =

π[abbreviation](organization)\
π[Z̄]((π[abbreviation](organization)× π[name](continent)︸ ︷︷ ︸

orgs×conts

) \ orgOnCont

︸ ︷︷ ︸
the “missing” pairs

)

︸ ︷︷ ︸
organizations that have a missing pair

• the corresponding SQL query is much smaller, and can be constructed intuitively:

(select abbreviation from organization)
minus
(select abbreviation

from ((select o.abbreviation, c.name
from organization o, continent c)

minus
(select distinct i.organization as org, e.continent as cont
from ismember i, encompasses e
where i.country = e.country)))

... the structure is the same as the previous one!

141

Example 3.16 (Cont’d)
The corresponding SQL formulation that implements division corresponds to the textual

“all organizations such that they occur in orgOnCont together with each of the continent

names”,

or equivalent

“all organizations org such that there is no value cont in π[name](continent) such that org
does not occur together with cont in orgOnCont”.

select abbreviation
from organization o
where not exists
((select name from continent)
minus
(select cont
from (select distinct i.organization as org, e.continent as cont

from ismember i, encompasses e
where i.country = e.country)

where org = o.abbreviation))

• the query is still set-theory-based.

• there is also a logic-based way:

142

Example 3.16 (Cont’d)
“all organizations such that there is no continent such that the organization has no member
on this continent (i.e., does not occur in orgOnCont together with this continent)”

select abbreviation
from organization o
where not exists
(select name
from continent c
where not exists
(select *
from (select distinct i.organization as org, e.continent as cont

from ismember i, encompasses e
where i.country = e.country)

where org = o.abbreviation
and cont = c.name))

Oracle Query Plan Estimate: copy-and-paste-solution: 568; minus-minus: 16;
not-exists-minus: 175; not-exists-not-exists: 295.

143

Example 3.16 (Cont’d)
Aside: logic-based querying with Datalog (see Lecture on “Deductive Databases”)

{o | organization(o, . . .) ∧ ¬∃cont : (continent(cont, . . .) ∧ ¬orgOnCont(o, cont))}

% [mondial].
orgOnCont(O,C,Cont) :- isMember(C,O,_), encompasses(C, Cont,_).
notResult(O) :- organization(O,_,_,_,_,_), continent(Cont,_), not orgOnCont(O,_,Cont).
result(O) :- organization(O,_,_,_,_,_), not notResult(O).
% ?- result(O).
% ?- findall(O, result(O), L). [Filename: Datalog/orgOnContsDiv.P]

... much shorter.

Algebra expression for it:

\

π[abbrev](org) π[abbrev]

\

π[abbrev](org) × π[name](cont) ρ[org→abbrev](π[org,cont](isMember ⊲⊳ encompasses))

corresponds to the most efficient minus-minus solution.

144

Orthogonality

Full orthogonality means that an expression that results in a relation is allowed everywhere,
where an input relation is allowed

• subqueries in the FROM clause

• subqueries in the WHERE clause

• subqueries in the SELECT clause (returning a single value)

• combinations of set operations

But:

• Syntax of aggregation functions is not fully orthogonal:
Not allowed: SUM(SELECT ...)

SELECT SUM(pop_biggest)
FROM (SELECT country, MAX(population) AS pop_biggest

FROM City
GROUP BY country);

• The language OQL (Object Query Language) uses similar constructs and is fully
orthogonal.

145

3.3 Efficient Algebraic Query Evaluation

Semantical/logical optimization: Consider integrity constraints in the database.

• constraint on table city: population ≥ 0.
Query plan for select * from city where population < 0:

Operation object predicate cost

SELECT STATEMENT 0

_FILTER NULL IS NOT NULL

__TABLE ACCESS (FULL) CITY POPULATION < 0 7

• (foreign key references activated)
select * from ismember where country not in (select code from country):

Operation object predicate cost

SELECT STATEMENT 0

_FILTER NULL IS NOT NULL

__TABLE ACCESS (FULL) ISMEMBER 9

146

Semantical/logical optimization (Cont’d): Consider integrity constraints in the database.

• (foreign key references activated)

select country from ismember where country in (select code from country):

Operation object predicate cost

SELECT STATEMENT 9

_TABLE ACCESS (FULL) ISMEMBER 9

No lookup of country.code at all (because guaranteed by foreign key)

• not always obvious

• general case: first-order theorem proving.

Algebraic optimization: search for an equivalent algebra expression that performs better:

• size of intermediate results,

• implementation of operators as algorithms,

• presence of indexes and order.

147

ALGEBRAIC OPTIMIZATION

The operator tree of an algebra expression provides a base for several optimization strategies:

• reusing intermediate results

• equivalent restructuring of the operator tree

• “shortcuts” by melting several operators into one
(e.g., join + equality predicate → equijoin)

• combination with actual situation: indexes, properties of data

Real-life databases implement this functionality.

• SQL: declarative specification of a query

• internal: algebra tree + optimizations

148

REUSING INTERMEDIATE RESULTS

• Multiply occurring subtrees can be reused
(directed acyclic graph (DAG) instead of algebra tree)

–

π[X] π[X]

⊲⊳ ⊲⊳

s r r ⊲⊳

q s

–

π[X] π[X]

⊲⊳

q

⊲⊳

r s

π[X]

if not
>✁

q ⊲⊳

r s

Comment on rightmost graph:
“take X from all r ⊲⊳ s that do not match any tuple in q”.

149

Reusing intermediate results

∪

⊲⊳ ⊲⊳

r s t s t u

∪

⊲⊳ ⊲⊳

r ⊲⊳ u

s t

for each tuple in s ⊲⊳ t, computation
can be forked, joining it with r and u

and contributing to the union in paral-
lel

150

OPTIMIZATION BY TREE RESTRUCTURING

• Equivalent transformation of the operator tree that represents an expression

• Based on the equivalences shown on Slide 110.

• minimize the size of intermediate results
(reject tuples/columns as early as possible during the computation)

• selections reduce the number of tuples

• projections reduce the size of tuples

• apply both as early as possible (i.e., before joins)

• different application order of joins

• semijoins instead of joins (in combination with implementation issues; see next section)

151

Push Selections Down

Assume r, s ∈ Rel(X̄), Ȳ ⊆ X̄.

σ[cond](π[Ȳ](r)) ≡ π[Ȳ](σ[cond](r))

(condition: cond does not use attributes from X̄ − Ȳ ,

otherwise left term is undefined)

σpop>1E6(π[name, pop](country)) ≡ π[name, pop](σpop>1E6(country))

σ[cond](r ∪ s) ≡ σ[cond](r) ∪ σ[cond](s)

σpop>1E6(π[name, pop](country) ∪ π[name, pop](city))

≡ σpop>1E6(π[name, pop](country)) ∪ σpop>1E6(π[name, pop](city))

σ[cond](ρ[N](r)) ≡ ρ[N](σ[cond′](r))

(where cond′ is obtained from cond by renaming according to N)

σ[cond](r ∩ s) ≡ σ[cond](r) ∩ σ[cond](s)

σ[cond](r − s) ≡ σ[cond](r)− σ[cond](s)

π : see comment above. Optimization uses only left-to-right.

152

Push Selections Down (Cont’d)

Assume r ∈ Rel(X̄), s ∈ Rel(Ȳ). Consider σ[cond](r ⊲⊳ s).

Let cond = condX̄ ∧ condȲ ∧ condXY such that

• condX̄ is concerned only with attributes in X̄

• condȲ is concerned only with attributes in Ȳ

• condXY is concerned both with attributes in X̄ and in Ȳ .

Then,
σ[cond](r ⊲⊳ s) ≡ σ[condXY](σ[condX̄](r) ⊲⊳ σ[condȲ](s))

Example 3.17
Names of all countries that have an area of more than 1,000,000 km2, their capital has more
than 1,000,000 inhabitants, and more than half of the inhabitants live in the capital. ✷

153

Example 3.17 (Cont’d)

π[name]

σ[countrypop < 2·citypop]

⊲⊳

ρ[capital→city,population→countrypop]

π[name,code,capital,province,population]

σ[area > 1000000]

country

ρ[name→city,population→citypop]

π[name,province,country,population]

σ[population > 1000000]

city

✷

• Nevertheless, if cond is e.g. a complex mathematical calculation, it can be cheaper first to
reduce the number of tuples by ∩, −, or ⊲⊳

⇒ data-dependent strategies (see later)

154

Push Projections Down

Assume r, s ∈ Rel(X̄), Ȳ ⊆ X̄.

Let cond = condX̄ ∧ condȲ such that

• condȲ is concerned only with attributes in Ȳ

• condX̄ is the remaining part of cond that is also concerned with attributes X̄ \ Y .

π[Ȳ](σ[cond](r)) ≡ σ[condȲ](π[Ȳ](σ[condX̄](r)))

π[Ȳ](ρ[N](r)) ≡ ρ[N](π[Ȳ ′](r))

(where Ȳ ′ is obtained from Ȳ by renaming according to N)

π[Ȳ](r ∪ s) ≡ π[Ȳ](r) ∪ π[Ȳ](s)

• Note that this does not hold for “∩” and “−”!

• advantages of pushing “σ” vs. “π” are data-dependent
Default: push σ lower.

Assume r ∈ Rel(X̄), s ∈ Rel(Ȳ).

π[Z̄](r ⊲⊳ s) ≡ π[Z](π[X̄ ∩ ZY](r) ⊲⊳ π[Ȳ ∩ ZX](s))

• complex interactions between reusing subexpressions and pushing selection/projection

155

Application Order of Joins

Consider the query:

SELECT organization.name as oname, country.name as cname
FROM organization, country
WHERE (abbreviation,code) IN (SELECT organization, country

FROM isMember)

• transforming into the relational algebra suggests a very costly evaluation:

π[oname,cname] (10000)

✄< [org.abbrev=ism.org ∧ c.code=ism.country]

×

ρ[name→oname,abbreviation→organization]

π[name,abbreviation]

organization (150)

ρ[name→cname,code→country]

π[name,code]

country (250)

ismember (10000)(150·250=37500)

(37500·10000 = 375 000 000)

• evaluation: semijoin uses an index (on the key of ismember) or nested-loop.

156

Application Order of Joins

Minimize intermediate results (and number of comparisons):

... consider the equivalent query:

SELECT organization.name as org, country.name as cname
FROM organization, isMember, country
WHERE organization.abbreviation = isMember.organization
AND isMember.country = country.code

If primary key and foreign key indexes on country.code and organization.abbreviation are
available:

• loop over isMember

• extend each tuple with matching
organization and country by using
the indexes.

• Oracle query plan shows an
extremely efficient evaluation of
both of the above queries using
indexes and ad-hoc views.

π[oname,cname] (10000)

⊲⊳

⊲⊳

ρ[name→oname,
abbrev.→org.]

π[name,abbreviation]

organization (150)

ismember
(10000)

ρ[name→cname,
code→country]

π[name,code]

country (250)

(10000)

(10000)

157

Aside: the real query plan

Operation Object Pred(Index) Pred(Filter) COST Rows

SELECT STATEMENT 13 9968

_HASH JOIN C.CODE=ISM.COUNTRY 13 9968

__VIEW v2 2 241

___HASH JOIN ROWID=ROWID

____INDEX (FULL SCAN) COUNTRYKEY 1 241

____INDEX (FULL SCAN) SYS_C0030486 1 241

__HASH JOIN ORG.ABBREV=ISM.ORG 11 9968

___VIEW v1 2 152

____HASH JOIN ROWID=ROWID

_____INDEX (FULL SCAN) ORGKEY 1 152

_____INDEX (FULL SCAN) ORGNAMEUNIQ 1 152

___SORT (UNIQUE) 9 9968

____INDEX (FULL SCAN) MEMBERKEY 9 9968

No access to actual tables, ism(org,country) from key index, org(abbrev,name) from indexes
via rowid-join, country(code,name) from indexes via rowid-join; both materialized as
ad-hoc-views, combined by two hash-joins.

158

OPERATOR EVALUATION BY PIPELINING

• above, each algebra operator has been considered separately

• if a query consists of several operators, the materialization of intermediate results should
be avoided

• Pipelining denotes the immediate propagation of tuples to subsequent operators

Example 3.18
• σ[country = “D” ∧ population > 200000](City):

Assume an index that supports the condition country = “D”.

– without pipelining: compute σ[country = “D”](City) using the index, obtain City’. Then,
compute σ[population > 200000](City’).

– with pipelining: compute σ[country = “D”](City) using the index, and check on-the fly
each qualifying tuple against σ[population > 200000].

– extreme case: when there is also an index on population (tree index, allows for range
scan):
obtain set S1 of all tuple-ids for german cities from index on code, obtain set S2 of all
tuple-ids of cities with more than 2 million inhabitants from population index, intersect
S1 and S2 and access only the remaining cities. ✷

159

• Unary (i.e., selection and projection) operations can always be pipelined with the next
lower binary operation (e.g., join)

• σ[cond](R ⊲⊳ S):

– without pipelining: compute R ⊲⊳ S, obtain RS, then compute σ[cond](RS).

– with pipelining: during computing (R ⊲⊳ S), each tuple is immediately checked whether
it satisfies cond.

• (R ⊲⊳ S) ⊲⊳ T :

– without pipelining: compute R ⊲⊳ S, obtain RS, then compute RS ⊲⊳ T .

– with pipelining: during computing (R ⊲⊳ S), each tuple is immediately propagated to
one of the described join algorithms for computing RS ⊲⊳ T .

Most database systems combine materialization of intermediate results, iterator-based
implementation of algebra operators, indexes, and pipelining.

160

